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We calculate chiral susceptibilities in (2þ 1)-flavor QCD for different masses of the light quarks using
the functional renormalization group (fRG) approach to first principles QCD. We follow the evolution of
the chiral susceptibilities with decreasing masses as obtained from both the light-quark and the reduced
quark condensate. The latter compares very well with recent results from the HotQCD Collaboration for
pion masses mπ ≳ 100 MeV. For smaller pion masses, fRG and lattice results are still consistent. In
particular, the estimates for the chiral critical temperature are in very good agreement. We close by
discussing different extrapolations to the chiral limit.
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I. INTRODUCTION

The phase structure of QCD probed with heavy-ion
collisions is well described by (2þ 1)-flavor QCD. While
the charm, bottom, and top quarks are too heavy to
significantly add to the dynamics of the system, the
dynamics of the strange and, most importantly, of the light
up and down quarks determine the rich phase structure in
particular at large densities. Recently, functional methods
for first-principles QCD have made significant progress in
the description of this regime; see Refs. [1,2] for functional
renormalization group studies (fRG) and, e.g., Refs. [3–5]
for Dyson-Schwinger studies. Still, in the high-density
regime, the systematic error of the current computations
grows large. This asks for both systematically improved
computations and a better error control. In turn, lattice
simulations are obstructed by the sign problem at finite
density and either rely on Taylor expansions at vanishing
chemical potential [6–10] or on analytic continuations from
imaginary to real quark chemical potential [11–17]. In
summary, this suggests a two-tier strategy to tackle the
high-density regime by direct systematically improved
functional computations and a quantitative access to the
zero-density limit.

Interestingly, the mass dependence of the phase structure
at vanishing density can potentially constrain the phase
structure at large density. For instance, low-energy effective
theory computations indicate that the chiral phase transition
temperature in the limit of massless up and down quarks is
a possible upper bound for the transition temperature at the
critical endpoint; see Refs. [18–21] for recent works and
reviews. Accordingly, the nature of the chiral transition in
QCD with three quark flavors is very actively researched.
For sufficiently small masses of the three quarks, one
expects a finite mass range with a first-order chiral
transition [22]. Interestingly, this first-order regime may
even extend to the limit of infinitely heavy strange quarks;
see, e.g., Refs. [17,23,24]. This intricate question regarding
the existence and range of such a regime is tightly
connected to the fate of the axial UAð1Þ anomaly at finite
temperature: depending on the strength of the associated
UAð1Þ breaking, the phase transition may indeed be of first
order; see, e.g., Refs. [19,22,25–27].
For physical masses of the three quarks, the transition in

(2þ 1)-flavor QCD from a low-temperature hadronic
phase to a high-temperature quark-gluon plasma phase
has been found in lattice and functional QCD studies to be a
crossover; see, e.g., Refs. [10,28–33] for lattice studies and
Refs. [1–5] for functional studies.
In the chiral limit of the light quarks, the critical behavior

is controlled by the three-dimensional (3D) Oð4Þ univer-
sality class, if the anomalous breaking of the UAð1Þ
symmetry is sufficiently strong. In turn, if the UAð1Þ
symmetry is effectively restored sufficiently close to the
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chiral transition, the critical behavior may no longer be
controlled by the 3D Oð4Þ universality class [34–37].
Within a very recent lattice QCD study investigating pion
masses in the range of 50≲mπ ≲ 160 MeVwith a physical
strange quark mass, the scaling properties of the chiral
susceptibility are now found to be compatible with the 3D
Oð4Þ universality class [33]. An extrapolation to the chiral
limit of the light quarks leads to Tc ¼ 132þ3

−6 MeV for the
chiral critical temperature [33].
The reconstruction of the chiral critical temperature from

an extrapolation to the chiral limit is in general a nontrivial
task as it is affected by nonuniversal aspects, such as the
order of the transition and the dependence of the pseu-
docritical temperature on the pion mass. Moreover, the
definition of a pseudocritical temperature is not unique.
Indeed, the strength of the pion-mass dependence of the
pseudocritical temperature is different for different defi-
nitions. Assuming that the chiral phase transition is of
second order in the limit of massless up and down quarks, it
follows from universal scaling arguments [38] that the
pion-mass scaling of the pseudocritical temperature defined
as the position of the peak of the chiral susceptibility is
controlled by the critical exponents of the underlying
universality class. Unfortunately, the size of the scaling
regime is also a nonuniversal quantity. These statements
also hold for other definitions of the pseudocritical temper-
ature, and it is also reasonable to expect that the size of the
scaling regime is of the same order for different definitions,
provided that they rely on properties of the chiral
susceptibility.
In low-energy effective theories of QCD, it has been

