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We construct the grand partition function of the system of chiral fermions in a uniform magnetic field
from Landau levels, through which all thermodynamic quantities can be obtained. Making use of the Abel-
Plana formula, these thermodynamic quantities can be expanded as series with respect to a dimensionless
variable b ¼ 2eB=T2. We find that the series expansions of the energy density, pressure, magnetization
intensity, and magnetic susceptibility contain a singular term with ln b2, while the particle number density,
entropy density, and heat capacity are power series of b2. The asymptotic behaviors of these
thermodynamic quantities in extreme conditions are also discussed.
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I. INTRODUCTION

The properties of matter under an electromagnetic field
have been studied extensively for years in many fields of
physics. It is well known that a strong electric field can lead
to pair production of fermions in QED vacuum, which is
called the Schwinger mechanism [1–3]. Recently, the
effect of a magnetic field on the Schwinger mechanism
was studied through the approaches of an equal-time
Wigner function and AdS=CFT correspondence [4–6]. In
astronomy, compact stars, such as white dwarfs, neutron
stars, and quark stars, often rotate very rapidly, which can
produce a magnetic field as strong as 1012 − 1015 G [7,8].
This strong magnetic field may have a great impact on the
state of compact stars [9,10]. In high-energy physics, such
as peripheral high-energy heavy ion collisions, a strong
magnetic field in the collision region is also produced
[11–14] and may induce the currents of charged particles
along the direction of the magnetic field, which is called the
chiral magnetic effect [15–19]. In condensed matter

physics, the strong magnetic field can reduce a chiral
condensate, which is called magnetic catalysis [20–25].
Meson condensation under the background of the magnetic
field together with an electric field or rotation is also discu-
ssed in Refs. [26–29]. The magnetic field also has an
important influence on the thermodynamics and transport
properties of the system of massive fermions [30,31]. In
relativistic hydrodynamics, theWigner function approach is
often used to study the hydrodynamics of a fermion system
in a general electromagnetic field [17,32–35]. The chiral
kinetic theory in the electromagnetic field is also studied
recently [36,37].
In this article, we study the influence of a magnetic

field on the thermodynamics of the chiral fermion system,
where we ignore the interaction among the fermions. Since
the equations of motion for left-handed and right-handed
fermions decouple, we will consider only the case of right-
handed fermions in this article, and all results can be
generalized to the left-handed case directly. In the previous
work [38] by some of us, the electric current of the right-
handed fermion system along the magnetic field, which is
explained as the chiral magnetic effect, has been obtained
through the ensemble average of normal ordering of the
corresponding operator. In this article, we will use the
method of the grand partition function instead, from which
we can obtain all knowledge of the thermodynamic system.
Through solving the stationary Schrödinger equation of a
single right-handed fermion in a uniform magnetic field, we
can obtain a series of Landau levels, from which we can
construct the grand partition function. According to the
standard procedure in quantum statistical mechanics, all
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thermodynamic quantities can be obtained by the grand
partition function. In fact, for the thermodynamic system of
massive fermions, the proper-time method is the most
popular method to calculate the grand partition function
[39–41]. However, for the thermodynamics of the chiral
fermion system in this article, wewill make use of the Abel-
Plana formula to calculate the grand partition function. In the
expression of the grand partition function, there is a
summation over all Landau levels, which is difficult to deal
with analytically. Fortunately, there is an Abel-Plana for-
mula which can transform the discrete summation into
integrations. Then we can express the grand partition
function as a two-dimensional integration, which can be
expanded as a series with respect to a dimensionless variable
b ¼ 2eB=T2, with e the electric charge of the right-handed
fermion, B the magnetic field, and T the temperature of the
system. In the series, besides the terms with b2n, there is an
additional singular term b2 ln b2, which indicates that the
grand partition function is not analytic at b ¼ 0, leading to
the nonanalyticity of some thermodynamic quantities at
b ¼ 0. We investigate the asymptotic behaviors of these
thermodynamic quantities in extreme conditions, such as
weak and strong magnetic field limits and high- and low-
temperature limits. Our study of the effect of the magnetic
field on the thermodynamics of the chiral fermion system
may have an important theoretical meaning for research on
the quark gluon plasma statewhich can be produced in high-
energy heavy ion collisions.
The rest of this article is organized as follows. In Sec. II,

the Landau levels of a single right-handed fermion in a
uniform magnetic field are briefly listed. In Sec. III, we
construct the grand partition function from Landau levels
and express all thermodynamic quantities by the grand
partition function. In Sec. IV, all thermodynamic quantities
are expanded as series with respect to a dimensionless
variable b. In Sec. V, we study the asymptotic behaviors of
these thermodynamic quantities in extreme conditions. In
Sec. VI, all elements of the energy-momentum tensor are
calculated. This article is summarized in Sec. VII.
Throughout this article, we adopt natural units where

ℏ ¼ c ¼ kB ¼ 1. The convention for the metric tensor is
gμν ¼ diagðþ1;−1;−1;−1Þ. We use the Heaviside-Lorentz
convention for electromagnetism and the chiral representa-
tion for gammamatrices where γ5 ¼ diagð−1;−1;þ1;þ1Þ,
which is the same as Peskin and Schroeder [42].

II. LANDAU LEVELS FOR A SINGLE
RIGHT-HANDED FERMION IN
A UNIFORM MAGNETIC FIELD

The Lagrangian of a chiral (massless) fermion field ψ
under the background of a uniformmagnetic fieldB ¼ Bez is

L ¼ ψ̄iγ ·Dψ ; ð1Þ
where Dμ ¼ ∂μ þ ieAμ, with e the electric charge of
the fermion and Aμ the gauge potential chosen as

Aμ ¼ ð0; 0; Bx; 0Þ. In this article, we set eB > 0 for sim-
plicity. The results of all thermodynamic quantities in this
article can be extended to the range eB < 0.
In the chiral representation of gamma matrices, we can

write ψ ¼ ðψL;ψRÞT , where the two-component spinors
ψL and ψR are called, respectively, left-handed and right-
handed fermion fields. The Euler-Lagrange equation of the
Lagrangian in Eq. (1) gives

i
∂
∂tψL ¼ −iσ · DψL; ð2Þ

i
∂
∂tψR ¼ iσ · DψR; ð3Þ

where σ ¼ ðσ1; σ2; σ3Þ are Pauli matrices and D ¼
ð−∂x;−∂y þ ieBx;−∂zÞ. Since the equations of motion
for ψL and ψR decouple, we discuss only the right-handed
fermion field in this article. All results can be directly
generalized to the left-handed case.
The stationary Schrödinger equation iσ · DψR ¼ EψR

gives a series of Landau levels and eigenfunctions as
follows [38]:

n¼ 0; E¼ kz; ψR0ðky;kz;xÞ ¼
�
φ0ðξÞ
0

�
1

L
eiðykyþzkzÞ;

n > 0; E¼ λEnðkzÞ;

ψRnλðky;kz;xÞ ¼ cnλ

�
φnðξÞ

iFnλφn−1ðξÞ

�
1

L
eiðykyþzkzÞ; ð4Þ

where λ¼�1, ξ¼ ffiffiffiffiffiffi
eB

p
x−ky=

ffiffiffiffiffiffi
eB

p
, EnðkzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2neBþk2z

p
,

Fnλ ¼ ½kz − λEnðkzÞ�=
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
, jcnλj2 ¼ 1=ð1þ F2

nλÞ, and
φnðξÞ is the nth harmonic oscillator function along the x
axis whose center is x ¼ ky=eB. We have assumed that the
eigenfunctions are set up in a box with sides of lengths L,
i.e., 0 < x; y; z < L, and satisfy periodic boundary con-
ditions in the y axis and z axis, i.e., ky ¼ 2πny=L, kz ¼
2πnz=L ðny; nz ¼ −∞;…;∞Þ. The condition that the
center of the oscillation along the x axis is inside the
box leads to 0 < ny < eBL2=ð2πÞ. Since the energy level
EnðkzÞ is independent of ky, the degeneracy of each Landau
level is eBL2=ð2πÞ.

