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Anomalies in transverse Ward-Takahashi identities are studied, allowing discussion of the feasibility of
anomalies arising in general nonsymmetry Ward-Takahashi identities. We adopt the popular Fujikawa
method and rigorous dimensional renormalization to verify the existence of transverse anomalies to one-

loop order and any loop order, respectively. The arbitrariness of coefficients of transverse anomalies is

revealed, and a way out is also proposed after relating transverse anomalies to Schwinger terms and

comparing symmetry and nonsymmetry anomalies. Papers that claim the nonexistence of transverse

anomalies are reviewed to find anomalies hidden in their approaches. The role played by transverse

anomalies is discussed.
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I. INTRODUCTION

There are always surprises in common quantization
procedures, let alone the quantization of relativistic fields,
which is highly entangled with infinite degrees of freedom,
with various divergences and anomalies revealing the
power of quantum laws. We discuss such anomalies in
the present paper. In various examples, anomalies break
many symmetries and manifest as various anomalous
Ward-Takahashi identities [1,2] (WTIs), such as chiral
[3-5] and trace [6,7] anomalies. To our knowledge, how-
ever, no paper has discussed anomalies in WTIs that do not
stand for any symmetry. Our research on anomalies in the
transverse Ward-Takahashi identity [8—11] (tWTI), which
is not a symmetry WTI, has opened the door to non-
symmetry anomalies. The content of nonsymmetry WTIs is
much richer than that of symmetry WTIs, and the anomaly
may be largely extended and more exposed to us such that
we may see the nature of the anomaly more deeply.
However, this requires far more examples of nonsymmetry
anomalies, apart from anomalies in tWTIs as discussed in
this paper. Further support for nonsymmetry anomalies
must be left to further discoveries, with the present paper
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focusing on anomalies in tWTIs (referred to as transverse
anomalies) only.

In dealing with transverse anomalies, we find that
many methods applied to symmetry anomalies are
entirely suitable for locating and analyzing a nonsymmetry
anomaly. As an example, if we use dimensional renorm-
alization, anomalies in symmetry and nonsymmetry
WTIs may be treated on an equal footing because extra-
dimensional operators appear in equations of motion and
any WTI that involves the use of equations of motion may
acquire an anomaly because these extra-dimensional oper-
ators can often be expanded using various four-dimensional
operators that potentially include anomaly terms [12,13].
Indeed, we find no difference in analyzing transverse
anomalies when adopting dimensional renormalization in
Sec. IV than when adopting a procedure to handle chiral
and trace anomalies (as described in detail in Ref. [12]).

Although dimensional renormalization already allows us
to go to any order in perturbation theory, it is interesting and
inspiring to look at some semiclassical one-loop methods in
locating anomalies in WTIs. Fujikawa’s elegant approach
[7,14] tells us that anomalies appear as long as we get
nontrivial Jacobian factors by varying fields in the path
integral when obtaining WTIs. It is therefore convenient to
check whether a WTT has anomalies if we know how to get
the WTI by varying fields, and this is the case for the tWTL.
Equivalently,l we may locate anomalies in the canonical
framework to avoid dealing with the explicit but somehow

"The equivalence of Fujikawa’s method and the following
canonical approach are proved in Ref. [15].

Published by the American Physical Society


https://orcid.org/0000-0001-6595-2481
https://orcid.org/0000-0002-7102-243X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.056008&domain=pdf&date_stamp=2020-09-09
https://doi.org/10.1103/PhysRevD.102.056008
https://doi.org/10.1103/PhysRevD.102.056008
https://doi.org/10.1103/PhysRevD.102.056008
https://doi.org/10.1103/PhysRevD.102.056008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

YI-DA LI and QING WANG

PHYS. REV. D 102, 056008 (2020)

abstract path integral measure because it has no classical
correspondence, and we do not even have to know how to
get this WTI by varying fields. In the canonical framework
without any consideration of renormalization, it is easy to
conclude that an anomaly is a matter of definition of
operators and that anomalies simply hide in equations of
motion. We consider, for example, the case of the chiral
anomaly [15,16]. We start from the following Dyson-
Schwinger equation, where derivatives should be outside
the time-ordered product (as is the convention used
throughout the present paper):

<T1Difll/f(x)l/_/n (y>> = m<TWk(x)lpn (y)> + i5k1154(x - y)
(1)

In assembling the chiral anomaly, we contract (ys),, on
both sides of (1) and take the y — x limit, thus obtaining
the familiar expression tr[ys]6*(x — x), a signal for chiral
anomaly”:

(7 (x)ysiDy (x)) = m((x)ysw(x)) — itelys)6* (x—x). (2)

Similarly, we have (the Dyson-Schwinger equation for )

(w(x)iDysy (x)) = —m{@(x)ysw(x)) + itr[ys]o* (x = x).
(3)

The anomalous partial conservation equatlon for axial

current j& = yy*ysy is then obtained (D = 8
D = (9 +1igA,):

M’

0,(j1(x)) = —i(p(x)iDysw(x)) + i(§ (x)ysiDy(x))

= 2im(p(x)ysw(x)) +2ur[ys]ot (x —x).  (4)

This is exactly what Fujikawa [14] obtained” by calculating
the transformation Jacobian of the path integral mea-
sure (before regularization). Additionally, it is easy to
generalize to other anomalies such as the trace anomaly4
from conformal symmetry. Consider the following expres-
sion of energy momentum tensor (see, e.g., (1.2) in
Ref. [18]):

>The minus sign is due to Fermi statistics, and we drop the
tlrne ordered symbol in the equal time limit.

*Note that Fqukawa worked in Wick rotated Euclidean space;
thus, an extra factor i should be multiplied to our anomaly terms
to restore his results. This is also true for the trace anomaly, which
we will talk about next.

Reference [17] worked out the trace anomaly of the scalar
field in curved spacetime, but in the present paper, we talk about
trace anomaly in quantum electrodynamics.

1
pr = ZgﬁwF/)(rFm

F,F\

n (W}/ﬂDlJW + l/_/vayW - l/_/yuDz/l// - levﬁﬂl//)’
(5)

4;

and contract (1) with &, i.e.,

(#(x)iDy(x)) = m{p(x)y(x)) - icl1]6 (x = x).  (6)

Together with that of vy,

(F()iDy(x)) = —m(FCIp(x) + 1) (x—x).  (7)

we have

90 (x)) = m(p () (x)) — ic[1]6*(x —x).  (8)

Again, this reproduces what Fujikawa obtained by his
method [19] (before regularization).

Clearly, the important step in getting the chira] and
trace anomaly explicitly is to define 1;/( )ysiDw(x)

and w(x )lDl//( ) to be limy_, Ty(y )751Dxl//(x) and
lim, Tw(y)lew({)- 2
tion that w(x)ysiDw(x) =lim,_, ¥ (y)ysiDw(x) and
w(x)iDy(x) = lim,_,, @ (y)iD,y(x), there cannot be any
anomalous terms in the chiral and trace WTI. According
to the above argument, as long as equations of motion
are used in derivations of a WTI and the time-ordered
product definition of operators is taken, an anomaly in the
form of singular contact terms like tr[ys]6*(x —x) and
tr[1]6*(x —x) may appear”’ This helps us greatly to
anticipate possible anomalies in new WTIs—not neces-
sarily one that stands for some symmetry—before resorting
to rigorous all-order methods, such as dimensional
renormalization.

