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Thermodynamics of chiral fermion system in a uniform magnetic field
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We construct the grand partition function of the system of chiral fermions in a uniform magnetic field
from Landau levels, through which all thermodynamic quantities can be obtained. Making use of the Abel-
Plana formula, these thermodynamic quantities can be expanded as series with respect to a dimensionless
variable b = 2eB/T?. We find that the series expansions of the energy density, pressure, magnetization
intensity, and magnetic susceptibility contain a singular term with In 52, while the particle number density,

entropy density, and heat capacity are power series of b>. The asymptotic behaviors of these
thermodynamic quantities in extreme conditions are also discussed.
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I. INTRODUCTION

The properties of matter under an electromagnetic field
have been studied extensively for years in many fields of
physics. It is well known that a strong electric field can lead
to pair production of fermions in QED vacuum, which is
called the Schwinger mechanism [1-3]. Recently, the
effect of a magnetic field on the Schwinger mechanism
was studied through the approaches of an equal-time
Wigner function and AdS/CFT correspondence [4-6]. In
astronomy, compact stars, such as white dwarfs, neutron
stars, and quark stars, often rotate very rapidly, which can
produce a magnetic field as strong as 10'> — 105 G [7,8].
This strong magnetic field may have a great impact on the
state of compact stars [9,10]. In high-energy physics, such
as peripheral high-energy heavy ion collisions, a strong
magnetic field in the collision region is also produced
[11-14] and may induce the currents of charged particles
along the direction of the magnetic field, which is called the
chiral magnetic effect [15-19]. In condensed matter
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physics, the strong magnetic field can reduce a chiral
condensate, which is called magnetic catalysis [20-25].
Meson condensation under the background of the magnetic
field together with an electric field or rotation is also discu-
ssed in Refs. [26-29]. The magnetic field also has an
important influence on the thermodynamics and transport
properties of the system of massive fermions [30,31]. In
relativistic hydrodynamics, the Wigner function approach is
often used to study the hydrodynamics of a fermion system
in a general electromagnetic field [17,32-35]. The chiral
kinetic theory in the electromagnetic field is also studied
recently [36,37].

In this article, we study the influence of a magnetic
field on the thermodynamics of the chiral fermion system,
where we ignore the interaction among the fermions. Since
the equations of motion for left-handed and right-handed
fermions decouple, we will consider only the case of right-
handed fermions in this article, and all results can be
generalized to the left-handed case directly. In the previous
work [38] by some of us, the electric current of the right-
handed fermion system along the magnetic field, which is
explained as the chiral magnetic effect, has been obtained
through the ensemble average of normal ordering of the
corresponding operator. In this article, we will use the
method of the grand partition function instead, from which
we can obtain all knowledge of the thermodynamic system.
Through solving the stationary Schrodinger equation of a
single right-handed fermion in a uniform magnetic field, we
can obtain a series of Landau levels, from which we can
construct the grand partition function. According to the
standard procedure in quantum statistical mechanics, all
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thermodynamic quantities can be obtained by the grand
partition function. In fact, for the thermodynamic system of
massive fermions, the proper-time method is the most
popular method to calculate the grand partition function
[39-41]. However, for the thermodynamics of the chiral
fermion system in this article, we will make use of the Abel-
Plana formula to calculate the grand partition function. In the
expression of the grand partition function, there is a
summation over all Landau levels, which is difficult to deal
with analytically. Fortunately, there is an Abel-Plana for-
mula which can transform the discrete summation into
integrations. Then we can express the grand partition
function as a two-dimensional integration, which can be
expanded as a series with respect to a dimensionless variable
b = 2eB/T?, with e the electric charge of the right-handed
fermion, B the magnetic field, and T the temperature of the
system. In the series, besides the terms with b, there is an
additional singular term b? In %, which indicates that the
grand partition function is not analytic at » = 0, leading to
the nonanalyticity of some thermodynamic quantities at
b = 0. We investigate the asymptotic behaviors of these
thermodynamic quantities in extreme conditions, such as
weak and strong magnetic field limits and high- and low-
temperature limits. Our study of the effect of the magnetic
field on the thermodynamics of the chiral fermion system
may have an important theoretical meaning for research on
the quark gluon plasma state which can be produced in high-
energy heavy ion collisions.

The rest of this article is organized as follows. In Sec. II,
the Landau levels of a single right-handed fermion in a
uniform magnetic field are briefly listed. In Sec. III, we
construct the grand partition function from Landau levels
and express all thermodynamic quantities by the grand
partition function. In Sec. 1V, all thermodynamic quantities
are expanded as series with respect to a dimensionless
variable b. In Sec. V, we study the asymptotic behaviors of
these thermodynamic quantities in extreme conditions. In
Sec. VI, all elements of the energy-momentum tensor are
calculated. This article is summarized in Sec. VIIL.

Throughout this article, we adopt natural units where
7= c =ky = 1. The convention for the metric tensor is
¢ = diag(+1, -1, -1, —1). We use the Heaviside-Lorentz
convention for electromagnetism and the chiral representa-
tion for gamma matrices where y° = diag(—1, —1, +1, +1),
which is the same as Peskin and Schroeder [42].

II. LANDAU LEVELS FOR A SINGLE
RIGHT-HANDED FERMION IN
A UNIFORM MAGNETIC FIELD

The Lagrangian of a chiral (massless) fermion field y
under the background of a uniform magnetic field B = Be, is

L = yiy - Dy, (1)

where D* = O + ieA¥, with e the electric charge of
the fermion and A* the gauge potential chosen as

A* = (0,0, Bx,0). In this article, we set eB > 0 for sim-
plicity. The results of all thermodynamic quantities in this
article can be extended to the range eB < 0.

In the chiral representation of gamma matrices, we can
write w = (y,wg)’, where the two-component spinors
v and yp are called, respectively, left-handed and right-
handed fermion fields. The Euler-Lagrange equation of the
Lagrangian in Eq. (1) gives

.0 :
ZEV/L = —io-Dy, (2)
.0 ,
IEI//R = i6 - Dyp. (3)

where ¢ = (¢',6%,6%) are Pauli matrices and D =

(=0y, =0, + ieBx,—0,). Since the equations of motion
for y; and yy decouple, we discuss only the right-handed
fermion field in this article. All results can be directly
generalized to the left-handed case.