III. GRAND PARTITION FUNCTION AND
THERMODYNAMIC QUANTITIES

We consider a system of right-handed fermions in a
uniform magnetic field B ¼ Bez, which is in equilibrium
with a reservoir with temperature T and chemical potential
μR. The interaction among the fermions in this system is
ignored for simplicity. From the Landau levels for a single
right-handed fermion in Sec. II, we can construct the grand
partition function lnΞ of this system as follows:
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lnΞ ¼
X
ky;kz

½θðkzÞ lnð1þ ea−βkzÞ þ θð−kzÞ lnð1þ e−aþβkzÞ�

þ
X∞
n¼1

X
ky;kz

h
ln
�
1þ ea−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2neBþk2z

p �

þ ln
�
1þ e−a−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2neBþk2z

p �i
; ð5Þ

where β ¼ 1=T and a ¼ βμR. The two theta functions θðkzÞ
and θð−kzÞ in lnΞ are necessary, as discussed in Ref. [38].
The vacuum terms in lnΞ have been thrown away.
The summations for ky and kz in Eq. (5) can be replaced
by the degeneracy factor eBL2=ð2πÞ and the integral
ðL=2πÞ R dkz, respectively. Defining a dimensionless vari-
able b ¼ 2eBβ2, lnΞ can be written as

lnΞ ¼ V
β3

gða; bÞ; ð6Þ

where V ¼ L3 and gða; bÞ is defined as

gða; bÞ ¼ b
8π2

Z
∞

0

ds½lnð1þ ea−sÞ þ lnð1þ e−a−sÞ�

þ b
4π2

Z
∞

0

ds
X∞
n¼1

h
ln
�
1þ ea−

ffiffiffiffiffiffiffiffiffiffi
nbþs2

p �

þ ln
�
1þ e−a−

ffiffiffiffiffiffiffiffiffiffi
nbþs2

p �i
: ð7Þ

From the grand partition function lnΞ, the thermody-
namic quantities of the system, such as particle number
N ¼ Vn, energy U ¼ Vε, pressure p, entropy S ¼ Vs, and
magnetization intensity M, can be expressed as

N ¼ ∂
∂a lnΞ; ð8Þ

U ¼ −
∂
∂β lnΞ; ð9Þ

p ¼ 1

β

∂
∂V lnΞ; ð10Þ

S ¼ lnΞþ βU − aN; ð11Þ

M ¼ 1

β

∂
∂B

�
lnΞ
V

�
: ð12Þ

Making use of Eq. (6), all intensive quantities, such as
particle number density n, energy density ε, pressure
p, entropy density s, magnetization intensity M, magnetic
susceptibility χ ¼ ∂M=∂B, and heat capacity cT ¼ ∂ε=∂T,
can be expressed by gða; bÞ as follows:

n ¼ 1

β3
∂
∂a gða; bÞ; ð13Þ

ε ¼ 1

β4

�
3 − 2b

∂
∂b

�
gða; bÞ; ð14Þ

p ¼ 1

β4
gða; bÞ; ð15Þ

s ¼ 1

β3

�
4 − a

∂
∂a − 2b

∂
∂b

�
gða; bÞ; ð16Þ

M ¼ 2e
β2

∂
∂b gða; bÞ; ð17Þ

χ ¼ 4e2
∂2

∂b2 gða; bÞ; ð18Þ

cT ¼ 1

β3

�
12 − 3a

∂
∂a − 10b

∂
∂bþ 2ab

∂2

∂a∂bþ 4b2
∂2

∂b2
�

× gða; bÞ: ð19Þ

IV. EXPANSIONS OF INTENSIVE QUANTITIES
WITH RESPECT TO b

To study the influence of the magnetic field on the
thermodynamics of the right-handed fermion system, in
this section we will expand all thermodynamic quantities as
series with respect to b ¼ 2eBβ2.
Defining an auxiliary function fða; xÞ as

fða; xÞ ¼ lnð1þ ea−xÞ þ lnð1þ e−a−xÞ; ð20Þ

then gða; bÞ in Eq. (7) becomes

gða; bÞ ¼ b
4π2

Z
∞

0

ds

�
1

2
fða; sÞ þ

X∞
n¼1

fða;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbþ s2

p
Þ
�
:

ð21Þ

In Appendix A, we have proven that, when −π < a < π,
the summation over Landau levels in the integrand in
Eq. (21) can be transformed into integrations by the
following Abel-Plana formula [43,44]:

1

2
F ð0Þ þ

X∞
n¼1

F ðnÞ

¼
Z

∞

0

dtF ðtÞ þ i
Z

∞

0

dt
F ðitÞ − F ð−itÞ

e2πt − 1
: ð22Þ
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Then gða; bÞ can be expressed as

gða; bÞ ¼
�
7π2

360
þ a2

12
þ a4

24π2

�

þ b
4π2

× i
Z

∞

0

ds
Z

∞

0

dt

×
fða;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
itbþ s2

p
Þ − fða;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−itbþ s2

p
Þ

e2πt − 1
; ð23Þ

where the first term comes from the first integration on the
right-hand side of Eq. (22):Z

∞

0

ds
Z

∞

0

dtfða;
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ s2

p
Þ ¼ 7π4

90
þ π2a2

3
þ a4

6
: ð24Þ

In Appendix B, we obtained the series expansion of
gða; bÞ at b ¼ 0 as follows:

gða;bÞ¼
�
7π2

360
þa2

12
þ a4

24π2

�
−
b2 lnb2

384π2

−
b2

96π2
ln

�
e1þC1ðaÞ

2G6

�

−
1

2π2
X∞
n¼1

ð4nþ1Þ!!
ð4nþ4Þ!!B2nþ2C2nþ1ðaÞb2nþ2; ð25Þ

where G ¼ 1.282427… is the Glaisher number, Bn are
Bernoulli numbers, and C2nþ1ðaÞðn ≥ 0Þ is

C2nþ1ðaÞ ¼ −δn;0 þ
1

ð4nþ 1Þ!
Z

∞

0

dy ln y
d4nþ1

dy4nþ1

×

�
1

eyþa þ 1
þ 1

ey−a þ 1

�
: ð26Þ

In the series of gða; bÞ, besides the terms with b2n, there
is also a single singular term b2 ln b2, which indicates that
gða; bÞ is not analytic at b ¼ 0. When a ¼ 0, as calculated
in Appendix D, the integration in Eq. (26) can be
analytically integrated out:

C2nþ1ð0Þ¼ðln4þγ−1Þδn;0þ
2ζ0ð−4nÞ
ð4nþ1Þ! ð2

4nþ1−1Þ: ð27Þ

Making use of Eqs. (13)–(19), all intensive quantities,
such as particle number density n, energy density ε,
pressure p, entropy density s, magnetization intensity M,
magnetic susceptibility χ, and heat capacity cT, can be
expressed as series of b at b ¼ 0 in the following:

nβ3 ¼
�
a
6
þ a3

6π2

�

−
1

2π2
X∞
n¼0

ð4nþ 1Þ!!
ð4nþ 4Þ!!B2nþ2C0

2nþ1ðaÞb2nþ2; ð28Þ

εβ4 ¼
�
7π2

120
þ a2

4
þ a4

8π2

�
þ b2 ln b2

384π2
þ b2

96π2
ln

�
e2þC1ðaÞ

2G6

�

þ 1

2π2
X∞
n¼1

ð4nþ 1Þ!!
ð4nþ 4Þ!! ð4nþ 1ÞB2nþ2C2nþ1ðaÞb2nþ2;

ð29Þ

pβ4 ¼
�
7π2

360
þ a2

12
þ a4

24π2

�
−
b2 lnb2

384π2
−

b2

96π2
ln

�
e1þC1ðaÞ

2G6

�

−
1

2π2
X∞
n¼1

ð4nþ 1Þ!!
ð4nþ 4Þ!!B2nþ2C2nþ1ðaÞb2nþ2; ð30Þ

sβ3 ¼
�
7π2

90
þ a2

6

�
þ 1þ aC0

1ðaÞ
96π2

b2

þ 1

2π2
X∞
n¼1

ð4nþ 1Þ!!
ð4nþ 4Þ!!B2nþ2

�
4nþ a

d
da

�

× C2nþ1ðaÞb2nþ2; ð31Þ

Mβ2=e ¼ −
b ln b2

96π2
−

b
24π2

ln

�
e5=4þC1ðaÞ

2G6

�

−
1

2π2
X∞
n¼1

ð4nþ 1Þ!!
ð4nþ 2Þ!!B2nþ2C2nþ1ðaÞb2nþ1;

ð32Þ

χ=e2 ¼ −
ln b2

48π2
−

1

12π2
ln

�
e7=4þC1ðaÞ

2G6

�

−
1

2π2
X∞
n¼1

ð4nþ 1Þ!!
ð4nÞ!! B2nþ2C2nþ1ðaÞb2n; ð33Þ

cTβ3 ¼
�
7π2

30
þ a2

2

�
−
1þ aC0

1ðaÞ
96π2

b2

−
1

2π2
X∞
n¼1

ð4nþ 1Þ!!
ð4nþ 4Þ!! ð4nþ 1Þ

× B2nþ2

�
4nþ a

d
da

�
C2nþ1ðaÞb2nþ2; ð34Þ

where we have used the temperature factor β and the
electric charge e to cancel the dimensions of all intensive
quantities. We can see that in the expansions of energy
density ε, pressure p, magnetization intensity M, and
magnetic susceptibility χ, besides the terms with bn, there
is also a term involving ln b2, which is singular at b ¼ 0.
Nevertheless, the expansions of particle number density n,
entropy density s, and heat capacity cT are just power series
of b2; i.e., they are analytic at b ¼ 0.
For the left-handed fermion system, we can simply

replace a ¼ βμR with βμL in the expressions obtained
above for the right-handed fermion system, and all

ZHANG, FANG, GAO, and HOU PHYS. REV. D 102, 056004 (2020)

056004-4



intensive quantities of the chiral fermion system can be
obtained as a summation of the results of left-handed and
right-handed fermion systems.

V. EFFECT OF A MAGNETIC FIELD ON
THERMODYNAMIC QUANTITIES

In this section, we will investigate the effect of a
magnetic field on the thermodynamics of the chiral fermion
system. Since the dimensionless variables a ¼ μR=T and
b ¼ 2eB=T2 are proportional to the chemical potential μR
and the magnetic field B, respectively, we will often use a
and b instead of μR and B to represent the chemical
potential and the magnetic field in the following discussion.
For a fixed chemical potential a, we take Qða; bÞ as the
thermodynamic quantity with nonzero b and Qða; 0Þ as the
one with b ¼ 0.
According to Eqs. (13)–(19) and the integration expres-

sion of gða; bÞ in Eq. (23), we can plot the curves of all
thermodynamic quantities as functions of b and a. The
asymptotic behaviors of all thermodynamic quantities as
b → 0 can be obtained directly by Eqs. (28)–(34). For the
b → ∞ limit, we must make use of the following asymp-
totic formula of gða; bÞ, as calculated in Appendix E:

lim
b→∞

gða; bÞ ¼ b
48π2

ðπ2 þ 3a2Þ: ð35Þ

Then Eqs. (13)–(19) can give the leading-order term for all
thermodynamic quantities as b → ∞.

A. Particle number density

The asymptotic behavior of particle number density ratio
nða; bÞ=nða; 0Þ as b → 0 is

nða; bÞ
nða; 0Þ → 1 −

C0
1ðaÞb2

16ðπ2aþ a3Þ : ð36Þ

Making use of Eqs. (D9) and (C9) in the Appendixes, the
coefficient of b2 in Eq. (36) tends to be −7ζ0ð−2Þ=ð8π2Þ ¼
0.0027 as a → 0 and tends to be zero as a → ∞, which
indicates that in a weak magnetic field limit the enhance-
ment of the particle number density is smaller for a larger
chemical potential. It is worth pointing out that Eq. (36) is
consistent with the second-order result of particle number
density in a weak electromagnetic field expansion by some
of us in Ref. [35], where the Wigner function approach
is used.
The asymptotic behavior of nða; bÞ=nða; 0Þ as b → ∞ is

nða; bÞ
nða; 0Þ →

3b
4ðπ2 þ a2Þ ; ð37Þ

which increases linearly as b → ∞ and increases more
slowly for larger a.

The asymptotic behavior of nða; bÞ=nða; 0Þ as a → 0 is
listed as follows:

lim
a→0

nða; bÞ
nða; 0Þ ¼ 1þ 3b

π2
× i

Z
∞

0

ds
Z

∞

0

dt
1

e2πt − 1

×

2
4 e

ffiffiffiffiffiffiffiffiffiffi
itbþs2

p
�
1þ e

ffiffiffiffiffiffiffiffiffiffi
itbþs2

p �
2
−

e
ffiffiffiffiffiffiffiffiffiffiffiffi
−itbþs2

p
�
1þ e

ffiffiffiffiffiffiffiffiffiffiffiffi
−itbþs2

p �
2

3
5:
ð38Þ

In Fig. 1, we plot the curves of nða; bÞ=nða; 0Þ with
respect to b for a ¼ 1, 2 and a → 0. We can see that the
existence of a magnetic field can considerably enhance the
particle number density, and the enhancement is larger
when b is stronger and a is smaller. The trends of the curves
are consistent with our asymptotic analysis.

