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We address the precision of the estimation procedures for the minimum length arising from gravitational
theories. In particular, we provide bounds on precision and assess the use of quantum probes to enhance
the estimation performance. At first, we review the concept of minimum length and how it induces a
perturbative term appearing in the Hamiltonian of any quantum system, which itself is proportional to a
parameter depending on the minimum length. We then systematically study the effects of this perturbation
on different state preparations and for several one-dimensional systems, and evaluate the quantum Fisher
information in order to find the ultimate bounds to precision. Eventually, we investigate the role of
dimensionality by analyzing the use of two-dimensional square well and harmonic oscillator systems to
probe the minimal length. Our results show that quantum probes are convenient resources, providing
potential enhancement in precision. Additionally, our results provide a set of guidelines to design future
experiments to detect the minimum length.
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I. INTRODUCTION

In the last decades, various theories of quantum gravity
have been put forward, attempting to jointly describe the
quantum world and the gravitational force. Albeit all of
these theories have different postulates on the fundamental
nature of space and time, they all have a common model-
independent prediction: the existence of a minimum length
[1] commonly associated with the Planck length LP.
Thanks to a device-independent proof [2,3], the physical
reason behind this result is quite clear: if we want to
measure the position of a particle, the more massive is the
particle, the more precise is the estimate. On the other hand,
if the mass exceeds a specific value (established by the laws
of general relativity), we will run in the black hole regime,
thus increasing the uncertaintyΔxi on the position, being xi
the ith position operator. From these considerations, it may
be induced that [1–7]

Δxi ≥ LP: ð1Þ

Overall, we have that upon assuming minimal compati-
bility with general relativity, a momentum-independent
lower bound on the precision of any position measurement
should appear, and any length under this lower bound loses
physical meaning. Of course, in standard quantum mechan-
ics, we do not have an independent lower bound on Δxi,

which should just satisfy the standard uncertainty relations
ΔxiΔpj ≥ δijℏ=2. We may ask how to reproduce such
a minimum length effect in a nonrelativistic quantum
setting. Some solutions have been suggested [1,7], e.g.,
by modifying the particle momentum with an extra ad hoc
parameter-dependent term [1],

p⃗ ¼ p⃗0

�
1þ γ

p⃗2
0

M2
Pc2

�
: ð2Þ

The parameter γ does depend on the minimum length and
may be understood as a self-gravity perturbation [8]. As a
result, the standard commutation relations are modified
[1,4,7,9], leading to the so-called generalized uncertainty
principle (GUP),

ΔxiΔpi ≥
ℏ
2

�
1þ γ

Δp2 þ hpi2
M2

Pc2
þ 2γ

Δp2
i þ hpii2
M2

Pc2

�
; ð3Þ

which replicates the minimum length effect (1).
Furthermore, the momentummodification (2) affects directly
the Hamiltonian of any nonrelativistic system. Indeed, at first
order in γ, we have that H ¼ H0 þH1 þOðγ2Þ, where the
extra term,

H1 ¼
γ

mM2
Pc2

p4 ð4Þ

is the gravity perturbation, and it represents the gravitational
effect on a generic quantum system, due to the modified
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momentum. This extra term does not depend on the system
under consideration, i.e., on the form of H0, and it is
therefore referred to as the universal quantum gravity
correction term [7]. The consequences of the perturbation
on the energy spectrum have been analyzed [7,10–12]
as well as their effects on cosmological [13–15] and
inflationary models [15,16]. Another phenomenological
implication had been explored on the set of coherent states
[17–19], and their superpositions [20]. Moreover, it has been
found that the concept of GUP may be applied in other
fields, e.g., in optics, where a formally identical system
describes pulse propagation with higher-order dispersion
[21]. Finally, a proposal to test such a perturbation with
massive mechanical oscillators has been also suggested [22].
In this paper, we address the problem of estimating the

parameter γ by exploiting quantum probes, i.e., by perform-
ing measurements on a quantum system subjected to a
given potential and to the gravity corrections. Our specific
goal is to find the ultimate limits to precision, rather than
providing an estimate for the actual value of γ, and to
compare different systems in terms of their ultimate
performance. To this aim, we employ tools and ideas from
local quantum estimation theory (QET) [23], which allows
us to quantify the information carried by a given state of the
system about the parameter γ and to determine the lower
bound on the variance of an estimator. In turn, the paradigm
of quantum probing has successfully employed in recent
years to different estimation problems in quantum tech-
nology and fundamental physics, and it appears as a
promising avenue to the search of new physics. As an
example, we cite the approach used by [24] to find the
minimum intrinsic error on the measurement of the speed
of light in a cavity, which results in some restrictions on the
possibility of probing quantum gravity fluctuations. In our
work, we assume that the parameter γ is small, a fact
supported by the lack of empirical evidence of the
perturbation H1. In turn, also supported by the derivation
of the full Hamiltonian in [7], we are going to use
perturbation theory to take into account gravity corrections.
In the perturbative regime, we study different quantum
probes, which means different systems and different state
preparations, to find the optimal ones, i.e., those providing
the highest sensitivity to tiny changes in γ and thus, the
lowest bound to precision.
The paper is structured as follows. In Sec. II, we review

local quantum estimation, its main results as well as its
geometrical interpretation. In Sec, III, using perturbation
theory, we study the estimability of the coupling parameter
γ of a given perturbation H1. Then, in Sec. IV, we apply
these results to the estimation of gravity perturbations (4) in
several one-dimensional systems to find which one pro-
vides better performance. Eventually, in Sec. V, we inves-
tigate the relationship between the dimensionality of the
system and the quantum Fisher information, to assess a
possible enhancement.