The stationary Schrodinger equation ic - Dyr = Eypg
gives a series of Landau levels and eigenfunctions as
follows [38]:

1 .
n=0, E= kZ’ WRO(kys kZ;x) _ <(ﬂ0(§)> zez(yk).+zkz)’

n>0, E=JE,(k,).

Dn (6) ) lei(yky-‘rzk,) (4)

iFnﬂ(pn—l (é) L ,

where A==+1, é=V/eBx—k,/VeB, E,(k.)=+/2neB+k?,
Fy; = k. — 2E,(k.)]/V2neB, |Cn/1|2 =1/(1+ F%M)’ and
@,(&) is the nth harmonic oscillator function along the x
axis whose center is x = k, /eB. We have assumed that the
eigenfunctions are set up in a box with sides of lengths L,
ie., 0 <x,y,z <L, and satisfy periodic boundary con-
ditions in the y axis and z axis, i.e., k, = 27my/L, k, =
2zn,/L (ny,n, = —co,...,c0). The condition that the
center of the oscillation along the x axis is inside the
box leads to 0 < n, < eBL?/(2x). Since the energy level
E, (k) is independent of k,, the degeneracy of each Landau
level is eBL?/(2x).

WRM(ky’ kz;x) =Cnx (

III. GRAND PARTITION FUNCTION AND
THERMODYNAMIC QUANTITIES

We consider a system of right-handed fermions in a
uniform magnetic field B = Be_, which is in equilibrium
with a reservoir with temperature 7" and chemical potential
ug. The interaction among the fermions in this system is
ignored for simplicity. From the Landau levels for a single
right-handed fermion in Sec. II, we can construct the grand
partition function In E of this system as follows:
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InE = >_[0(k,) In(1 + e* k) + 0(=k,) In(1 + e~ F%)]
k k.
+ Z Z []1’1 (1 + ea—ﬁ\/ZneB—&-k?)
n=1 ky.k,
+ ln(l + e—a—ﬂ\/ZneB-&-k?)} ) (5)

where f = 1/T and a = fug. The two theta functions 6(k.)
and 6(—k,) in In E are necessary, as discussed in Ref. [38].
The vacuum terms in InE have been thrown away.
The summations for k, and k, in Eq. (5) can be replaced
by the degeneracy factor eBL*/(2z) and the integral
(L/2x) [ dk., respectively. Defining a dimensionless vari-
able b = 2eBf?, InE can be written as

—59(a.b). (6)
where V = L? and g(a, b) is defined as

gla,b) = i/00 ds[In(1 + ) +In(1 + e7*7¥)]

872 /o
+4i”2/)00 dsni;[ln(l + e“_\/"l’—“z)
+ln(1 + e‘“_\/”"—“Z)]. (7)

From the grand partition function InZ, the thermody-
namic quantities of the system, such as particle number
N = Vn, energy U = Ve, pressure p, entropy S = Vs, and
magnetization intensity M, can be expressed as

N:(%IHE, (8)
U= —8%1[15, )
P :};;/ma (10)
S =InE+ pU - aN, (11)
M= [lm% (1HVE>. (12)

Making use of Eq. (6), all intensive quantities, such as
particle number density n, energy density & pressure
p, entropy density s, magnetization intensity M, magnetic
susceptibility y = OM /0B, and heat capacity c; = Je/0T,
can be expressed by g(a, b) as follows:

n :ﬂiga%gm,b), (13)

¢ :ﬂ% <3 -2ba%>g(a,b), (14)

p = rola.b) (15)

s :% <4—a8%—zba%)g(a,b), (16)
M =35 gy oa.b). (17)

¥ = 4ezaa—;g(a,b), (18)

1 0 0 o o
=—(12-3a——10b—+2 4 ——
cr ﬂ3< 3a(’)a 0b8b+ ab8a8b+ b 8[92)

x g(a,b). (19)

IV. EXPANSIONS OF INTENSIVE QUANTITIES
WITH RESPECT TO b

To study the influence of the magnetic field on the
thermodynamics of the right-handed fermion system, in
this section we will expand all thermodynamic quantities as
series with respect to b = 2eBf>.

Defining an auxiliary function f(a,x) as

fla,x) = In(1 + %) +In(1 + =), (20)

then g(a, b) in Eq. (7) becomes

sab) =30 [ s[5 sias)+ iﬂa, Vab 57|

(21)

In Appendix A, we have proven that, when —z < a < 7,
the summation over Landau levels in the integrand in
Eq. (21) can be transformed into integrations by the
following Abel-Plana formula [43,44]:
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Then g(a, b) can be expressed as
Tz*  a*  at
) b - S Py YD)
9la.b) (360 Rt 247z2>

b ) )
— X1 d dt
+4”2 X 1% SA
" fla,Vith + s*) — f(a, V—ith + 5*)
eZﬂt -1 ’

(23)

where the first term comes from the first integration on the
right-hand side of Eq. (22):

2.2 4
/ds/ dif(a. 1+ 52) = 7910+%+%. (24)

In Appendix B, we obtained the series expansion of
g(a,b) at b =0 as follows:

( b) 7ﬂ2+a2+ a* b*Inb?
a,b)= -
g 360 ' 12 ' 24722)  384r2
b2 el+C|(a)
- In(Y—
967° < 2G° )
1 S (dn+ 1)
- Bn Cn b2n+2’ 25
2”2;(4;1_'_4) 2n+2 2+1( ) ( )

where G = 1.282427... is the Glaisher number, 5, are
Bernoulli numbers, and C,,,(a)(n > 0) is

1 d4n+1
Cony1(a) = =6, +m/ dy In yd p

1 1
. 2
x (ey+a +1 + ey 4 1) ( 6)

In the series of g(a, b), besides the terms with b*", there
is also a single singular term 5> In b?, which indicates that
g(a, b) is not analytic at b = 0. When a = 0, as calculated
in Appendix D, the integration in Eq. (26) can be
analytically integrated out:

ZC/ (—41’1) (24n+l

Cont1(0)= GntD)!