B. Energy density and heat capacity

From the expressions of the grand partition function lnΞ
and energyU in Eqs. (5) and (9), we can express the energy
density ε by the following form:

ε¼ 1

V

X
ky;kz

�
kzθðkzÞ

eβðkz−μRÞ þ1
þ ð−kzÞθð−kzÞ
eβð−kzþμRÞ þ1

�

þ 1

V

X∞
n¼1

X
ky;kz

EnðkzÞ
�

1

eβ½EnðkzÞ−μR� þ1
þ 1

eβ½EnðkzÞþμR� þ1

�
:

ð39Þ

The physical meaning of Eq. (39) is very clear: The whole
energy of the system is jointly determined by the energy
and the particle number of every quantum state and the
degeneracy factor eBL2=ð2πÞ of every Landau level. As the
magnetic field increases, the particle number of every state

will decrease rapidly as e−
ffiffi
b

p
due to Fermi-Dirac distribu-

tion; meanwhile, the product of the energy and the

a 0

a 1

a 2

0 5 10 15

1.0

1.2

1.4

1.6

b

n
a,
b
n
a,
0

FIG. 1. Curves of particle number density ratio nða; bÞ=nða; 0Þ
with respect to b for a ¼ 1, 2 and a → 0.
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degeneracy of every Landau level increases as b3=2, which
indicates the existence of an extremum of energy density as
b increases.
In Fig. 2, we plot the curves of energy density ratio

εða; bÞ=εða; 0Þ with respect to b for a ¼ 0, 1, 2. We
can see that the curves decline first and then rise, leading
to the appearance of an extremum as expected. When
a ¼ 0, the extremum locates at about (5.89,0.9864), and
εða; bÞ=εða; 0Þ ¼ 1 at b ≈ 10.25. When a increases, the
extremum moves to the lower right corner.
The asymptotic behavior of εða; bÞ=εða; 0Þ as b → 0 is

εða; bÞ
εða; 0Þ → 1þ 5b2 ln b2

16ð7π4 þ 30π2a2 þ 15a4Þ : ð40Þ

Since b2 ln b2 < 0 as b < 1, the energy density in a weak
magnetic field limit is smaller than the one without a
magnetic field.
The asymptotic behavior of εða; bÞ as b → ∞ is

εða; bÞ
εða; 0Þ →

5π2 þ 15a2

14π4 þ 60π2a2 þ 30a4
× b; ð41Þ

which increases linearly as b → ∞ and increases more
slowly for larger a. The trend of the curves in Fig. 2 is
consistent with our asymptotic analysis.
If we take a high-temperature limit, i.e., b ≪ 1 and

a ≪ 1, then the energy density becomes

ε ¼ 7π2

120
T4 þ e2B2

96π2
ln

�
e2B2

T4

�
: ð42Þ

We emphasize that the lnT term for the high-temperature
limit in Eq. (42) is also consistent with the second-order
result of energy density in Ref. [35].
If we take a low-temperature limit and a ¼ 0, then the

energy density becomes

ε ¼
(

1
24
eBT2; B ≠ 0;

7π2

120
T4; B ¼ 0;

ð43Þ

which decreases to zero as T → 0. We can see that the
existence of a magnetic field makes the asymptotic behav-
ior of the energy density become T2 instead of T4 as T → 0.
In Fig. 3, we plot the curves of heat capacity ratio

cTða; bÞ=cTða; 0Þ with respect to b for a ¼ 0, 1, 2, where
there are also extrema. For the high-temperature limit, the
heat capacity becomes

cT ¼ 7π2

30
T3 −

e2B2

24π2T
: ð44Þ

For a low-temperature limit with a ¼ 0, the heat capacity
becomes

cT ¼
(

1
12
eBT; B ≠ 0;

7π2

30
T3; B ¼ 0;

ð45Þ

which tends to zero as T → 0. Similar to the case of energy
density, the existence of a magnetic field makes the
asymptotic behavior of the heat capacity become T instead
of T3 as T → 0.

C. Pressure and entropy density

In Figs. 4 and 5, we plot the curves of pressure ratio
pða; bÞ=pða; 0Þ and entropy density ratio sða; bÞ=sða; 0Þ
with respect to b for a ¼ 0, 1, 2, which are both increasing
functions of b; i.e., the existence of the magnetic field can
enhance the pressure and entropy density of the system.
For a high-temperature limit, the pressure and entropy

density become, respectively,

p ¼ 7π2

360
T4 −

e2B2

96π2
ln

�
e2B2

T4

�
ð46Þ

a 0

a 1

a 2

0 20 40 60 80 100
0.0

0.5

1.0
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0

FIG. 3. Curves of heat capacity ratio cTða; bÞ=cTða; 0Þ with
respect to b for a ¼ 0, 1, 2.
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FIG. 2. Curves of energy density ratio εða; bÞ=εða; 0Þ with
respect to b for a ¼ 0, 1, 2.
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and

s ¼ 7π2

90
T3 þ e2B2

24π2T
: ð47Þ

For a low-temperature limit with a ¼ 0, the pressure and
entropy density become, respectively,

p ¼
(

1
24
eBT2; B ≠ 0;

7π2

360
T4; B ¼ 0

ð48Þ

and

s ¼
(

1
12
eBT; B ≠ 0;

7π2

90
T3; B ¼ 0;

ð49Þ

which both tend to zero as T → 0. Similar to the cases of
energy density and heat capacity, the asymptotic behaviors

of the pressure and the entropy density as T → 0 are also
changed due to the existence of a magnetic field.

D. Magnetization intensity and
magnetic susceptibility

In Fig. 6, we plot the curves of magnetization intensity
Mða; bÞ with respect to b for a ¼ 0, 1, 2. As b increases,
the magnetization intensity increases rapidly from zero to
saturation. The saturation value M0 depends on the chemi-
cal potential as follows:

M0ðaÞ ¼
eT2

24

�
1þ 3a2

π2

�
: ð50Þ

Then we haveM0ð0Þ ¼ 0.042eT2,M0ð1Þ ¼ 0.054eT2, and
M0ð2Þ ¼ 0.092eT2, which are consistent with the satura-
tion values in Fig. 6.
Since the magnetization intensity Mða; bÞ becomes

saturated as b → ∞, the magnetic susceptibility χða; bÞ
tends to zero as b → ∞. In Fig. 7, we plot the curves of
magnetic susceptibility χða; bÞ with respect to b for a ¼ 0,
1, 2, where the curves tend to zero as b → ∞ and tend to

a 0

a 1

a 2

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

b

M
a,
b

eT
2

FIG. 6. Curves of magnetization intensity Mða; bÞ=ðeT2Þ with
respect to b for a ¼ 0, 1, 2.
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FIG. 7. Curves of magnetic susceptibility χða; bÞ=e2 with
respect to b for a ¼ 0, 1, 2.
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FIG. 4. Curves of pressure ratio pða; bÞ=pða; 0Þwith respect to
b for a ¼ 0, 1, 2.
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FIG. 5. Curves of entropy density ratio sða; bÞ=sða; 0Þ with
respect to b for a ¼ 0, 1, 2.
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divergent as b → 0. In fact, the magnetic susceptibility in a
weak magnetic field limit or high-temperature limit
becomes

χ ¼ −
e2

48π2
ln

�
e2B2

T4

�
; ð51Þ

which is logarithmically divergent as B → 0 or T → ∞.
The lnT term in Eq. (51) was also derived in a recent
article [45], where the authors have calculated the high-
temperature expansion of the magnetic susceptibility of
QCD matter with a physical quark mass, and the leading-
order term is just lnT with the same coefficient as ours.
In a low-temperature limit, i.e., b → ∞, the magnetic

susceptibility tends to zero, indicating that the system
reaches the magnetic saturation state. This is consistent
with the numerical result of the lattice method for a QCD
matter system [45,46].
In Fig. 7, we can see that χ is always positive, so the

chiral fermion system is a paramagnetic system.

E. A brief summary

We have studied the effect of a magnetic field on the
thermodynamics of the right-handed fermion system. All
results calculated above can be directly generalized to the
left-handed case. In Table I, we list the leading-order terms
of all intensive quantities of the chiral fermion system as
b → 0 and b → ∞, with a ¼ 0.
In summary, we conclude that themagnetic field has great

influence on the thermodynamics of the chiral fermion
system. In high-energy heavy ion collisions, a new matter
state “quark gluon plasma” can be created [47–49], where
the quarks and gluons are deconfined from the interior of the
hadrons due to the high temperature and the chiral symmetry
may be recovered [50,51]. For peripheral collisions,
a huge magnetic field will be produced in the collision
region [11–14], which may considerably change the proper-
ties of the deconfined matter state and, hence, influence the
distributions in phase space of the final particles from the
collision.