II. QUANTUM ESTIMATION THEORY

Estimation theory deals with the problem of estimating
the values of a set of parameters from a data set of empirical
values. Different from a statistical inference problem,
where we do not know the probability distribution of the
empirical values, in an estimation problem, this is well
known: what it is not known is the set of the parameters
from which the distribution depends on. In the quantum
world, many parameters do not correspond to quantum
observable, and they can not be measured directly. Instead,
an indirect estimate from a set of empirical values should be
performed. In this procedure, the observer has the freedom
to choose different state preparations and/or different
detectors, i.e., different positive operator-valued measures
(POVMs). There are two different ways to address the
problem of quantum estimation. Global quantum estima-
tion theory pursues the POVM, minimizing a suitable cost
functional which must be averaged over all the possible
values of the parameter. Thereby, it results in a single
POVM which does not depend on the value of the
parameter. Instead, the local quantum estimation theory
searches for the POVM minimizing the variance of the
parameter estimator at a fixed value of the parameter.
Despite that fact that the POVM could depend on the
parameter, the minimization concerns only a specific value
of the parameter, and we may expect a better estimate.
Hereinafter, we will use tools provided by local QET to find
the best measurements and the best states to achieve the
best estimate of γ, and in this section, we briefly review the
ideas behind local QET [23].
A classical estimation problem consists of a finite set of

empirical data fx1; x2;…; xng belonging to the observation
space Sn and following a probability distribution pγðxÞ,
which depends on an unknown parameter γ ∈ A, whose
value we want to estimate. An estimator is a function γ� of
the data in the setA of the possible values of the parameter,

γ�∶Sn → A: ð5Þ

Among all the possible γ�, optimal unbiased estimators are
those saturating the Cramer-Rao inequality [25,26],

Varðγ�Þ ≥ 1

nF cðγÞ
; ð6Þ

where n is the number of empirical value and F cðγÞ is the
classical Fisher information,

F cðγÞ ¼
Z
S
pγðxÞ½∂γ logpγðxÞ�2dx; ð7Þ

representing a measure of the amount of information
carried by the probability distribution on the parameter γ
[27]. This lower bound on the variance that an estimator γ�
can achieve is independent of the estimator used, meaning
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that it is an universal bound: no estimator can be more
precise than an optimal one. Moving to quantum mechan-
ics, a quantum statistical model consists of a family of
quantum states fργg, depending on a parameter γ, i.e., a
family of states encoding the information about γ [28]. If
we measure the generalized observable described by the
POVM Em (Em ≥ 0,

P
m Em ¼ I), the probability distribu-

tion is determined both by the state and the POVM
according to the Born rule,

pγðmÞ ¼ Tr½Emργ�; ð8Þ

where m labels a possible outcome of the measurement.
The central problem of the quantum estimation theory is to
determine the state ργ and the POVM Em that maximizes
the F cðγÞ, i.e,. minimize the lower bound on the variance.
Using the Born rule, the classical lower bound is given by

F c½Em�ðγÞ ¼
Z
S
dm

f∂γTr½Emργ�g2
Tr½Emργ�

: ð9Þ

Using the Schwartz inequality and the completeness
property of the POVM, one can see that F c½Em�ðγÞ has
a maximum among all the possible measurement Em.
This maximum is given by the so-called quantum Fisher
information (QFI),

F qðγÞ ¼ Tr½Λ2
γργ� ≥ F c½Em�ðγÞ ∀ Em; ð10Þ

where Λγ is the symmetric logarithmic derivative (SLD)
defined implicitly by ργ as

Λγργ þ ργΛγ

2
¼ ∂γργ: ð11Þ

As a result, the quantum counterpart of the Cramer-Rao
theorem holds

Varðγ�Þ ≥ 1

nF qðγÞ
: ð12Þ

The quantum CR bound fixes a lower bound on the precision
of any estimator. In order to saturate the quantum Cramer
Rao bound, besides using an optimal estimator γ�, we need
also to implement the optimal measurement, which is given
by the projectors on the eigenspace of Λγ [23].
The concepts of the quantum statistical model and that

of quantum Fisher information also have a rather natural
geometrical interpretation, related to the notion of distin-
guishability [28,29]. To illustrate this point, let us consider
the Bures distance between two quantum states ρ and σ,

DBðρ; σÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðρ; σÞ

pq
; ð13Þ

where F is the fidelity Fðρ; σÞ ¼ ½Tr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp ��2 [30].
Using the parameter γ as a coordinate, we may introduce
the Bures metric gBðγÞ in the quantum statistical model
space as

D2
Bðργ; ργþdγÞ ¼ gBðγÞdγ2; ð14Þ

and it can be proved that it is proportional to the quantum
Fisher information F qðγÞ,

gBðγÞ ¼
F qðγÞ
4

: ð15Þ

If the distance between two neighboring states (which
differ by an infinitesimal variation of the parameter γ) is
large, it is easier to discriminate the states, and conse-
quently, to estimate the value of the parameter γ.

III. QET FOR A WEAK PERTURBATION

In this section, we apply the results outlined above to the
problem of estimating the coupling parameter γ, which
quantifies the amplitude of a perturbation H1, to an other-
wise unperturbed system governed by the Hamiltonian H0.
Since we know in advance that the parameter is small, this is
a paradigmatic situation where local quantum estimation
theory is providing a consistent approach to the optimization
problem. Assuming that the unperturbed energy spectrum

fEð0Þ
n ; jψnig of H0 is discrete, the corresponding first-order

perturbed eigenstates are given by

jψγ
ni ¼ jψni þ γjψ ð1Þ

n i; ð16Þ

where

jψ ð1Þ
n i ¼

Xþ∞

m≠n

hψmjH1jψni
Eð0Þ
n − Eð0Þ

m

jψmi; ð17Þ

is the perturbation ket. The corresponding first-order eigen-

values are Eγ
n ¼ Eð0Þ

n þ γEð1Þ
n , with the first-order correction

given by Eð1Þ
n ¼ hψnjH1jψni. For a pure quantum state

ργ ¼ jψγihψγj, the QFI is given by

F qðγÞ ¼ 4½h∂γψ
γj∂γψ

γi − jhψγj∂γψ
γij2�; ð18Þ

which, for states of the form (16) may be written as (up to
first order in γ)

F qðγÞ ≃ 4kψ ð1Þ
n k2 þOðγ2Þ; ð19Þ

and is independent on γ itself. For pure states, we may
also easily compute the SLD since for a pure state ρ2 ¼ ρ,
we have
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ð∂γρ
γÞργ þ ργð∂γρ