(Ind+y—-1)8,0+ -1). (27)

Making use of Eqgs. (13)—(19), all intensive quantities,
such as particle number density n, energy density e,
pressure p, entropy density s, magnetization intensity M,
magnetic susceptibility y, and heat capacity cy, can be
expressed as series of b at b = 0 in the following:

gy B2 Copa (@)D 2, (28)

,B4 Tr? s a? L at N b2 1n b2 N b2 N 221G (a)
E, = -
120 4 " 872) " 384z ' 96x% \ 2G°
1 = (4n+ 1)1 )
+ Tiﬁzm (4n + 1)62n+2C2n+1 (Cl)b2 +2
n=1 ol
(29)
4 iw*  a*  at b Inb* b? o1+Ci(a)
PP =30 2 a2 )~ 5> ——>In
360 12 24n 384n- 96x 2GS
(4n+1 )
277,'22 4I’l+4 y|6211+2c211+1 (a)bZ +2, (30)
771'2 a2 1 + aCl (a)
3= —=+— e RSy ¥
v <90+6)+ 96ﬂ2
(4n+1 d
=B 4 “
271.22 4l’l+4 2n+2<n+ada)
X C2n+] (a)b2n+2’ (31)
In b? 5/4+C) ()
Mﬁz/ez—b nbr_ b In( ¢
967>  24x* 2G°
(4n+1 )
272 Z (4n + 2 2n+2C2n+1(a)b2 +
(32)
Inp* 1 7/4+C, (a)
x/et=— - 7~ 5In ¢ =
487 12z 2G
1 S (dn+ 1)1 )
_THZWBZHZCMH(Q)M . (33)
n=1 o
T g2 1 + aC, (a)
s_ (17 a7\ _1+aC(a) ,
ol (30 2) 967r2

4n+)

where we have used the temperature factor f and the
electric charge e to cancel the dimensions of all intensive
quantities. We can see that in the expansions of energy
density e, pressure p, magnetization intensity M, and
magnetic susceptibility y, besides the terms with b”", there
is also a term involving In 5%, which is singular at b = 0.
Nevertheless, the expansions of particle number density #,
entropy density s, and heat capacity cy are just power series
of b?; i.e., they are analytic at b = 0.

For the left-handed fermion system, we can simply
replace a = pur with pu; in the expressions obtained
above for the right-handed fermion system, and all
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intensive quantities of the chiral fermion system can be
obtained as a summation of the results of left-handed and
right-handed fermion systems.

V. EFFECT OF A MAGNETIC FIELD ON
THERMODYNAMIC QUANTITIES

In this section, we will investigate the effect of a
magnetic field on the thermodynamics of the chiral fermion
system. Since the dimensionless variables a = ug/T and
b = 2eB/T? are proportional to the chemical potential g
and the magnetic field B, respectively, we will often use a
and b instead of up and B to represent the chemical
potential and the magnetic field in the following discussion.
For a fixed chemical potential a, we take Q(a,b) as the
thermodynamic quantity with nonzero b and Q(a, 0) as the
one with b = 0.

According to Egs. (13)—(19) and the integration expres-
sion of g(a,b) in Eq. (23), we can plot the curves of all
thermodynamic quantities as functions of » and a. The
asymptotic behaviors of all thermodynamic quantities as
b — 0 can be obtained directly by Eqgs. (28)—(34). For the
b — oo limit, we must make use of the following asymp-
totic formula of g(a, b), as calculated in Appendix E:

LAV (35)

lim g(a. b
Jimg(a,b) = 1o

Then Egs. (13)—(19) can give the leading-order term for all
thermodynamic quantities as b — oo.

A. Particle number density

The asymptotic behavior of particle number density ratio
n(a,b)/n(a,0) as b - 0 is

C)(a)b?
16(z%a+a’)’

n(a, b)
n(a.0) - (36)
Making use of Egs. (D9) and (C9) in the Appendixes, the
coefficient of b in Eq. (36) tends to be —=7¢'(=2)/(87%) =
0.0027 as a — 0 and tends to be zero as a — oo, which
indicates that in a weak magnetic field limit the enhance-
ment of the particle number density is smaller for a larger
chemical potential. It is worth pointing out that Eq. (36) is
consistent with the second-order result of particle number
density in a weak electromagnetic field expansion by some
of us in Ref. [35], where the Wigner function approach
is used.

The asymptotic behavior of n(a, b)/n(a,0) as b — oo is

n(a, b) 3b

- 4(n* + a?)’ (37)

which increases linearly as b — oo and increases more
slowly for larger a.

4
4
,/
N a-0 //
........ =1 /, o"
a= ’ .
S R
P - a=2 ,/ .
T 141 Ralties
S .
= ’ . -
o) 7 -
8 e R -~
€ ’,’ Lot Pt
1.2 it Pl
Aol .-
s e -
. .-
/’ oooo -
L olad -
atlll -
1.0 Y et
0 5 10 15
b
FIG. 1. Curves of particle number density ratio n(a, b)/n(a,0)

with respect to b for a =1, 2 and a — 0.

The asymptotic behavior of n(a,b)/n(a,0) as a — 0 is
listed as follows:

n(a,b) 3b [ o 1
=14+— d dt
u1—1>l(1)n(a,0) +”2le SA e —

eV ith+s® eV —ith+s>
X - .
<1 + e\/ ilb+.§‘2>2 (1 + eV —itb+sz)2

(38)

In Fig. 1, we plot the curves of n(a,b)/n(a,0) with
respect to b for a = 1, 2 and a — 0. We can see that the
existence of a magnetic field can considerably enhance the
particle number density, and the enhancement is larger
when b is stronger and a is smaller. The trends of the curves
are consistent with our asymptotic analysis.

