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Applications of the general theory of quantum electrodynamics with Lorentz- and CPT-violating
operators of mass dimensions up to six are presented to Penning-trap experiments comparing charge-to-
mass ratios between particles and antiparticles. Perturbation theory is used to derive Lorentz- and CPT-
violating contributions to the energy levels and cyclotron frequencies of confined particles and
antiparticles. We show that whether the experimental interpreted quantity ðjqj=mÞw̄=ðjqj=mÞw − 1 is a
clean measure of a CPT test depends on the context of the relevant theory. Existing experimental results of
charge-to-mass ratio comparisons are used to obtain first-time constraints on 69 coefficients for Lorentz and
CPT violation.
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I. INTRODUCTION

Invariance under Lorentz transformations is one of the
fundamental symmetries of both general relativity and the
Standard Model of particle physics. However, tiny viola-
tions of Lorentz invariance could naturally emerge via
spontaneous symmetry breaking in a fundamental theory
unifying gravity with quantum physics, such as string
theory [1]. In realistic effective field theory any violation
of CPT symmetry, the invariance under the combined
transformation of charge conjugation C, parity inversion P,
and time reversal T, is accompanied by Lorentz violation
[2,3]. It follows that testing Lorentz symmetry includes
CPT tests as well. Motivated by this, many high-precision
experiments in various subfields of physics have been
performed to search for a variety of Lorentz- and CPT-
violating signals [4].
Testing Lorentz and CPT symmetry requires either the

study of the effects of a physical system under rotations or
boosts, or comparing the fundamental properties of a
particle such as lifetime, charge-to-mass ratio, and g factor
to these of its antiparticle. Among the high-precision tests
of Lorentz and CPT invariances, the Penning trap is of
particular interest, as it provides a stable confinement of a
particle or an antiparticle, permitting highly precise mea-
surements and comparisons of its properties. Meanwhile,
the Earth provides a natural rotating and boosting frame to

study these properties under Lorentz transformations.
Impressive sensitivities have been achieved by Penning-
trap experiments. For example, the proton and antiproton
charge-to-mass ratios were compared to parts per trillion
[5]. For the g factors of electrons and positrons, as well as
these of protons and antiprotons, the precision achieved
was at parts per billion [6,7]. The prospects of testing
Lorentz and CPT symmetry in Penning-trap experiments
measuring the g factors of particles and antiparticles were
addressed in Ref. [8]. To extend that work, we focus in this
paper on searches for Lorentz and CPT violation using the
charge-to-mass ratio comparisons between particles and
antiparticles confined in a Penning trap.
The comprehensive framework to study Lorentz and

CPT violation in the context of effective field theory is
known as the Standard-Model Extension (SME) [2,9],
which is constructed from the action of general relativity
and the Standard Model by adding all possible Lorentz-
violating terms. Each of these terms is formed from a
coordinate-independent contraction of a Lorentz-violating
operator with a corresponding controlling coefficient.
The subset of the SME containing operators of power-
counting renormalizable mass dimension d ≤ 4 is called
the minimal SME, while the nonminimal SME restricts
attention to operators of mass dimensions d > 4 and is
assumed to produce higher-order corrections to conven-
tional physics.
Both the minimal and nonminimal SME can produce

various Lorentz- and CPT-violating effects in Penning-trap
experiments, including those measuring the g factor and
charge-to-mass ratio of a confined particle or antiparticle
[5–7,10–12]. These effects include shifts in the cyclotron
and anomaly frequencies that can depend on sidereal time
and also differ between particles and antiparticles. The
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original theoretical work using the minimal SME to study
Lorentz and CPT violation was given in Refs. [13,14].
It was recently extended to the nonminimal SME by
including Lorentz- and CPT-violating operators of dimen-
sions up to six, together with applications to Penning-trap
experiments comparing the g factors between a particle and
an antiparticle [8]. The searches for the effects arising from
sidereal variations in these experiments have also been
discussed [15–17].
However, no treatment on the nonminimal SME effects

in Penning-trap experiments comparing charge-to-mass
ratios exists in the literature to date. Addressing these
nonminimal effects is of significance as it can reveal
additional measurable Lorentz- and CPT-violating signals
due to the interactions of the particle or antiparticle with the
electromagnetic fields in the trap. More generally, studying
the nonminimal SME sector can provide crucial insights to
many aspects of Lorentz and CPT violation, such as
noncommutative Lorentz-violating quantum electrodynam-
ics [18,19], Lorentz-violating models in supersymmetry
[20], or foundational issues including causality and
stability [21] and the underlying pseudo-RiemannFinsler
geometry [22].
In this work, we address this gap by studying the

nonminimal SME effects arising from particle and anti-
particle charge-to-mass ratio measurements in Penning
traps. The theory of Lorentz- and CPT-violating electro-
dynamics with operators of mass dimensions up to six
developed in Ref. [8] provides a partial guide to investigate
these effects. Applying perturbation theory we derive the
leading-order contributions due to Lorentz and CPT
violation to cyclotron frequencies and then relate them
to charge-to-mass ratio comparisons. We also address the
question of whether a comparison of the experimental
interpreted charge-to-mass ratios between particles and
antiparticles is a clean CPT test and conclude that it
depends on the context of the relevant theory. Taking
published results including the sidereal studies from
Penning-trap experiments, we extract first-time constraints
on 69 SME coefficients. The results obtained in this work
are complementary to existing ones from comparisons of
the g factors between particles and antiparticles in Penning-
trap experiments [8,16], the studies of the anomalous
magnetic moment of muons confined in a storage ring
[23,24], the spectroscopic investigations of hydrogen,
antihydrogen, and other related systems [25], and clock-
comparison experiments [26].
This work is organized as follows. In Sec. II, we revisit

the theory of quantum electrodynamics with Lorentz- and
CPT-violating operators of mass dimensions up to six and
derive the perturbative Hamiltonian at leading order in
Lorentz and CPT violation. We next turn in Sec. III the
applications to Penning-trap experiments. The dominant
energy shifts due to Lorentz and CPT violation of a
confined particle or antiparticle are given in Sec. III A,

followed in Sec. III B by the corresponding cyclotron
frequency shifts. We address in Sec. III C the general
transformation of the coefficients for Lorentz violation
between different frames. This leads to a discussion in
Sec. III D of possible measurable Lorentz- and CPT-
violating signals in Penning-trap experiments comparing
charge-to-mass ratios between particles and antiparticles.
In Sec. III E, we use published experimental results to
extract first-time constraints on 69 SME coefficients and
summarize them in Table II. Finally, we given in Sec. IV the
summary of this work. Three Appendixes are given at
the end of the paper for the reader’ convenience. In
Appendix A, we reproduce the full Lagrange density
of quantum electrodynamics with Lorentz- and CPT-
violating operators of mass dimensions d ≤ 6. The explicit
calculation result of the perturbative energy shifts is given
in Appendix B, followed in Appendix C by the trans-
formation results for the related coefficients for Lorentz
violation.
Throughout the paper, we follow the notation used in

Refs. [8,27], unless otherwise specified. In particular, we
adopt natural units with ℏ ¼ c ¼ 1 and express mass units
in GeV.

II. THEORY

In this section, we focus on the theory by revisiting the
Lagrange density of Lorentz-violating spinor electrody-
namics with operators of mass dimensions up to six [8] and
deriving the related perturbative Hamiltonian at leading
order in Lorentz and CPT violation.

A. Lagrange density

In the framework of the SME, the general Lorentz-
violating Lagrange density that preserves U(1) gauge
invariance for a single Dirac fermion field ψ of charge q
and mass mψ coupled to an electromagnetic field Aμ is
given by

Lψ ¼ L0 þ
1

2
ψ̄ Q̂ψ þ H:c:; ð1Þ

where L0 ¼ 1
2
ψ̄ðγμiDμ −mψÞψ þ H:c: is the conventional

Lorentz-invariant QED Lagrange density, with iDμ being
the covariant derivative from the minimal coupling
iDμ ≡ i∂μ − qAμ and H.c. denoting Hermitian conjugate.

Q̂ is a general 4 × 4 Lorentz-violating operator involving
the covariant derivative iDμ and the antisymmetric
electromagnetic field tensor Fμν ≡ ∂μAν − ∂νAμ. From

the Hermiticity of the Lagrange density (1), Q̂ satisfies
Q̂ ¼ γ0Q̂

†γ0. The spin content of Q̂ can be shown by
expanding it in the basis of the 16 Dirac matrices,

Q̂ ¼ Ŝ þ iP̂γ5 þ V̂μγμ þ Âμγ5γμ þ
1

2
T̂ μνσμν; ð2Þ
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where the 16 operators fŜ; P̂; V̂μ; Âμ; T̂ μνg are Dirac-
scalar functions of mass dimension one formed from
the contraction of coefficients for Lorentz violation and
operators including iDμ and Fμν in general. For example,

one of the dimension-five terms in Âμ takes the form

− 1
2
bð5Þμαβf Fαβ, where bð5Þμαβf is the controlling coefficient

for Lorentz violation. As shown in Ref. [8], this term can
produce both Lorentz- and CPT-violating effects in experi-
ments measuring the magnetic moment of a particle or an
antiparticle with a Penning trap.
The explicit form of the Lagrange density (1) at arbitrary

mass dimension in the free-fermion limit Aμ ¼ 0 has been
studied in Ref. [27]. For a Dirac fermion interacting with a
nonzero Aμ, its expression for a mass dimension d ≤ 6 was
constructed in Ref. [8], where a set of novel F-type
coefficients for Lorentz violation associated with Fμν

was discussed. An extension to arbitrary mass dimension
for the interacting case was recently given by Ref. [28]. For
other SME sectors, a similar analysis of the quadratic terms
in the photon sector at an arbitrary mass dimension has
been presented in Ref. [29], as well as extensions to the
neutrino sector [30], and the gravity sector [31]. Since
the Lagrange density constructed in Ref. [8] serves as the
theoretical basis of the present work, for convenience we
reproduce these terms in Appendix A.