VI. ENERGY-MOMENTUM TENSOR

In this section, we will show how the nonzero compo-
nents of Tμν of the right-handed fermion system are related
to gða; bÞ. The 00 component of Tμν is just the energy
density ε, which has been calculated through the grand

partition function in Secs. III and IV. Now we want to
calculate other components of Tμν.
Since the thermodynamic system is located in a uniform

magnetic field B ¼ Bez, all thermodynamic quantities
will be unchanged under the rotation along the z axis.
The rotation by an angle ϕ along the z axis can be
represented by the following matrix:

Λμ
νðϕÞ ¼

0
BBB@

1 0 0 0

0 cosϕ − sinϕ 0

0 sinϕ cosϕ 0

0 0 0 1

1
CCCA: ð52Þ

In order to keep Tμν unchanged under the rotation
matrix Λμ

νðϕÞ for any angle ϕ, i.e., Tμν ¼ Λμ
αΛν

βTαβ,
the components of Tμν must satisfy these conditions:

T01 ¼ T02 ¼ T12 ¼ T13 ¼ T23 ¼ 0; T11 ¼ T22; ð53Þ

i.e., the nonzero components are T00, T33, T11 ¼ T22, and
T03. According to Eq. (3), the trace of Tμν is zero, so the
independent components are T00, T11, and T03.
We cannot directly calculate T11 and T03 by the grand

partition function. Alternatively, we appeal to the ensemble
average approach, in which all macroscopic quantities are
the ensemble average of normal ordering of the corre-
sponding operators. The symmetric and gauge-invariant
energy-momentum tensor is

Tμν ¼ 1

2
h∶ψ†

Riσ
μDνψR þ ψ†

Riσ
νDμψR∶i; ð54Þ

where σμ ¼ ð1; σÞ, Dμ ¼ ð∂t;−∂x;−∂y þ ieBx;−∂zÞ, the
angular brackets mean ensemble average, and the double
dots enclosing the field operators mean normal ordering as
adopted in Refs. [38,52]. In Appendix F, we have compared
the results of normal ordering and un-normal ordering
descriptions. For the un-normal ordering description,
one should add the vacuum term to the grand partition
function in Eq. (5). The un-normal ordering description is
adopted in Ref. [35], where the contribution of a vacuum
term is considered, resulting in a regular form of eB, i.e.,
ðeBÞ2 lnðΛ2=T2Þ), with Λ the renormalization scale, and
the logarithmic term of eB disappears. For the QED case,
the vacuum term contributes a similar logarithmic term
of the renormalization scale Λ, which is related to the beta
function of the theory [53].

TABLE I. Leading-order terms of all intensive quantities of the chiral fermion system as b → 0 and b → ∞ (with a ¼ 0).

Quantities n ε × β4 p × β4 s × β3 M × β2 χ cT × β3 T11 × β4

b → 0 0 7π2

60
þ b2 ln b2

192π2
7π2

180
− b2 ln b2

192π2
7π2

45
þ b2

48π2
− eb ln b2

48π2
− e2 ln b2

24π2
7π2

15
− b2

48π2
7π2

180
þ b2 ln b2

192π2

b → ∞ 0 b
24

b
24

b
12

e
12

0 b
12

0
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In the following, we will calculate T00, T11, and T03

through ensemble average with the normal ordering
description. In order to calculate Eq. (54), the field operator
ψRðxÞ must be expanded by the orthonormal and complete
eigenfunctions in Eq. (4) as follows [38]:

ψRðxÞ ¼
X
ky;kz

½a0ðky; kzÞθðkzÞψR0ðky; kz; xÞ

þ b†0ðky; kzÞθð−kzÞψR0ðky; kz; xÞ�
þ

X
n;ky;kz

½anðky; kzÞψRnþðky; kz; xÞ

þ b†nðky; kzÞψRn−ðky; kz; xÞ�; ð55Þ

where an, a
†
n, bn, and b†n are annihilation and creation

operators for fermions and antifermions. As calculated in
Ref. [38], the ensemble average of normal ordering for
a†nan and bnb

†
n is

h∶θðkzÞa†0ðky; kzÞa0ðky; kzÞ∶i ¼
θðkzÞ

eβðkz−μRÞ þ 1
; ð56Þ

h∶θð−kzÞb0ðky; kzÞb†0ðky; kzÞ∶i ¼ −
θð−kzÞ

eβð−kzþμRÞ þ 1
; ð57Þ

h∶a†nðky; kzÞanðky; kzÞ∶i ¼
1

eβ½EnðkzÞ−μR� þ 1
; ð58Þ

h∶bnðky; kzÞb†nðky; kzÞ∶i ¼ −
1

eβ½EnðkzÞþμR� þ 1
: ð59Þ

Substituting Eq. (55) into Eq. (54) and making use of
Eqs. (56)–(59) gives

T03 ¼ eB
ð2πÞ2

Z
∞

0

dkzkz

�
1

eβðkz−μRÞ þ 1
þ 1

eβðkz−μRÞ þ 1

�
;

ð60Þ

T11 ¼ ðeBÞ2
2π2

Z
∞

0

dkz

×
X∞
n¼1

n
En

�
1

eβ½EnðkzÞ−μ� þ 1
þ 1

eβ½EnðkzÞþμ� þ 1

�
: ð61Þ

We can see that only the lowest Landau level (n ¼ 0)
contributes to T03, while T11 comes from higher Landau
levels ðn > 0Þ. Further calculation gives

T03 ¼ b
8π2β4

�
π2

6
þ a2

2

�
; ð62Þ

T11 ¼ 1

β4

�
1 − b

∂
∂b

�
gða; bÞ: ð63Þ

We can see that T03 is linear only in b. In fact, the space
component of the particle number current is ab=ð8π2β3Þ,
also linear in b as calculated in Ref. [38], which is called the
chiral magnetic effect. When a ¼ 0 (i.e., the chemical
potential is zero), the particle number current disappears,
but a nonzero term eBT2=24 remains in T03, which is
reasonable since the same number of fermions and anti-
fermions move in the same direction along the z axis as
discussed in Ref. [38], resulting in a zero value of the net
particle number current and a nonzero value of the energy
current.
For the left-handed fermion system, T11 can be obtained

by simply replacing a ¼ βμR with βμL in Eq. (63).
However, T03 for the left-handed fermion system can be
obtained by space inversion in Eq. (62), and the result is

−
b

8π2β4

�
π2

6
þ β2μ2L

2

�
: ð64Þ

The total T03 of the chiral fermion system is the
summation of the results of left-handed and right-handed
fermion systems, and the result is eBμμ5=ð2π2Þ with μ ¼
1
2
ðμR þ μLÞ and μ5 ¼ 1

2
ðμR − μLÞ, which is consistent

with Ref. [17].
From the series expansion of gða; bÞ, we can obtain

T11 ¼ 1

4π2β4

��
7π4

90
þ π2a2

3
þ a4

6

�

þ b2 ln b2

96
þ b2

24
ln

�
e3=2þC1ðaÞ

2G6

�

þ
X∞
n¼1

ð4nþ 1Þ!!
ð4nþ 4Þ!! ð4nþ 2ÞB2nþ2C2nþ1ðaÞb2nþ2

�
:

ð65Þ

Since gμνTμν ¼ 0 and T11 ¼ T22, the result for T33 is

T33 ¼ T00 − 2T11 ¼ gða; bÞ
β4

¼ p; ð66Þ

so we conclude that T33 is just the pressure p of the system.