B. Energy density and heat capacity

From the expressions of the grand partition function In 2
and energy U in Egs. (5) and (9), we can express the energy
density € by the following form:

_Z (eﬁk—iff 2 (_kz)e(_kz))

e/}(_k1+ﬂR) +1
+— ZZE

n Lky.k.

1 1
[ (k:)=mr] 41 * ePlERk)+pr] | 1] ’
(39)

The physical meaning of Eq. (39) is very clear: The whole
energy of the system is jointly determined by the energy
and the particle number of every quantum state and the
degeneracy factor eBL?/(2r) of every Landau level. As the
magnetic field increases, the particle number of every state

will decrease rapidly as ¢~V? due to Fermi-Dirac distribu-
tion; meanwhile, the product of the energy and the
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FIG. 2. Curves of energy density ratio &(a,b)/e(a,0) with
respect to b for a =0, 1, 2.

degeneracy of every Landau level increases as %2, which
indicates the existence of an extremum of energy density as
b increases.

In Fig. 2, we plot the curves of energy density ratio
e(a,b)/e(a,0) with respect to b for a =0, 1, 2. We
can see that the curves decline first and then rise, leading
to the appearance of an extremum as expected. When
a = 0, the extremum locates at about (5.89,0.9864), and
e(a,b)/e(a,0) =1 at b~ 10.25. When a increases, the
extremum moves to the lower right corner.

The asymptotic behavior of (a, b)/e(a,0) as b — 0 is

5bIn b?
16(7z* 4 307%a* + 15a*)"

e(a,b)
e(a,0)

-1+ (40)

Since b?Inb?> < 0 as b < 1, the energy density in a weak
magnetic field limit is smaller than the one without a
magnetic field.

The asymptotic behavior of &(a, b) as b — oo is

e(a,b) 57% + 15a*

b, 41
€(a,0) ~ 147 1 60222 1 30" (41)

which increases linearly as b — oo and increases more
slowly for larger a. The trend of the curves in Fig. 2 is
consistent with our asymptotic analysis.

If we take a high-temperature limit, i.e., b < 1 and
a < 1, then the energy density becomes

e2B? e*B?

2
Iy

‘7120

We emphasize that the In 7 term for the high-temperature
limit in Eq. (42) is also consistent with the second-order
result of energy density in Ref. [35].

If we take a low-temperature limit and a = 0, then the
energy density becomes

20r A
~"'¢
_____ a=0 ‘.,:’¢
257
= 15p  mmmmeees a=1 g
= o
T [ == - a=2 PP Sl
L e
5 1.0—<sgmc=—c=== PrEa <
8 TSRTEER 7
~ S -
S St -
0.5¢
0.0k, . . . . d
0 20 40 60 80 100
b
FIG. 3. Curves of heat capacity ratio cy(a,b)/cr(a,0) with

respect to b for a =0, 1, 2.

(43)

T 122 4
LT’

120 B =0,

{ 5 eBT?, B #0,
which decreases to zero as T — 0. We can see that the
existence of a magnetic field makes the asymptotic behav-
ior of the energy density become 72 instead of 7* as T — 0.

In Fig. 3, we plot the curves of heat capacity ratio
cr(a,b)/cr(a,0) with respect to b for a = 0, 1, 2, where
there are also extrema. For the high-temperature limit, the
heat capacity becomes

e?B?
T 242T

e
30

3

cr (44)

For a low-temperature limit with a = 0, the heat capacity
becomes

LeBT, B#0,
Cr = { 2 (45)

1z 3 —
7%, B=0,

which tends to zero as T — 0. Similar to the case of energy
density, the existence of a magnetic field makes the
asymptotic behavior of the heat capacity become T instead
of T> as T — 0.

C. Pressure and entropy density

In Figs. 4 and 5, we plot the curves of pressure ratio
pla,b)/p(a,0) and entropy density ratio s(a,b)/s(a,0)
with respect to b for a = 0, 1, 2, which are both increasing
functions of b; i.e., the existence of the magnetic field can
enhance the pressure and entropy density of the system.

For a high-temperature limit, the pressure and entropy
density become, respectively,

In*,_, €*B* [(e*B?
= 360 T In < > (46)

P 9672 T
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FIG. 4. Curves of pressure ratio p(a, b)/p(a,0) with respect to
b fora=0,1, 2.
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FIG. 5. Curves of entropy density ratio s(a,b)/s(a,0) with

respect to b for a =0, 1, 2.

and

¢’B?
247°T"

_T7 s
90

N

(47)

For a low-temperature limit with a = 0, the pressure and
entropy density become, respectively,

1 2
s eBT?, B#0,

pz{w4 (48)
mT, B:O

and

5eBT, B#0,

s=4 2 (49)
T3, B=0,

which both tend to zero as 7 — 0. Similar to the cases of
energy density and heat capacity, the asymptotic behaviors

0.08} Pt
b d
0/'
'/
& 0.06] %
= L e —————————
T P
) o
R e
= [T
e TTEET a=0
0.02} .’,:7', ________ e
l ----- - a=2
0.00 1! ‘ ‘ ‘ ‘ ]
0 20 40 60 80 100

FIG. 6. Curves of magnetization intensity M(a,b)/(eT?) with
respect to b for a =0, 1, 2.

of the pressure and the entropy density as 7 — 0 are also
changed due to the existence of a magnetic field.

D. Magnetization intensity and
magnetic susceptibility

In Fig. 6, we plot the curves of magnetization intensity
M(a, b) with respect to b for a =0, 1, 2. As b increases,
the magnetization intensity increases rapidly from zero to
saturation. The saturation value M, depends on the chemi-
cal potential as follows:

eT? 3a?

Then we have M(0) = 0.042¢T?, My(1) = 0.054eT?, and
M (2) = 0.092¢T?, which are consistent with the satura-
tion values in Fig. 6.