B. Perturbative Hamiltonian

Given that no Lorentz- and CPT-violating signals have
been observed in experiments to date, any such possible
symmetry-violating effects must be tiny. Therefore, the
contributions from the Lorentz-violating operator Q̂ to the
Hamiltonian related to the Lagrange density (1) can be
treated as perturbative. To derive the explicit expression of
the perturbative Hamiltonian δH, we start from the modi-
fied Dirac equation in the momentum space,

ðp · γ −mψ þ Q̂Þψ ¼ 0; ð3Þ

where pμ ≡ iDμ ≡ ði∂μ − qAμÞ. The exact Hamiltonian H
can then be defined from Eq. (3) via

Hψ ≡ p0ψ ¼ γ0ðp · γ þmψ − Q̂Þψ ; ð4Þ

where p0 is the exact energy of the physical system
including Lorentz violation. Separating the exact
Hamiltonian H into the sum of the conventional
Hamiltonian H0 and the perturbative part δH due to
Lorentz and CPT violation, we identify the exact pertur-
bative Hamiltonian to be δH ¼ −γ0Q̂.
It is challenging to construct the perturbative

Hamiltonian δH directly since the Lorentz-violating oper-
ator Q̂ in general contains powers of p0 and thus includes
the perturbative Hamiltonian H itself. This implies that the

standard procedure cannot be adopted to obtain a Dirac
Hamiltonian operator generating time translations on the
wave function. For certain cases of Q̂, a field redefinition at
the level of the Lagrange density can be performed to
overcome this difficulty by removing the additional time
derivatives [14]. However, at the leading order in Lorentz
violation, a more general procedure, first presented in
Ref. [30], can be adopted by noticing that any contributions
to δH due to the exact Hamiltonian H are at second or
higher orders in Lorentz violation. Therefore, to obtain the
leading-order effects, the perturbative Hamiltonian δH can
be evaluated using the unperturbative energy E0 for p0,

δH ≈ −γ0Q̂jp0→E0
; ð5Þ

where E0 can be derived by solving the relevant conven-
tional Dirac equation for the physical system.

III. APPLICATION TO THE PENNING TRAP

In this section, we apply the above theory to experiments
involving Penning traps. Using perturbation theory we
derive the energy shifts due to Lorentz and CPT violation
of particles and antiparticles confined in a Penning
tap. Then we obtain the dominant shifts in their cyclotron
frequencies, followed by a discussion of general frame
changes to study the transformation under rotations. This
leads to investigations of possible measurable signals
in Penning-trap experiments comparing the charge-to-
mass ratios between particles and antiparticles, including
a discussion of the CPT test. By identifying the
relations between experimental measured quantities and
coefficients for Lorentz violation, we obtain first-time
constraints on 69 SME coefficients from published
Penning-trap results.

A. Energy shifts

For precision experiments involving particles or anti-
particles confined in a Penning trap, the relevant exper-
imental observables of interest are frequencies, which
are the energy differences between energy levels. To obtain
the shifts in the energy levels of a confined particle
due to Lorentz and CPT violation, we apply perturbation
theory,

δEn;�¼hχn;�jδHjχn;�i; ð6Þ

where δH is the perturbative Hamiltonian given by (5),
χn;� denote the unperturbative four-component stationary
eigenstates of level number n and spin � for the positive-
energy fermion, and δEn;� are the corresponding pertur-
bative energy shifts due to Lorentz and CPT violation.
In Penning-trap experiments, the dominant effects in the

unperturbative energy spectrum arise from the interaction
of the confined particle or antiparticle with the constant
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magnetic field of the trap. The quadrupole electric field,
which varies with the position to provide the axial confine-
ment, generates weaker effects suppressed by a factor of
E=B. In a typical trap with E ≈ 20 kV=m and B ≈ 5 T, this
ratio is about 10−5 in natural units. Therefore, we start the
theoretical analysis with an idealized scenario where a
relativistic quantum fermion moves in a uniform magnetic
field only. The unperturbative fermion eigenstates χn;� in
the absence of Lorentz and CPT violation can be obtained
by solving the conventional Dirac equation with the
minimal coupling for a spin-1=2 fermion of mass m
and charge q≡ σjqj in a constant magnetic field. For
calculation definiteness, we fix the gauge with Aμ ¼
ð0; x2B; 0; 0Þ ¼ ð0;−x2B; 0; 0Þ so that the magnetic field
is B ¼ Bx̂3, pointing the positive x3 axis in the appara-
tus frame.
After some calculation, we present in Appendix B the

explicit result of the energy shifts δEw
n;� for a fermion of

species w and charge sign σ in a magnetic field B ¼ Bx̂3
due to Lorentz-violating operators appearing in Lð3Þ, Lð4Þ,
Lð5Þ
D , and Lð6Þ

D , given in Appendix A. The additional energy

shift contributions from operators in Lð5Þ
F and Lð6Þ

F can be
obtained via substitutions listed in (40) in Ref. [8], while

terms in Lð6Þ
∂F produce no energy shift contributions as

∂αFβγ ¼ 0 for a uniform magnetic field in a Penning trap.
In obtaining the result (B1), we note that the axial motion of
the confined particle or antiparticle in a Penning trap is
purely induced by the electric field, this means terms
involving one or more powers of the Landau momentum
p3 appearing in the energy shift calculation are also
suppressed by one or more powers of the ratio E=B.
Therefore, we disregard such terms in result (B1) to obtain
the leading-order contributions. Note also that the unper-
turbed positive eigenenergies in result (B1) take the
form Ew

n;�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

w þ ð2nþ 1 ∓ σÞjqBj
p

.
As shown in Appendix B, the full energy shifts (B1)

depend on several variables, including the charge sign σ of
the particle, the spin orientation, and the level number n.
The dependence on the direction of the magnetic field is
reflected by the indices of the coefficients for Lorentz
violation as the calculations are performed in the apparatus
frame with the magnetic field along the positive x3 axis.
The magnitude dependence is evident from terms involving
powers of jqBj. Since in a typical Penning-trap experiment
a particle with 1e charge in a magnetic field of B ≈ 5 T
corresponds to jqBj ≈ 10−16 GeV2 in natural units, to
obtain the leading-order contributions due to the magnetic
field we can expand terms containing Ew

n;�1 in Taylor series
of jqBj and keep only up to the linear terms in jqBj in the
result.
With the above approximations and including also the

contributions from operators in Lð5Þ
F and Lð6Þ

F , we can
rewrite the perturbative energy shifts (B1) in the form,

δEw
n;�1¼ α̃0w∓σβ̃3w−m̃3

F;w�σb̃33F;wB

þð�σb̃03w −mw½c̃00w þðc̃11w þ c̃22w Þs�Þ
ð2nþ1∓σÞjqBj

2m2
w

þð∓σðb̃311w þ b̃322w Þ− 1

mw
ðc̃11w þ c̃22w Þs¬Þ

ð2nþ1ÞjqBj
2

;

ð7Þ

where the various tilde coefficients are defined by

ã0w¼a0w−mwc00w −mwe0wþm2
wm

ð5Þ00
w

þm2
wa

ð5Þ000
w −m3

wc
ð6Þ0000
w −m3

we
ð6Þ000
w ;

b̃3w¼b3wþH12
w −mwd30w −mwg120w þm2

wb
ð5Þ300
w

þm2
wH

ð5Þ1200
w −m3

wd
ð6Þ3000
w −m3

wg
ð6Þ12000
w ;

m̃3
F;w¼mð5Þ12

F;w það5Þ012F;w −mwc
ð6Þ0012
F;w −mwe

ð6Þ012
F;w ;

b̃33F;w¼bð5Þ312F;w þHð5Þ1212
F;w −mwd

ð6Þ3012
F;w −mwg

ð6Þ12012
F;w ;

b̃03w ¼b3wþmwðg120w −g012w þg021w Þ−m2
wb

ð5Þ300
w

−2m2
wðHð5Þ1200

w −Hð5Þ0102
w þHð5Þ0201

w Þ
þ2m3

wd
ð6Þ3000
w þ3m3

wðgð6Þ12000w −gð6Þ01002w þgð6Þ02001w Þ;
c̃00w ¼ c00w −mwm

ð5Þ00
w −2mwa

ð5Þ000
w

þ3m2
wc

ð6Þ0000
w þ2m2

we
ð6Þ000
w ; ð8Þ

and the “11þ 22” types of tilde coefficients are defined by

ðc̃jjw Þs ¼ cjjw − 2mwa
ð5Þj0j
w þ 3m2

wc
ð6Þj00j
w ;

ðc̃jjw Þs¬ ¼ −mwa
ð5Þ0jj
w −mwm

ð5Þjj
w

þ 3m2
wc

ð6Þ00jj
w þ 3m2

we
ð6Þ0jj
w ;

b̃3jjw ¼ bð5Þ3jjw þHð5Þ12jj
w

− 3mwd
ð6Þ30jj
w − 3mwg

ð6Þ120jj
w ; ð9Þ

with j taking values of 1 and 2 only. The subscripts s and s
¬

in the above c̃jjw tilde coefficients specify the fact that ðc̃jjw Þs
produce both spin-independent and spin-dependent energy
shift contributions, while ðc̃jjw Þs¬ give only spin-independent
ones, which is evident from the corresponding proportional
factors 2nþ 1 ∓ σ and 2nþ 1 in the result (7). We note
that the energy shift contributions from tilde coefficients
ã0w, b̃