found that the pseudocritical temperature defined as the
position of the peak of the chiral susceptibility scales
roughly linearly over a wide range of pion masses which
appears compatible with scaling arguments at first glance
[39–41]. Even more, it was found that the results for the
suitably rescaled chiral order parameter fall almost on one
line [41] for mπ ≳ 75 MeV, seemingly suggesting scaling
behavior. However, a comparison of these results with the
corresponding scaling function extracted within the model
studies exhibits clear deviations from scaling. A detailed
analysis then revealed that the size of the actual scaling
regime is very small [41]. More precisely, it has been found
that the chiral susceptibility and the chiral order parameter
only exhibit scaling behavior for very small pion masses,
mπ ≲ 1 MeV, see Ref. [41].
Our present first-principles fRG study corroborates these

findings in low-energy effective theories; the actual scaling
regime in QCD is indeed small, with a conservatively
estimated upper bound of mπ ≈ 30 MeV. In addition, our
present work shows that the glue dynamics softens the
strong dependence of the pseudocritical temperature on the
pion mass observed in low-energy effective theories of
QCD. In fact, it is found to be in very good agreement with
recent lattice QCD results [33]. Moreover, we shall discuss

different extrapolations to the chiral limit, leading us
consistently to Tc ≈ 142 MeV for the critical temperature;
see also Figs. 2 and 3.
This work is organized as follows. In Sec. II, we briefly

discuss the methodological framework of our present study.
Our results for the chiral susceptibility as obtained from the
light-quark condensate are presented in Sec. III. There, we
also show a comparison of these results with those for the
susceptibility extracted from the reduced condensate, also
used in lattice computations. The results for the reduced
condensate are then compared to lattice QCD data [33],
including a discussion of the dependence of the pseudoc-
ritical temperature on the pion mass. Our conclusions can
be found in Sec. IV.

II. CONDENSATES AND FUNCTIONAL QCD

In this section. we discuss different chiral condensates
and the associated susceptibilities which we compute to
access the mass dependence and scaling of the pseudoc-
ritical temperature. We also briefly introduce the fRG
approach to QCD used for this computation. The basis
for our present study is discussed in detail in Ref. [1].

A. Chiral condensates

In order to obtain the (chiral) susceptibility in (2þ 1)-
flavor QCD for various (current) quark masses m0

qi , we
have to compute the chiral condensates Δqi associated with
the three quark flavors qi. Here, qi ¼ u, d, s refer to the up,
down, and strange quark, respectively. The Δqi can be
obtained from the logarithmic derivative of the thermody-
namic grand potential Ω with respect to the corresponding
current quark mass,

Δqi ¼ m0
qi

∂Ωðmq;T; μu; μd; μsÞ
∂m0

qi

¼ m0
qi

T
V

Z
1
T

0

dτ
Z
V
d3xhq̄iðτ; x⃗Þqiðτ; x⃗Þi: ð1Þ

Here, T is the temperature, and V is the spatial volume. The
logarithmic derivative with respect to the current quark
mass is taken since Δqi then carries the same scaling
properties as the grand potential Ω. Consequently, it is not
sensitive to details of the setup that typically change the
precise value of the current quark mass, in particular the
renormalization scheme; see Ref. [1] for a discussion. In the
present work, we only consider the zero-density limit, and
therefore we set the quark chemical potentials to zero,
μu ¼ μd ¼ μs ¼ 0. Thus, the quark condensates are only
functions of the temperature and the current quark masses
from here on. Moreover, we use identical current masses
for the two light quarks, m0

u ¼ m0
d ¼ m0

l . This allows us to
define the light quark condensate Δl ¼ Δu ¼ Δd.
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The computation of the quark condensates via the
expectation value in the last line of Eq. (1) requires
renormalization and hence the result depends on the
renormalization procedure. Both the necessity for renorm-
alizing the operator and the renormalization scheme
dependence is removed when considering finite difference
of chiral condensates. Two possible choices are the
renormalized and the reduced condensate. Both are com-
monly used in lattice QCD studies and have also been
studied in functional approaches to QCD. The fRG
approach naturally provides a renormalized finite expres-
sion for the condensate Δqi as it is based on a finite free
energy and hence the current mass derivative in Eq. (1) is
finite; for more details, see Sec. II B and Ref. [1]. For our
study of the chiral phase transition, the condensate Δl is
therefore the key observable in the present work since it has
the smallest systematic error within the truncation used for
the computation.
The renormalized condensate associated with the light-

quark flavors can be defined as

Δl;RðTÞ ¼
1

N R
ðΔlðTÞ − Δlð0ÞÞ: ð2Þ

The normalization constant N R is at our disposal; in the
following, it is chosen independent of the current masses
and is typically used to render Δl;RðTÞ dimensionless.
Note that, by including a m0