γÞ ¼ ∂γρ
γ; ð20Þ

and in turn, upon comparison to (11),

Λγ;n ¼ 2∂γρ
γ
n ¼ 2ðj∂γψ

γ
nihψγ

nj þ jψγ
nih∂γψ

γ
njÞ: ð21Þ

In particular, for the nth first order perturbed ket (16),
we have

Λγ;n ¼ 2ðjψ ð1Þ
n ihψnj þ jψnihψ ð1Þ

n j
þ 2γjψ ð1Þ

n ihψ ð1Þ
n jÞ þOðγ2Þ: ð22Þ

In order to assess the performance of a given measurement
against the optimal one, one may compute the corresponding
FI and compare it with the QFI in Eq. (19). For an energy
measurement on the perturbed eigenstates jψγ

ni, i.e., the
detection of H0 on states of the form (17), we have
pðkjn; γÞ ¼ jhψkjψγ

nij2 ¼ δkn þ γ2jckj2ð1 − δknÞ, where
ck is the perturbation amplitude ck ¼ hψkjH1jψni=
ðEð0Þ

n − Eð0Þ
m Þ. By inserting this expression in Eq. (9), we

have F qðγÞ ¼ F c½H0�ðγÞ þOðγ2Þ. In other words, a static
energy measurement is optimal (up to second order in γ).
Other observables may be optimal, however with some
constraints on the form of H1;, see the Appendix.
Next, we study time-evolving states for the case where the

eigenstates of H are the same as H0; i.e., the perturbation
commutes with the unperturbed Hamiltonian. A generic
initial superposition is thus given by

jψγðt ¼ 0Þi ¼
XN
n¼0

ψnð0Þjψni: ð23Þ

The different terms in the superposition acquire a phase
proportional to their energy Eγ

n, and this generates an extra
dependence on γ by the action of the unitary evolution
jψγðtÞi ¼ expf−iHt=ℏgjψγð0Þi. From (18), we can com-
pute the QFI, which is given by

F qðγ; tÞ ¼ F qðtÞ

¼ 4
t2

ℏ2

�XN
n¼0

jψnð0Þj2½Eð1Þ
n �2−

����XN
n¼0

����ψnð0Þj2Eð1Þ
n j2

�
:

ð24Þ

The QFI is maximized when the system is initially prepared
in a superposition of only two states: jψMi and jψmi,
corresponding to the maximum and the minimum energy

corrections Eð1Þ
n , respectively [31–33],

jψγðt ¼ 0Þi ¼ 1ffiffiffi
2

p ðjψmi þ jψMiÞ: ð25Þ

The maximized value of the QFI is given by

F qðtÞ ¼
t2

ℏ2
ðmaxiE

ð1Þ
i −minjE

ð1Þ
j Þ2 ¼

�
t
ℏ
ΔEð1Þ

�
2

: ð26Þ

We notice that the QFI is independent on γ at any order.
Moreover, since the state is pure, the SLD is of the form (21).
For the initial preparation (25), the SLD rewrites as

Λγ ¼
itΔEð1Þ

ℏ
ðjψmihψMjeitΔEγ

ℏ − jψMihψmje−itΔEγ
ℏ Þ; ð27Þ

where ΔEγ ¼ Eγ
M − Eγ

m.

IV. QET FOR GRAVITY PERTURBATION
IN ONE DIMENSION

In this section, we focus on the perturbation H1 that
arises in the context of the universal gravity corrections;
see (4). The section aims to study different physical systems
and compare their performance as potential quantum probes
for the estimation of the gravitational parameter γ.

A. Free particle

We start our investigation with the most simple physical
system, namely the free particle,

H0 ¼
p2

2m
: ð28Þ

The momentum eigenstates are both eigenstates of H0

andH1; thus, the full Hamiltonian is diagonalizable. In this
case, eigenstates are not affected by the perturbation, and
thus, superpositions of eigenstates evolving in time are
needed to realize quantum probes. Since we have a
continuous energy spectrum, the superposition is the wave
packet, jψγð0Þi ¼ R

R dpψ0ðpÞjpi, and the QFI at time t is
given by

F qðtÞ ¼
4t2

ℏ2m2ðMPcÞ4

×

�Z
R
dpjψ0ðpÞj2p8 −

����
Z
R
dpjψ0ðpÞj2p4

����2
�
;

ð29Þ

which, in turn, is the continuous counterpart of the discrete
results discussed previously. In order to better understand
the meaning of this result, let us evaluate it for an initial
Gaussian wave packet with width σ and mean p0. The
squared modulus is

jψ0ðpÞj2 ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−ðp−p0Þ2=2σ2 ; ð30Þ

and the QFI,

CANDELORO, BOSCHI, and PARIS PHYS. REV. D 102, 056012 (2020)

056012-4



F qðt;σ;pmÞ¼
32t2σ2

ℏ2m2ðMPcÞ4
× ½2p6

0þ21p4
0σ

2þ48p2
0σ

4þ12σ6�; ð31Þ

¼ 32t2σ2

ℏ2m2ðMPcÞ4
× ½16h30m3 þ 60h20m

2σ2 þ 24h0mσ4 − 17σ6�;
ð32Þ

where h0 ≡ hH0i ¼ ðp2
0 þ σ2Þ=2m is the energy of the

wave packet. Considering that σ ≤
ffiffiffiffiffiffiffiffiffiffiffi
2mh0

p
, F qðt; σ; pmÞ is

an increasing function of both y≡ h0m and σ, meaning that
a free particle may represent an effective probe if its initial
preparation is delocalized and contains high energy com-
ponents. For small values of σ, the QFI is negligible.

B. Infinite square well

Let us now consider a particle placed in an infinite square
well (ISW) of width a. The unperturbed Hamiltonian is
H0 ¼ p2=2mþ V, with potential function given by

VðxÞ ¼
�
0 0 < x < a;

þ∞ otherwise:
ð33Þ

The system has a discrete energy spectrum,

Eð0Þ
n ¼ π2ℏ2n2

2ma2
; ð34Þ

with n ¼ 1; 2; 3;…. Since H0 is not a bounded operator,
we cannot evaluate the commutator ½H0;H1� to assess
whether the eigenstates of H0 are eigenstates of H1 too.
On the other hand, it is easy to directly check that
the unperturbed energy eigenstates jni are eigenstates
of p4, i.e.,

p4jni ¼
�
πn
a

�
4

ℏ4jni; ð35Þ

meaning that the full Hamiltonian H ¼ H0 þ γH1 is
diagonal in this basis. As for the case of the free particle,
the perturbation does not affect the energy eigenstates, but
only the spectrum. As a consequence, the QFI for an energy
eigenstate is zero since it does not depend on γ. However,
we may consider the superpositions of unperturbed energy
eigenstates and obtain a nonzero QFI for the evolved states.
Using the results found in Sec. III, we have that the best
preparation is given by the superposition of states corre-
sponding to the maximum and minimum energy correc-

tions Eð1Þ
n;�, which, for the ISW have the form,

Eð1Þ
n ¼ 1

mðMPcÞ2
�
n
πℏ
a

�
4

: ð36Þ

The lowest energy correction corresponds to the state j1i,
while we have no upper bound on the energy correction.
Upon setting a constraint on the overall energy of the
superposition, we have that the maximum QFI is obtained
by preparing the particle in the state jψi ¼ ðj1i þ jNiÞ= ffiffiffi