3
w, m̃3

F;w, and b̃
33
F;w are independent of the level number

n. Expression (7) extends the energy shift result obtained in
Ref. [8] by including terms linear in jqBj. These terms can
lead to nonzero contributions to the cyclotron frequencies,
as will be shown in the next subsection.
The corresponding shifts in the antifermion energy levels

due to Lorentz and CPT violation are given by
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δEc
n;� ¼ hχcn;�jδHcjχcn;�i; ð10Þ

where χcn;� are the corresponding positive-energy antifer-
mion eigenstates, which can be derived from the negative-
energy fermion solutions χn;� via charge conjugation in the
usual way, and δHc is the perturbative Hamiltonian for the
antifermion, which can also be obtained from δH in a
similar way. Applying Eq. (10), the expression for the
perturbative energy shifts of the corresponding antifermion
is found to have the same form as that of a fermion, except
that the spin is reversed, and the contributions are con-
trolled by a set of starred tilde quantities,

δEw̄
n;�1

¼−ã�0w �σb̃�3w − m̃�3
F;wB∓ σb̃�3F;wB

þð∓ σb̃0�3w −mw½c̃00w þðc̃11w þ c̃22w Þs�Þ
ð2nþ1∓ σÞjqBj

2m2
w

þð�σðb̃�311w þ b̃�322w Þ− 1

mw
ðc̃11w þ c̃22w Þs¬Þ

ð2nþ1ÞjqBj
2

;

ð11Þ

where the starred tilde quantities are defined by

ã�0w ¼ a0wþmwc00w −mwe0w−m2
wm

ð5Þ00
w

þm2
wa

ð5Þ000
w þm3

wc
ð6Þ0000
w −m3

we
ð6Þ000
w ;

b̃�3w ¼ b3w−H12
w þmwd30w −mwg120w þm2

wb
ð5Þ300
w

−m2
wH

ð5Þ1200
w þm3

wd
ð6Þ3000
w −m3

wg
ð6Þ12000
w ;

m̃�3
F;w ¼mð5Þ12

F;w −að5Þ012F;w −mwc
ð6Þ0012
F;w þmwe

ð6Þ012
F;w ;

b̃�33F;w ¼ bð5Þ312F;w −Hð5Þ1212
F;w þmwd

ð6Þ3012
F;w −mwg

ð6Þ12012
F;w ;

b̃03w ¼ b3wþmwðg120w −g012w þg021w Þ−m2
wb

ð5Þ300
w

þ2m2
wðHð5Þ1200

w −Hð5Þ0102
w þHð5Þ0201

w Þ
−2m3

wd
ð6Þ3000
w þ3m3

wðgð6Þ12000w −gð6Þ01002w þgð6Þ02001w Þ;
c̃�00w ¼ c00w −mwm

ð5Þ00
w þ2mwa

ð5Þ000
w

þ3m2
wc

ð6Þ0000
w −2m2

we
ð6Þ000
w ; ð12Þ

and the corresponding “11þ 22” types of starred tilde
coefficients are given by

ðc̃�jjw Þs ¼ cjjw þ 2mwa
ð5Þj0j
w þ 3m2

wc
ð6Þj00j
w ;

ðc̃�jjw Þs¬ ¼ mwa
ð5Þ0jj
w −mwm

ð5Þjj
w

þ 3m2
wc

ð6Þ00jj
w − 3m2

we
ð6Þ0jj
w ;

b̃�3jjw ¼ bð5Þ3jjw −Hð5Þ12jj
w

þ 3mwd
ð6Þ30jj
w − 3mwg

ð6Þ120jj
w : ð13Þ

In the result (11), the charge sign σ of the antifermion is
understood to change. Comparing the result (11) to (7),
together with the relevant definitions (8), (9), (12), and
(13), δEw̄

n;�1 can also be obtained from δEw
n;�1 by reversing

the charge sign, the spin orientation, and the signs of all
CPT-odd coefficients.
We remark in passing that the indices of the tilde

coefficients appearing in results (7) and (11) and are defined
in (8), (9), (12), and (13) correctly represent their rotation
properties. For example, the index pair “12” on the right sides
of these definitions is antisymmetric [32], which means it
transforms like a single “3” index under spatial rotations.
Coefficients with index “0” or index pair “00” are invariant
under spatial rotations. The dependence of results (7) and
(11) on only the index “0”, “3”, and “11þ 22” correctly
reflects the cylindrical symmetry of the Penning trap.

B. Cyclotron frequency shifts

One of the key frequencies in a Penning-trap experiment
is the cyclotron frequency, which is related to the charge-to-
mass ratio of the confined particle or antiparticle. The
cyclotron frequency is defined as the energy difference
between the n ¼ 1 and n ¼ 0 Landau levels. For example,
for particles w ¼ e− and p, the cyclotron frequencies in
natural units are defined as

ωe−
c ≡ Ee−

1;−1 − Ee−
0;−1; ωp

c ≡ Ep
1;þ1 − Ep

0;þ1; ð14Þ

respectively. For the corresponding antiparticles w̄ ¼ eþ
and p̄, the cyclotron frequencies are defined in a similar
way, except the spin directions are reversed,

ωeþ
c ≡ Eeþ

1;þ1 − Eeþ
0;þ1; ωp̄

c ≡ Ep̄
1;−1 − Ep̄

0;−1: ð15Þ

In the presence of Lorentz and CPT violation, the pertur-
bative energy shifts (7) and (11) can lead to corrections to
these cyclotron frequencies. Using the definitions (14)
together with the result (7), we find the shifts in the
cyclotron frequencies for electrons w ¼ e− and protons
w ¼ p have the same expression,

δωw
c

eB
¼ 1

m2
w
b̃03w −

1

mw
ðc̃00w þ c̃11w þ c̃22w Þ− ðb̃311w þ b̃322w Þ; ð16Þ

where the tilde coefficients c̃jjw with j ¼ 1 or 2 are the sum
of the two pieces defined in (9),

c̃jjw ¼ ðc̃jjw Þs þ ðc̃jjw Þs¬
¼ cjjw − 2mwa

ð5Þj0j
w þ 3m2

wc
ð6Þj00j
w −mwa

ð5Þ0jj
w

−mwm
ð5Þjj
w þ 3m2

wc
ð6Þ00jj
w þ 3m2

we
ð6Þ0jj
w : ð17Þ

The above result (16) shows that the shifts in the
cyclotron frequencies due to Lorentz and CPT violation
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depend only on three tilde quantities b̃03w , c̃00w þ c̃11w þ c̃22w ,
and b̃311w þ b̃322w in the apparatus frame, among which the
piece c̃00w is invariant under rotations but breaks Lorentz
symmetry under boosts, while the others violate Lorentz
symmetry under both rotations and boosts. All of tilde
quantities involve a mixture of CPT-even and CPT-odd
coefficients. No F-type coefficients for Lorentz violation
appear in result (16) as they produce energy shift con-
tributions that are independent of the Landau level number
n, as evident from the result (7), and hence are unobserv-
able in the cyclotron frequency shifts.
The corresponding cyclotron frequency shifts for anti-

particles w̄ ¼ eþ and p̄ can be obtained from (16) by
replacing the usual tilde quantities by the corresponding
starred ones, given by

δωw̄
c

eB
¼ −

1

m2
w
b̃0�3w −

1

mw
ðc̃�00w þ c̃�11w þ c̃�22w Þ

þ ðb̃�311w þ b̃�322w Þ; ð18Þ

where the starred tilde coefficients c̃�jjw with j ¼ 1 or 2 are
defined by

c̃�jjw ¼ ðc̃�jjw Þs þ ðc̃�jjw Þs¬
¼ cjjw þ 2mwa

ð5Þj0j
w þ 3m2

wc
ð6Þj00j
w þmwa

ð5Þ0jj
w

−mwm
ð5Þjj
w þ 3m2

wc
ð6Þ00jj
w − 3m2

we
ð6Þ0jj
w : ð19Þ

It is observed that the only difference between the particle
result (16) and the antiparticle result (18) is the sign of all
the CPT-odd coefficients, as expected.

C. Transformation under rotations

The cyclotron frequency shifts (16) and (18) are
expressed in the apparatus frame with the positive x̂3 axis
chosen to be aligned with the magnetic field in the trap.
However, this frame is noninertial due to the Earth’s
rotation. To compare results from different experiments
searching for Lorentz and CPT violation, a standard
canonical frame is adopted in the literature which is called
the Sun-centered frame [33,34]. In this frame the Cartesian
coordinates are labeled by XJ ≡ ðX; Y; ZÞ, with the Z axis
aligned along the Earth’s rotation axis, the X axis pointing
from the Earth to the Sun, and the time T chosen to have
origin at the vernal equinox 2000. The coefficients for
Lorentz violation in this frame can be assumed to be
constants in time and space [2,9].
To relate the coefficients for Lorentz violation from the

Sun-centered frame to the apparatus frame, we introduce
a third frame called the standard laboratory frame
xj ≡ ðx; y; zÞ, in which the z axis points to the local zenith,
the x axis is aligned with the local south, and the y axis
completes a right-handed coordinate system. The conven-
ient choice of the positive x̂3 axis of the apparatus frame as

the direction of the magnetic field of the trap may result in a
nonzero angle to the ẑ axis of the standard laboratory frame.
Therefore, to relate the coordinates from the apparatus
frame to the Sun-centered frame, we define two rotation
matrices Raj and RjJ, with Raj relating the standard
laboratory frame xj ≡ ðx; y; zÞ to the apparatus frame xa ≡
ðx1; x2; x3Þ by xa ¼ Rajxj, and RjJ connecting XJ ≡
ðX; Y; ZÞ of the Sun-centered frame to ðx; y; zÞ of the
standard laboratory frame by xj ¼ RjJXJ. The expression
of RjJ is given by [33,34]