l -dependence of the form
N R ∼m0

l =m
0
s , we recover the definition of the renormal-

ized condensate conventionally employed in lattice QCD
studies; see, e.g., Ref. [42].
The reduced condensate Δl;s is a combination of the

light-quark condensateΔl and the strange quark condensate
Δs,

Δl;s ¼
1

N l;s

�
ΔlðTÞ −

�
m0

l

m0
s

�
2

ΔsðTÞ
�
; ð3Þ

where the definition of the m0
l -independent normalization

constant N l;s is again irrelevant for our discussion of the
susceptibilities below. Instead, if we choose N l;s to
be m0

l dependent, N l;s ¼ ðΔlð0Þ − ðm0
l =m

0
sÞ2Δsð0ÞÞ2, we

arrive at the standard lattice definition of the reduced
condensate; see, e.g., Ref. [42]. Alternatively, we could
simply choose N l;s ∼m0

l =m
0
s , which yields the observable

defined in Ref. [33] (up to numerical factors) to compute
susceptibilities.
The subtraction in Eq. (3) renders the reduced conden-

sate finite as in the case for the renormalized condensate.
However, the systematic error of results of such a light-
strange quark mixture is a combination of that in the strange
and in the light quark sector and requires a quantitative
treatment of both. Consequently, it is affected by larger
systematic errors in our present fRG study than the light-
quark condensate Δl.

The corresponding susceptibilities are readily obtained
from all three condensates. We define them as follows,

χðiÞM ðTÞ ¼ −
∂

∂m0
l

�
ΔiðTÞ
m0

l

�
; ð4Þ

where ðiÞ ¼ ðlÞ; ðl; RÞ; ðl; sÞ. We shall refer to these sus-
ceptibilities as light-quark susceptibility, renormalized
susceptibility, and reduced susceptibility, respectively.
Leaving an overall normalization aside, it follows from
the definition of the light-quark condensate Δl and the
renormalized condensate Δl;R that the associated suscep-
tibilities only differ by a temperature-independent shift.
From our discussion above, it moreover follows that our
definition of the reduced susceptibility matches the one
used in lattice studies [33].
By multiplying the magnetic susceptibilities (4) with

ðm0
l Þ2, they also carry the scaling properties of the grand

potential, and there is no dependence on the renormaliza-
tion procedure left. This is in one-to-one correspondence to
the lack of renormalization scheme dependence of Δl

defined by the logarithmic m0
l -derivative of the grand

potential, and to that of the renormalized and reduced
condensates. However, for the sake of a straightforward
comparison with the lattice results from Ref. [33], we have
not included these factors in Eq. (4). Moreover, for a
comparison of the susceptibilities for different pion masses
(or current quark masses) as well as for a comparison with
results from other methods, it is convenient to normalize the

magnetic susceptibilities χðiÞM ðTÞ with the respective peak
value for the physical pion mass mπ ≈ 140 MeV,

χ̄ðiÞM ¼ max
T

χðiÞM ðTÞjmπ¼140 MeV; ð5Þ

where again ðiÞ ¼ ðlÞ; ðl; RÞ; ðl; sÞ. Thus, we have

χðiÞM ðTÞ=χ̄ðiÞM ¼ 1 at the peak position in case of the physical
pion mass. The size and evolution of the increasing peak
toward the chiral limit give a rough estimate for the
“distance” to criticality.

B. Functional renormalization group approach

In this work, we use the fRG approach for the compu-
tation of the light-quark and reduced susceptibilities from
first principles. In this approach, quark, gluon, and hadron
correlation functions of QCD are computed from functional
relations that are derived from the flow equation for the
finite effective action Γ. Accordingly, the finite effective
action is easily accessible in this approach and is self-
consistent. In particular, it automatically encodes the same
RG scheme as the correlation functions.
The thermodynamic grand potential Ω is then given by

the effective action evaluated on the equations of motion
(EoM), i.e., the ground state: Ω ¼ ðT=VÞΓjEoM. Hence, the
fRG approach provides a finite thermodynamic grand
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potential Ω. This leads to a finite quark condensate Δqi
within the RG scheme used for the computation of the
correlation functions; see Eq. (1).
The computation of the susceptibilities in our fRG study

requires the computation of the light-quark and reduced
quark condensates for various temperatures and quark
masses. To this end, we have to follow the RG flow from
the classical QCD action in the ultraviolet to the long-range
(infrared) limit where the dynamics is effectively described
by hadronic degrees of freedom rather than quarks and
gluons. To facilitate the description of the transition between
the degrees of freedom in theultraviolet and infrared limit,we
employ dynamical hadronization techniques [1,43–46]; see
Refs. [1,44,47–51] for their application to QCD. The chiral
susceptibilities can then be obtained with two different—
formally equivalent procedures—fromEq. (1), both ofwhich
are detailed below around Eq. (6) as their comparison
provides an important self-consistency and reliability check
for our present truncation.
Our present study has been done within the fQCD