Since the magnetization intensity M(a,b) becomes
saturated as b — oo, the magnetic susceptibility y(a, b)
tends to zero as b — oco. In Fig. 7, we plot the curves of
magnetic susceptibility y(a, b) with respect to b for a = 0,
1, 2, where the curves tend to zero as b — oo and tend to

(50)

0.020
i
ty
ey TEmET a=0
0.015F %
oo mmmmeees a=1
\\‘.‘ \\
Nm \“‘ ‘\’ ----- - a=2
S 0010 N\ e,
8 * S
= ~.
AN A = SeQ
AN ... ~ -.
0.005 SN T~
\~§~ ....... -s_‘_-.-
0.000 L. ‘
0 5 10 15 20
b

FIG. 7. Curves of magnetic susceptibility y(a,b)/e*> with
respect to b for a =0, 1, 2.

056004-7



ZHANG, FANG, GAO, and HOU

PHYS. REV. D 102, 056004 (2020)

divergent as b — 0. In fact, the magnetic susceptibility in a
weak magnetic field limit or high-temperature limit

becomes
e? e*B?
=———In|—|, 51
G n( 4 > (1)

which is logarithmically divergent as B — 0 or T — 0.
The InT term in Eq. (51) was also derived in a recent
article [45], where the authors have calculated the high-
temperature expansion of the magnetic susceptibility of
QCD matter with a physical quark mass, and the leading-
order term is just In 7 with the same coefficient as ours.

In a low-temperature limit, i.e., b — oo, the magnetic
susceptibility tends to zero, indicating that the system
reaches the magnetic saturation state. This is consistent
with the numerical result of the lattice method for a QCD
matter system [45,46].

In Fig. 7, we can see that y is always positive, so the
chiral fermion system is a paramagnetic system.

E. A brief summary

We have studied the effect of a magnetic field on the
thermodynamics of the right-handed fermion system. All
results calculated above can be directly generalized to the
left-handed case. In Table I, we list the leading-order terms
of all intensive quantities of the chiral fermion system as
b — 0 and b - oo, with a = 0.

In summary, we conclude that the magnetic field has great
influence on the thermodynamics of the chiral fermion
system. In high-energy heavy ion collisions, a new matter
state “quark gluon plasma” can be created [47—49], where
the quarks and gluons are deconfined from the interior of the
hadrons due to the high temperature and the chiral symmetry
may be recovered [50,51]. For peripheral collisions,
a huge magnetic field will be produced in the collision
region [11-14], which may considerably change the proper-
ties of the deconfined matter state and, hence, influence the
distributions in phase space of the final particles from the
collision.

VI. ENERGY-MOMENTUM TENSOR

In this section, we will show how the nonzero compo-
nents of 7# of the right-handed fermion system are related
to g(a,b). The 00 component of T# is just the energy
density & which has been calculated through the grand

partition function in Secs. III and IV. Now we want to
calculate other components of 7+.

Since the thermodynamic system is located in a uniform
magnetic field B = Be,, all thermodynamic quantities
will be unchanged under the rotation along the z axis.
The rotation by an angle ¢ along the z axis can be
represented by the following matrix:

1 0 0 0
0 cos —sin 0
Ny = | O P mend (52)
0 sing cos¢p O
0 0 0 1

In order to keep T* unchanged under the rotation
matrix A#,(¢) for any angle ¢, ie., T" = A¥, AT,
the components of 7+ must satisfy these conditions:

TOl — TO2 — T12 — T13 — T23 — 0, Tll — T22; (53)
i.e., the nonzero components are 7%, 733, T! = 722 and
T%. According to Eq. (3), the trace of T* is zero, so the
independent components are 7%, T'!, and 703,

We cannot directly calculate T'' and 7% by the grand
partition function. Alternatively, we appeal to the ensemble
average approach, in which all macroscopic quantities are
the ensemble average of normal ordering of the corre-
sponding operators. The symmetric and gauge-invariant
energy-momentum tensor is

TW = = (yhic! DYy + wiic’Diyg:),  (54)

N =

where o = (1,6), D' = (0,,—0,,—0, + ieBx,—0,), the
angular brackets mean ensemble average, and the double
dots enclosing the field operators mean normal ordering as
adopted in Refs. [38,52]. In Appendix F, we have compared
the results of normal ordering and un-normal ordering
descriptions. For the un-normal ordering description,
one should add the vacuum term to the grand partition
function in Eq. (5). The un-normal ordering description is
adopted in Ref. [35], where the contribution of a vacuum
term is considered, resulting in a regular form of eB, i.e.,
(eB)*In(A?/T?)), with A the renormalization scale, and
the logarithmic term of eB disappears. For the QED case,
the vacuum term contributes a similar logarithmic term
of the renormalization scale A, which is related to the beta
function of the theory [53].

TABLE I. Leading-order terms of all intensive quantities of the chiral fermion system as b — 0 and b — oo (with a = 0).
Quantities n e x p* pxp s x p3 M x p? ¥ cr x T x p*
b—=0 0 122 | b2Inb? 772 _ b*Inb? 12 b _eblnp? _ &b 12 _ b 722 | b*Inb?
o0 oo 180 ~ 19247 5 1 4872 2477 15~ 4877 780 T 10202
b b e b
b— o 0 7 o 12 0 i 0

056004-8



THERMODYNAMICS OF CHIRAL FERMION SYSTEM IN A ...

PHYS. REV. D 102, 056004 (2020)

In the following, we will calculate 7%, T'', and 7%
through ensemble average with the normal ordering
description. In order to calculate Eq. (54), the field operator
wr(x) must be expanded by the orthonormal and complete
eigenfunctions in Eq. (4) as follows [38]:

WR(x) = Z[QO(k,w kz)e(kz)l//RO(ky’ kz;x>
ky k.
+ by (k. k )0<—k W ro(ky. ko3 x)]

T

n.ky.k.