RjJ ¼

0
B@
cosχ cosω⊕T⊕ cosχ sinω⊕T⊕ −sinχ

−sinω⊕T⊕ cosω⊕T⊕ 0

sinχ cosω⊕T⊕ sinχ sinω⊕T⊕ cosχ

1
CA; ð20Þ

where ω⊕ ≃ 2π=ð23 h 56 minÞ denotes the sidereal fre-
quency of the Earth’s rotation, T⊕ specifies the local
sidereal time, and χ is the colatitude of the laboratory.
The rotation Raj can be specified in general by a suitable
set of Euler angles ðα; β; γÞ. Adopting the convenient
“y-convention” of the rotation [35], Raj is found to have
the form,

Raj ¼

0
B@

cos γ sin γ 0

− sin γ cos γ 0

0 0 1

1
CA ×

0
B@

cos β 0 − sin β

0 1 0

sin β 0 cos β

1
CA

×

0
B@

cos α sin α 0

− sin α cos α 0

0 0 1

1
CA: ð21Þ

Putting the above discussion together, the relation
between the coordinates of the apparatus frame and these
of the Sun-centered frame can be obtained by the following
expression:

xa ¼ Rajxj ¼ RajRjJxJ; ð22Þ

which can be used to relate the coefficients for Lorentz
violation in these two frames. In the special case where the
magnetic field is vertical upward, which means axes x̂3 and
ẑ are in the same direction, the Euler angles become
ðα; β; γÞ ¼ ð0; 0; 0Þ and Raj reduces to the identity matrix.
The rotation matrix (20) reveals the dependence on the

sidereal time and laboratory geometric location of the
coefficients for Lorentz violation observed in the apparatus
frame. As a result, experimental observables for Lorentz
violation can oscillate at harmonics of the sidereal fre-
quency ω⊕ of the Earth’s rotation and have different
expressions for laboratories at different colatitudes. To
explicitly illustrate this, we consider a Penning-trap experi-
ment located at colatitude χ with a magnetic field along the
ẑ axis. The tilde coefficients for Lorentz violation in the
cyclotron frequency shifts (16) and (18) that break Lorentz
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symmetry under rotations are b̃03w , c̃11w þ c̃22w , b̃311w þ b̃322w ,
b̃0�3w , c̃�11w þ c̃�22w , and b̃�311w þ b̃�322w in the apparatus frame.
To express the sidereal-time and geometric dependence, we
take tilde quantity c̃11w þ c̃22w as an example. Applying the
rotation (22) with Raj being the identity matrix yields

c̃11w þ c̃22w ¼ cos2ω⊕T⊕

�
−
1

2
ðc̃XXw − c̃YYw Þsin2 χ

�

þ sin2ω⊕T⊕ð−c̃ðXYÞw sin2 χÞ
þ cosω⊕T⊕ð−c̃ðXZÞw sin2χÞ
þ sinω⊕T⊕ð−c̃ðYZÞw sin2χÞ

þ1

4
ðc̃XXw þ c̃YYw Þð3þ cos2χÞþ c̃ZZw sin2 χ; ð23Þ

where parentheses on two indices of the coefficients imply
symmetrization with a factor of 1=2. For instance,

c̃ðXYÞw ¼ ðc̃XYw þ c̃YXw Þ=2. Result (23) shows that the tilde
quantity c̃11w þ c̃22w can be expressed in terms of the six

independent quantities c̃ðJKÞw with J; K ¼ X, Y, Z in the
Sun-centered frame, producing up to second harmonics in
the sidereal frequency of the Earth’s rotation. The colati-
tude dependence is shown by the factors appearing in the
amplitudes of the harmonic oscillations.
If magnetic fields in different directions are used in a

Penning trap, the tilde quantities b̃03w , c̃11w þ c̃22w , b̃311w þ b̃322w ,
b̃0�3w , c̃�11w þ c̃�22w , and b̃�311w þ b̃�322w in the apparatus framecan
have different transformations into theSun-centered frame. In
a typical Penning-trap experiment, the magnetic field is
oriented either horizontally or vertically. For analysis refer-
ence, we present in Appendix C the explicit transformation
results of these tilde quantities for the above two field
orientations. These transformation results show that for a
given fermion of speciesw there are a total of 27 independent

tilde coefficients b̃0Jw , c̃
ðJKÞ
w , and b̃JðKLÞw in the Sun-centered

frame that are related to the cyclotron frequency shifts in a
Penning-trap experiment. Taking into account the corre-
sponding antifermion w̄, an additional 27 independent

components can be accessed via b̃0�Jw , c̃�ðJKÞw , and b̃�JðKLÞw .
A different type of time variation of the coefficients for

Lorentz violation can arise from the revolution of the Earth
about the Sun. This includes the effects from the boost
β⊕ ≈ 10−4 of the Earth relative to the Sun, and the boost
βL ≈ 10−6 of the laboratory due to the Earth’s rotation. As
studied in the literature [24,25,36–38], these effects are
suppressed by one or more powers of these boost factors
compared to these from rotations and hence can be treated
as negligible in the present work.

D. Experimental signals

The SME can produce various Lorentz- and CPT-
violating effects in Penning-trap experiments involving

confined particles or antiparticles. One type of observable
signal arises from the time variation of the experimental
quantity measured in the laboratory frame. This is because
the magnetic field used in the trap sets up a set of
instantaneous coordinates of the laboratory frame, which
rotates due to the Earth’s rotation and hence produces
sidereal variations of the measured signals, as discussed
above in Sec. III C. Performing a sidereal-variation analysis
of the experimental data would permit the study of the
constant coefficients in the Sun-centered frame that are
related to different harmonic terms in the transformation.
For example, from results (16) and (18), together with
the related transformations presented in Appendix C, a
sidereal-variation analysis of the cyclotron frequency shifts
δωw

c and δωw̄
c of the confined particles and antiparticles

would offer sensitivities to components of the tilde coef-

ficients b̃0Jw , b̃0�Jw , c̃ðJKÞw , c̃�ðJKÞw , b̃JðKLÞw and b̃�JðKLÞw .
Another kind of Lorentz- and CPT-violating effect

appears in comparative measurements between particles
and antiparticles, as the frequency shifts due to Lorentz and
CPT violation could differ between particles and antipar-
ticles. For example, according to results (16) and (18), the
cyclotron frequencies for a particle and its antiparticle are
shifted differently, with the contributions controlled by two
different sets of tilde quantities. In a Penning trap experi-
ment using a same magnetic field, the only difference
between δωw

c and δωw̄
c is the sign for the CPT-odd

coefficients, so a comparison between these two frequency
shifts Δωw

c ¼ δωw
c − δωw̄

c would permit the cancellations of
all the CPT-even effects, making it a clean test of CPT
symmetry. Together with the sidereal-variation analysis
discussed above, different components of these CPT-odd
tilde coefficients in results (16) and (18) can be extracted in
principle.
In this work, we discuss the above two types of signals in

Penning-trap experiments involving measurements of the
charge-to-mass ratios of a particle and an antiparticle. In a
Lorentz-invariant scenario, conventional quantum electro-
dynamics predicts that the charge-to-mass ratio of a particle
or an antiparticle is related to its cyclotron frequency by

jqj
m

¼ ωc

B
: ð24Þ

By measuring the cyclotron frequency of a particle or an
antiparticle in a known magnetic field, its charge-to-mass
ratio is then determined. Note that in Lorentz-invariant
quantum field theory, the definitions of the charge and mass
for a particle or antiparticle are based on the coupling
constants characterizing the related interaction strength.
Therefore, the charge-to-mass ratio is an intrinsic property
of a particle or antiparticle which does not vary by the local
experimental conditions, such as the field configuration in
the trap or the location of the laboratory. Note also that both
the charge and mass are Lorentz scalars in quantum field
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theory and are invariant under Lorentz transformation.
It follows that the charge, mass and the resulting charge-
to-mass ratio defined in the context of Lorentz-invariant
quantum field theory are unchanged even though Lorentz
symmetry is broken.
For comparative measurements, suppose a Penning-trap

experiment uses a same magnetic field to measure the
cyclotron frequencies of a particle w and its corresponding
antiparticle w̄ simultaneously. The result can then be related
to the comparison of the charge-to-mass ratios between a
particle and its antiparticle,

ðjqj=mÞw̄
ðjqj=mÞw

− 1 ¼ ωw̄
c

ωw
c
− 1: ð25Þ

In the Lorentz- and CPT-invariant scenario, this difference
is identically zero by the CPT theorem. Therefore, in the
context of Lorentz-invariant quantum field theory (which
also implies CPT invariance), the experimental interpreted
quantity ðjqj=mÞw̄=ðjqj=mÞw − 1 is a clean measure of a
CPT test.
However, in the presence of Lorentz violation, the

cyclotron frequency of a particle or antiparticle is shifted
by (16) or (18), respectively. This implies that the measured
cyclotron frequency becomes an experiment-dependent
quantity, as a function of the local sidereal time, the
colatitude of the laboratory, and both the direction and
magnitude of the magnetic field used in the trap. As a
result, the difference (25) does not vanish in general and
become an experiment-dependent quantity, given by

ðjqj=mÞw̄
ðjqj=mÞw

− 1 ↔
ωw̄
c

ωw
c
− 1 ¼ δωw̄

c − δωw
c

ωw
c

; ð26Þ

where ↔ means the charge-to-mass ratio comparison
reported by the experiments are obtained by interpreting
the measured difference ωw̄

c =ωw
c − 1, as the relation (24)

becomes an approximation in the presence of Lorentz
violation. On the right side of Eq. (26), the Lorentz- and
CPT-invariant pieces in the measured cyclotron frequen-
cies are exactly canceled by the CPT theorem if a same
magnetic field is used. From the cyclotron frequency shifts
(16) and (18), together with the transformation results in
Appendix C, the difference δωw

c − δωw
c on the right side of

the equation (26) contains only CPT-odd coefficients for
Lorentz violation, producing pureCPT-violating effects. In
a general case where a comparison is made by using
different magnetic fields, Eq. (26) becomes