The remainder of the paper is organized as follows. We
first briefly review the tWTT in Sec. II and then derive the
tWTI in Fujikawa’s paradigm (one-loop order) in Sec. III to
obtain intuitive ideas on transverse anomalies. We next
present a rigorous any-loop order analysis of the tWTI in
dimensional renormalization in Sec. IV. In Sec. V, we
discuss the connection between transverse anomalies and
Schwinger terms on the basis of Sec. IV. It has been shown
many times that the naive tWTI (i.e., without transverse
anomalies) is correct on one-loop order, and we make
comments in Sec. VI and Appendixes B and C relating
to picking up hidden transverse anomalies in those
approaches. Symmetry and nonsymmetry anomalies are

If we use the naive defini-

>Of course, this is only established on one-loop order and some
specific regularization schemes such as ¢ function regularization
discussed in Appendix A.
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then compared in Sec. VII. We conclude the paper in
Sec. VIIL. It is worth emphasizing that throughout the paper
except in Sec. III and where one loop is indicated explicitly,
we work with the accuracy to any-loop order in perturba-

tion theory.
In this paper, the spacetime metric is ¢* =
diag(+,—,—,—). 75s=iy’7'y*y® and €% = +1. We

define o = £ [y*, "]

II. REVIEW OF tWTIs

Vector and axial vector tWTIs have been proposed
[8-11] in Abelian and non-Abelian cases. In this paper,
we focus on the Abelian case only, while the non-Abelian
generalization is presented in Appendix A [see Eq. (A3)]
but is to be investigated in detail elsewhere.

The Abelian vector tWTI® is often presented as [10,11]
[without anomaly; the generalization that includes more
w(y;) and yr(z;) or A¥(uy) is obvious]

KT J* (x)y (y)r(2)) — (T (x)w (y)w(z))
= io" (Ty (y)p(2))5* (x — y) + i(Tw () (z))6"5* (x — 2)
+ i€ (9 — )

< (T () rorse L Py (y()F(2)) v
+ 2m (T (x)o*y (x)y (y)i(2)), ©)

while the axial vector tWTI is

KT j5(x)w () (2)) = FU(Tj5(x)w () (2))

= io"ys(Ty (y)w(2))8*(x — y)

i(Ty (y)(2))o"ys6* (x — 2) + ie"r? (85 — O%)
v

X (T e My (W () () (10)
Before starting, it is necessary to reduce both (9)
and (10) to simpler forms. The apparently nonlocal

expression of lim,_, , ie"*? (9% — 0% iy (' )7orse” [ Ay
w(x) is suitable for Fourier transformations [10] but a
little confusing because the factor " JZ 44 i not used in

this paper. The way out is to simply work out this
limit first,’

tim et (95 — 05 Wy (3 )7,75¢ e ()

X' —=x

= 26" (x)y,575iD iy (%), (11)

In most cases, this is the meaning of the tWTIL.

In fact, the original expression is just the result of the limit, so
any question about the interchange of limits is not of concern
here, as easily seen in Secs. III and IV.

where D, = %(ép - (i,) —igA,. We hereafter use
2e"P7(x)y,y5iD,y(x) rather than the nonlocal limit
[the same as that in (10) with y,y5 — 7,].

We return to the tWTIL. Equations (9) and (10) are not
conservation equations for any currents because trans-
formations in (14) leading to tWTIs with a(x) = Const.
do not leave the Lagrangian or action invariant, even with
m — 0. Therefore, the tWTI is a proper example that
illustrates the richness of anomalies beyond the scope of
quantum obstacles to classical symmetries.

III. HEURISTIC DERIVATION OF TRANSVERSE
ANOMALIES USING FUJIKAWA’S METHOD

In this section, we make use of Fujikawa’s method for
the path integral measure to obtain some intuitive pictures
of transverse anomalies. It is known [7] that Fujikawa’s
original method is correct only in the sense of the back-
ground field approximation, and we thus treat A,(x) as a
background electromagnetic potential, and the following
Lagrangian should be sufficient in this section (i.e., there
is no need for renormalization at the moment). The
Lagrangian is

| <

Lps = l/_/<1 P —igof — m0> v.

: (12)

The partition function Z[n, 7, A] is simply
Z[}'], 17]7 A] = / [dwdl)—u}eifdAX(KBG(X)+U7(X)71(X)+f1(x)y/(x)). (13)

In the absence of the dynamics of A,,, Eq. (13) is simply a
one-loop approximation of QED.
We apply the field variation

Sy (x) = Jalx)e, oy ().

1

51/_/()6) - Za(x)eﬂby_/(x)a"” (14)

and include its nontrivial Jacobian® and thus obtain the
desired tWTI:

F(J(x))a = 0 (7 (x))a
— 2607 ()7, 751D (1)), + 2m (i (x) o (1)),
= (@(x) 40" n(x) = 7(x)0™ (y (x)) 4 - 2itr[o"]5* (x — x).
(15)
We thus focus on the nontrivial Jacobian of the path integral

measure, i.e., —2itr[c*]6*(x — x) in (15). In contrast, the
field variation leading to the axial tWTI,

8See Eq. (A4) for a detailed derivation.
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FIG. 1. (Divergent) one-loop diagrams for operators in the
tWTI and chiral WTI (gray vertex for those in the tWTI and black
vertex for those in the chiral WTI).

Sy (x) = + a0 sy (),
57(x) = ~ ;a(X)e, ()75, (16)

acquires a vanishing Jacobian factor owing to the different
signs of oy and oy and thus contributes no anomalies.
From now on, we will consider the vector tWTI only.

Proceeding with Fujikawa’s original regularization
method (i.e., with the regulator e Ay we get the
divergent result (see Appendix A for details)

8 90 pu () = 90 v ().

_Ditr[o|5*
itrlo]5" (x = x) = 7 1272

(17)

However, it is known [20] that quadratic divergence
in QED corresponds to photon mass and thus must be
discarded. An elegant way to do this is to employ the {
function regularization (which effectively turns A% to —m3)
and thus obtain

—2itr[o™]5* (x — x) =

2
_ 9oy F;u/(x) 1302 8p5pF””(x).
T

272
(18)
The final result of the tWTI is thus

()4 = 0 (" (%))
= 27 (@ (x)167siDyy (x)) 4 + 2m{p(x)o"y(x)) 5
— W (x))ac™n(x) = 7(x)o" (y(x)) 4

2
- BN () = 520,00 P (x). (19)

At this point, however, it is emphasized that (j*(x)),,
&7 ((x)7575iDp(x)),, and (§(x)"y(x)), in (19) are
not well defined [even in the background field approxi-
mation (i.e., one-loop order)] owing to the divergence of
loop diagrams with only two vertices even after imposing
gauge invariance in the external photon leg. This is unlike
the case of the chiral WTI, where degrees of divergence of
triangle diagrams are largely decreased by both an

additional internal fermion propagator and gauge invari-
ance in two external photon legs. See Fig. 1.

It is the divergence in these loop diagrams that
makes the anomaly terms ambiguous because’ they may
be only counterterms of e**?(y(x)y,ysiD,y(x)), and
(p(x)o*y(x)),. However, we will see that the anomaly
terms survive even after renormalization. A rigorous
analysis using dimensional renormalization is presented
in the next section. Of course, the gauge fields A, present
are not treated as an external source.