Collaboration [52] and is a follow-up of a recent work
[1] within this collaboration. It also builds on previous
advances made within this collaboration; see, e.g.,
Refs. [2,48–51,53–55]. Therefore, we refrain from showing
the flow equations required to compute the light-quark and
reduced quark condensate because of the size of this set of
equations. All these equations are derived, documented,
and discussed in detail in Ref. [1].
We only would like to discuss two aspects of our

computation which are particularly relevant for the estimate
of the systematic error of our results.
First, we only take into account the sigma-pion channel

in the computation of the order-parameter potential and do
not allow for an effective UAð1Þ restoration at, e.g., high
temperatures. Thus, we tacitly assume that the chiral
transition falls into the 3D Oð4Þ universality class. This
assumption is based on the fact that Fierz-complete finite-
temperature studies of the chiral transition indeed indicate
that the sigma-pion interaction channel is by far most
dominant close to the chiral phase transition at vanishing
baryon density [2]. A discussion of whether this dominance
is strong enough relative to UAð1Þ-restoring channels for
keeping QCD in the 3D Oð4Þ universality class is beyond
the scope of the present work. However, a recent lattice
study suggests that this may indeed be the case and that the
transition is of second order in the chiral limit [33].
Second, in order to compute the chiral order-parameter

potential, we employ a Taylor expansion about the renorm-
alization group (RG) scale-dependent minimum of the
effective action. An inclusion of a finite pion mass into
the flow equations then tends to stabilize this expansion
[56,57]. However, it becomes numerically unstable for
(very) small pion masses.
In the present work, we employ an error estimate to

evaluate the self-consistency and reliability of our results in

case of small pion masses. To this end, we compute the
light-quark susceptibility with two different methods.
Within the first method, we directly perform the derivative
of the condensate Δl with respect to the light-quark current
mass:

χðlÞM ðTÞ¼
�
T
V

�
2
Z
x;y
hq̄lðxÞqlðxÞq̄lðyÞqlðyÞi−

�
Δl

m0
l

�
2

: ð6Þ

This expression can be computed directly from the grand
potential Ω for a given current quark mass m0

l . Indeed, it is
directly related to the screening mass of the σ-meson; see
Refs. [1,57] for details.
Within the second method, the light-quark susceptibility

χðlÞM is simply obtained by computing the light-quark
condensate as a function of the temperature and the light
quark mass m0

l , and then taking a numerical derivative of
this dataset with respect to m0

l . Note that we also compute
the reduced condensate in this way.
Evidently, both methods should give the same results for

the light-quark susceptibility, provided that no approxima-
tions are involved. Therefore, deviations give access to the
reliability of the underlying approximations. In particular, a
comparison of the results from both methods allows us to
some extent to test the convergence of the expansion of the
effective potential. In fact, the first method simply amounts
to a direct computation of the mass of the σ-meson, which
is obtained by suitably combining the renormalized four-
meson coupling and the minimum of the order-parameter
potential. The latter is computed directly from a corre-
sponding flow equation. The computation of the suscep-
tibility via the mass derivative of the condensate also
requires initially the computation of the minimum of the
potential. However, when we now take a derivative of the
latter with respect to the quark mass, we implicitly also take
derivatives of the meson couplings with respect to the quark
mass since the minimum is a function of the quark mass and
also of a set of couplings, e.g., the four-meson coupling and
the eight-meson coupling. The latter are nothing but the
expansion coefficients of the order-parameter potential and
also depend on the quark mass. As derivatives with respect
to the quark mass effectively correspond to derivatives with
respect to the source of the σ field (in the path integral), a
derivative of a meson coupling with respect to the quark
mass tests the effect of higher-order couplings and therefore
provides an implicit test whether our results are converged
with respect to the expansion of the effective potential. A
comparison of results from the two methods is depicted in
Fig. 1. From this, we conclude that our present approxi-
mation is trustworthy for pion masses mπ ≳ 30 MeV. In
particular, the peak positions obtained from the two
methods are in very good agreement with each other in
this pion-mass regime. In fact, they only differ by about
1 MeV. Based on this comparison, we consider it sufficient
to show in the following only those results for the
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light-quark susceptibility which have been obtained by
taking a derivative of our numerical dataset for the light-
quark condensate with respect to m0

l . As the light-quark
condensate is part of the reduced condensate, we may
assume that the uncertainty for the pseudocritical temper-
atures extracted from the reduced susceptibilities is the
same as in the case of the light-quark susceptibilities.
However, the systematic error is likely to be bigger in this
case, as already indicated in Sec. II A. Regarding smaller
pion masses, we add that an extension in this direction
(including the chiral limit) is possible but requires either an
expansion of the effective action about a scale-independent
point [53] or the use of, e.g., recently developed techniques
to access the full order-parameter potential [58].
We would like to close this section by adding that a