ðjqj=mÞw̄
ðjqj=mÞw

− 1 ↔
ωw̄
c =B�

ωw
c =B

− 1 ¼ δωw̄
c =B� − δωw

c =B
ωw
c =B

; ð27Þ

where B� and B are the strengths of the magnetic fields
used for measuring ωw̄

c and ωw
c , respectively. It is clear that

the CPT-even coefficients on the right side of Eq. (27) do

not exactly cancel out due to the different magnetic
strengths, even when the magnetic fields are in the same
direction. Therefore, in this case the experimental inter-
preted quantity ðjqj=mÞw̄=ðjqj=mÞw − 1 is not a clean
measure of a CPT test.
Now we conclude that whether the experimental inter-

preted quantity ðjqj=mÞw̄=ðjqj=mÞw − 1 is a clean test of
CPT symmetry depends on the context of the relevant
theory. In a Lorentz-invariant quantum field theory, it can
be used as a clean test of CPT symmetry. However, in a
general Lorentz-violating scenario, it is a clean measure
of a CPT test only if a same magnetic field is used.
Similar discussions for the g factor comparisons have also
been addressed in Sec. III B 1 in Ref. [8]. The key point is
that the experimental quantity ðjqj=mÞw̄=ðjqj=mÞw − 1 is
obtained by interpreting the measured difference
ωw̄
c =ωw

c − 1 in the context of conventional quantum electro-
dynamics. Lorentz violation does not modify the theoretical
value of the charge-to-mass ratio for a particle or anti-
particle, which is defined via conventional quantum
electrodynamics. What it affects are the measured cyclotron
frequencies that are used by experiments to interpret the
charge-to-mass ratios and their comparison between a
particle and an antiparticle.
At the end of this subsection, we discuss a subtlety

arising from Penning-trap experiments comparing the
charge-to-mass ratios between an antiproton and a proton.
As the two particles have opposite charges, the measure-
ments of their cyclotron frequencies using the same trap
requires the reversal of the quadruple electric field. To
facilitate the experiment by eliminating the systematic
shifts caused by polarity switching of the trapping voltages,
a hydrogen ion (H−) is used as a proxy for the proton. This
allows a relatively fast exchange between hydrogen ions
and antiprotons. The comparison of the charge-to-mass
ratios between an antiproton and a proton can be related to
that between an antiproton and a hydrogen ion by

ðjqj=mÞp̄
ðjqj=mÞp

− 1 ¼ ðjqj=mÞp̄
Rðjqj=mÞH−

− 1 ↔
δωp̄

c − RδωH−
c

RωH−
c

; ð28Þ

where R ¼ mH−=mp ¼ 1.001089218754 is the mass ratio
of a hydrogen ion and a proton [5], ωH−

c and δωH−
c are the

cyclotron frequency and the corresponding shifts for the
hydrogen ion, respectively.
The cyclotron frequency shift δωH−

c for a hydrogen ion in
the above result can be obtained by taking w ¼ H− in the
expression (16). The related coefficients for Lorentz viola-
tion become the effective ones for a hydrogen ion. In the
framework of the SME, effective coefficients for a
composite particle can be expressed in terms of the corre-
sponding fundamental coefficients for Lorentz violation for
its constituents. In our case, the related fundamental coef-
ficients are these for electrons and protons. Deriving the
exact relations between these coefficients can be challenging
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due to nonperturbative issues involving binding effects for
the composite particle. However, a good approximation to
these relations can be found by taking the lowest-order
perturbation theory and treating the hydrogen ion wave
function as a product of the wave functions of a proton and
two electrons. Ignoring the binding energies, the energy
shifts of the hydrogen ion due to Lorentz andCPT violation
can be approximated as the sum of these for its constituents.
The corresponding approximated relation of the shifts in
their cyclotron frequencies can be found as

δωH−
c ≈ δωp

c þ 2δωe−
c : ð29Þ

Substituting relation (29) into the result (28) yields

ðjqj=mÞp̄
ðjqj=mÞp

− 1 ≈
δωp̄

c − Rδωp
c − 2Rδωe−

c

RωH−
c

: ð30Þ

The above result shows that Penning-trap experiments
comparing the charge-to-mass ratios between an antiproton
and a proton by using a hydrogen ion as a proxy for the
proton are sensitive not only to the SME coefficients for
protons, but also provide access to these for electrons. From
the transformation results presented in Appendix C, the
related coefficients for Lorentz violation in the Sun-
centered frame are these 81 independent tilde quantities

b̃0Jp , c̃
ðJKÞ
p , b̃JðKLÞp , b̃0�Jp , c̃�ðJKÞp , b̃�JðKLÞp , b̃0Je , c̃

ðJKÞ
e , and b̃JðKLÞe .

Using the expression (30) the published results from
experiments comparing the charge-to-mass ratios between
an antiproton and a hydrogen ion can be adopted to
set bounds on the relevant coefficients for Lorentz
violation.

E. Experimental sensitivities

In this subsection, we focus on the analysis of two
Penning trap experiments comparing the charge-to-mass
ratios between an antiproton and a proton and provide the
explicit combinations of the tilde coefficients that are
sensitive to each individual experiment. Taking the pub-
lished results we constrain the relevant tilde coefficients in
the Sun-centered frame.

1. The ATRAP experiment

In the ATRAP experiment located at CERN, Gabrielse
and his collaboration compared the charge-to-mass ratios
between an antiproton and a proton to a precision of 90 ppt
using a simultaneously trapped antiproton and hydrogen
ion in a vertical uniform magnetic field B ¼ 5.85 T [12].
The reported precision was obtained by analyzing the
measurements of the cyclotron frequencies in a time-
averaged way, so any effects in the difference (30) that
are dependent of sidereal time averaged out. This implies
that the published precision can be used to constrain only
the tilde coefficients that appear in the constant terms in the

transformation results listed in Appendix C. In principle, a
sidereal-variation analysis of the experiment data could also
be performed to obtain the constraints on other components
of the tilde coefficients that are related to the harmonic
terms in the transformation results. For the reference of
future sidereal-variation analysis of the ATRAP experi-
ment, we take χ ¼ 43.8° for the laboratory colatitude and
present in Table I the explicit combinations of the tilde
coefficients for all the related harmonics in the trans-
formation results of the tilde quantities b̃03w , c̃11w þ c̃22w ,
and b̃311w þ b̃322w . The table is organized as follows. The
first column specifies the name of the experiment, and the
second column gives the relevant tilde quantities in
the laboratory frame. The corresponding combinations of
the tilde coefficients in the Sun-centered frame are listed
in the third column, with the associated harmonics dis-
placed in the final column.
Using expression (30) together with the reported pre-

cision of 90 ppt for ðjqj=mÞp̄=ðjqj=mÞp − 1 and ωH−
c ¼

2π × 89.3 MHz for the ATRAP experiment, we obtain the
following limit in natural units:

jδωp̄
c − 1.001δωp

c − 2.002δωe−
c jconst ≲ 3.33 × 10−26 GeV;

ð31Þ

where the subscript “const” implies this limit is only for the
tilde coefficients appearing in the constant terms in the
transformations results.

2. The BASE experiment

Another Penning-trap experiment at CERN by the BASE
Collaboration recently improved the same comparison to
the record sensitivity of 69 ppt [5]. Since the BASE
experiment also used a hydrogen ion as a proxy of a
proton, the expression (30) still holds. The trap used a
horizontal magnetic field B ¼ 1.946 T oriented 60° east of
north. This implies that both matrices (20) and (21) are
needed for determining the combination of the tilde
coefficients in the Sun-centered frame. The corresponding
Euler angles for a horizontal magnetic field with an angle θ
from the local south in the counterclockwise direction are
found to be ðα; β; γÞ ¼ ðθ; π=2; 0Þ. Taking θ ¼ 2π=3 and
χ ¼ 43.8° for the BASE experiment we also include in
Table I the related explicit transformation results for the
tilde quantities b̃03w , c̃11w þ c̃22w , and b̃311w þ b̃322w .
Different from the ATRAP experiment, the experimental

data of the charge-to-mass ratio comparison for the BASE
experiment were analyzed to search for both time-averaged
effects and sidereal variations in the first harmonic of the
Earth’s rotation frequency, so the reported sensitivities from
the experiment can be taken to set bounds on both the tilde
coefficients appearing in the constant terms and these in the
first harmonic of the oscillations. Using 69 ppt for the time-
averaged precision and 720 ppt for the limit of the first
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harmonic amplitude, together with ωH−
c ¼2π×29.635MHz

from the experiment, expression (30) yields

jδωp̄
c − 1.001δωp

c − 2.002δωe−
c jconst ≲ 8.46 × 10−27 GeV

ð32Þ

and

jδωp̄
c − 1.001δωp

c − 2.002δωe−
c j1st ≲ 8.83 × 10−26 GeV

ð33Þ

in natural units, where the subscript “const” in the limit (32)
has the same meaning as what in (31), while the subscript
“1st” in the limit (33) represents the amplitude of the first
harmonic in the sidereal variation.
Some intuition about the scope of the constraints on the

individual components of the tilde coefficients appearing in

limits (31), (32), and (33) can be obtained by assuming that
only one individual tilde coefficient to be nonzero at a time
and extracting its resulting constraint, which is a common
practice adopted in many subfields searching for Lorentz
and CPT violation [4]. Using the limit (31) from the
ATRAP experiment, a total of 27 independent tilde coef-
ficients for Lorentz violation are constrained. For the BASE
experiment, 69 constraints are obtained on the independent
tilde coefficients for Lorentz violation from limits (32) and
(33). To summarize the results, we list in Table II the
individual constraints on the tilde coefficients in the Sun-
centered frame, with the first column listing the individual
components, the second column presenting the correspond-
ing constraint on the modulus of each one, and the third
column specifying the related experiment. Note that when a
component of the tilde coefficients is constrained by both
the ATRAP and the BASE experiment, we only include the
more stringent one in Table II.