IV. FULL ANALYSIS IN DIMENSIONAL
RENORMALIZATION

For simplicity and clarity, the modified minimal sub-
traction (MS) is used in this section. We first specify the
effective Lagrangian [12] (i.e., without infinite counter-
terms):

1 .
Lgpr = _ZF””FW +w(iD —m)y
/12
+ A 5@ A2, (20)

Here, the gauge-fixing term is as usual, and a photon
mass term is added to regularize infrared divergences [12].
Now that A, is dynamical, our analysis can be extended
to all orders by virtue of dimensional renormalization
[13,21-23].

As figured out in a series of papers [12,22,23], ano-
malies in dimensional renormalization arise from extra-
dimensional objects like'” O =d—4and {y*,ys} = 29"ys,
which correspond, respectively, to trace and chiral anoma-
lies, as do transverse anomalies. Using the normal product
formalism [12,13,23] in dimensional renormalization, we
can easily derive a prototype of the tWTI:

O"N[j*] = "N[}"]

i _ _
=-50,N [y, 6"yl

= ON[e“iry,75iD, ] + 2mN (6]

— ON[6"3iD,y] + N[pa" (iD — m)y]
+ N[ (=iD — m)a™y). (21)

The authors are in debt to the referee for pointing this out.

%We here use the same convention as used by Collins [13],
where objects with a bar, such as 7#, are genuinely four-
dimensional things (but not to be confused with the bar in ¥,
which indicates pseudo-Hermitian conjugation); objects with
a hat, such as @, exist in extra dimensions; and objects
without special labels, such as p* = p* 4 p¥, are complete
d-dimensional entities.
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Formally vanished N[wé** (iD — m)y] and N[p(—iD —
m)éty| obtained using equations of motion are
sources of contact terms when inserted into the
Green’s functions [13], and we thus only need consider
the possible anomaly term N[p6*7”iD,y|. Although
N[p&"7”iD,w| has a vanishing tree diagram, its loop

diagrams are not zero because 8 inside the operator
drops loop momenta off'" and thus has nonzero con-
tributions. Operators with evanescent vertices [13] like
this are simply origins of anomalies in dimensional renor-
malization. Thanks to the existence of Zimmermann-like
identities in dimensional renormalization [12,23], trans-
verse anomalies that are also of the form N[g,, O*] (just
as trace and chiral anomalies which were given by
Bonneau [12]) because

NIF7iD,w] = N[i, (55" iD7y)]  (22)

can be reduced to usual operators in physical dimensions:
|

N[p6"7”iDw| = aN[w&"7”iD |

+ b'(O"N[j*] = " N[j*])
+ ¢'N[e"* 7y 5ysiD | + f'mN ey
+ FOP0,F" + s'm*Fr. (23)

For simplicity, we omit the normal product symbol for a
single renormalized field F*. Similar to the case of trace and
chiral anomalies [12], all the above coefficients can be
obtained from r.s.p. (residues of the simple pole) at4 — d =
0 of the overall divergence of the specific Green’s functions of
N[§,,(w&" y*iD°y)], where §,, defined by Bonneau [12] is
roughly g,,/(d —4) but 1/(d — 4) therein is not included in
the Laurent expansion when determining counterterms [12].
The results are as follows'” [here, a line over a Green’s
function indicates the overall divergence (i.e., the counter-
term obtained by contracting the whole one particle irreduc-
ible diagram to a single vertex) has not been subtracted].
We have

—;tr r.s i [ ( _ Dﬂ 1 - l prop
a_48(4—d) . -p*app Gop\W o' Al l// 2]7 4 2]7

N
X o* yp},
9.p=0

1 0 1 1 prop
/ uv,,a:nf _
b = o6 tr{r S.p.— ap <TN[ga/,(1//0 y*iDPyr)] ( p)w( 2p>>

X (gypj_/u - f_]up]_/y)}v
4.p=0

, 1 0 1 1 prop
¢ = —ggr{rsn g (¥t rote (50)i p)>  Xeutrs .
f== : —tr{r.s.p. (TN {5 (p 3"y iDPyr) [ (0) 7 (0))" P X 6,0}
"= —218818?1 8?15 8(Zgrsp (TN[gap(w5" y*iD"w)| A’ (q)) (GupGuo = GuoGup)-
s = _ziimz(;ZGr.s.p.<TN[§(,[,>(1/75””1’“1'D/}W)MP(Q)>pmpg,qo X (GuoGvp = GupTuo)- (24)

Finally, the tWTI is

(1 =2b)("N[j*] = "N[}*]) =

— 2109, P

where x = x'/(1 — a) for x = b, ¢, f, r, s and their one-
loop values are given in Appendix D.

In QED, it is necessary to ensure that all coefficients are
gauge invariant, and in particular, we should focus on

"Extra-dimensional loop momenta must not be taken to be
zero before carrying out loop integrals, in contrast with the case
for external momenta.

12 ~ _ in- :

w(p) = [ d'xey(x).y(q) =

d*xe 4%y (x), AP (k
[ d*xe®*Ar(x). 4 W), Ak =

2(1 - C)N[eﬂypglpyu}/SiDp

W]+ 2m(1 = N[5

— 2sm>F* + N[§a" (iD — m)y] + N[ (=iD — m)a™y],  (25)

|
coefficients of transverse anomalies, namely, —2r and
—2sm?. Fortunately, following the arguments made by
Bonneau about gauge invariance of the chiral anomaly
[12], mainly"® (B.10), Lemma 3, and Fig. 3 in Ref. [12], it is
almost trivial to see that b, c, fm,r,sm> are all gauge
invariant, i.e., independent of £. This gauge independence
is also briefly discussed in Appendix D.

BConclusions in Ref. [12] are so general that nothing essential
needs modifications.
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It is now clear that transverse anomalies exists even
after renormalization. Of course, with the presence of the
four-dimensional operator N[e****y,ysiD,y] and three-
dimensional operator N[wo*“y], transverse anomalies
(whose dimensions are, respectively, 4 and 2) may be
absorbed into these operators as finite counterterms and
thus be rendered dependent on the renormalization
schemes.'* We may represent the most general form of
the tWTI as

2(1 - C)N[eﬂppﬂl/_/}/ayS leW] =

and 7, 3, & denote arbitrary real numbers of order O(g?).

2(1 - C)N[é‘”yp”li/}/gySiDpl//]
2m(1 — f)N[@5*w] = 2m(1 - f)N[pa"y]

(1= 2b)(0“N[j*] = &*N[])
=2(1 = )N[e"“"ipy,y5iD,y] +2m(1 = f)N[Fe"y]
— 2700, FM — 25m2FM

+ N[§a" (iD — m)y] + N[ (=iD — m)a™y].  (26)

Here, the operators with a tilde are simply linear combi-
nations of the original operators and transverse anomalies,

- 2(r—7)9,0PF* — 2a(s — 5)m* F*,

=2(1 —a)(s — 3)m>Fr, (27)

We will talk more generally about this arbitrariness in Sec. VII by comparing with chiral and trace anomalies. However,
we suggest a way of fixing the coefficient 7 making use of Schwinger terms in the next section.

V. TRANSVERSE ANOMALIES AND SCHWINGER TERMS
The Green’s function version of (26), together with w (y)y(z)A?(u), is

(1 - 2b)(

(TN () () (2)A7 (u)) =

OUTN [ (x)w (y)y (2)A7 (u)))

=2(1 = )(TN[e""yry ,ys5iD ] (x)w (y) i (2) A (u))
+2m(1 = F)(TN e y](x)w (y)p(2)A? (u))

[
(

— 2HTRSF™ (x)y (y)ir (2) AP ()
)

+ 6" (Ty(y

= 25m*(TF* (x)y (y)ir (2)A” (u))
(2)A” (u))8* (x = y) + i{Ty (y)# (2)A” (1)) 55 (x = 2).