+bj;(ky’kz)l//Rn—(ky’kz;x)]’ (55)

WRrH— (k kz;x)

where a,, a}, b,, and b} are annihilation and creation
operators for fermions and antifermions. As calculated in
Ref. [38], the ensemble average of normal ordering for

aI,a,, and b,,bZ 1s

(oK Jaj(ky Kaoky ) = o (56)
(0= Dotk Kb}k k) = = S (s)
(sl kg by o)1) = e (59

(3D, hys KDy )3) = = s (59)

e[}[En(kz)+/4R] + 1 ’

Substituting Eq. (55) into Eq. (54) and making use of
Egs. (56)—(59) gives

0 _ eB [ 1 1
T - (27[)21 dekz (eﬁ(kz_/‘R) _|_ 1 + eﬁ(kz_/"R) + 1> ’

(60)

(eB)* [
= |k,

1
x Z <€ﬁ[E ke)=4) —+ 1 eﬁ[En(kz)‘H‘] —+ 1> ’ (61)

We can see that only the lowest Landau level (n = 0)
contributes to 7%, while T'! comes from higher Landau
levels (n > 0). Further calculation gives

b 7 a2
703 = — (-4 =), 62
8ﬂ2ﬂ4(6+2> (62)

Tu:;&:_bgﬁ(mm. (63)

We can see that 7% is linear only in b. In fact, the space
component of the particle number current is ab/(8z%4°),
also linear in b as calculated in Ref. [38], which is called the
chiral magnetic effect. When a =0 (i.e., the chemical
potential is zero), the particle number current disappears,
but a nonzero term eBT?/24 remains in T%, which is
reasonable since the same number of fermions and anti-
fermions move in the same direction along the z axis as
discussed in Ref. [38], resulting in a zero value of the net
particle number current and a nonzero value of the energy
current.

For the left-handed fermion system, T'! can be obtained
by simply replacing a = pup with fu; in Eq. (63).
However, T% for the left-handed fermion system can be
obtained by space inversion in Eq. (62), and the result is

b 2 2 2
~ 7 <%+ﬁ£“>. (64)

The total T% of the chiral fermion system is the
summation of the results of left-handed and right-handed
fermion systems, and the result is eBpuus/(22%) with y =

S(ug +pr) and ps =3 (ug — pr)s
with Ref. [17].
From the series expansion of g(a, b), we can obtain

1 7t n?a®>  a*
e [<m+T+€>

PIinb?: b2 £3/2+C(a)
+ +241 < 2GS )

96
Yt
1

which is consistent

Tll —

1+ 2) B (@92
(65)
Since g, 7" =0 and T'' = T?, the result for 7% is

733 = 70—t = AL (;;b) =D (66)

so we conclude that 733 is just the pressure p of the system.

VII. SUMMARY

In this article, we have studied the thermodynamics of
the chiral fermion system in a uniform magnetic field,
where we ignored the interaction among all fermions. Since
the equations of motion for left-handed fermions and right-
handed fermions decouple, we did all the calculations for
the case of the right-handed fermion, which can be
generalized to the left-handed case directly. From the
Landau levels of a single right-handed fermion in a uniform
magnetic field, we construct the grand partition function of
this thermodynamic system, through which all intensive
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quantities can be obtained as a summation over all
Landau levels. Making use of the Abel-Plana formula,
the summation over all Landau levels can be transformed
into integrations, which can be more readily dealt with
analytically. We expanded these thermodynamic quantities
as series with respect to a dimensionless variable
b=2eB/T?. We find that the series expansions of energy
density, pressure, magnetization intensity, and magnetic
susceptibility contain a singular term with In 5%, which
indicates that these thermodynamic quantities are not
analytic at b = 0. Meanwhile, the series expansions of
particle number density, entropy density, and heat capacity
are power series of %, which indicates the analyticity of
them at b = 0. We plot the curves of these thermodynamic
quantities with respect to b with zero and finite chemical
potentials, respectively, and discuss the asymptotic behav-
iors of these quantities in strong and weak magnetic field
limits and low- and high-temperature limits. All elements
of the energy-momentum tensor are also calculated. We
conclude that the magnetic field can have an important
influence on the thermodynamics of the chiral fermion
system, which may be helpful to study the properties of the
quark gluon plasma state created in high-energy heavy ion
collisions.
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APPENDIX A: ABEL-PLANA FORMULA

In mathematics, the Abel-Plana formula is a summation
formula which was discovered by Abel (1823) and Plana
(1820) independently [44]. It states that, if a function F(z)
is analytic at Rez > 0 and F(z) — 0 as |z| — oo along the
positive real axis, then

%]—"(0)+i]—"(n): / S AF() v / dtw.

n=1 0 0 ¢ -
(Al)

In Sec. IV, we met with the following function:

b
gla,b) = 4]12[) [ fla,s +Zf nb+s)}
(A2)
where b > 0 and f(a, x) is defined as
fla,x) =In(1+e* ™) +1In(l +e97). (A3)

We can see that the function F(z) = f(a,Vzb + s?)
satisfies F(z) — 0 as |z| - oo along the positive real axis.
In order to apply the Abel-Plana formula to the summation

in the integrand in Eq. (A2), the function F(z) =

f(a, Vzb + s*) must be analytic at Rez > 0. The possible
poles appear in F(z) when

+ete-Varts — g (A4)
which implies
1
z= b[a —(2n+1)27% = s> F i(4n + 2)na]
(n=0,%1,%2,..). (AS)

In order to make F(z) analytic at Rez > 0, the poles in
Eq. (AS) must lie in the range Rez < 0; i.e., the inequation
a* — (2n + 1)*z% — s> < 0 must be satisfied for any n and
s, which indicates —z < a < 7.