TABLE I. Combinations of tilde coefficients in the Sun-centered frame for both the ATRAP and BASE experiments.

Experiment Laboratory frame Sun-centered frame Harmonic

ATRAP b̃03w 0.72b̃0Zw 1

0.69b̃0Xw cosω⊕T⊕

0.69b̃0Yw sinω⊕T⊕

c̃11w þ c̃22w 0.76ðc̃XXw þ c̃YYw Þ þ 0.48c̃ZZw 1
−1.0c̃ðXZÞw cosω⊕T⊕

−1.0c̃ðYZÞw sinω⊕T⊕
−0.24ðc̃XXw − c̃YYw Þ cos 2ω⊕T⊕

−0.48c̃ðXYÞw sin 2ω⊕T⊕
b̃311w þ b̃322w −0.35ðb̃XðXZÞw þ b̃YðYZÞw − b̃ZZZw Þ þ 0.55ðb̃ZXXw þ b̃ZYYw Þ 1

0.44b̃XXXw þ 0.61b̃XYYw þ 0.33b̃XZZw − 0.17b̃YðXYÞw w − 0.72b̃ZðXZÞw
cosω⊕T⊕

−0.17b̃XðXYÞw þ 0.61b̃YXXw þ 0.44b̃YYYw þ 0.33b̃YZZw − 0.72b̃ZðYZÞw sinω⊕T⊕

−0.35ðb̃XðXZÞw − b̃YðYZÞw Þ − 0.17ðb̃ZXXw − b̃ZYYw Þ cos 2ω⊕T⊕

−0.35ðb̃XðYZÞw þ b̃YðXZÞw þ b̃ZðXYÞw Þ sin 2ω⊕T⊕
−0.08ðb̃XXXw − b̃XYYw Þ þ 0.17b̃YðXYÞw cos 3ω⊕T⊕
−0.17b̃XðXYÞw − 0.08ðb̃YXXw − b̃YYYw Þ sin 3ω⊕T⊕

BASE b̃03w 0.35b̃0Zw 1
−0.36b̃0Xw þ 0.87b̃0Yw cosω⊕T⊕
−0.87b̃0Xw − 0.36b̃0Yw sinω⊕T⊕

c̃11w þ c̃22w 0.56ðc̃XXw þ c̃YYw Þ þ 0.88c̃ZZw 1

0.25c̃ðXZÞw − 0.60c̃ðYZÞw
cosω⊕T⊕

0.60c̃ðXZÞw þ 0.25c̃ðYZÞw
sinω⊕T⊕

0.31ðc̃XXw − c̃YYw Þ þ 0.63c̃ðXYÞw
cos 2ω⊕T⊕

−0.31ðc̃XXw − c̃YYw Þ þ 0.62c̃ðXYÞw sin 2ω⊕T⊕
b̃311w þ b̃322w −0.30ðb̃XðXZÞw þ b̃YðYZÞw − b̃ZZZw Þ þ 0.19ðb̃ZXXw þ b̃ZYYw Þ 1

−0.12b̃XXXw − 0.38b̃XðXYÞw − 0.28b̃XYYw − 0.32b̃XZZw þ 0.68b̃YXXw þ 0.16b̃YðXYÞw cosω⊕T⊕

þ0.29b̃YYYw þ 0.76b̃YZZw þ 0.09b̃ZðXZÞw − 0.21b̃ZðYZÞw

−0.29b̃XXXw þ 0.16b̃XðXYÞw − 0.68b̃XYYw − 0.76b̃XZZw − 0.28b̃YXXw þ 0.38b̃YðXYÞw sinω⊕T⊕

−0.12b̃YYYw − 0.32b̃YZZw þ 0.21b̃ZðXZÞw þ 0.09b̃ZðYZÞw

0.21ðb̃XðXZÞw − b̃YðYZÞw Þ þ 0.11ðb̃ZXXw − b̃ZYYw Þ þ 0.22ðb̃XðYZÞw þ b̃YðXZÞw þ b̃ZðXYÞw Þ cos 2ω⊕T⊕

−0.22ðb̃XðXZÞw − b̃YðXZÞw Þ − 0.11ðb̃ZXXw − b̃ZYYw Þ þ 0.21ðb̃XðYZÞw þ b̃YðXZÞw þ b̃ZðXYÞw Þ sin 2ω⊕T⊕
−0.19ðb̃XXXw − b̃XYYw Þ þ 0.38b̃YðXYÞw þ 0.16b̃XðXYÞw þ 0.08ðb̃YXXw − b̃YYYw Þ cos 3ω⊕T⊕
−0.08ðb̃XXXw − b̃XYYw Þ þ 0.16b̃YðXYÞw − 0.38b̃XðXYÞw − 0.19ðb̃YXXw − b̃YYYw Þ sin 3ω⊕T⊕
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Table II shows that 69 of the 81 independent compo-
nents of the tilde coefficients that are related to Penning-
trap experiments comparing charge-to-mass ratios of an
antiproton and a proton can be bounded using the
published results. The other 12 components lie in the
second and third harmonics of the transformation results
given by Appendix C and Table I. Therefore, in order
to extract all the related constraints on the tilde coef-
ficients, a full sidereal-variation analysis must be per-
formed on the experimental data. The above 69 tilde
coefficients listed in Table II are analyzed for the first
time as they lie in different coefficient space compared to
existing ones that are related to Penning-trap experiments
comparing the g factors between particles and antipar-
ticles [8].

IV. SUMMARY

In this work, we applied the general theory of quantum
electrodynamics with Lorentz- and CPT-violating oper-
ators of mass dimensions up to six to Penning-trap
experiments comparing the charge-to-mass ratios
between antiprotons and protons. Using perturbation
theory, we derived the dominant Lorentz- and CPT-
violating contributions (7) and (11) to the energy levels
of the confined particles and antiparticles, which enabled
us to determine the corresponding cyclotron frequency
shifts (16) and (18). Relating the experimental interpreted
charge-to-mass ratio comparisons to the cyclotron fre-
quency shifts, we addressed the issue of a CPT test and
concluded that it depends on the context of the relevant
theory. We found in Eq. (30) that the coefficients for
Lorentz violation that are sensitive to the charge-to-mass
ratio comparison between antiprotons and protons are the

81 independent tilde quantities b̃0Jp , c̃ðJKÞp , b̃JðKLÞp , b̃0�Jp ,

c̃�ðJKÞp , b̃�JðKLÞp , b̃0Je , c̃
ðJKÞ
e , and b̃JðKLÞe in the Sun-centered

frame. Using published results from the ATRAP and the
BASE experiments, we obtained first-time constraints on
69 of them and summarized the results in Table II. To set
bounds to the other 12 components of the tilde coef-
ficients for Lorentz violation, a full sidereal-variation
analysis of the experimental data is required. The high-
precision measurements and excellent coverage of the
SME coefficients offered by current and forthcoming
Penning-trap experiments provide strong motivations to
continue the searches for possible Lorentz- and CPT-
violating signals.
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TABLE II. Constraints on tilde coefficients for Lorentz viola-
tion from the ATRAP and the BASE experiments.

Coefficient Constraint Experiment

jb̃0Ze j <1.7 × 10−17 GeV ATRAP
jc̃XXe j <3.2 × 10−14 ATRAP
jc̃YYe j <3.2 × 10−14 ATRAP
jc̃ZZe j <2.1 × 10−14 BASE

jb̃XðXZÞe j <1.2 × 10−10 GeV−1 BASE

jb̃YðYZÞe j <1.2 × 10−10 GeV−1 BASE

jb̃ZZZe j <1.2 × 10−10 GeV−1 BASE

jb̃ZXXe j <8.8 × 10−11 GeV−1 ATRAP

jb̃ZYYe j <8.8 × 10−11 GeV−1 ATRAP

jb̃0Xe j <1.1 × 10−16 GeV BASE

jb̃0Ye j <1.1 × 10−16 GeV BASE

jc̃ðXZÞe j <3.0 × 10−13 BASE

jc̃ðYZÞe j <3.0 × 10−13 BASE

jb̃XXXe j <1.2 × 10−9 GeV−1 BASE

jb̃XðXYÞe j <9.3 × 10−10 GeV−1 BASE

jb̃XYYe j <5.2 × 10−10 GeV−1 BASE

jb̃XZZe j <4.6 × 10−10 GeV−1 BASE

jb̃YXXe j <5.2 × 10−10 GeV−1 BASE

jb̃YðXYÞe j <9.3 × 10−10 GeV−1 BASE

jb̃YYYe j <1.2 × 10−9 GeV−1 BASE

jb̃YZZe j <4.6 × 10−10 GeV−1 BASE

jb̃ZðXZÞe j <1.7 × 10−9 GeV−1 BASE

jb̃ZðYZÞe j <1.7 × 10−9 GeV−1 BASE

jb̃0Zp j; jb̃0�Zp j <1.2 × 10−10 GeV ATRAP

jc̃XXp j; jc̃�XXp j <1.2 × 10−10 ATRAP
jc̃YYp j; jc̃�YYp j <1.2 × 10−10 ATRAP
jc̃ZZp j; jc̃�ZZp j <7.9 × 10−11 BASE