2
p

at t ¼ 0. The corresponding QFI value is given by

F qðt;NÞ ¼ t2π8ℏ6

m2a8ðMPcÞ4
ðN4 − 1Þ2: ð37Þ

The QFI is thus proportional to ðN=aÞ8, and this somehow
agrees with the behavior observed for the free particle; i.e.,
an effective probe may be obtained when the particle has
high energy. Moreover, considering the mean value of the
energy,

Ē ¼ hψ jH0jψi ¼
π2ℏ2

4ma2
ð1þ N2Þ; ð38Þ

we may rewrite the F qðt;NÞ as

F qðt;NÞ ¼ 256t2m2Ē4

ℏ2ðMPcÞ4
ðN4 − 1Þ2
ðN2 þ 1Þ4 : ð39Þ

We notice that the F qðt;NÞ is proportional to the
mean energy Ē of the state, as observed before.
However, it has not a strong dependence on N, since the
ratio ðN4 − 1Þ2=ðN2 þ 1Þ4⟶

N≫1
1.

C. Finite square well

A particle in a finite square well is subject to the
potential,

VðxÞ ¼
�
0 jxj < a

V0 jxj > a
: ð40Þ

Given that the potential has a defined parity, the energy
eigenstates have defined parity too. However, the eigen-
value problem is transcendental, and we have no analytical
solution. A very good analytic approximation is given
by [34]

Eð0Þ
n ≃

ℏ2π2

128ma2z20

�
4ðn − 1Þz0 − π

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4z0 þ πÞ2 − 8πnz0

q �
2

; ð41Þ

where z20 ¼ 2mV0a2=ℏ2. Concerning the computation of
the matrix elements of the perturbation,
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jψ ð1Þ
0 i ¼

XNs

n≠1
jni hnjH1j1i

Eð0Þ
1 − Eð0Þ

n

þ 2π

Z þ∞

k0

dkjϕð�Þ
k i hϕ

ð�Þ
k jH1j1i

Eð0Þ
1 − Eð0Þ

k

; ð42Þ

we are forced to use numerical methods and then evaluate
the QFI according to (19). For the sake of completeness, in
Eq. (42), we have also considered the continuous spectrum.
However, we may actually discard it, since it brings a
negligible contribution for already moderate values of V0.
The discrete sum goes from n ¼ 2 to Ns, which is the
number of energy levels available in the well (it depends on
both V0 and a).
The QFI of the ground state, as a function of the different

parameters, is shown in the three panels of Fig. 1 (we set
equal to one all the physical constants, e.g., ℏ, MP, c,
and m). The red-dotted lines denote the points where there
is a discontinuity in the number of bound states Ns. In the
left panel, we show F q as a function of the potential depth
V0 for different values of the width a of the well. The QFI
shows a maximum, located at a value of V0 which is
decreasing for increasing a, whereas it vanishes for values
of V0 below a certain threshold, since in these cases,
we have Ns < 2. We however do no draw any general
conclusion for vanishing value of V0, since in our calcu-
lations, we have dropped the contribution of the continuous
part of the spectrum. In the central panel of the same figure,
we show F q as a function of the potential width a for
different values of the depth V0. At any value of V0, the QFI
is zero below a certain value of a, since there are no bound
states in those cases. The QFI then increases with a and
shows a maximum for a value of the width, which decreases
for increasing V0. The QFI is then a decreasing function of
a for any V0 and vanishes for a ≫ 1, since in this case, the
situation is approaching that of a free particle. In the right

panel, we report the QFI as a function of the energy of the
ground state. The different plots have been obtained by
varying the width a at fixed V0. The QFI vanishes for
vanishing energy and for energies above a certain thresh-
old. This behavior may be understood, at least qualitatively,
considering that at fixed V0, high energies correspond to
small values of a. But if a is smaller than a certain
threshold, then Ns ¼ 1, and therefore, we have a null

perturbed ket jψ ð1Þ
0 i ¼ 0, which means a null F q.

D. Harmonic oscillator

Let us now address a particle trapped in a harmonic
potential, i.e., with a Hamiltonian,

H0 ¼
p2
0

2m
þ 1

2
mω2q2: ð43Þ

In this system, the gravity perturbation takes the form,

H1 ∝ ðaþ a†Þ4; ð44Þ

and it does not commute withH0. If we choose a perturbed
eigenstate jψγ

ni as a quantum probe, then the QFI is given
by (19), i.e.,

F qðω; nÞ ¼
ðℏmωÞ2
32ðMPcÞ4
× ð65n4 þ 130n3 þ 487n2 þ 422nþ 156Þ;

ð45Þ

which grows as n4 with the energy of the probe. In order to
compare the performance with those of other systems, let us
also compute the QFI for superpositions of unperturbed and
perturbed eigenstates, bearing in mind that the energy
correction is

FIG. 1. The QFIF q of the ground state of the finite square well as a function of the depth and the width of the well. Left panel: the QFI
F qðV0Þ for different values of a (blue line a ¼ 1, orange line a ¼ 1.5, green line a ¼ 2). The red-dotted lines denote the points where
there is a discontinuity in Ns. Below certain values of V0, F qðV0Þ vanishes, since Ns < 2. Central panel: the QFI F qðaÞ for different
values of V0 (blue line V0 ¼

ffiffiffiffiffi
10

p
, orange line V0 ¼

ffiffiffiffiffi
75

p
, green line V0 ¼

ffiffiffiffiffiffiffiffi
250

p
). Also, here the red-dotted lines denote points where

there is a discontinuity in Ns. For small values of a, the QFI vanishes since NsðaÞ < 2. Right panel: the QFI F q as a function of the

energy of the ground state. The different energies have been obtained by varying the width a at fixed V0 (the blue line for V0 ¼
ffiffiffiffiffi
10

p
,

orange line for V0 ¼
ffiffiffiffiffi
75

p
, green line for V0 ¼

ffiffiffiffiffiffiffiffi
250

p
). F q vanishes for energies above a certain threshold.
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Eð1Þ
n ¼ 3mℏ2ω2