APPENDIX B: EXPANSION OF g(a,b) AT b=0

Define an auxiliary function F(a,x) as

F(a,x) = Aw dsf(a, Vx> + s?),

where f(a,x) =1In(14 e“ ™) +1In(1 4 e™“*) as defined
in Eq. (20). Then g(a, b) in Eq. (23) becomes

(B1)

(a.b) = T2 +a2+ at
NEP2) =360 T 12 " 2412

+L " l,/°° th(a, \Vith) — F(a, \/—ll‘b)'
472 0 e — |
(B2)

Now we will expand F(a, x) at x = 0 in the following. By

the variable transformation y = v/x* + 5%, F(a, x) can be
written as

F(a,x) = (B3)

. y
dy ——===f(a.y).
N,

The factor y/+/y? — x? in the integrand in F(a, x) can be
replaced by the following Taylor expansion:

y i(Zn—l)!!xz”

PR 2n)11 Y (B4)

yo—=x n=0

where we have defined (—1)!! =0!! = 1. Then F(a,x)

becomes
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= (2n-1) ”

= oo d,(a,x), (BS)
where we have defined d,(a, x) as
1

dy(a,x) = g dyyzn fla.y). (B6)

The derivative of d,(a,x) with respect to x is
: x| 1
dy(a, x) = TS [f(a, x) + x| R (B7)

Note that the factor f(a,x)+ x in Eq. (B7) is an even
function of x and can be expanded at x = 0 as follows:

fla.x) +x =" cpla)x* (B8)
k=0
From d),(a, x), we can derive d,(a,x) as
d 2k=2n
n(a 'x |X| sz 27’[ + 1
Cl(a)+§lnx s n:l,
L oo (B9)
Cn(a)—mx n’ l’l;él,

where C,(a) are independent of x, which will be calcu-
lated later.
Making use of the following two identities:

S n-D1 1 11
— 245, (BIO
nz @i an-1) 22tz (B0
= @2n-Dl 1
—0 (k=0,1,2,...), (Bll
;0 @i a1 ) (B

we can obtain F(a,x) in Eq. (B5) as
1, 5, (11 1 o
F(a,x):CO(a)+Zx Inx*+ (—-—=In2+-C(a)

472 2
DI

n=

(2n-1) ” n
2 C,(a)x™. (B12)

In the following, we will extract C,,(a) in d,,(a, x). When
n =0, we have Cy(a) = dy(a,0) = n*/6 + a*/2. When
n > 0, through integration by parts we have

=R2n—-k=-2)! 1 d

dn(a,x) = 2o - 1)l ke T g (4:)
Inx 4!
NEED Ik

2n

1 oo d
—(2’1_])‘1 dylnyﬁf(a,y).

Making use of Eq. (B8), we obtain

(B13)

1 o d*"
Cn(a):_én.l_mA dylnymf(a,y). (B14)

From Eq. (B2), we can see that the terms with x**(n > 0)

in F(a, x) do not contribute to g(a, b), so we can express
F(a,x) as follows:

1 1 1 1
F(a,x) :szlnx2+ <———ln2—|— Ci(a )>

4 2
= (4n + 1! a2
+chzn+l(a)x "
+ Z(terms with x*1). (B15)

3
Il
o

Substituting Eq. (B15) into Eq. (B2), we have

( b) 7ﬂ2+a2+ at
ab)=—+— -
g 360 12 ' 2472

1 & (dn+1)!!

bzlan b2 el+C] (a)
38422 9672 T\ 2G°

o2 71m n12Can1(@)0? 2, (B16)
where we have used the following integrations:
o tInt 11
dt =——-IngG, B17
/0 1 24 2" (B17)
0 t2n+1 BZ 5
dt ——— = (=1)" —= >0), (BI18
[T = s w0, (B1y)

with Glaisher number G = 1.282427...
numbers B, defined as

and Bernoulli

t =B, ,
ef—1zz_gﬁt (B19)
We list some Bernoulli numbers B5,,, as follows:
1 1 1 1
Bz 6 64 30° BG 42’ BS 30 ( 0)
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APPENDIX C: ASYMPTOTIC BEHAVIOR
OF C2"+1(a) ASa - oo

To study the asymptotic behavior of C,,,, (@) as a — o,
we rewrite Cs,,((a) as

1 d4n+1

Conti(a) = @n+ 1)l a1

_5n.0 o

©o 1 1
dyl — . (c1
x [) y ny(ey—Hl +1 ey 4 1) ( )
Making use of the following integration formula:
o0 1 1
dyl -
A Y ny<ey+" +1 e+ 1)
d . . .
o {fLi-e) -Li-el] L (e
ds s=1
we have
1 d4n+1
Copy1(a) = (y = 1)3,0 + Gn 1)l dd™
d
Lo -t} )

where Lig(z) is the polylogarithm function defined as

(C4)

This definition of Lig(z) is valid for arbitrary complex
number s and for |z| < 1, and it can be extended to |z| > 1
by the process of analytic continuation. Making use of the
following asymptotic formulas for Li,(z):

limLi, (z) = z, (CS)

z—0

aS
ImLi(—e9) = ——— —-1,-2,-3,...), Co6
Jim Liy (—e?) o) (s# ). (Co)
we have

lim |4 (Li, (=€) — Li, (=e~4))

=(l—-y)a—alna,
a=oo|ds s=1

(€7)

where we have used I"(2) = 1 —y. So we obtain

lim Cy,.11(a) = (r = 1)8,0
1 d4n+1

+ WW [(1-7)
1 d4n+]

= " ln+ a4

{—l—lna, n=0,
= 1 —4n
ETera U

n>0,
which shows that C| (a) - —oco and C,,,,;(a) — 0 (n > 0)
as a — oo. Furthermore, we have

a—alnd]

(C8)

1
lim C2n+l (a)

[— —4n—1 >
Jlim P - 0(n >0).