jb̃XðXZÞp j; jb̃�XðXZÞp j <2.4 × 10−10 GeV−1 BASE

jb̃YðYZÞp j; jb̃�YðYZÞp j <2.4 × 10−10 GeV−1 BASE

jb̃ZZZp j; jb̃�ZZZp j <2.4 × 10−10 GeV−1 BASE

jb̃ZXXp j; jb̃�ZXXp j <1.8 × 10−10 GeV−1 ATRAP

jb̃ZYYp j; jb̃�ZYYp j <1.8 × 10−10 GeV−1 ATRAP

jb̃0Xp j; jb̃0�Xp j <7.2 × 10−10 GeV BASE

jb̃0Yp j; jb̃0�Yp j <7.2 × 10−10 GeV BASE

jc̃ðXZÞp j; jc̃�ðXZÞp j <1.1 × 10−9 BASE

jc̃ðYZÞp j; jc̃�ðYZÞp j <1.1 × 10−9 BASE

jb̃XXXp j; jb̃�XXXp j <2.4 × 10−9 GeV−1 BASE

jb̃XðXYÞp j; jb̃�XðXYÞp j <1.9 × 10−9 GeV−1 BASE

jb̃XYYp j; jb̃�XYYp j <1.1 × 10−9 GeV−1 BASE

jb̃XZZp j; jb̃�XZZp j <9.3 × 10−9 GeV−1 BASE

jb̃YXXp j; jb̃�YXXp j <1.1 × 10−9 GeV−1 BASE

jb̃YðXYÞp j; jb̃�YðXYÞp j <1.9 × 10−9 GeV−1 BASE

jb̃YYYp j; jb̃�YYYp j <2.4 × 10−9 GeV−1 BASE

jb̃YZZp j; jb̃�YZZp j <9.3 × 10−10 GeV−1 BASE

jb̃ZðXZÞp j; jb̃�ZðXZÞp j <3.4 × 10−9 GeV−1 BASE

jb̃ZðYZÞp j; jb̃�ZðYZÞp j <3.4 × 10−9 GeV−1 BASE
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APPENDIX A: FULL LAGRANGE DENSITY
FOR d ≤ 6

The full Lagrange density (1) with Lorentz-violating
operators of mass dimensions d ≤ 6 can be taken as the
sum of the conventional Lorentz-invariant QED Lagrange
density L0 and a series of Lorentz-violating terms LðdÞ of
mass dimension d, Lψ ¼L0þLð3ÞþLð4ÞþLð5ÞþLð6Þþ…:
The explicit results were given in Ref. [8]. Here, we
reproduce these terms.
The pieces in the minimal SME Lagrange density Lð3Þ

and Lð4Þ are

Lð3Þ ¼ −aμψ̄γμψ − bμψ̄γ5γμψ −
1

2
Hμνψ̄σμνψ ; ðA1Þ

Lð4Þ ¼ 1

2
cμαψ̄γμiDαψ þ 1

2
dμαψ̄γ5γμiDαψ þ 1

2
eαψ̄iDαψ

þ 1

2
ifαψ̄γ5iDαψ þ 1

4
gμναψ̄σμνiDαψ þ H:c: ðA2Þ

The dimension-five Lagrange density Lð5Þ can be clas-

sified into two kinds, Lð5Þ ¼ Lð5Þ
D þ Lð5Þ

F , with Lð5Þ
D con-

taining symmetrized covariant derivatives Dα and Lð5Þ
F

involving the antisymmetric electromagnetic field strength
Fαβ, given by

Lð5Þ
D ¼ −

1

2
mð5Þαβψ̄iDðαiDβÞψ −

1

2
imð5Þαβ

5 ψ̄γ5iDðαiDβÞψ

−
1

2
að5Þμαβψ̄γμiDðαiDβÞψ −

1

2
bð5Þμαβψ̄γ5γμiDðαiDβÞψ

−
1

4
Hð5Þμναβψ̄σμνiDðαiDβÞψ þH:c:; ðA3Þ

Lð5Þ
F ¼ −

1

2
mð5Þαβ

F Fαβψ̄ψ −
1

2
imð5Þαβ

5F Fαβψ̄γ5ψ

−
1

2
að5ÞμαβF Fαβψ̄γμψ −

1

2
bð5Þμαβf Fαβψ̄γ5γμψ

−
1

4
Hð5Þμναβ

F Fαβψ̄σμνψ : ðA4Þ

For d ¼ 6, there are three types of terms, Lð6Þ ¼
Lð6Þ
D þ Lð6Þ

F þ Lð6Þ
∂F , where

Lð6Þ
D ¼ 1

2
cð6Þμαβγψ̄γμiDðαiDβiDγÞψ

þ 1

2
dð6Þμαβγψ̄γ5γμiDðαiDβiDγÞψ

þ 1

2
eð6Þαβγψ̄iDðαiDβiDγÞψ

þ 1

2
ifð6Þαβγψ̄γ5iDðαiDβiDγÞψ

þ 1

4
gð6Þμναβγψ̄σμνiDðαiDβiDγÞψ þ H:c:; ðA5Þ

Lð6Þ
F ¼ 1

4
cð6ÞμαβγF Fβγðψ̄γμiDαψ þ H:c:Þ

þ 1

4
dð6ÞμαβγF Fβγðψ̄γ5γμiDαψ þ H:c:Þ

þ 1

4
eð6ÞαβγF Fβγðψ̄iDαψ þ H:c:Þ

þ 1

4
ifð6ÞαβγF Fβγðψ̄γ5iDαψ þ H:c:Þ

þ 1

8
gð6ÞμναβγF Fβγðψ̄σμνiDαψ þ H:c:Þ; ðA6Þ

Lð6Þ
∂F ¼ −

1

2
mð6Þαβγ

∂F ∂αFβγψ̄ψ −
1

2
imð6Þαβγ

5∂F ∂αFβγψ̄γ5ψ

−
1

2
að6Þμαβγ∂F ∂αFβγψ̄γμψ −

1

2
bð6Þμαβγ∂F ∂αFβγψ̄γ5γμψ

−
1

4
Hð6Þμναβγ

∂F ∂αFβγψ̄σμνψ : ðA7Þ

In the above expressions, dimension superscripts for
the minimal-SME coefficients are omitted. Coefficients
with subscript F or ∂F are contracted with operators
involving the electromagnetic field strength or its deriva-
tive, where indices μ, ν are associated with spin properties,
while α, β, γ are related to covariant momenta including
field strengths. Parentheses on n indices represent symmet-
rization with a factor of 1=n!. The properties of the
coefficients for Lorentz violation appearing above are
listed in Table I in Ref. [8].

APPENDIX B: PERTURBATIVE
ENERGY SHIFTS

The perturbative energy shifts δEw
n;�1 due to Lorentz and

CPT violation for a fermion species w of mass mw and
charge q ¼ σjqj in a magnetic field B ¼ Bx̂3 in the
apparatus frame can be obtained by applying perturbation
calculations using Eq. (6). The analysis is performed with
Lorentz- and CPT-violating operators appearing in Lð3Þ,
Lð4Þ, Lð5Þ

D , and Lð6Þ
D , listed above in Appendix A. Following

the discussion in Sec. III A, we find
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δEw
n;�1 ¼ a0w ∓ σb3w

mw

Ew
n;�1

∓ σH12
w − c00w Ew

n;�1 − ðc11w þ c22w Þ ð2nþ 1 ∓ σÞ
2Ew

n;�1

jqBj � σd30w mw − e0wmw

∓ σðg012w − g021w Þ ð2nþ 1 ∓ σÞ
2Ew

n;�1

jqBj � σg120w Ew
n;�1 þ að5Þ000w ðEw

n;�1Þ2

þ ðað5Þ011w þ að5Þ022w Þ
�
2nþ 1 ∓ σ

2
� σ

mw

2Ew
n;�1

�
jqBj þ ðað5Þ101w þ að5Þ202w Þð2nþ 1 ∓ σÞjqBj ∓ σbð5Þ300w mwEw

n;�1

∓ σðbð5Þ311w þ bð5Þ322w Þ
�
2nþ 1 ∓ σ

2

mw

Ew
n;�1

� 1

2
σ

�
jqBj � σðHð5Þ0102

w −Hð5Þ0201
w Þð2nþ 1 ∓ σÞjqBj

∓ σHð5Þ1200
w ðEw

n;�1Þ2 ∓ σðHð5Þ1211
w þHð5Þ1222

w Þ
�
2nþ 1 ∓ σ

2
� σ

mw

2Ew
n;�1

�
jqBj þmð5Þ00

w mwEw
n;�1

þ ðmð5Þ11
w þmð5Þ22

w Þ
�
2nþ 1 ∓ σ

2

mw

Ew
n;�1

� 1

2
σ

�
jqBj − cð6Þ0000w ðEw

n;�1Þ3

− 3ðcð6Þ0011w þ cð6Þ0022w Þ
�
2nþ 1 ∓ σ

2
Ew
n;�1 �

1

2
σmw

�
jqBj − 3ðcð6Þ1001w þ cð6Þ2002w Þ 2nþ 1 ∓ σ

2
Ew
n;�1jqBj

− 3ðcð6Þ1111w þ cð6Þ2222w þ cð6Þ1122w þ cð6Þ2112w Þ ð2nþ 1 ∓ σÞ2
8Ew

n;�1

jqBj2 � σdð6Þ3000w mwðEw
n;�1Þ2

þ 3ðdð6Þ3011w þ dð6Þ3022w Þ
�
2nþ 1 ∓ σ

2
mw � 1

2
σEw

n;�1

�
jqBj − eð6Þ000w mwðEw

n;�1Þ2

− 3ðeð6Þ011w þ eð6Þ022w Þ
�
2nþ 1 ∓ σ

2
mw � 1

2
σEw

n;�1

�
jqBj ∓ 3σðgð6Þ01002w − gð6Þ02001w Þ 2nþ 1 ∓ σ

2
Ew
n;�1jqBj

∓ 3σðgð6Þ01112w þ gð6Þ01222w − gð6Þ02122w − gð6Þ02111w Þ ð2nþ 1 ∓ σÞ2
8Ew

n;�1

jqBj2 � σgð6Þ12000w ðEw
n;�1Þ3

� 3σðgð6Þ12011w þ gð6Þ12022w Þ
�
2nþ 1 ∓ σ

2
Ew
n;�1 �

1

2
σmw

�
jqBj; ðB1Þ

where signs � denote the spin-up and spin-down states, respectively, and the unperturbed positive eigenenergies

are given by Ew
n;�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

w þ ð2nþ 1� 1ÞjqBj
p

. The additional energy shift contributions from Lð5Þ
F and Lð6Þ

F can be

obtained by the substitutions (40) in Ref. [8], while Lð6Þ
∂F has no energy shift contributions as ∂αFβγ ¼ 0 for a uniform

magnetic field in a Penning trap.