(28)

The crucial observation is to note the equation of motion for photon field A”(u):

(T F (x)y (y)ir (2)A” (u)) + éaﬂmﬁfl" () () (2)A? (u))

—g(Tj* (x)w ()@ (2)A” (u)) + ig” (Ty (y)ir(2))8* (x — u).

(29)

Taking the equation of motion together with the Bianchi identity [20],

F + FH + PP =0,

it is easy to get

(1 =2b—2g7)(H(T

(30)

NIy ()w(2)A? () — (TN (x)w ()i (2) A ()

= 2(1 = )(TN[e"**ry ,y5iD y] (x)w (y) i (2) AP (u))

+2m(1 -
= 2iF Ty (y
+ i6" (T (y

Npe"y](x)w (y)i(z)A

INT
i (2)) (g — g)5* (x — u) — 25m?
) (2)A? (u))8* (x = y) + i(Ty ()i (2) A? ()55 (x = 2).

?(u))
(TF*(x)y (y)y(2)A? (u))
(31)

The contribution of —2r0,0” F* is thus recast to be the modification of the coefficient of the curl of N[;*] and a new

contact term, —2ir(Ty (y)@ ( N(Hg? — )5 (x — u).

We thank the referee for making this point.
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We recall that contact terms come from equal time commutation relations of operators like j# and elementary fields
v, ,A” in the canonical framework, and it is thus concluded that there is a noncanonical contribution to

INT(E, 2), A2 (5. 1)]:

8(x® = y)IN[J'](X. x%). A7(5.5°)]

T 1-2b-2g7

—2iF

(%7 — 0Lg%)8* (x — y). (32)

According to Schwinger [24], this nonzero commutator is required so as to not conflict with the existence of a vacuum state.

As definite operators, the commutator of N[;*] and A” should not have arbitrariness. Then

fixed. However, § remains arbitrary.

—2iF
> 1-2b-2gF

is fixed, and thus 7 is

Furthermore, we can also work out Schwinger terms for [N[ji], N[j”]]. We consider the WTI"

(1=2b = 2g7)(O(TN[*I()N[j1(v)) =

N (NL?I()))

= 2(1 = e)(TN[e""ry,75iD,w ] ()N[j7)(y)) + 2m(1 = f)(TN[p&*w](x)N[j*]())

= 25m*(TF*N[j*](y))

— (i + om) (g — K5 (x — ), (33)
where u=u'/(1 —a), v=1'/(1 — a), and
1 90 0 0 S ——— = _
u' = _288i8—q§8—q58_%r's'p'<TN[ga/i(l//0-ﬂ 4 ZD/}V/)]N[JP](C]» —0 X (gﬂ/)gl/(i g/l{igl//))
=r/g.
= s p (TN G G P DA IN N,y X Gy~ )
v —24lm aq p- grl/)’ 9 7/ l v J I\q 3.g=0 g;m'gyp gﬂ/)gl/(}'
=s'/g. (34)
Therefore, the Schwinger terms of [N[j], N[j”]] are
S(x* = YO N[F] (X, %), N[7](3. y°)]
_ —2ir/yg a aY —2is/g 2\ (90 ip _ i 0p\S4( v
(1 b 257 = 0500 + —2b—29?m (079" — 0y9)8* (x = y). (35)

Taking p = 0, on the one-loop level, we have

8(x* = YO IN [ (%, xo) N[j](5.5°)]

= <12 83’6‘82+ >8’54(x y). (36)

This is comparable to results published in earlier papers.
As an example, in Ref. [25], it was obtained that
([/(%.0),/'(0)]) is (Eq. (10) in Ref. [25])

([/°(%.0).j'(0)])g = 000'6(x )+1—8’A5( x), (37)

The last term is easily derived using Zimmermann-like
identities in dimensional renormalization proposed by Bonneau
[12,23]. Note that there are no contact terms corresponding to
W, ¥, A° in this situation.

using spectral representation, where A = V2. However, we
get a finite and covariant result, in contrast with the infinite
and noncovariant result obtained in Ref. [25]. In any event,
the reproduction of the term'® 55 0'A8(X) implies that
transverse anomalies are closely related to Schwinger
terms.

VI. COMMENTS ON PREVIOUS ARTICLES

There are papers [8,27,28] on the anomalies of the tWTI,
but none found an anomaly for the vector tWTL
Additionally, Ref. [29] examined the vector tWTI to
one-loop order in dimensional regularization and con-
cluded that there was no anomaly. In fact, Ref. [29] has
noted that €77y ys should be replaced by —1 {y”,6**} to
ensure tWTI is still established; otherwise, on one-loop

The Schwinger term (37) was also obtained in Ref. [26]
using the Bjorken, Johnson, and Low method.
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order, there will be additional terms of the form a divergent
integral multiplied by d — 4 in their one-loop expression of
tWTL'” Equivalently, they adopted schemes that absorb all
transverse anomalies into N[e"’?y,ysiD,y]; i.e., what
appeared in the tWTI in that paper is not
N{[e"?yrysysiD,w] but N[—iy{y”,c"}D,y]. However,
the (d —4) term the authors discovered is actually a
spurious anomaly corresponding to corrections of coeffi-
cients of terms existing in the tWTIL, such as
N[e"P?yry 5ysiD ], because they only examined one-loop
diagrams with two external fermion legs and did not note
the crucial diagram with one external photon legs that
generates transverse anomalies. We calculated this missing
diagram and obtained exactly the results of { function

regularization in Appendix A.
In Ref. [8], the author identified the transverse
vector transformation (14) as the “local Lorentz transforma-
|

tion,”'® and there was thus no possibility of an anomaly in the

vector tWTI due to Lorentz invariance. However, the Lorentz
transformation of the Dirac fermion mismatches the trans-
verse transformation (14) in signs. The spinor part of the
Lorentz boost of the fermion is [20] dy(x) =
+La(x)e,,0w(x), 65 (x) = —La(x)e,w(x)o*, where
Jacobians of y and ¥ cancel each other out, regard-
less of whether tr[c**]6*(x — x) vanishes. According to
our derivation, tr[¢**]5*(x — x) is not zero, and thus trans-
verse transformation, both signs of which are positive, cannot
be protected by Lorentz symmetry to be free of anomalies.

The point-splitting method was used in Ref. [27]. A
spurious transverse axial anomaly was proposed but
corrected in Ref. [28]. Meanwhile, Ref. [27] gave a
expression for the “vanishing” transverse vector anomaly;
however, following this formulation, we get a nonvanishing
result. Equation (12) of Ref. [27] is"”

0" (x) = 0#(x) = limi(95 — 37 )™ ip (&' )y, rsUp (¥, Xy (x)

+ Symm lg%{&(x +¢/2)
X [—ig(y"F*(x) = P F* (x))€, |y (x — €/2) }. (38)

Using [20] (y(x)(y)) < 28 and [27] Symm lim,_o{%57} = § ¢, we finish the calculation of the last term:

(x=y)

Symm lim{y (x + €/2)[=ig(y"F* (x) =y F** (x) )¢,y (x = ¢/2)}

oc Symm limer[(y* F#* (x) — y#F** (x))y’]

€€,
4

€

1
o lim(g#” F*(x) — " F*7 (X)) op —
e—0 €

1
o lim— F*(x) # 0.

e=0¢

Moreover, because the above result is quadratically diver-
gent, we need to expand F*(x + ¢/2) in intermediate steps
(see Appendix C) to O(e*) to extract finite contributions,
which means (39) is incomplete.”