4ðMPcÞ2
ð1þ 2nþ 2n2Þ: ð46Þ

In the case of unperturbed eigenstates, we know from (26)
that the maximum of QFI is given by

F qðt;ω; nÞ ¼
9t2m2ℏ2ω4n2ð1þ nÞ2

4ðMPcÞ4
; ð47Þ

corresponding to the QFI of the state evolving in time from
the initial superposition 1=

ffiffiffi
2

p ðj0i þ jniÞ. For superposi-
tions of perturbed eigenstates, we have no close solution for
the probes which maximize the QFI. However, we can try
to evaluate it numerically for different probes to understand
how it behaves. The results are depicted in Fig. 2. We see
that the best superposition is not given by the two states
with maximum separation between the corresponding

correction Eð1Þ
i . The underlying reason lies in the fact that

also the state depends itself on the parameter, and the higher
contribution to the F qðγÞ comes from the perturbation ket

jψ ð1Þ
n i rather than from the phase that arises from the time

evolution. The plots report results obtained by evolving the
superpositions at second order in γ. The first order is
identically 0, with the exception of states containing n ¼ 4.
Also in this last case, however, the more relevant contri-
bution is coming from the second-order term. As it is
apparent from the plot, the dashed lines, corresponding to
higher excitations in the superpositions, are above the solid
one, thus breaking the hierarchy found for unperturbed
superpositions.

E. Comparison of the different systems

Using the results from the previous sections, we can
compare the different values of the quantum Fisher infor-
mation to establish which system has the highest power of
estimate for the parameter γ. To have a faithful comparison,
we choose values of the system’s parameters in a range
of real physical systems, and we plot the F q as a function
of the systems’ energy. For instance, we set the mass
m ¼ 10−27 kg, which is of the order of magnitude of the
hydrogen mass [35]. In the free particle, we set the
momentum pm ¼ 1 MeV=c, and we vary the width of
the wave packet σ in the interval that goes from 0 to
30 MeV=c. For the infinite square well, we vary the width
of the well in the range that goes from 1 nm to 10 nm,
which is the typical scale of quantum dots [36,37].
Analogously, for the finite square well, we choose the
same range of a, and we fix V0 ¼ 50 eV. Finally, for the
harmonic oscillator, we vary the frequency ω from 1013 to
1014, which represents the typical frequencies of a diatomic
molecule [38,39]. The results are shown in Fig. 3. We see
that the most effective probe is provided by the harmonic
oscillator system, whose F q is larger than the F q obtained
from other systems by many orders of magnitude. Please
notice that the rescaling of the dimensionless parameter γ to

FIG. 2. The QFI obtained for t ¼ 1 and ω ¼ 1 for a harmonic
oscillator initially prepared in the superposition of two perturbed
energy eigenstates with ω ¼ 1. The solid lines are for jψγ

0i þ jψγ
ni,

whereas the dashed lines denote results for jψγ
1i þ jψγ

ni. The blue
lines are for n ¼ 2, the orange ones for n ¼ 3, and the green ones
for n ¼ 4. We see that dashed lines, corresponding to higher
excitations in the superpositions, are above the solid one, thus
breaking the hierarchy found for unperturbed superpositions.

FIG. 3. Logarithmic plot of the quantum Fisher information as a
function of the energy in three different systems: the free particle,
the harmonic oscillator, and the infinite square well. For a free
particle, we set pm ¼ 1 MeV=c, and we varied the width σ of
the wave packet; for the harmonic oscillator, we considered the
quantum Fisher information of the time-evolving state
1=

ffiffiffi
2

p jψγ
1i þ jψγ

4i as well as for the infinite square well, where
our reference state was 1=

ffiffiffi
2

p ðj1i þ j4iÞ. In all the three numeri-
cal evaluations, t ¼ 1. The grey lines represent the QFI for a
generic value of the energy, while the red lines represent the QFI
for an energy value in the range of real physical systems as
described in Sec. IV E. Differently from the previous plot, in this
one, we used SI values for the fundamental physical constants,
i.e., the mass Planck MP ¼ 2; 176 × 10−8 kg, the reduced Planck
constant ℏ ¼ 1; 054 × 10−34 J:s and the speed of light
c ¼ 2; 99 × 108 m=s. The blue dashed lines show the orders
of magnitude between the minimum of the F q for the harmonic
oscillator and the maximum of the F q for the infinite square well.
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a dimensional parameter γ0 ¼ αγ ¼ γ=ðMPcÞ2, as it can
naturally be derived from (4), results only in a translation of
the vertical axis, since

log ðF qðγ0ÞÞ ¼ log

�
F qðγÞ
α2

�
≃ log ðF qðγÞÞ þ 3.25; ð48Þ

given that the rescaling factor is approximately
α ¼ 1=ðMPcÞ2 ≃ 1=42.

V. QET FOR GRAVITY PERTURBATION IN
DIMENSION HIGHER THAN ONE

In this section, we investigate the role of the dimension-
ality of the system in determining the precision in the
estimation of the parameter γ. To this aim, we study the
performance of a quantum probe made of a particle trapped
either in a two-dimensional infinite square well or in a two-
dimensional harmonic potential. This choice is motivated
by the result of the previous section, indicating that those
two potentials are those providing the best performance in
the 1D case.