APPENDIX C: TRANSFORMATIONS

In this Appendix, we present the explicit relations between the coefficients for Lorentz violation b̃03w , c̃11w þ c̃22w ,
b̃311w þ b̃322w , b̃0�3w , c̃�11w þ c̃�22w , and b̃�311w þ b̃�322w in the apparatus frame and the constant ones in the Sun-centered frame.
For a Penning-trap experiment with a vertical upward magnetic field, applying transformation (22) with Raj being the

identity matrix gives

b̃03w ¼ cosω⊕T⊕b̃
0X
w sin χ þ sinω⊕T⊕b̃

0Y
w sin χ þ b̃0Zw cos χ; ðC1Þ

c̃11w þ c̃22w ¼ cos 2ω⊕T⊕

�
−
1

2
ðc̃XXw − c̃YYw Þ sin2 χ

�
þ sin 2ω⊕T⊕ð−c̃ðXYÞw sin2 χÞ þ cosω⊕T⊕ð−c̃ðXZÞw sin 2χÞ

þ sinω⊕T⊕ð−c̃ðYZÞw sin 2χÞ þ 1

4
ðc̃XXw þ c̃YYw Þð3þ cos 2χÞ þ c̃ZZw sin2 χ; ðC2Þ
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b̃311w þ b̃322w ¼ cos 3ω⊕T⊕

��
−
1

4
ðb̃XXXw − b̃XYYw Þ þ 1

2
b̃YðXYÞw

�
sin3χ

�
þ sin 3ω⊕T⊕

��
−
1

2
b̃XðXYÞw −

1

4
ðb̃YXXw − b̃YYYw Þ

�
sin3χ

�

þ cos 2ω⊕T⊕

��
−b̃XðXZÞw þ b̃YðXZÞw −

1

2
ðb̃ZXXw − b̃ZYYw Þ

�
cos χsin2χ

�

þ sin 2ω⊕T⊕ð½−b̃XðYZÞw − b̃YðXZÞw − b̃ZðXYÞw � cos χsin2χÞ

þ cosω⊕T⊕

�
1

8
b̃XXXw ð5þ 3 cos 2χÞ sin χ þ 1

8
b̃XYYw ð7þ cos 2χÞ sin χ þ b̃XZZw sin3χ

−
1

2
b̃YðXYÞw sin3χ − 2b̃ZðXZÞw cos2χ sin χ

�

þ sinω⊕T⊕

�
−
1

2
b̃XðXYÞw sin3χ þ 1

8
b̃YXXw ð7þ cos 2χÞ sin χ þ 1

8
b̃YYYw ð5þ 3 cos 2χÞ sin χ

þ b̃YZZw sin3χ − 2b̃ZðYZÞw cos2χ sin χ

�

− ðb̃XðXZÞw þ b̃YðXZÞw − b̃ZZZw Þ cos χsin2χ þ ðb̃ZXXw þ b̃ZYYw Þ cos χ cos 2χ: ðC3Þ

In the case where the trap uses a horizontal magnetic field with an angle θ from the local south in the counterclockwise
direction, the corresponding Euler angles relating the apparatus frame to the standard laboratory frame discussed in
Sec. III C are found to be ðα; β; γÞ ¼ ðθ; π=2; 0Þ. Substituting this to the matrix (21) and applying the transformation (22)
give the following relations:

b̃03w ¼ cosω⊕T⊕ðb̃0Xw cos θ cos χ þ b̃0Yw sin θÞ þ sinω⊕T⊕ð−b̃0Xw sin θ þ b̃0Yw cos θ cos χÞ − b̃0Zw cos θ sin χ; ðC4Þ

c̃11w þ c̃22w ¼ cos 2ω⊕T⊕

�
1

8
ðc̃XXw − c̃YYw Þð1 − 3 cos 2θ − 2 cos2 θ cos 2χÞ − c̃ðXYÞw cos χ sin 2θ

�

þ sin 2ω⊕T⊕

�
1

2
ðc̃XXw − c̃YYw Þ cos χ sin 2θ þ 1

4
c̃ðXYÞw ð1 − 3 cos 2θ − 2 cos2 θ cos 2χÞ

�

þ cosω⊕T⊕ðc̃ðXZÞw cos2 θ sin 2χ þ c̃ðYZÞw sin 2θ sin χÞ þ sinω⊕T⊕ð−c̃ðXZÞw sin 2θ sin χ þ c̃ðYZÞw cos2 θ sin 2χÞ

þ 1

2
ðc̃XXw þ c̃YYw Þðcos2 θ þ cos2 χ sin2 θ þ sin2 χÞ þ c̃ZZw ðcos2 χ þ sin2 θ sin2 χÞ; ðC5Þ

b̃311w þ b̃322w ¼ cos 3ω⊕T⊕

��
1

64
ðb̃XXXw − b̃XYYw Þ − 1

32
b̃YðXYÞw

�
½3ðcos θ − 5 cos 3θÞ cos χ − 4cos3θ cos 3χ�

þ
�
1

16
b̃XðXYÞw þ 1

32
ðb̃YXXw − b̃YYYw Þ

�
½3 sin θð1 − 4cos2θ cos 2χÞ − 5 sin 3θ�

�

þ sin 3ω⊕T⊕

��
−

1

32
ðb̃XXXw − b̃XYYw Þ þ 1

16
b̃YðXYÞw

�
½3 sin θð1 − 4cos2θ cos 2χÞ − 5 sin 3θ�

þ
�
1

32
b̃XðXYÞw þ 1

64
ðb̃YXXw − b̃YYYw Þ

�
½3ðcos θ − 5 cos 3θÞ cos χ − 4cos3θ cos 3χ�

�

þ cos 2ω⊕T⊕

��
−

1

16
b̃XðXZÞw þ 1

16
b̃YðXZÞw −

1

32
ðb̃ZXXw − b̃ZYYw Þ

�
½ðcos θ − 5 cos 3θÞ sin χ − 4cos3θ sin 3χ�

þ ðb̃XðYZÞw þ b̃YðXZÞw þ b̃ZðXYÞw Þ sin θcos2θ sin 2χ
�

þ sin 2ω⊕T⊕

��
−b̃XðXZÞw þ b̃YðXZÞw −

1

2
ðb̃ZXXw − b̃ZYYw Þ

�
sin θcos2θ sin 2χ

−
�
1

16
b̃XðYZÞw þ 1

16
b̃YðXZÞw þ 1

16
b̃ZðXYÞw

�
½ðcos θ − 5 cos 3θÞ sin χ − 4cos3θ sin 3χ�

�
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þ cosω⊕T⊕

×

�
1

16
b̃XXXw cos θ cos χð−6cos2θ cos 2χ þ 3 cos 2θ þ 7Þ − 1

2
b̃XðXYÞw sin θðcos2θ cos 2χ þ sin2θcos2χ þ sin2χÞ

þ 1

16
b̃XYYw cos θ cos χð−2cos2θ cos 2χ þ cos 2θ þ 13Þ þ b̃XZZw cos θ cos χðsin2θsin2χ þ cos2χÞ

þ 1

32
b̃YXXw ½sin θð25 − 4cos2θ cos 2χÞ þ sin 3θ� þ 1

16
b̃YðXYÞw cos θ½ðcos 2θ − 7Þ cos χ − 2cos2θ cos 3χ�

þ 1

32
b̃YYYw ½sin θð11 − 12cos2θ cos 2χÞ þ 3 sin 3θ� þ b̃YZZw sin θðsin2θsin2χ þ cos2χÞ

− 2b̃ZðXZÞw cos3θsin2χ cos χ − 2b̃ZðYZÞw sin θcos2θsin2χ

�

þ sinω⊕T⊕

×

�
1

32
b̃XXXw ½sin θð12cos2θ cos 2χ − 11Þ − 3 sin 3θ� þ 1

16
b̃XðXYÞw cos θ½ðcos 2θ − 7Þ cos χ − 2cos2θ cos 3χ�

þ 1

32
b̃XYYw ½sin θð4cos2θ cos 2χ − 25Þ − sin 3θ� − b̃XZZw sin θðsin2θsin2χ þ cos2χÞ

þ 1

16
b̃YXXw cos θ cos χð−2cos2θ cos 2χ þ cos 2θ þ 13Þ þ 1

2
b̃YðXYÞw sin θðcos2θ cos 2χ þ sin2θcos2χ þ sin2χÞ

þ 1

16
b̃YYYw cos θ cos χð−6cos2θ cos 2χ þ 3 cos 2θ þ 7Þ þ b̃YZZw cos θ cos χðsin2θsin2χ þ cos2χÞ

þ 2b̃ZðXZÞw sin θcos2θsin2χ − 2b̃ZðYZÞw cos3θsin2χ cos χ

�

þ 1

8
ðb̃XðXZÞw þ b̃YðXZÞw − b̃ZZZw Þ cos θð−4 cos 2θsin3χ þ 5 sin χ þ sin 3χÞ

þ 1

16
ðb̃ZXXw þ b̃ZYYw Þ½2cos3θ sin 3χ − cos θ sin χð3 cos 2θ þ 11Þ�: ðC6Þ

The corresponding transformation results for the starred tilde quantities b̃0�3w , c̃�11w þ c̃�22w , and b̃�311w þ b̃�322w have the same
form as these given above.
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γ to give x1x2x3.
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