variation of the regularization scheme can in principle also
be used to assess the truncation underlying our present
work. However, it should also be noted that a mild regulator
dependence of a given set of observables is only a
necessary condition for considering a given truncation as
reliable. In the present work, we do not perform an analysis
of regulator dependences but only resort to earlier studies of
this aspect. To be specific, the regulator dependence of
chiral observables in first-principles fRG studies of QCD in
the vacuum limit has been found to be small [51]. As we
argued in Ref. [1], the results for the vacuum case extracted
from our present study are consistent with those reported in
Ref. [51]. Therefore, we may cautiously expect the regular
dependence to be mild in our present work. Regarding the

study of critical behavior, we would like to point out that
the regulator dependence of critical exponents as well as
their dependence on the order of the expansion of the order-
parameter potential has been analyzed in detail for OðNÞ
models in, e.g., Refs. [59,60]. A scaling analysis within the
quark-meson model in Ref. [41] has been found to be
consistent with the findings presented in Ref. [59] regard-
ing the employed order of the potential. In particular, the
critical exponents are found to agree on the 1% level with
the current world’s best estimates. The dependence of
nonuniversal quantities, such as the critical temperature, on
the regularization scheme as well as on the order of the
expansion of the effective potential has been tested explic-
itly within the quark-meson model in the local potential
approximation in Ref. [61]. There, it was found that the
results for the critical temperature are almost converged for
the order of the expansion considered in our present work.
Based on these observations and our self-consistency check
for the susceptibility, we consider our numerical results to
be meaningful. Nevertheless, even a weak dependence on
the order of the expansion and the regularization scheme
may already be sufficient to explain the small deviation of
our present result for the slope of the pseudocritical
temperature as a function of the pion mass from the one
found in lattice QCD studies; see our discussion in the
subsequent section.

III. RESULTS

Let us now discuss the susceptibilities associated with
the light-quark and reduced condensate for various temper-
atures and pion masses. To this end, we shall keep the
strange quark mass fixed at its physical value and only vary
the light-quark mass. As already discussed in the previous
section, the renormalized condensate only differs from the
light-quark condensate by a temperature-independent shift.
This implies that the peak positions of these two suscep-
tibilities are the same for a given pion mass. Therefore, we
shall not further discuss the renormalized susceptibility in
this section.
Susceptibilities as introduced in the previous section

are of great interest as their maxima can be used to
define pseudocritical temperatures. From general scaling
arguments [38], it then follows that the pseudocritical
temperatures extracted from the light-quark and reduced
susceptibility scale as

TðiÞ
pc ðmπÞ ≈ Tc þ cðiÞm

p
π ; ð7Þ

at least within the scaling regime. Here, ðiÞ ¼ ðlÞ; ðl; sÞ.
The chiral critical temperature is given by Tc in Eq. (7). The
quantity cðiÞ is a nonuniversal constant depending on the
susceptibility under consideration, whereas the exponent p
can be related to the universal critical exponents β and δ,
p ¼ 2=ðβδÞ. The relation (7) follows from the fact that the

FIG. 1. Light-quark susceptibility for different pion masses as
obtained from two independent methods within our present
truncation. The dashed lines correspond to the results obtained
via the relation (6). The solid lines are associated with the results
computed by taking a derivative of our numerical dataset for the
light-quark condensate with respect to m0

l . The normalization is
given by the maximum of the susceptibility at the physical pion
mass; see Eq. (5). We observe that the results from the two
methods agree very well for mπ ≳ 30 MeV. This is particularly
true for the respective peak positions; see the main text for details.
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position of the peak of the susceptibility as a function of the
scaling variable z ¼ t=h1=ðβδÞ is constant in the scaling
regime. Here, t ¼ ðT − TcÞ=T0 is the reduced temperature
with T0 being a suitably chosen normalization factor and
h ¼ H=H0 is the symmetry breaking field normalized by a
suitably chosen normalization H0. In the present case, H
can be identified with the current mass of the light quarks
m0

l , which, in turn, is directly related to the pion mass
via m2

π ∼m0
l .