In brief, Ref. [27] partially worked out transverse
anomalies. It is a pity that the nonvanishing result (39)
was omitted in Ref. [27].

""However, Ref. [29] did not look into this one-loop anoma-
lous term.
®In fact, only the spinor part.

U, x) = exp{—ig [* dy- A} differs from ours in sign
because Ref. [27] assigned D, = 8,, +igA,.

“However, even if we go to O(e*), arbitrariness of the
coefficient of 9”0,F" that originates from the arbitrariness
of a € R in w(x+ (a+ 1)e)y*yw(x + ae) prevents the point-

splitting method from working for transverse anomalies; see
Appendix C.

(39)

Pauli-Villars regularization [30] was applied to calculat-
ing transverse anomalies in Ref. [28]. Unfortunately,
Ref. [28] forgot a vital procedure in Pauli-Villars regulari-
zation and thus missed transverse anomalies. This step
expresses any amplitude with its regularized form so that
anomalies may appear from the WTI with mass terms
[30,31], which is the case for the vector tWTI (19). We
consider any WTI with the form

A=mB+C, (40)

where m is some particle’s mass. Pauli-Villars regulariza-
tion requires [31] regularized WTI to be made up of
regularized amplitudes

fphyS:A/l[imfm_va (41)
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where f denotes any amplitude, while f,, and f,,, respec-
tively, denote amplitudes calculated with physical mass m
and regulated mass M. Then, if we proved the bare WTI

Am_AM :mBn1+Cm_MBM_CM, (42)
the regularized WTI may acquire an anomaly,

APYS — A — Ay =mB,, + C,, — MBy, — Cy,
= mBPhYS + CPMYS + (m — M)By,. (43)

Indeed, on the basis of the proof of the bare tWTI in
Ref. [28], we worked out transverse anomalies that
Ref. [28] ignored; see Appendix B.

VII. COMPARISON BETWEEN SYMMETRY
ANOMALIES AND NONSYMMETRY ANOMALIES

In fact, 0#j¥ — 0¥ j* on the left of tWTI (25) can be recast
into the divergence of some current:

. . [
O == =50,y o w). (44)

In addition to transverse anomalies and the mass term,
factors that prevent y[y”, o]y from being a conserved
current include another four-dimensional operator, i.e.,
N[y ,ysiD ). Without this operator, the current will
become an anomalous partial conserved current, which is
the case for the tWTI in two-dimensional QED.Z]
Therefore, the essential difference between a symmetry
WTI and a nonsymmetry WTT is the presence of extra four-
dimensional operators, besides operators on the left of the
WTI*?and anomalies.

It is exactly the extra four-dimensional operators that
render the arbitrariness of transverse anomalies. Obviously,
this makes sense also for any other nonsymmetry anomalies
that have extra four-dimensional operators.

We may proceed further. It is also possible to change
coefficients of chiral or trace anomalies at will, as long as
we absorb N[F*A,] or N[¢"'F'°F,,] into N[yy"ysy] or
N[0"] without considering gauge invariance or energy
conservation. However, it is just these nontrivial properties
or symmetries satisfied by N[py*ysy| and N[0**] that
prevent other operators such as anomaly terms to be
absorbed into them, and thus protected chiral and trace

2In  two-dimensional QED with a massless fermion,
{r’, 0"} =0 and j5=—¢"j, owing to o =ic"ys and
r'ys = —€"y,, and thus —50,(y[y’, 0" ly) = ¥ = j* =
€0, jo = — 3L €€, F*7 = LF* [20]. Therefore, both j§ and
0,(y[y”, 0" |w) are anomalous partial conserved currents, and as
a consequence, the tWTI in two-dimensional QED is not a
nonsymmetry WTL

“These operators are usually in the form of a derivative of
some three-dimensional operator as is the case of chiral (9,
and trace [8” (x,6")] anomalies.

anomalies such that their coefficients cannot be adjusted
arbitrarily. Therefore, once we find some physical mean-
ings or symmetries for N[e"#?y,ysiD ], coefficients of
transverse anomalies may be fixed naturally. As shown in
Sec. V, coefficients of transverse anomalies may be fixed
partially by resorting to Schwinger terms, but more general
results for remaining § and other nonsymmetry anomalies
require deeper research.

VIII. CONCLUSION

We discuss the extension of anomalies to cover those in
WTIs that are not formed by symmetry transformations,
beyond the scope of symmetry, taking the explicit example
of anomalies in tWTIs. Both background field (one-loop)
analyses in Sec. III (together with some one-loop calcu-
lation in Appendixes B and C) and renormalization to all
orders in dimensional renormalization in Sec. IV indicate
the existence of transverse anomalies, and we locate where
anomalies hid when Refs. [8,27-29] stated the nonexist-
ence of the transverse anomalies in the vector tWTI on one-
loop order. The scheme dependence of coefficients of
transverse anomalies is also concluded temporarily, and
this is partially solved by considering Schwinger terms as
in Sec. V. This needs to be investigated further.

So far, the anomaly in all t3ypes of the local linear
transformation of fermion fields™ (not all symmetry trans-
formations) has been exhausted. There are only three
nonzero anomalies; see Table I (in Fujikawa’s style for
simplicity).

Table I shows that the transverse anomalies have many
more types of operators than the trace anomaly and chiral
anomaly. In particular, the C,,.F)’F,," term may have
some effect on the present scheme [11,32,33] making use
of tWTI. However, in this scheme, the other two terms in
non-Abelian transverse anomalies and the whole Abelian
transverse anomalies (where C,;,. = 0) have no places to
plug in because the general method [11,32] is to contract
€quupladp €qupYadp to the vector tWTI* in the momentum
space,

qﬂrb(k7 p) - qlzrﬂ(k7 p)
= S_l(p)amz + Uyus_l(k) + Zimrﬂu(k’ p)
+ t/le/l;w/)r‘? (k’ p) + A/‘t/u<kv p)’ (45)

“The local and linear transformation of w(x),(x) must
be Sy (x) = a(x)Qu(x), 9 (x) = a(x)y(x)Q, where Q and
Q are a linear combination of y matrices and hence of
7% [r*. v*]. v*vs,vs. However, the traces of odd number y
matrices are zero; i.e., tr[y#]6*(x —x) and tr[y*,ys]6%(x — x)
are zero even after regularization.

%30 far, Refs. [11,32] discussed only the Abelian case. And
here we use the Abelian tWTI for an explanation.

25Equation (4) in Ref. [11], in the Euclidean metric;
g=k—p,t=k+p.
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TABLE L

Nontrivial anomalies in all types of local linear transformation of fermion fields.