A. Two-dimensional infinite square well

The unperturbed two-dimensional infinite square well of
side a is described by

H0 ¼
p2
x þ p2

y

2m
þ V; ð49Þ

where the potential is

V ¼
�

0 if 0 < x < a and 0 < y < a;

þ∞ otherwise:
ð50Þ

The system is decoupled, meaning that the energy wave
functions are factorized as the solutions of two one-
dimensional ISW, and the energies are the sum of the
one-dimensional ISW energies, i.e., employing the boun-
dary conditions, we obtain

ψnx;nyðx; yÞ ¼
2

a
sin

�
nxπ
a

x

�
sin

�
nyπ

a
y

�
; ð51Þ

Enx;ny ¼
ℏ2π2

2m

�
n2x þ n2y

a2

�
: ð52Þ

Taking into account the perturbation,

H1 ∝ p4 ¼ ð∂4
x þ 2∂2

x∂2
y þ ∂4

yÞ; ð53Þ

we find that the energy eigenstates are eigenstates of H1

too, since

p4ψnx;nyðx; yÞ ¼ ðn2x þ n2yÞ2
π4

a4
ψnx;nyðx; yÞ: ð54Þ

It follows that the full Hamiltonian H ¼ H0 þ γH1 is
already diagonal in the basis of H0. As in the one-
dimensional system, the perturbation affects only the
energy levels; thus to observe the effects of the perturba-
tion, we need to consider superpositions of energy eigen-
states evolving in time. We already know that the
superposition maximizing QFI is the superposition of

the state corresponding to the maximum Eð1Þ
nx;ny and of

the state corresponding to the minimum Eð1Þ
nx;ny . The energy

correction is

Eð1Þ
nx;ny ¼ hnx; nyjH1jnx; nyi

¼ ℏ4

mðMPcÞ2
π4

a4
ðn2x þ n2yÞ2; ð55Þ

and the minimum is realized for fnx ¼ 1; ny ¼ 1g, while
the maximum is not fixed, depending on the bound we
choose. The corresponding maximum QFI is

F qðt; nx; nyÞ ¼
t2ℏ6π8

a8m2ðMPcÞ4
ððn2x þ n2yÞ2 − 4Þ2; ð56Þ

and it is realized by the time evolution of the state,

jψð0Þi ¼ 1ffiffiffi
2

p ðj1x; 1yi þ jnx; nyiÞ: ð57Þ

The analogous one-dimensional states for the comparison
are the normalized superpositions j1xi þ jnxi and
j1yi þ jnyi, whose QFI, after a time evolution, are,
respectively,

F qðt; nxÞ ¼
t2ℏ6π8

a8m2ðMPcÞ4
ðn4x − 1Þ2; ð58Þ

F qðt; nyÞ ¼
t2ℏ6π8

a8m2ðMPcÞ4
ðn4y − 1Þ2: ð59Þ

Then the weighted ratio Rðnx; nyÞ between the two-
dimensional and one-dimensional systems is

Rðnx; nyÞ ¼
F qðt;nx; nyÞ

F qðt; nxÞ þ F qðt;nyÞ

¼ ððn2x þ n2yÞ2 − 4Þ2
ðn4x − 1Þ2 þ ðn4y − 1Þ2 ; ð60Þ

which is depicted in Fig. 4. We see that the maximum is
realized for nx ¼ ny ¼ n, for which the weighted ratio is
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F qðt; n; nÞ
2F qðt; nÞ

¼ ðð2n2Þ2 − 4Þ2
2ðn4 − 1Þ2 ¼ 8 ¼ 23; ð61Þ

i.e., the QFI shows a superadditive behavior in terms of
dimensionality, which in turn represents a metrological
resource. Doing the same comparison between the 3D and
1D infinite square well, we find that the maximum is
realized when nx ¼ ny ¼ nz ¼ n and the QFI is

F qðt; n; n; nÞ
3F qðt; nÞ

¼ 81ðn4 − 1Þ2
3ðn4 − 1Þ2 ¼ 27 ¼ 33: ð62Þ

We see that the maximum of the QFI scales as the third
power of the dimension of the system. Since the states are
not affected by the perturbation, the enhancement does not
originate from any possible entangling power of H1.
Instead, it is the larger correction in the higher dimensional
systems that generates the gain.

B. Two-dimensional harmonic oscillator

In this system, the unperturbed Hamiltonian is given by
the sum of two independent (but, for the sake of simplicity,
with the same frequency ω) one-dimensional harmonic
oscillator,

H0 ¼
p2
0x

2m
þ p2

0y

2m
þ 1

2
mω2q2x þ

1

2
mω2q2y; ð63Þ

which is easily diagonalized as H0 ¼ ℏωðNx þ Ny þ 1Þ.
The main difference with the one-dimensional case is
that the energy spectrum is always degenerate, with the

exception of the ground state. In general, the degree of
degeneracy is gn ¼ nþ 1. If we express the perturbation
H1 ∝ p4 in terms of the ladder operators, we obtain that

H1 ∝ ðax þ axÞ4 þ ðay þ a†yÞ4þ ð64Þ

þ2ðax þ a†xÞ2ðay þ a†yÞ2: ð65Þ

We clearly see that a coupling term appears, which causes
the two independent harmonic oscillators not to be inde-
pendent anymore. The main consequence of this extra
coupling is the appearance of entanglement between the
2 degrees of freedom of the system. However, as we will
see in the following, entanglement does not represent a
resource for the estimation of γ, at least in our perturbative
regime. As mentioned above, the ground state is non-
degenerate, and we may use standard non-degenerate

perturbation theory to compute the state jψ ð1Þ
0;0i and then

evaluating its norm, which is equal to the QFI at first order
in γ,

F qðω; 0; 0Þ ¼ 17
ðℏmωÞ2
ðMPcÞ4

: ð66Þ

We can compare this value with the corresponding QFI of
the ground state of the one-dimensional harmonic oscil-
lator. We multiply the latter by 2, to match the dimension-
ality of the systems. Eventually, we have

F qðω; 0; 0Þ
2F qðω; 0Þ

¼ 68

39
≃ 1.74: ð67Þ

We see that we have an enhancement of a factor approx-
imately equal to 7=4. Likewise, we can evaluate the QFI for
the state j1; 0i. We obtain that

F qðγ; 1; 0Þ ¼ 75
ðmωℏÞ2
ðMPcÞ4

: ð68Þ

To have a meaningful comparison, we use a weighted ratio,
and we obtain

F qðγ; 1; 0Þ
F qðγ; 0Þ þ F qðγ; 1Þ

¼ 100

59
≃ 1.69; ð69Þ

which is slightly lower than the one obtained for the ground
state, but still larger than unity; i.e., the QFI is superadditive
also in this case.
We summarize results in Table I. We observe that the

highest ratio is given by the ground state, while the others
are slightly lower but still around this value. Moreover,
the weighted ratio for the state j1; 0i is exactly the same
of the state 1=

ffiffiffi
2

p ðj1; 0i þ j0; 1iÞ. It thus follows that the
enhancement is not given by the fact that the probe state is

FIG. 4. Plot of the weighted ratio Rðnx; nyÞ (60) between the
maximum QFI for the 2D and the 1D infinite square well
for a superposition. The ratio is a function of nx and ny. We
clearly notice that the maximum is realized when the state has
equal excitation in both x and y directions, i.e., the state
1=

ffiffiffi
2

p ðjn; ni þ j1; 1iÞ. The value of the maximum ratio is 8,
independent of the value of n, which means that the enhancement
does not depend on the energy. However, the absolute value of the
QFI depends on n.
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entangled. Rather, it depends only on the norm of pertur-

bation ket jψ ð1Þ
nx;nyi. In particular, since the 2D oscillator

has a higher number of superposed states than the 1D
counterpart, it has a higher norm, ensuring that the ratio is
always larger than 1. Moreover, the states j0; 1i and j1; 0i
give the same contributions. Overall, this explains why the
weighted ratio gives the same result for both j0; 1i and
1=

ffiffiffi
2

p ðj1; 0i þ j0; 1iÞ.