For example, employing the critical exponents of the 3D
Oð4Þ universality class [62–64], we have p ≈ 1.08. Based
on previous fRG studies of critical exponents [60,65–67],
however, we expect p to be slightly smaller in our present
study. In any case, this suggests an almost linear depend-
ence of the peak positions of the susceptibilities on the pion
mass, at least within the scaling regime. Note that the size
of the latter is not universal but depends on the details of the
theory under consideration.
In Fig. 2 (left panel), we show our results for the light-

quark susceptibilities χðlÞM ðTÞ as a function of the temper-
ature T, where we have normalized the susceptibilities with

χ̄ðlÞM , i.e., the value of χðlÞM ðTÞ for mπ ¼ 140 MeV evaluated
at its maximum; see Eq. (5). As expected, we find that the
susceptibility increases when the pion mass is decreased.
Indeed, by decreasing the pion mass, we approach the
chiral limit associated with a diverging susceptibility at the
chiral phase transition temperature Tc.
Our results for the pseudocritical temperature indeed

appear to depend almost linearly on the pion mass; see
Fig. 2 (left panel). Fitting the scaling relation (7)
to our numerical results for TðlÞ

pc ðmπÞ for mπ ¼ 30; 35;
40;…; 140 MeV, we obtain Tc ≈ 141.4þ0.5

−0.5 MeV, cðlÞ ≈
0.19þ0.05

−0.05 MeV1−p, and p ≈ 0.88þ0.05
−0.05 . At this point, we

would like to remind the reader that the renormalized
susceptibility obeys the same temperature dependence as
the light-quark susceptibility. Therefore, the pseudocritical
temperatures extracted from these two susceptibilities are
identical.
The deviation of our estimate for the exponent p from

the value associated with the 3D Oð4Þ universality class
[62–64] already suggests that QCD is not within the scaling
regime, not even for the smallest pion masses considered in
the present work. As already mentioned in Sec. I, this is in
line with studies of low-energy effective theories of QCD.
There, it has been found that deviations from scaling are
still sizeable, even if the pseudocritical temperature scales
approximately linearly for large pion masses and also the
suitably rescaled chiral susceptibilities for pion masses
mπ ≳ 75 MeV appear to fall approximately on one line
[41]. Even worse, from a practical standpoint, actual
scaling behavior of the chiral susceptibility and the chiral
order parameter has only been observed for very small pion
masses, mπ ≲ 1 MeV [41]. Given these results from low-
energy QCD model studies and the fact that the exponent p
is close to 1 for the 3D Oð4Þ universality class anyhow, a
linear fit for the pseudocritical temperature may be con-
sidered reasonable. Performing such a linear fit, we obtain
Tc ≈ 142.4þ0.1

−0.1 MeV from the extrapolation to mπ ¼ 0,
in very good agreement with our estimate for Tc presented
above.
Let us now consider the ratio

DðlÞðmπÞ ¼
TðlÞ
pc ðmπÞ − Tc

Tc
; ð8Þ

which is an estimate for the relative dependence of the
pseudocritical temperature on the pion mass. For the

FIG. 2. Left panel: Light-quark susceptibility χðlÞM as a function of the temperature. The inset shows the peak positions of the depicted

susceptibilities as a function of the pion mass. Right panel: Comparison of the light-quark susceptibility χðlÞM and the reduced

susceptibility χðl;sÞM as a function of the temperature. The normalizations are the maxima of the respective susceptibilities at the physical
pion mass; see Eq. (5).
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physical pion mass, mπ ¼ 140 MeV, this ratio in our
present first-principles fRG study is about a factor of 3
smaller than typical values for DðlÞ found in low-energy
QCD model studies [39,40]. For example,

DQM
ðlÞ ðmπ ¼ 140 MeVÞ ≈ 0.28 ð9Þ

was reported in Ref. [40] for the quark-meson (QM) model.
In our present QCD study, we instead find

DQCD
ðlÞ ðmπ ¼ 140 MeVÞ ≈ 0.10; ð10Þ

where we have employed the value for Tc obtained from an

extrapolation of the pseudocritical temperature TðlÞ
pc to the

limit mπ ¼ 0. The observed significant difference for the
nonuniversal quantity DðlÞ as obtained from model studies
and our first-principles fRG study deserves a comment.
First of all, the parameters in low-energy models are tuned
at a given UV cutoff scale to fix a given set of low-energy
observables. A change of the current quark mass then in
principle requires adapting these parameters following a
given prescription which is not unique; see, e.g., the
discussion in Ref. [19]. In our present study, such an
adaption of parameters is not required. Related to this
aspect, the UV cutoff scale in low-energy models is
generally chosen to be (significantly) greater than the
chiral symmetry breaking scale. However, it has been
found by comparisons of RG flows of the quark-meson
model with those of QCD that the UV cutoff scale in
models is generally chosen too large from a QCD

standpoint; see Refs. [69–71]. In fact, these comparisons
reveal that the gluodynamics significantly affects the RG
flow of the effective potential almost down to the symmetry
breaking scale. Since the latter eventually determines the
scaling of low-energy observables, it also leaves its imprint
in the pion-mass dependence of the pseudocritical temper-
ature. Second, it should also be emphasized that the chiral
critical temperature in our present study is obtained from an
extrapolation of our results for finite pion masses. Thus, our
estimate for the critical temperature naturally suffers from
an uncertainty associated with the extrapolation which
affects our estimate for DðlÞ. Moreover, while the linear