(€9)

APPENDIX D: EXPANSION OF C,,,(a) AT a=0

To expand C,,,(a) at a =0, we use the following
expression of C,, (a):

1
C =00+ ——

1 1

When n > 0, we have

2 An+1
:m/ dylny s amt

. a 1
XZ 2k'dy2k( +1>

d4n+1
Cdylny 4y

(D1)

C2n+1 ((1)

0
2k

2 a
(4n 4 1)! ; (2k)!
- 1 g4nt2k 1
dy — ). (D2
* A Yy dy <€y + 1) (B2)

In order to calculate the integration in the second line of
Eq. (D2), we make use of the following identities:

o0 1
_ex) __/ dy -
0 y

()L (

(Res>0), (D3)

Sy 41

d

aLis(_ex) = Lis—l (_ex)’

(D4)

hInr(s)Lis—Zn (_ 1) =

(22n+1 _
s—0

1)¢'(-2n) (n=1,2,3,...),
(D5)

and then we can obtain
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/ood 1 g4t2k 1
o ydy4n+2k ey —I—l

. 1 d4n+2k 1
o ()
dn+2k
= ~liml'(s) {4—+2'€L - eX)] x=0
= —lvin(])r(s)Lix—4n—2k(_])
_ (1 _ 2411+2k+1)é’/(_4n — 2k) (D6)
So Eq. (D2) becomes
i 4n42k+1 _ a*
C2n+1 a 2o ( —n= 2k)
(4” +1)!= 2ot
(D7)

When n = 0 in Eq. (D1), a similar calculation gives

Ci(a)=Ind+y— 1423 (2% —1)¢/(~2k) = .
2 (2k)!
(D8)
The general expression of C,,(a) for n >0 is
= (In4 1)o >
Cypri(a) = (Ind +y—1)5, +m
S 2kl _ a*
s N (24 ) (—dp — 2k) o
kZ; (2k)!
(D9)
Especially, when a = 0, we have
20 (—4
Cy1(0)=(Ind+y—-1)5,, +M(24n+1 —1). (D10)

(4n+1)!

APPENDIX E: ASYMPTOTIC BEHAVIOR
OF g(ab) ASb -

To study the asymptotic behavior of g(a, b) as b — o,
we may rewrite g(a, b) in Eq. (23) as

7% a2 a* 1 0
b) = — xi|d
9la.b) <360+12+24ﬂ>+4 2XLA g
w  fla,Vit+s*)—f(a,V—it+s?)
X o dt o2mi/b _ g

(E1)

where f(a,x) =1In(1 + ™) 4+ In(1 + e*) as defined
in Eq. (20). As z —> 0, we can expand 1/(e—1) as
follows:

111, z 2 bl

-1 z 2

12 720 30240

+---. (E2)
So as b - o (i.e., 1/b — 0), g(a, b) becomes
Tr a? a* b [
gla.b) = <360+12+24ﬂ ) +8_753X1/0 a
1 )
x;/ ds[f(a, \/it+s2) —f(a, \/—it—i—sz)}
0

—xz/ dt/ ds

~r(av/ie )] + o(g). (E3)

lH—s)

Fortunately, the two integrations in Eq. (E3) can be
analytically integrated out as follows:

[ o))

=—+—a , (E4)

2
/ dt/ ds lt+S)—f<a,\/—it+S2>:|
Tn* 2x? .,

= — —2 - . ES
45 T3 @3 (ES)

So we have

b @), (E6)

li b
Jimg(a.b) = 1o

APPENDIX F: NORMAL ORDERING AND
UN-NORMAL ORDERING

The explicit form of energy density & expressed by a
summation of all quantum states in Eq. (39) can also be
derived from the ensemble average of normal ordering
(NO) of the energy density operator as described in Sec. VL.

If we adopt un-normal ordering (UNO), then Eqs. (57)
and (59) become, respectively,

0=kl B}k k) =00 | 1= ).
(F1)
(bl kBl ) = 1 = (F2)

eﬁ[En<kz)+/4R] + 1

This UNO description is also used in recent articles [54,55].
Now the ensemble average of the energy density operator
becomes
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1

+ eﬁ[En<k:)+/4R] + 1 B 1:| ’

(F3)

where the subscript “un” of ¢,, means un-normal ordering.
We can see that the UNO description leads to the infinite
vacuum energy in &,,. Comparing Eqgs. (39) and (F3), it is
equivalent to do the following regularization:

& = €— lim e (F4)
HR—00

Making use of two dimensionless variables a = fuyp and
b = 2eBp?* instead of ug, B, and eB, Eq. (F4) can be
rewritten as

em(a,b) = e(a,b) — lime(a, b). (F5)

a—oo

From the expression of &(a,b) in Eq. (29), Eq. (F5)
becomes

( b)— +; ﬁ+a_4
fnl D) =0T 2 |\ T2 T

©_(4n+1)!!
D i G 1) By, oy (a)b* 2
;(4n+4)!!

(F6)

where C3) . | (a) is defined as

C3h1(0) = Cora(@) = im Capa(a)  (F7)

and g is just the familiar infinite vacuum energy, as in the
free field theory [42,56]. This infinite vacuum energy
cannot be detected experimentally, since only the energy
difference from the ground state can be observable. It is
worth pointing out that the term 5% In b? in ¢ disappears in
&, and the b? order of &, is consistent with Ref. [35].

In Eq. (C8), we obtained the asymptotic behavior of
Cruy1(a) as a — oo:

—1—1In a, n=20

)a‘4”, n>0,

I (F8)
4n(4n+1

lim C2n+1(a) = {

which shows that Cy(a) - —oo0 and Cy,,, {(a) = 0 (n > 0)
asa — oo. Sowe have C3), | (a) = Cy,1(a) forn > 0. For
n = 0, another expression of C;(a) is useful:

o ] 1 1 1
Cila)=y—-1- [ dy- -—),
l(a) 4 A yy <ey—a+1+ey+a+1 e)')

(F9)

which leads to

o ] 1 1
Ci"(a) = dy—(1- - . F10
") A yy ( T4+ 1 e+ 1) (F10)

Note that C{"(a) is a positive infinity, which is expected, since
Ci(a) - —oo as a — oo. This expression of C}"(a) can also
be obtained in Ref. [35], where the authors adopt dimensional
regularization to deal with the divergence and obtain a regular
term In(A?/T?) instead of the singular term In(eB/T?) in the
energy density &,,, with the renormalization scale A.

Since only the derivative of C,,. (a) appears in the
expression of the particle number density 7 in Eq. (28), and
Ch,.1(a) = 0 as a - oo as calculated in Eq. (C9), ie.,
Cy. 1 (a) = €5, (a), the UNO and NO descriptions can
obtain the same expression of the particle number density 7,
which is also consistent with Ref. [35].
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