Anomaly type “Bare” expression

In four-dimensional SU(N) QCD (one-loop results)

Trace anomaly [6,7] tr[1)6* (x — x) W F quw

Transverse anomalies tr{t,[r", 7*]}6* (x — x) _!%2 P 24_27) D,FY - i s Cupe PYF

Chiral anomaly [7,14] tr(t,y5]6% (x — x) N F”"tr[t ot

. . . . o 1 - < )

such that the.: 1dent1ca113{ vanishing left—hand. side and the Ly = w(iD = mo)w, D, =2(9,~0,) — igtyAy,
contracted right-hand side serve as constraints for axial 2
vertex Fﬁ(k, p) to be solved. Therefore, additional (A1)
terms>° 4*qyA, (k. p) and gq,A,(k,p) of the Abelian  applying variations of fermion fields
transverse anomalies all vanish after contraction with
€qupda DeCaUse €4,39,9, = 0. The Abelian transverse 1 »
anomalies are thus neglectable in current schemes [11,32] S (x) Zeﬂ”aa(x)taa w(x),
making use of tWTIL However, even if the ordinary B 1 B
derivative parts’ of F% and D’D,Fy’ vanish owing to S (x) = Zewaa(x)l//(x)taa" ) (A2)

the same reason as the case of the Abelian tWTI, the
non-Abelian transverse anomalies have a nonvanishing
contribution from C,,F)’F.,* in this scheme because
CopcFy Fe,¥ is mot of the form gp,f,(k, p) where
fu(k,p) is some operator’s Fourier transformed
Green’s function. Unfortunately, the Abelian approxima-
tion [i.e., I%z(non-Abelian) = 7,[*(Abelian)] remains
the backbone [32,32,34,35]. However, once we begin
to attack the non-Abelian quark-gluon vertex directly
using the non-Abelian tWTI (A3), the transverse
anomaly will take some responsibility. Furthermore,
other possible applications to the transverse anomaly
are being researched.
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APPENDIX A: NON-ABELIAN
GENERALIZATION AND ONE-LOOP
CALCULATION THROUGH ¢ FUNCTION
REGULARIZATION

The generalization of transverse anomalies to the
non-Abelian case [with gauge group SU(N)] is straight-
forward. Within Fujikawa’s framework, using the
Lagrangian [20]

24 u(k. p)is (TA,(x)w(y)(z)) in momentum space.

27Of course, the gauge field parts (where no ordinary derivative
appears) of Fﬂ” and D’D,Fy" are not zero in general, but these
are not gauge covariant and thus may be zero by proper choice of
gauge. However, C,,.F,’F," is gauge covariant, and its con-
tribution cannot be neglected.

and considering the transformation Jacobian (of which we
present a concrete calculation later), we get

D (ja(x)) 4 = D" (fa(x)) 4
= (e"PW (x)15r5{iD,. ta b (x)) 4 + 2mo (P (x)o" 1,y (x)) 4

_QOm% F/ll/( ) _

A A b DD, Pl (x)
T

247>

2
8 Canc Py (x)F o (). (A3)
Renormalization of the above non-Abelian tWTI is left as
further work.

We next calculate the one-loop transverse anomalies,
—2itr[t,6"]6*(x — x), through ¢ function regularization.
Identification of the transformation Jacobian of (A2) and
(14) to be =2itr[t,6"]5*(x — x) and —2itr[c"]5*(x — x) is
straightforward after using the following equation [recall
that In(1 + x) = x when x < 1]:

Deth (s(y)( (x )+ie,wa (x )tao“”w(X))]

= Det {54 )+ 4€#Da o (X) 2,05 (x — y)}

exp {trln [54 x - —&—46#”05 o (X) 1,08 (x — y)] }

~ exp { i 1 ()15 (x — x)}. (A4)

o =1[y*,y*], and it is thus enough to calculate
tr{t,[y*,7*]}6*(x — x). The combination of Fujikawa’s
approach [14] and ¢ function regularization [31,36] leads to
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{tefta [y}t (x — )},

d S © o) 2 d4k .
- drs—14t —(B2m )Tt [yh / —ik-(x=y)
dsgrs%/ e {ute vt o) [ e}

S o) ﬂ”(Jaﬁ/ég%

X tr [ta [r*,7"] exp (k2 +2ik - D\/T — D*1 + igtb [y, y"]Fbpar)] . (AS)

In the last step, we used D> = D> — Ligt,[y*,y*]F,,, and rescaled k — k/\/.
We note that™®

d K /°° 1

. o dr Ts—le—m T ﬁ n

45| o T(5) Jo v v

:i SF(S+”/2_2)(m2)2A y

ds s=0 F(S)

w. =0
—m2 —

{7 =S (A6)
1, n=4d
0, otherwise.

Therefore, the only contributing terms in (AS5) are those proportional to (1/7)%, (1/7)%, (v/7)* in expansion of the
exponential inside the trace.

The (/7)° term is zero because tr{[y*, "]} = 0. The (/7)* term is (after finishing £ | _,)
kZ

(=m2)telty1 ) [, ] [r" v ’ngg (A7)

The (\/7)* term is

TR o1, 0 d4k k2 1 2
tr[tatbtc]tr{[y; v ][yp’y ][7 Y }} (2”)4 2, 4 Fpr'Fca/i

Ak o1
+ {1l 71} / ) 4ek22, 2 9D (D 1, Fypg + 15F 10 D%)]

d k > i
Al ek — = 2
+ {7, ]l 312920
X tr[ a((k ’ D) thFh/m + (k : D)thFh/m'(k : D) + tbe/)n'(k : D)z)] (AS)

We arrive at the final result by completing the integral and working out the trace:

v gm v 0 v
{t{el o (x -2} = = Fl ‘TD D'Fy —S—Cm Fe,. (A9)

The only difference between the Abelian case and non-Abelian case is the use of tr[t,,] = %5,11,, which is not needed in
the Abelian case. The Abelian result is therefore®

In (A5), we strip ¢ 4 _ 0T r o) fo ders~le™m's away and substitute /7 with 1/A, thus arr1v1ng at the original Fujikawa’s method. From
it is obvious that A” in the final results like (17), is effectively regularized to be —m? through ¢ function regularization.

* Additionally, note that tr[z,] = 0 for SU(N), such that there is no contribution in tr[y#, y*]5*(x — x) from non-Abelian fields through

observation on (A7) and (A8) with ¢, stripped away, using trr,z.[tr{[y*, v*][y", v°][r%, y/’]}F bpoFeap = 0.

(A6
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7154 (x = x)}, = —ﬂﬂw -9 o,00mm,

triy#,
{urly 22 12722

(A10)

where F* = OFAY — 0YA* is the U(1) gauge field.

APPENDIX B: ONE-LOOP CALCULATIONS—
PAULI-VILLARS REGULARIZATION

This Appendix calculates missing transverse anomalies
in Ref. [28] adopting Pauli-Villars regularization, which is
also the method used by Ref. [28]. As in Ref. [28], we work
with an external field A,, and the Lagrangian is then
again (12).

To verify (19), we go to momentum space and define

W@z/wfwwwm
M%@z/ﬁ%f”wwmww%qumn,

W@E/wm%wmwwm»

The following bare tWTI has been verified in Ref. [28] (for
simplicity, we denote m by m):

(B1)

ig" (I3 + Ty, = 21%,) = ig* (U + Ty, =20,
= Nl + Ny —2Niy +2(mTh + M\ Ty, —2M, T}, ).
(B2)

Here, I}, indicates an amplitude is calculated with fermion
mass m. There are two subtractions because the leading
divergence is quadratic. M; = vVm?> +2A> and M, =
vVm? + A2, where A serves as an effective cutoff, as
in Ref. [28].

However, in the spirit of Pauli-Villars regularization
[30,31], the WTI should be expressed by a regularized
“physical” amplitude for which any amplitude f is defined as
|

fphysEAi_IEofm‘FrfMl_zssz' (B3)
Here, r and s should be chosen to cancel out all divergences
in f. For T#, it is easily seen that r = m/M,,s = m/M,
through direct analysis of the diagram on the lowest order
of A,(x).