behavior of TðlÞ
pc ðmπÞ is basically determined by universal-

ity, the comparison of our results to the lattice QCD for
large pion masses in Fig. 3 indicates that we presently may

still underestimate the slope of TðlÞ
pc ðmπÞ also at small pion

masses.
Next, we turn to the reduced susceptibility χðl;sÞM as

defined in Eq. (4). In Fig. 2 (right panel), we show a
comparison of the light-quark susceptibility and the
reduced susceptibility for three pion masses. As expected,
the qualitative behavior of the reduced susceptibility is the
same as the one found for the light-quark susceptibility.
More specifically, the susceptibilities increase for decreas-
ing pion mass, indicating the approach to a singularity in
the chiral limit. Fitting the relation (7) to our numerical

results for Tðl;sÞ
pc ðmπÞ formπ ¼ 30; 35; 40;…; 140 MeV, we

obtain Tc ≈ 141.6þ0.3
−0.3 MeV, cðl;sÞ ≈ 0.17þ0.03

−0.03 MeV1−p,
and p ≈ 0.91þ0.03

−0.03 . Thus, the critical temperature Tc is in
excellent agreement with the one extracted from our

FIG. 3. Left panel: Comparison of our fRG results for the pseudocritical temperature as a function of the pion mass to those from the
HotQCD Collaboration [33]. The various dashed lines represent fits to the numerical data; see the main text for details. The estimates for
the critical temperature Tc have been obtained from an extrapolation of the fits to mπ → 0. The temperatures Tðl;sÞ

60 and T lattice
c are the

extrapolated results for the chiral critical temperature obtained from a definition of the pseudocritical temperature which does not involve
the peak position of the susceptibility; see the main text for details. Right panel: Susceptibility as obtained from the reduced condensate

as a function of the temperature. The normalization χ̄ðl;sÞM is the maximum of the susceptibility at the physical pion mass; see Eq. (5). The
lattice QCD data have been taken from Refs. [33,68].
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analysis of the light-quark susceptibilities, as it should be.
With respect to the exponent p, we note that it also deviates
clearly from the expectedOð4Þ value. However, we observe
that it is consistent within fit errors with the value for p
which we obtained from our analysis of the light-quark
susceptibility. Overall, we therefore cautiously conclude
that QCD is not within the scaling regime for the range of
pion masses considered here, providing us with mπ ≈
30 MeV as a conservative estimate for the upper bound
of this regime. An actual determination of the size of the
scaling regime is beyond the scope of present work as it
requires studying very small pion masses.
In analogy to the definition (8), we can also define the

relative dependence Dðl;sÞðmπÞ of the pseudocritical tem-
perature on the pion mass in case of the reduced suscep-
tibility. For mπ ¼ 140 MeV, we then find that this quantity
is only slightly smaller than the corresponding quantity
associated with the light-quark susceptibility.
In Fig. 3 (right panel), we finally compare our fRG

results for the reduced susceptibility to very recent results
from the HotQCD Collaboration [33]. We observe excel-
lent agreement between the results from the two approaches
for pion masses mπ ≳ 100 MeV. The deviations of the
results from the two approaches for smaller pion masses
may at least partially be attributed to cutoff artifacts in the
lattice data. Note that cutoff effects are expected to shift the
maxima to smaller temperatures. We refer to Ref. [20] for a
respective discussion.
It is also worthwhile to compare the peak positions of the

reduced susceptibilities extracted from the lattice QCD data
with those from our fRG study; see Table I and Fig. 3 (left
panel). As discussed above, the peak position can be used
to define a pseudocritical temperature. For the presently
available pion masses on the lattice, we find that the results
from the two approaches for this pseudocritical temperature
are in very good agreement. Moreover, we observe that at
least a naive linear extrapolation of the HotQCD results for
the peak position yields Tc ≈ 144.6þ0.5

−0.5 MeV for Nτ ¼ 8

and Tc ≈ 138.0þ2.3
−2.3 MeV for Nτ ¼ 12, which is consistent

with our estimate for Tc. However, as argued in Ref. [33],
the strong pion-mass dependence of the so-defined pseu-
docritical temperature potentially complicates the chiral
extrapolation of lattice QCD data. Therefore, an alternative
definition of the pseudocritical temperature has been
introduced in Ref. [33]. In the following, we shall refer

to this pseudocritical temperature as Tðl;sÞ
60 . Its implicit

definition reads [33]

χðl;sÞM ðTðl;sÞ
60 ; mπÞ ¼ 0.6max

T
χðl;sÞM ðT;mπÞ: ð11Þ

Here, it is tacitly assumed that Tðl;sÞ
60 is determined at a

temperature to the left of the maximum of the susceptibility,

implying Tðl;sÞ
60 < Tðl;sÞ

pc . For mπ → 0, Tðl;sÞ
60 then converges

to Tc. Moreover, the so-defined pseudocritical temperature
is expected to exhibit only a mild dependence on the pion
mass and should hence be close to the chiral phase
transition temperature Tc for the range of pion masses of
interest in the present work. In Ref. [33], this definition of
the pseudocritical temperature has been used to extrapolate
to the chiral limit, resulting in T lattice

c ¼ 132þ3
−6 MeV.