VII. SUMMARY

In this article, we have studied the thermodynamics of
the chiral fermion system in a uniform magnetic field,
where we ignored the interaction among all fermions. Since
the equations of motion for left-handed fermions and right-
handed fermions decouple, we did all the calculations for
the case of the right-handed fermion, which can be
generalized to the left-handed case directly. From the
Landau levels of a single right-handed fermion in a uniform
magnetic field, we construct the grand partition function of
this thermodynamic system, through which all intensive
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quantities can be obtained as a summation over all
Landau levels. Making use of the Abel-Plana formula,
the summation over all Landau levels can be transformed
into integrations, which can be more readily dealt with
analytically. We expanded these thermodynamic quantities
as series with respect to a dimensionless variable
b¼2eB=T2. We find that the series expansions of energy
density, pressure, magnetization intensity, and magnetic
susceptibility contain a singular term with ln b2, which
indicates that these thermodynamic quantities are not
analytic at b ¼ 0. Meanwhile, the series expansions of
particle number density, entropy density, and heat capacity
are power series of b2, which indicates the analyticity of
them at b ¼ 0. We plot the curves of these thermodynamic
quantities with respect to b with zero and finite chemical
potentials, respectively, and discuss the asymptotic behav-
iors of these quantities in strong and weak magnetic field
limits and low- and high-temperature limits. All elements
of the energy-momentum tensor are also calculated. We
conclude that the magnetic field can have an important
influence on the thermodynamics of the chiral fermion
system, which may be helpful to study the properties of the
quark gluon plasma state created in high-energy heavy ion
collisions.
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APPENDIX A: ABEL-PLANA FORMULA

In mathematics, the Abel-Plana formula is a summation
formula which was discovered by Abel (1823) and Plana
(1820) independently [44]. It states that, if a function F ðzÞ
is analytic at Rez ≥ 0 and F ðzÞ → 0 as jzj → ∞ along the
positive real axis, then

1

2
F ð0Þþ

X∞
n¼1

F ðnÞ¼
Z

∞

0

dtF ðtÞþi
Z

∞

0

dt
F ðitÞ−F ð−itÞ

e2πt−1
:

ðA1Þ

In Sec. IV, we met with the following function:

gða; bÞ ¼ b
4π2

Z
∞

0

ds

�
1

2
fða; sÞ þ

X∞
n¼1

fða;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbþ s2

p
Þ
�
;

ðA2Þ

where b > 0 and fða; xÞ is defined as

fða; xÞ ¼ lnð1þ ea−xÞ þ lnð1þ e−a−xÞ: ðA3Þ

We can see that the function F ðzÞ ¼ fða;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zbþ s2

p
Þ

satisfies F ðzÞ → 0 as jzj → ∞ along the positive real axis.
In order to apply the Abel-Plana formula to the summation
in the integrand in Eq. (A2), the function F ðzÞ ¼
fða;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zbþ s2

p
Þ must be analytic at Rez ≥ 0. The possible

poles appear in F ðzÞ when

1þ e�a−
ffiffiffiffiffiffiffiffiffi
zbþs2

p
¼ 0; ðA4Þ

which implies

z ¼ 1

b
½a2 − ð2nþ 1Þ2π2 − s2 ∓ ið4nþ 2Þπa�

ðn ¼ 0;�1;�2;…Þ: ðA5Þ

In order to make F ðzÞ analytic at Rez ≥ 0, the poles in
Eq. (A5) must lie in the range Rez < 0; i.e., the inequation
a2 − ð2nþ 1Þ2π2 − s2 < 0 must be satisfied for any n and
s, which indicates −π < a < π.

APPENDIX B: EXPANSION OF gða;bÞ AT b= 0

Define an auxiliary function Fða; xÞ as

Fða; xÞ ¼
Z

∞

0

dsfða;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ s2

p
Þ; ðB1Þ

where fða; xÞ ¼ lnð1þ ea−xÞ þ lnð1þ e−a−xÞ as defined
in Eq. (20). Then gða; bÞ in Eq. (23) becomes

gða; bÞ ¼
�
7π2

360
þ a2

12
þ a4

24π2

�

þ b
4π2

× i
Z

∞

0

dt
Fða; ffiffiffiffiffiffi

itb
p Þ − Fða; ffiffiffiffiffiffiffiffiffi

−itb
p Þ

e2πt − 1
:

ðB2Þ

Now we will expand Fða; xÞ at x ¼ 0 in the following. By
the variable transformation y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ s2

p
, Fða; xÞ can be

written as

Fða; xÞ ¼
Z

∞

jxj
dy

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x2

p fða; yÞ: ðB3Þ

The factor y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x2

p
in the integrand in Fða; xÞ can be

replaced by the following Taylor expansion:

yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − x2

p ¼
X∞
n¼0

ð2n − 1Þ!!
ð2nÞ!!

x2n

y2n
; ðB4Þ

where we have defined ð−1Þ!! ¼ 0!! ¼ 1. Then Fða; xÞ
becomes
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Fða; xÞ≡X∞
n¼0

ð2n − 1Þ!!
ð2nÞ!! x2ndnða; xÞ; ðB5Þ

where we have defined dnða; xÞ as

dnða; xÞ ¼
Z

∞

jxj
dy

1

y2n
fða; yÞ: ðB6Þ

The derivative of dnða; xÞ with respect to x is

d0nða; xÞ ¼ −
jxj

x2nþ1
½fða; xÞ þ x� þ 1

x2n−1
: ðB7Þ

Note that the factor fða; xÞ þ x in Eq. (B7) is an even
function of x and can be expanded at x ¼ 0 as follows:

fða; xÞ þ x ¼
X∞
k¼0

ckðaÞx2k: ðB8Þ

From d0nða; xÞ, we can derive dnða; xÞ as

dnða; xÞ ¼ −jxj
X∞
k¼0

ckðaÞ
2k − 2nþ 1

x2k−2n

þ
	C1ðaÞ þ 1

2
ln x2; n ¼ 1;

CnðaÞ − 1
2ðn−1Þ x

2−2n; n ≠ 1;
ðB9Þ

where CnðaÞ are independent of x, which will be calcu-
lated later.
Making use of the following two identities:

X∞
n¼2

ð2n − 1Þ!!
ð2nÞ!!

1

2ðn − 1Þ ¼
1

2
ln 2þ 1

4
; ðB10Þ

X∞
n¼0

ð2n−1Þ!!
ð2nÞ!!

1

2n−2k−1
¼ 0 ðk¼ 0;1;2;…Þ; ðB11Þ

we can obtain Fða; xÞ in Eq. (B5) as

Fða; xÞ ¼ C0ðaÞ þ
1

4
x2 ln x2 þ

�
1

4
−
1

2
ln 2þ 1

2
C1ðaÞ

�
x2

þ
X∞
n¼2

ð2n − 1Þ!!
ð2nÞ!! CnðaÞx2n: ðB12Þ

In the following, we will extract CnðaÞ in dnða; xÞ. When
n ¼ 0, we have C0ðaÞ ¼ d0ða; 0Þ ¼ π2=6þ a2=2. When
n > 0, through integration by parts we have

dnða; xÞ ¼
X2n−2
k¼0

ð2n − k − 2Þ!
ð2n − 1Þ!