The bare identity then gets an extra term after assembling
each amplitude into its regularized form:

1—‘;hys iqyrghys
= ig"(Ty, + 1%y, — 2%, ) —ig" (T + Ty, — 2%, )

2m
= N + Ny, — 2Ny +2m <T"” + Ty —Ty )
" M, M, M
m’ v m’ v
= Nijpyo = 2mThy  + A" (B4)

We will show that

W — m v m’ v
is exactly the anomaly we obtained in Appendix A up to
quadratic divergences.
TH is represented by the Feynman graphs30:

TWQM +<§«M+m. (B6)

Gauge invariance in external photon legs and dimensional
analysis tell us the diagram in (B6) with n photon legs
diverges at worst like 9" A" A>~>" when A — oo, where Q is
some typical scale of external momenta and A is an
abbreviation of A¥(x). Therefore, the only term contribut-
ing to transverse anomalies is the smallest diagram:

m2 m2
wo_ o yv _ _ HY
A =2 (Ml Ml> TM] .the smallest diagram 4 <M2 M2> TMz .the smallest diagram

tr[o™ (p — g+ M) A(q)(p + M))]

- 2<M‘ - Z_zl> igo/ (ij; [(p — )

—m? = 2A?][p? — m* - 2A\?]

~ 4<M2 m2>i90 /(d“p tr[o (7 — g+ M) A(q) (7 + M,)]

M 27)* [(p— q)* -

= (ig'A¥ — iq"A") / dx/ dy/ dz

A4

2 _ A2Hp2

m* — A?]

2m* 43N = [y + (1 - y)’]¢°

XG0 —>
2

([m +(1+x—y+z)A —y(1=y)g*] [m*+ (1 +x—y+2)A*—y(1-y)q

(B7)

7)

*Recall that C parity of 6"y is odd, such that there are only A>"*! terms.
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Taking the limit A — oo, we get

An — <goln2A2 _&mZ + 90
2

At(q) = / d*x e” M AR (x). (B8)

This is what we get in Appendix A in momentum space,
up to a quadratic divergent term. However, it is well known
[30,37] that quadratic divergence in (j#), in the Pauli-
Villars scheme corresponds to an infinite photon mass,
which must be subtracted to ensure gauge invariance. As
long as we subtract quadratic divergence on both sides of>'

ighl’

ig'T N™ —2omT"

o 123
phys — “7phys phys+“4 ’

phys ~ (B9)
nothing is affected by quadratic divergence. Nevertheless, it
is somehow confusing that there is no logarithmic diver-
gence associated with this quadratic divergence. It is not
easy (as far as we are concerned) to give a thorough
explanation, but the situation may be summarized phe-
nomenologically as an absence of logarithmic divergence is
simply a signal of an anomaly because an anomaly is a local
operator and leads to only polynomials of external
momenta on one-loop order. (Note that the coefficient of
an anomaly term is one loop, and the matrix elements of the
anomaly term are thus tree level.)

1 ; xHatl)e 540
M (x) = & jH(x) = —id, (l/_/(x + (a + 1)e) {y”, 50"”} ' Juvae WAV (x4 ae)).

Rearranging terms gives

APPENDIX C: ONE-LOOP CALCULATIONS—
POINT-SPLITTING METHOD

Similar to the case of chiral anomaly, the point-splitting
method [20] gives results for transverse anomalies.
However, the dependence on the splitting ratio prevents
this method from working for transverse anomalies.

The point-splitting method selects a special regulariza-
tion for j# (where a is a real number):

i xt(at1)e dyA(y)

J(x) = (x+ (a+ Dejyte S y(x + ae).

(C1)

Usually [20], @ = —1/2 such that x is the midpoint of the
two split points. However, there is no principle that
demands a to be —1/2, and if this method is to make
sense, the final results must be independent of a, as is the
case for the chiral anomaly [20]. (Looking into the concrete
process of calculating the chiral anomaly [20], it is easy to
see that the chiral anomaly only needs expansion to O(¢) so
that the a dependence is of the form (a + 1) —a = 1.) We
will see soon that the point-splitting method cannot be
applied to calculating transverse anomalies owing to its
nontrivial dependence on a.

We first use [y7,30] = ig"’y" —ig”’y* to rewrite
o as

O (x) = 8 (x) = i(p(x + (a + 1)€)(D, = D,)e™y ysy(x + ae))e' Jrvae

.

—i(w(x+ (a+1)e)d,y’ o y(x + ae))e'? Jea

+ l<l/7(x + (a + 1)6)6”1/}//)5/)1//()( + ae))eig x-+ae

1 i
Fapct (a De) .o el

1 2 _ 2
% (e"6pA6(x) +w

x+(a+1)e
dy-A(y)
T y(

€°€*9,0,A,(x) +

(C2)
ig x+(a+1)e dyA(y)
x+(a+1)e dyA(y)
x+(a+1)e dy-A(y)
X + ae)
1 3_.3
m#e“e‘e"@@,ﬁlﬁa(x) + 0(64)) .
(C3)

We then use equations of motion for the massless (for simplicity) fermion By/(x) =0 and lp(x)ﬁ =0 to get

xt(at1)e d 'A(y)

O (x) = 04 (x) = i (x + (a+ De)(D, — 8, )y psy(x + ae))e? Liw

—gp(x+ (a+1)e)A(x +

— gip(x + (a+ 1)e)o™yAx + ae)y(x + ae)e? oo

. xt(atl)e 5o 40
(a+ 1)e)y’o"y(x + ae)el'que dy-AD)

x+(a+1)e dyA(y)

3]Equation (B9) holds at any A so that quadratic divergences on the two sides are equal.
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ig x+(a+1)e dy-A(y)

1
+ gp(x+ (a+ 1)e) {y/’, Ea’“’] e'?Jira

We next expand A, at x to O(e*):

—a €°€*9,0,A,(x)

v (x + ae)

N - . x+(a+l)e ;-
9 (x) = & j#(x) = i (x + (a+ 1)e)(D, = D,)e" oy yysw(x + ae))e' Jurac P40

— g (x + (a + D)oy + ae)e? [

(a+1)?

X ((a +1)e?0,A,(x) + Te"eﬂalagAﬂ(x) +

— g (x + (a+ 1))y y(x + ae)e’? Jerae

2

2
X (ae"agAp(x) + a—e"e’lalaﬁAp(x) + %e"e’le"a,la,ﬁ(,Ap (x) + (’)(64)>

1 . x+(a+1)e .
g (o e[y o P 00

2 2
% (e"a,,A{,(x) + (a+1)"—a”

e"e’lf)l@,,A{,(x) +

We finally take the ¢ — O limit. From Refs. [20,27], we have™

(w(x+ae)p(x+ (a+ 1)e)) =

ete?

lim 5

e—0 €
eterel e’
4

lim
e—0 €

Therefore, the final result (where the Bianchi identity is used and care is taken with Fermi statistics) is

o (x) — 0 j#(x) = i (x)(D, — D,) ey ysy(x)
N glla+1)° -

e 727>

_ . g1
= 2y (x)e"?y5ysiDw(x) + ;?Fﬂ”(x) +

This result is not only affected by quadratic divergence33

but is also dependent on a nontrivially. The point-splitting
method is thus not suitable for transverse anomalies.

*Here, we only need O(A°) of (y(x + ae)y(x + (a + 1)e))
because C parity of j# and A* are both odd, and O(A?) of (y(x +
ae)p(x+ (a+ 1)e)) is of O(e) and thus does not make a
contribute.