Employing this definition of the pseudocritical temperature
to analyze our fRG results for the reduced susceptibility, we

indeed observe an extremely weak dependence of Tðl;sÞ
60 on

the pion mass. To be specific, we find that it increases by
less than 1 MeV when the pion mass is increased from
mπ ¼ 30 MeV to mπ ¼ 140 MeV. An extrapolation to the
chiral limit yields Tc ≈ 142.4 MeV, which agrees nicely
with our estimates for Tc presented above, as it should be.
Thus, from our fRG study, we eventually conclude

Tc ≈ 142 MeV ð12Þ

for the chiral phase transition temperature.

IV. CONCLUSIONS

In this work, we have studied the magnetic susceptibility
in (2þ 1)-flavor QCD within a first-principles fRG calcu-
lation. Specifically, we have presented results for the
susceptibilities associated with the light-quark condensate
and the reduced condensate.
The chiral pseudocritical temperatures have been deter-

mined from the peak positions of the susceptibilities.
Interestingly, we found that its dependence on the pion
mass in the present QCD study is milder than in low-energy
QCD model studies. From an extrapolation to the chiral
limit, we obtained Tc ≈ 142 MeV for the chiral phase
transition temperature.

TABLE I. Selection of peak positions of the reduced susceptibility for various pion masses as obtained from our present fRG
computation and a recent lattice QCD study [33].

mπ (MeV)

30 40 55 70 80 100 110 120 140

Tpc (MeV)
fQCD (reduced) 145.3 146.4 148.0 149.6 150.5 152.7 153.6 154.8 156.3
HotQCD ðNτ ¼ 12Þ [33] � � � � � � � � � � � � 149.7þ0.3

−0.3 � � � 155.6þ0.6
−0.6 � � � 158.2þ0.5

−0.5
HotQCD ðNτ ¼ 8Þ [33] � � � � � � 150.9þ0.4

−0.4 � � � 153.9þ0.3
−0.3 � � � 157.9þ0.3

−0.3 � � � 161.0þ0.1
−0.1

JENS BRAUN et al. PHYS. REV. D 102, 056010 (2020)

056010-8



Our results for the susceptibilities and the scaling of the
corresponding pseudocritical temperature indicate that
QCD is not within the scaling regime for the considered
pion masses mπ ≥ 30 MeV. As discussed in detail, this
conclusion is at least in accordance with low-energy QCD
model studies [41]. There, a qualitatively similar behavior
of the susceptibilities and the pseudocritical temperature
has been observed for the same pion mass range as
considered here. However, the actual size of the scaling
regime turned out to be significantly smaller. A detailed
analysis of this issue within our present first-principles fRG
approach is deferred to future work as it requires to study
(very) small pion masses.
We have also compared our results for the reduced

susceptibility with very recent results from the HotQCD
Collaboration [33] and found that the results from both
approaches are in very good agreement for pion masses
mπ ≳ 100 MeV. For smaller pion masses, the lattice and
fRG results are still consistent with each other. Following
the analysis of the HotQCD Collaboration, we have also
estimated the phase transition temperature in the chiral limit
based on scaling properties of the susceptibility in the
temperature regime below the temperature defined by the
peak of the susceptibility. As it should be, this provides us
with the same value for the chiral phase transition temper-
ature as in the case of an extrapolation of the peak positions
of the light-quark and reduced susceptibility.
As a next step, it will be important to further extend our

present study. For example, we plan to improve the stability
of our numerical calculations for very small pion masses to
eventually reach the chiral limit by employing recent
developments for the solution of fRG equations [58] as
well as the stability-enhancing expansion about a fixed
expansion point [53]. Moreover, an analysis of the effect of
the breaking of the UAð1Þ symmetry and effective UAð1Þ
restoration at high temperatures is in order; for a first flow

study in the vacuum, see Ref. [72]. A detailed analysis of
the latter issue requires the study of Fierz-complete
truncations of the effective action. First steps into this
direction have been taken [73], suggesting that effective
UAð1Þ restoration already sets in closely above the chiral
phase transition temperature, in accordance with recent
lattice QCD studies [74]. An understanding of the effect of
this almost coincidence of chiral and UAð1Þ restoration on
the critical behavior is indeed an intriguing and not yet fully
resolved problem in QCD.
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