VI. CONCLUSION

In this paper, we have addressed the ultimate bounds to
precision in estimating the minimum length parameter
that possibly arises from quantum gravity theories in
low energy physical systems. Upon exploiting tools from
quantum estimation theory, we have found general bounds
on precision and have assessed the use of different quantum
probes to enhance the estimation performance. In particu-
lar, we have systematically studied the effects of gravitylike
perturbations on different state preparations and several
one-dimensional systems and have evaluated the quantum
Fisher information in order to find the ultimate bounds
to precision of any estimation procedure. Our results
indicate that the largest values of QFI are obtained with
a quantum probe subject to a harmonic potential and
initially prepared in a superposition of perturbed energy
eigenstates (see Fig. 3).
We have also investigated the role of dimensionality by

analyzing the use of two-dimensional square well and
harmonic oscillator systems to probe the minimal length.
We have shown that QFI is superadditive with the dimen-
sion of the system, which therefore represents a metro-
logical resource. The gain in precision is not due to the
appearance of entanglement of the state but rather to the
increasing number of superposed states generated by
the perturbation or to the larger energy corrections. We
evaluated analytically the QFI ratio R, showing that it
scales as R ∝ d3 for the infinite square well and at most as

R ≃ 1.71 for the harmonic oscillator, at least for low-lying
energy states.
Our results show that quantum probes are convenient

resources, providing a potential enhancement in precision,
and provide a set of guidelines to design possible future
experiments to detect minimal length.
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APPENDIX: OPTIMAL OBSERVABLES

We consider a general pure state jψγi depending on a
parameter γ and a generic projective measurement with
projectors jxihxj. The corresponding probability distribu-
tion function is given by the Born rule,

pðx;γÞ¼Tr½jψγihψγjxihxj�¼ jhψγjxij2¼jψγðxÞj2; ðA1Þ

and as a result, the quantum Fisher information is

F qðγÞ ¼ 4

�Z
dx½∂γðψγðxÞ�Þ∂γðψγðxÞÞ�þ

−
ZZ

dxdyψγðxÞ�∂γðψγðxÞÞ∂γðψγðyÞ�ÞψγðyÞ
�
:

ðA2Þ

We can rewrite the wave function ψγðxÞ in terms of its
complex phase,

θγψ ¼ arctan

�
ψγ
ℑðxÞ

ψγ
ℜðxÞ

�
; ðA3Þ

TABLE I. We sum up the comparison for the harmonic oscillator. In the first column are listed the analogous one-dimensional states of
the two-dimensional ones, which are in the second column instead. In the third column, we evaluate the QFI for the corresponding one-
dimensional states, while in the fourth columns, there are the QFI for the two-dimensional states. Finally, in the last column, we
evaluated the weighted ratio.

QFI in 1D HO QFI in 2D HO

States in units of ðℏωmÞ2
ðMPcÞ4 in units of ðℏωmÞ2

ðMPcÞ4 Weighted ratio

j0i j0; 0i 39

8
17

68

39
≃ 1.74

j0i j1i j1; 0i 39

8

315

8
75

100

59
≃ 1.69

j0i 1ffiffi
2

p ðj0i þ j1iÞ 1ffiffi
2

p ðj0; 0i þ j0; 1iÞ 39

8

177

8
46

46

27
≃ 1.70

1ffiffi
2

p ðj0i þ j1iÞ 1ffiffi
2

p ðj1; 0i þ j0; 1iÞ 177

8
75

100

59
≃ 1.69
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and its radius,

rγψ ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψγ
ℜðxÞ2 þ ψγ

ℑðxÞ2
q

; ðA4Þ

as

ψγðxÞ ¼ expfiθγψðxÞgrγψ ðxÞ: ðA5Þ

In this representation, the normalization takes the following
form:

Z
dxψγðxÞ�ψγðxÞ ¼

Z
dxðrγψðxÞÞ2 ¼ 1: ðA6Þ

If we derive both sides, we have that

Z
dxð∂γr

γ
ψ ðxÞrγψðxÞ þ rγψ ðxÞ∂γr

γ
ψ ðxÞÞ ¼ 0;Z

dx∂γr
γ
ψ ðxÞrγψ ðxÞ ¼ 0; ðA7Þ

that will be useful in the following.
If we expand the integrals in (A2) in terms of θγψ and rγψ ,

considering that

∂γψ
γðxÞ ¼ expfiθγψðxÞgð∂γr

γ
ψðxÞ þ i∂γfθγψ ðxÞgrγψðxÞÞ;

ðA8Þ

and that (A7) holds, we eventually obtain

F qðγÞ ¼ 4

�
k∂γr

γ
ψk2 þ k∂γfθγψgrγψk2þ

−
�Z

dx∂γθ
γ
ψðxÞðrγψ ðxÞÞ2

�
2
�
: ðA9Þ

Instead, we find that the classical Fisher informationF cðγÞ,
using again (A7), is

F cðγÞ ¼
Z þ∞

−∞
dx

1

jψγðxÞj2
½∂γjψγðxÞj2�2

¼ 4k∂γr
γ
ψk2: ðA10Þ

In this representation, the quantum Cramer Rao inequality
F qðγÞ ≥ F cðγÞ reads as

k∂γθ
γ
ψr

γ
ψk2 ≥

�Z
dx∂γθ

γ
ψðxÞðrγψ ðxÞÞ2

�
2

: ðA11Þ

A sufficient but not necessary condition for the equality is
that the phase does not depend on γ, ∂γθ

γ
ψðxÞ ¼ 0, which

includes the case of a real wave function.
In the case of a first order perturbed state,