1

x2n−k−1
dk

dxk
fða; xÞ

−
ln x

ð2n − 1Þ!
d2n−1

dx2n−1
fða; xÞ

−
1

ð2n − 1Þ!
Z

∞

x
dy ln y

d2n

dy2n
fða; yÞ: ðB13Þ

Making use of Eq. (B8), we obtain

CnðaÞ¼−δn;1−
1

ð2n−1Þ!
Z

∞

0

dy lny
d2n

dy2n
fða;yÞ: ðB14Þ

From Eq. (B2), we can see that the terms with x4nðn ≥ 0Þ
in Fða; xÞ do not contribute to gða; bÞ, so we can express
Fða; xÞ as follows:

Fða; xÞ ¼ 1

4
x2 ln x2 þ

�
1

4
−
1

2
ln 2þ 1

2
C1ðaÞ

�
x2

þ
X∞
n¼1

ð4nþ 1Þ!!
ð4nþ 2Þ!!C2nþ1ðaÞx4nþ2

þ
X∞
n¼0

ðterms with x4nÞ: ðB15Þ

Substituting Eq. (B15) into Eq. (B2), we have

gða;bÞ¼
�
7π2

360
þa2

12
þ a4

24π2

�
−
b2 lnb2

384π2
−

b2

96π2
ln

�
e1þC1ðaÞ

2G6

�

−
1

2π2
X∞
n¼1

ð4nþ1Þ!!
ð4nþ4Þ!!B2nþ2C2nþ1ðaÞb2nþ2; ðB16Þ

where we have used the following integrations:

Z
∞

0

dt
t ln t

e2πt − 1
¼ 1

24
−
1

2
lnG; ðB17Þ

Z
∞

0

dt
t2nþ1

e2πt − 1
¼ ð−1Þn B2nþ2

4nþ 4
ðn ≥ 0Þ; ðB18Þ

with Glaisher number G ¼ 1.282427… and Bernoulli
numbers Bn defined as

t
et − 1

¼
X∞
n¼0

Bn

n!
tn: ðB19Þ

We list some Bernoulli numbers B2nþ2 as follows:

B2¼
1

6
; B4¼−

1

30
; B6 ¼

1

42
; B8 ¼−

1

30
: ðB20Þ
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APPENDIX C: ASYMPTOTIC BEHAVIOR
OF C2n+ 1ðaÞ AS a → ∞

To study the asymptotic behavior of C2nþ1ðaÞ as a → ∞,
we rewrite C2nþ1ðaÞ as

C2nþ1ðaÞ ¼ −δn;0 þ
1

ð4nþ 1Þ!
d4nþ1

da4nþ1

×
Z

∞

0

dy ln y
�

1

eyþa þ 1
−

1

ey−a þ 1

�
: ðC1Þ

Making use of the following integration formula:

Z
∞

0

dy ln y

�
1

eyþa þ 1
−

1

ey−a þ 1

�

¼ γaþ
	
d
ds

½Lisð−eaÞ − Lisð−e−aÞ�



s¼1

; ðC2Þ

we have

C2nþ1ðaÞ ¼ ðγ − 1Þδn;0 þ
1

ð4nþ 1Þ!
d4nþ1

da4nþ1

×

	
d
ds

½Lisð−eaÞ − Lisð−e−aÞ�



s¼1

; ðC3Þ

where LisðzÞ is the polylogarithm function defined as

LisðzÞ ¼
X∞
k¼1

zk

ks
: ðC4Þ

This definition of LisðzÞ is valid for arbitrary complex
number s and for jzj < 1, and it can be extended to jzj ≥ 1
by the process of analytic continuation. Making use of the
following asymptotic formulas for LisðzÞ:

lim
z→0

LisðzÞ ¼ z; ðC5Þ

lim
a→∞

Lisð−eaÞ ¼−
as

Γðsþ 1Þ ðs≠−1;−2;−3;…Þ; ðC6Þ

we have

lim
a→∞

�
d
ds

ðLisð−eaÞ − Lisð−e−aÞÞ
�
s¼1

¼ ð1 − γÞa − a ln a;

ðC7Þ

where we have used Γ0ð2Þ ¼ 1 − γ. So we obtain

lim
a→∞

C2nþ1ðaÞ ¼ ðγ − 1Þδn;0

þ 1

ð4nþ 1Þ!
d4nþ1

da4nþ1
½ð1 − γÞa − a ln a�

¼ −
1

ð4nþ 1Þ!
d4nþ1

da4nþ1
ða ln aÞ

¼
	−1 − ln a; n ¼ 0;

1
4nð4nþ1Þ a

−4n; n > 0;
ðC8Þ

which shows that C1ðaÞ → −∞ and C2nþ1ðaÞ → 0 ðn > 0Þ
as a → ∞. Furthermore, we have

lim
a→∞

C0
2nþ1ðaÞ ¼ −

1

4nþ 1
a−4n−1 → 0ðn ≥ 0Þ: ðC9Þ

APPENDIX D: EXPANSION OF C2n+ 1ðaÞ AT a = 0

To expand C2nþ1ðaÞ at a ¼ 0, we use the following
expression of C2nþ1ðaÞ:

C2nþ1ðaÞ ¼ −δn;0 þ
1

ð4nþ 1Þ!
Z

∞

0

dy ln y
d4nþ1

dy4nþ1

×

�
1

eyþa þ 1
þ 1

ey−a þ 1

�
: ðD1Þ

When n > 0, we have

C2nþ1ðaÞ ¼
2

ð4nþ 1Þ!
Z

∞

0

dy ln y
d4nþ1

dy4nþ1

×
X∞
k¼0

a2k

ð2kÞ!
d2k

dy2k

�
1

ey þ 1

�

¼ −
2

ð4nþ 1Þ!
X∞
k¼0

a2k

ð2kÞ!

×
Z

∞

0

dy
1

y
d4nþ2k

dy4nþ2k

�
1

ey þ 1

�
: ðD2Þ

In order to calculate the integration in the second line of
Eq. (D2), we make use of the following identities:

ΓðsÞLisð−exÞ¼−
Z

∞

0

dy
1

y1−s
1

ey−xþ1
ðRes> 0Þ; ðD3Þ

d
dx

Lisð−exÞ ¼ Lis−1ð−exÞ; ðD4Þ

lim
s→0

ΓðsÞLis−2nð−1Þ¼ ð22nþ1−1Þζ0ð−2nÞ ðn¼ 1;2;3;…Þ;
ðD5Þ

and then we can obtain
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Z
∞

0

dy
1

y
d4nþ2k

dy4nþ2k

�
1

ey þ 1

�

¼ lim
s→0

Z
∞

0

dy
1

y1−s

�
d4nþ2k

dx4nþ2k

1

ey−x þ 1

�
x¼0

¼ −lim
s→0

ΓðsÞ
�
d4nþ2k

dx4nþ2k Lisð−exÞ
�
x¼0

¼ −lim
s→0

ΓðsÞLis−4n−2kð−1Þ
¼ ð1 − 24nþ2kþ1Þζ0ð−4n − 2kÞ: ðD6Þ

So Eq. (D2) becomes

C2nþ1ðaÞ¼
2

ð4nþ1Þ!
X∞
k¼0

ð24nþ2kþ1−1Þζ0ð−4n−2kÞ a2k

ð2kÞ! :

ðD7Þ

When n ¼ 0 in Eq. (D1), a similar calculation gives

C1ðaÞ ¼ ln 4þ γ − 1þ 2
X∞
k¼0

ð22kþ1 − 1Þζ0ð−2kÞ a2k

ð2kÞ! :

ðD8Þ

The general expression of C2nþ1ðaÞ for n ≥ 0 is

C2nþ1ðaÞ ¼ ðln 4þ γ − 1Þδn;0 þ
2

ð4nþ 1Þ!