3Unlike the case in Appendix B, it seems here that we cannot
find a proper way to subtract this divergence because the
quadratic divergence of j# is not shown explicitly.

3_ .3
+ me"eﬂe"a,@,ﬁpAﬂ(x) + (9(64)>. (C4)
x+(a+1)e dyA(V)
3
(at1) €€ €50,0,0,A,(x) + (9(64))
x+(a+1)e dyA(y)
3
v (x + ae)
3_ .3
Me"eﬂe"aﬁa,ﬁﬂf\”(x) + (’)(64)> .
(C5)
i 7%,
@ oA
lg/”/
4 9
1
= L e+ g o) (co
3
al (2000, F (x) + 200, F" (x) — 204, F* (x))
3_ 3
ot ) =a 5 pu), (C7)

1872

[

APPENDIX D: DETAILS OF DIMENSIONAL
RENORMALIZATION IN SEC. IV

This Appendix presents a note for one-loop calculation
in dimensional renormalization and an analysis for gauge
invariance of the coefficient in (24) including that of
transverse anomalies.

To determine coefficients in tWTI (25) on one-loop order,
it is not necessary to use all the algebra in (24), and it is more
convenient and simple to calculate (TN[pa* 7”iD y]x

#(p1)y(p2))P™P and (TN[6"7"iD ] A (§))P™ (instead
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a is only an intermediate variable.) Only the following four
Feynman diagrams in Fig. 2 are relevant.
For the first diagram,

51(4]”) (l_)l ’ }_72)

al 1
1 2 3 — _9i2 —uv | sa _ A
0 2) ®) 2i [ Gt (o e
1 1 1
- _g)”wifz—m’j?)?
_ P2 =y ddp ! (4—d)<(1—)€)k _m>
(4) = -2ig’ /(27:)”’% dx([—pz—x(l—x)i)%z—kxmz]2

lfIG. 2. One-loop diagrams of (TN[pa"y’iD,ylip(p;) % L(1-9 2(1 = x)p*(m — ﬁz) )
7(52))P and (TN [y y)A¢(3))"™. 07 = x(1=x)p3 +xm’}

2
of the Green’s functions with N[y&**7”iD,y] replaced = ]gﬂz " (¢, —4m + (1 =&)(m — p,)). (D1)
by N[gp ( " y?iD°y)]) to read out (b,c,f,r,s)=
(., f.r.s")/(1—a) directly from (23). (Of course,  Similar to the first diagram, we have for the second diagram
information on « is lost, but this does not matter because that

o . dp 1 1 1 1
HY _ 2 sa 5 _ v
5(2)(p1’p2) - 2lg /(2ﬂ)d (}/ ﬂ‘l‘ ﬁl _ mya (1 g)ﬁﬂ‘F ﬂl — mﬂp )6” pz

o [E [ G DR ) A R))

2m)* —p? = x(1 —x)pi + xm?] [—p? = x(1 —x)pi + xm

2

= 125 (20, = 4m 4 (1= &)(m - ). (D2)

The third diagram is a little complicated but still straightforward to calculate:

dd 1 ~ 1 1 ~ 1 1 1

H (= = S W) o ~HV —(1 — oMY — | —=

€3 (P1.D2) = 2ig /(2 ) (y ;/ﬂ?/]—m'w S Fome (1 6)1/%+k]_mﬂ6" ﬂ+ﬁ_mﬁp2> 2

:_21.92/ d’p / / ( r(F+ (1= 3)# = (L= )y + m)po" (f =y + 5P + m)1a

2r) —p?=y(1=y)p? —x(1 =x)p3 +2y(1 =x)p; - po + (1 = x + y)m?]
+3(1-8(x—-y)(F—yp - (1-x)p,)
(ﬂ"’ (1 - )ﬂ] (1 _x)ﬁz + m)ﬂé"”’(p(—y;_dl +x%2 + m)(ﬂ_)’]% - (1 _x)%z))
-p —y(l— )Pt = x(1 =x)p3 +2y(1 = x)py - pr + (1 = x + y)m?]*

gZ

o A 4—u_ 2—1/_ ~uv e ~uv
=162 ( =y, +§ﬂ25” —|—§0” 7 —50" 2,1 =&)(—2me*" + p,6" + o* ﬂ2)> (D3)
We now come to the last but most simple diagram:
d’p 1 ~
(c/'ﬂl//’ a) = —2i / tr | 7” _ v
50 =20 [ G

(A _ A d’p [ p?
= 89(61”9”‘0 —q gﬂp> / (ZJT)dA dx [_pQ _ X(l _x>q2 + m2]2

1
- —2% (ig'g” = i) (—6512 + mz)- (b4)

056008-15



YI-DA LI and QING WANG

PHYS. REV. D 102, 056008 (2020)

When adding these terms together, all the gauge-
dependent terms cancel out, which verifies our conclusion
drawn in Sec. IV that all coefficients in the tWTI (25) are
gauge independent to one-loop order. We get these coef-
ficients on one-loop order:

(D5)

As for gauge invariance of these coefficients to all orders,
some general conclusions drawn in a similar treatment of
the chiral anomaly by Bonneau [12] are enough. We only
quote here the contents for the reader’s convenience (but
with our notations).

The starting point is provided by the action principle
(N]O(x)] is assumed to be any formally gauge-invariant
operator),

0
&

=< /d“yN[ 22 5 (0,A%()) ] [O(x)]x>, (D6)

(TN[O(x)]X)

where X = [}, w(x )H] () Tz A (z4)-
Through repeated use of the following gauge wTr*

(T9,A"(x)N[O(y)]X)
L

= =€) 35, D(x = Z)(TN[O()]X\A,, (2))

k=1

+19§Z

D(x =) (TN[O()IX), (D7)

Mx \A,, (z¢) means X with A, (z;) stripped away.

and we can recast (D6) to many useful forms. We may only
focus on the gauge variance of the proper part of Green’s
functions with X = A? and X = w(y)w(z) because the
expression (24) for coefficients in the tWTI only considers
these two cases.

Gauge variance of Green’s functions is not the focus of
this paper, and we thus only quote two main results of
Ref. [12] to illustrate the gauge invariance of coefficients in
the tWTL The first result is (B.10) in Ref. [12], for formally
gauge-invariant N[O(x)],

e (7MIow) kf[lA"k(zk>>pmp o,

This is also established for the nonoverall subtracted Green
function (see the first sentence after (B.11) in Ref. [12]).
Thus, agr =0 and a% "= 0 are simply special cases in
which O = g,,(w&"y*iD%) and L = 1.

The second result deals with the gauge invariance of
r.8.p.(TN[O(x)](p)r(q))PP. Figure 3 (which provides a
diagrammatical representation of the gauge variance of
(TN[O(x)]@(p)ir(q))P™P) and Lemma 3 in Ref. [12] [i.e.,
Egs. (B.13.a) and (B.13.b) therein] indicates that, if
(TN[O(x)]@(p)wr(q)) has no trivial part (where a non-
trivial diagram was defined by Ref. [12] to be a graph with
at least one loop), then

(D8)

%r.s.p«m[owm 5 (@) = 0.

(D9)
Obviously, (TN[g,,(#&"y’iDy)(x)lj(p)y(q)) has no
trivial part owing to the presence of §,, = §,,/(d —4)
(which we take to be zero after finishing all loop integrals),
and obtaining the gauge independence of a, b’, ¢, f’ is thus
straightforward.

We get the gauge independence of b, ¢, f, r, s by
combining these two results.
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