ψγ
nðxÞ ¼ ψ ð0Þ

n ðxÞ þ γψ ð1Þ
n ðxÞ þOðγ2Þ; ðA12Þ

we can separate the real and the imaginary part as

ψγ
nðxÞ ¼

h
ψ ð0Þ
n ðxÞℜ þ γψ ð1Þ

n ðxÞℜ
i

þ i
h
ψ ð0Þ
n ðxÞℑ þ γψ ð1Þ

n ðxÞℑ
i
: ðA13Þ

As a result, the phase is

θγψðxÞ ¼ arctan

"
ψ ð0Þ
n ðxÞℑ þ γψ ð1Þ

n ðxÞℑ
ψ ð0Þ
n ðxÞℜ þ γψ ð1Þ

n ðxÞℜ

#
: ðA14Þ

We see that it does not depend on γ in only two cases. In the
first scenario, it must be

ψ ð0Þ
n ðxÞℑ ¼ 0 and ψ ð0Þ

n ðxÞℜ ¼ 0; ðA15Þ

but these conditions can not be satisfied since the unper-
turbed wave function ψ ð0ÞðxÞ must be different from 0.
Instead, in the second scenario, it must be

ψ ð1Þ
n ðxÞℑ ¼ 0 and ψ ð1Þ

n ðxÞℜ ¼ 0: ðA16Þ

These conditions may be satisfied if the perturbation H1 is
diagonal on the same basis as the unperturbed Hamiltonian.
However, the QFI is null since the state ψγ

nðxÞ does not
depend on γ. In this case, we already know that the time-
evolving states are the necessary probes. However, due to
the unitary evolution, the state acquires a complex phase
depending on γ, and the condition ∂γθ

γ
ψðxÞ ¼ 0 can not be

satisfied.
From these considerations, we induce that the condition

∂γθ
γ
ψðxÞ ¼ 0 is too restrictive for the perturbed state of

the form (A12), and no useful constraints on the wave
function may be found from it. Moreover, the condition
∂γθ

γ
ψðxÞ ¼ 0 is not a necessary one, meaning that it does

not exclude the possibility of saturating (A11), a condition
that can be checked by directly evaluating the two sides
of (A11) in any specific case.
Eventually, comparing the QFI (A9) and the classical

Fisher (A10), we note that the acquired phase depending on
γ may be considered as the quantum enhancement since it is
the term that makes the quantum Fisher information larger
than the classical one.

QUANTUM PROBES FOR UNIVERSAL GRAVITY CORRECTIONS PHYS. REV. D 102, 056012 (2020)

056012-11



[1] S. Hossenfelder, Living Rev. Relativity 16, 2 (2013).
[2] X. Calmet, M. Graesser, and S. D. H. Hsu, Phys. Rev. Lett.

93, 211101 (2004).
[3] X. Calmet, M. Graesser, and S. D. H. Hsu, Int. J. Mod. Phys.

D 14, 2195 (2005).
[4] M. Maggiore, Phys. Lett. B 319, 83 (1993).
[5] F. Markopoulou and L. Smolin, Phys. Rev. D 70, 124029

(2004).
[6] J. Y. Bang andM. S. Berger, Phys. Rev.D 74, 125012 (2006).
[7] S. Das and E. C. Vagenas, Phys. Rev. Lett. 101, 221301

(2008).
[8] This kind of interpretation has however some conceptual

problems, see e.g., [1] for more details.
[9] M. A. C. Rossi, T. Giani, and M. G. A. Paris, Phys. Rev. D

94, 024014 (2016).
[10] F. Brau, J. Phys. A 32, 7691 (1999).
[11] A. Kempf, G. Mangano, and R. B. Mann, Phys. Rev. D 52,

1108 (1995).
[12] M. S. Berger and M. Maziashvili, Phys. Rev. D 84, 044043

(2011).
[13] A. Ashoorioon, A. Kempf, and R. B. Mann, Phys. Rev. D

71, 023503 (2005).
[14] B. Vakili, Phys. Rev. D 77, 044023 (2008).
[15] M. Maziashvili, Phys. Rev. D 85, 125026 (2012).
[16] A. Kempf and L. Lorenz, Phys. Rev. D 74, 103517 (2006).
[17] S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Rayyan,

and T. Takeuchi, Phys. Rev. D 66, 026003 (2002).
[18] C.-L. Ching, R. R. Parwani, and K. Singh, Phys. Rev. D 86,

084053 (2012).
[19] C. L. Ching and W. K. Ng, Phys. Rev. D 88, 084009 (2013).
[20] C. L. Ching andW. K. Ng, Phys. Rev. D 100, 085018 (2019).
[21] M. C. Braidotti, Z. H. Musslimani, and C. Conti, Physica

(Amsterdam) 338D, 34 (2017).
[22] I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. Kim, and

Č. Brukner, Nat. Phys. 8, 393 (2012).
[23] M. G. Paris, Int. J. Quantum. Inform. 07, 125 (2009).

[24] D. Braun, F. Schneiter, and U. R. Fischer, Classical Quan-
tum Gravity 34, 175009 (2017).

[25] H. L. Van Trees, Detection, Estimation, and Modulation
Theory, Part I: Detection, Estimation, and Linear Modu-
lation Theory (John Wiley & Sons, New York, 2004).

[26] E. L. Lehmann and G. Casella, Theory of Point Estimation
(Springer Science & Business Media, New York, 2006).

[27] D. Petz and C. Ghinea, in Quantum Probability and Related
Topics (World Scientific, Singapore, 2011), pp. 261–281.

[28] S.-i. Amari and H. Nagaoka, Methods of Information
Geometry (American Mathematical Society, Providence,
2007), Vol. 191.

[29] P. Facchi, R. Kulkarni, V. Man’ko, G. Marmo, E. Sudarshan,
and F. Ventriglia, Phys. Lett. A 374, 4801 (2010).

[30] H.-J. Sommers and K. Zyczkowski, J. Phys. A 36, 10083
(2003).

[31] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett.
96, 010401 (2006).

[32] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5,
222 (2011).

[33] K. Parthasarathy, in Stochastics in Finite and Infinite
Dimensions (Springer, New York, 2001), pp. 361–377.

[34] O. de Alcantara Bonfim and D. J. Griffiths, Am. J. Phys. 74,
43 (2006).

[35] J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De
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