×
X∞
k¼0

ð24nþ2kþ1 − 1Þζ0ð−4n − 2kÞ a2k

ð2kÞ! :

ðD9Þ

Especially, when a ¼ 0, we have

C2nþ1ð0Þ¼ðln4þγ−1Þδn;0þ
2ζ0ð−4nÞ
ð4nþ1Þ! ð2

4nþ1−1Þ: ðD10Þ

APPENDIX E: ASYMPTOTIC BEHAVIOR
OF gða;bÞ AS b → ∞

To study the asymptotic behavior of gða; bÞ as b → ∞,
we may rewrite gða; bÞ in Eq. (23) as

gða;bÞ¼
�
7π2

360
þa2

12
þ a4

24π2

�
þ 1

4π2
× i

Z
∞

0

ds

×
Z

∞

0

dt
fða;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
itþ s2

p
Þ−fða;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−itþ s2

p
Þ

e2πt=b−1
; ðE1Þ

where fða; xÞ ¼ lnð1þ ea−xÞ þ lnð1þ e−a−xÞ as defined
in Eq. (20). As z → 0, we can expand 1=ðez − 1Þ as
follows:

1

ez − 1
¼ 1

z
−
1

2
þ z
12

−
z3

720
þ z5

30240
þ � � � : ðE2Þ

So as b → ∞ (i.e., 1=b → 0), gða; bÞ becomes

gða; bÞ ¼
�
7π2

360
þ a2

12
þ a4

24π2

�
þ b
8π3

× i
Z

∞

0

dt

×
1

t

Z
∞

0

ds
h
f
�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
itþ s2

p �
− f

�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−itþ s2

p �i

−
1

8π2
× i

Z
∞

0

dt
Z

∞

0

ds
h
f
�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
itþ s2

p �

− f
�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−itþ s2

p �i
þO

�
1

b

�
: ðE3Þ

Fortunately, the two integrations in Eq. (E3) can be
analytically integrated out as follows:

i
Z

∞

0

dt
1

t

Z
∞

0

ds
h
f
�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
itþ s2

p �
− f

�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−itþ s2

p �i

¼ π3

6
þ π

2
a2; ðE4Þ

i
Z

∞

0

dt
Z

∞

0

ds
h
f
�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
itþ s2

p �
− f

�
a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−itþ s2

p �i

¼ 7π4

45
þ 2π2

3
a2 þ 1

3
a4: ðE5Þ

So we have

lim
b→∞

gða; bÞ ¼ b
48π2

ðπ2 þ 3a2Þ: ðE6Þ

APPENDIX F: NORMAL ORDERING AND
UN-NORMAL ORDERING

The explicit form of energy density ε expressed by a
summation of all quantum states in Eq. (39) can also be
derived from the ensemble average of normal ordering
(NO) of the energy density operator as described in Sec. VI.
If we adopt un-normal ordering (UNO), then Eqs. (57)

and (59) become, respectively,

hθð−kzÞb0ðky;kzÞb†0ðky;kzÞi¼ θð−kzÞ
�
1−

1

eβð−kzþμRÞ þ1

�
;

ðF1Þ

hbnðky; kzÞb†nðky; kzÞi ¼ 1 −
1

eβ½EnðkzÞþμR� þ 1
: ðF2Þ

This UNO description is also used in recent articles [54,55].
Now the ensemble average of the energy density operator
becomes
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εun ¼
1

V

X
ky;kz

�
kzθðkzÞ

1

eβðkz−μRÞ þ 1

þ ð−kzÞθð−kzÞ
�

1

eβð−kzþμRÞ þ 1
− 1

��

þ 1

V

X∞
n¼1

X
ky;kz

EnðkzÞ
�

1

eβ½EnðkzÞ−μR� þ 1

þ 1

eβ½EnðkzÞþμR� þ 1
− 1

�
; ðF3Þ

where the subscript “un” of εun means un-normal ordering.
We can see that the UNO description leads to the infinite
vacuum energy in εun. Comparing Eqs. (39) and (F3), it is
equivalent to do the following regularization:

εun ¼ ε − lim
μR→∞

ε: ðF4Þ

Making use of two dimensionless variables a ¼ βμR and
b ¼ 2eBβ2 instead of μR, β, and eB, Eq. (F4) can be
rewritten as

εunða; bÞ ¼ εða; bÞ − lim
a→∞

εða; bÞ: ðF5Þ

From the expression of εða; bÞ in Eq. (29), Eq. (F5)
becomes

εunða;bÞ¼ ε0þ
1

2π2β4

��
π2a2

2
þa4

4

�

þ
X∞
n¼0

ð4nþ1Þ!!
ð4nþ4Þ!!ð4nþ1ÞB2nþ2Cun

2nþ1ðaÞb2nþ2

�
;

ðF6Þ

where Cun
2nþ1ðaÞ is defined as

Cun
2nþ1ðaÞ ¼ C2nþ1ðaÞ − lim

a→∞
C2nþ1ðaÞ ðF7Þ

and ε0 is just the familiar infinite vacuum energy, as in the
free field theory [42,56]. This infinite vacuum energy
cannot be detected experimentally, since only the energy
difference from the ground state can be observable. It is
worth pointing out that the term b2 ln b2 in ε disappears in
εun and the b2 order of εun is consistent with Ref. [35].
In Eq. (C8), we obtained the asymptotic behavior of

C2nþ1ðaÞ as a → ∞:

lim
a→∞

C2nþ1ðaÞ ¼
	−1 − ln a; n ¼ 0;

1
4nð4nþ1Þ a

−4n; n > 0;
ðF8Þ

which shows that C1ðaÞ → −∞ and C2nþ1ðaÞ → 0 ðn > 0Þ
as a → ∞. So we haveCun

2nþ1ðaÞ ¼ C2nþ1ðaÞ for n > 0. For
n ¼ 0, another expression of C1ðaÞ is useful:

C1ðaÞ ¼ γ − 1 −
Z

∞

0

dy
1

y

�
1

ey−a þ 1
þ 1

eyþa þ 1
−

1

ey

�
;

ðF9Þ

which leads to

Cun
1 ðaÞ ¼

Z
∞

0

dy
1

y

�
1 −

1

ey−a þ 1
−

1

eyþa þ 1

�
: ðF10Þ

Note thatCun
1 ðaÞ is a positive infinity,which is expected, since

C1ðaÞ → −∞ as a → ∞. This expression ofCun
1 ðaÞ can also

be obtained inRef. [35], where the authors adopt dimensional
regularization to deal with the divergence and obtain a regular
term lnðΛ2=T2) instead of the singular term lnðeB=T2Þ in the
energy density εun, with the renormalization scale Λ.
Since only the derivative of C2nþ1ðaÞ appears in the

expression of the particle number density n in Eq. (28), and
C0
2nþ1ðaÞ → 0 as a → ∞ as calculated in Eq. (C9), i.e.,

Cun0
2nþ1ðaÞ ¼ C0

2nþ1ðaÞ, the UNO and NO descriptions can
obtain the same expression of the particle number density n,
which is also consistent with Ref. [35].
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