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We study anomalous magnetic moments and flavor violating processes of e, μ, and τ leptons. We use a
data driven approach to investigate the implications of the present data on the parameters of a class of
models, which has spin-0 scalar and spin-1=2 fermion fields. We compare two different cases, which has or
does not have a built-in cancelation mechanism. Our findings are as following. Chiral interactions are
unable to generate large enough Δae and Δaμ to accommodate the experimental results. Although sizable
Δae and Δaμ can be generated from nonchiral interactions, they are not contributed from the same source.
Presently, the upper limit of μ → eγ decay gives the most severe constraints on photonic penguin
contributions in μ → e transitions, but the situation may change in considering future experimental
sensitivities. The Z-penguin diagrams can constrain chiral interaction better than photonic penguin
diagrams in μ → e transitions. In most of the parameter space, box contributions to μ → 3e decay
are subleading. The present bounds on Δaτ and dτ are unable to give useful constraints on parameters. In
τ → e (μ) transitions, the present τ → eγ ðμγÞ upper limit constrains the photonic penguin contribution
better than the τ → 3e ð3μÞ upper limit, and Z-penguin amplitudes constrain chiral interaction better than
photonic penguin amplitudes. Box contributions to τ → 3e and τ → 3μ decays can sometime be
comparable to Z-penguin contributions. The τ− → e−μþe− and τ− → μ−eþμ− rates are highly constrained
by τ → eγ, μ → eγ and τ → μγ, μ → eγ upper limits, respectively. We compare the current experimental
upper limits, future sensitivities and bounds from consistency on various muon and tau LFV processes.
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I. INTRODUCTION

The Large Hadron Collider completed run-2 in 2018 and
is currently preparing for run-3. From the results of the
searches, we see that new physics (NP) signal is yet to be
found (see, for example [1], for a summery of the recent
search results). It is therefore useful and timely to explore
the high-precision frontier, where the NP at the scale
beyond our reach may manifest in low energy processes
via virtual effects. Indeed, there are some interesting
experimental activities in the lepton sector in recent years.
The muon’s anomalous magnetic moment remains as a

hint of contributions from NP since 2001 [2]. Presently the
deviation of the experimental result aexpμ from the Standard
Model (SM) expectation aSMμ is 3.7σ [3–5]:

Δaμ ¼ aexpμ − aSMμ ¼ ð27.06� 7.26Þ � 10−10: ð1Þ

For more details, see [6–9]. New experiments in
Fermilab and J-PARC are on their way to improve the
sensitivities [10].
In addition, in 2018, a measurements of the fine-structure

constant α using the recoil frequency of cesium-133 atoms
in a matter-wave interferometer, infered a deviation on
electron g − 2 from the SM prediction, [11]

Δae ¼ aexpe − aSMe ¼ ð−0.88� 0.36Þ � 10−12: ð2Þ

In the tau sector, the experimental and the theoretical
results of the anomalous magnetic moment are given by

−0.052 < aexpτ < 0.013;

aSMτ ¼ ð1.17721� 0.00005Þ × 10−3; ð3Þ

respectively [4,12]. The experimental sensitivity is roughly
one order of magnitude from the SM prediction.
Furthermore, it is known that the SM contributions

to lepton electric dipole moments are at four-loop level
and, consequently, are highly suppressed. For example,
the electron electric dipole moment was estimated to be
de ≃ 8 × 10−41 e cm [13]. The present experimental
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bounds on electric dipole moment of e, μ, and τ are given
by [14,15]

jdej < 1.1 × 10−29 e cm; ð4Þ

jdμj < 1.9 × 10−19 e cm; ð5Þ

and

jdτj < 1.6 × 10−18 e cm; ð6Þ

where the above limit on de is used to constrain dτ via
Δde ¼ 6.9 × 10−12dτ [16].
It is known that SM prohibits charge lepton flavor

violating (LFV) processes. Hence, they are excellent probes
of NP. Indeed, they are under intensive searches. In 2016
the MEG collaboration reported the search result of μ → eγ
decay, [17]

Bðμþ → eþγÞ ≤ 4.2 × 10−13; ð7Þ

and the upgrade is on the way to improve the sensitivity by
roughly one order of magnitude [18]. Interestingly, μ → eγ
decay may be closely related to lepton anomalous magnetic
moments and other LFV processes, such as μþ → 3e
decays and muon to electron conversions, μ−N → e−N
[19]. See [20] for a review on ðg − 2Þμ and LFV processes.
Note that LFV processes can sometime be related to
cosmological effects, see for example [21].
Lepton flavor violating τ decays are also under intensive

search. Current bounds on τ → eγ, μγ, 3e, 3μ, eμ̄e, μēμ
decays was provided by B factories. They are at the level of
10−8 and the sensitivities will be improved by two orders of
magnitude in the updated B factory [22,23].
The current limits and future experimental sensitivities of

various l0 → lγ, l → l0 l̄00l0, and lN → l0N processes are
summarized in Table I.

Many popular NP scenarios or models are disfavored or
even closed to being ruled out by data (see, for example,
[1]). Given the present situation, it is worthy to use a data
driven approach. It will be interesting to see where the
present data lead us to. As a working assumption, we
consider a general class of models that lepton anomalous
magnetic moment and various lepton flavor violating
processes, such as μ → eγ, μ → 3e, μ → e conversions,
τ → eγ, μγ, 3e, 3μ, eμ̄e, and μēμ decays are induced by
loop diagrams via exchanging spin-0 and spin-1=2 particles
in this work.
Note that the above mentioned experimental results of

Δaμ and Δae received a lot of attention. There are studies
involving leptoquark, two Higgs doublets, supersymmetry
particles, dark matters and so on [25–78]. It is interesting
that many new physics models in these studies are similar
to the framework adopted here. Furthermore, by consider-
ing simultaneously various processes or quantities involv-
ing different leptons, one can obtain useful information on
new physics. For example, in [27] by using effective field
theory (EFT) and some simplified models similar to the
present framework, the authors found that the μ → eγ
bound requires the muon and electron sectors to be
decoupled and, consequently, Δaμ and Δae cannot be
explained from the same source, but as a bonus a large
muon electric dipole moment is possible. In addition, it is
known in the literature that there are relations on l0 → ll̄00l000
and l0 → lγ rates. For example, using an EFT approach
[79,80], l0 → ll̄l and l0 → lγ rates are shown to be related as
following,

Bðμ → 3eÞ ≃ 1

160
Bðμ → eγÞ;

Bðτ → 3eÞ ≃ 1

95
Bðτ → eγÞ;

Bðτ → 3μÞ ≃ 1

440
Bðτ → μγÞ; ð8Þ

if the photonic dipole penguins dominate in these l0 → ll̄l
decays. It is also known that the constraints on 4-lepton and
Z-lepton-lepton contributions using l0 → ll̄l bounds are
found to be less severe than the constraints of γ-lepton-
lepton contributions using l0 → lγ bounds [80]. Studies
involving different processes are useful to search for NP
and to probe its properties as well.
It will be useful to compare the present approach to an

EFT approach (see, for example, [27,80,81]). For illustra-
tion, we use the above mentioned analysis on Δaμ, Δae,
and the μ → eγ decay as an example. As stated in [27], the
relevant effective Hamiltonian is

Heff ¼ c
lfli
R l̄fσμνPRliFμν þ H:c:; ð9Þ

giving

TABLE I. Present upper limits and future sensitivities of some
muon and tau lepton flavor violating processes are listed
[4,17,18,22–24].

Current limit Future sensitivity

Bðμþ → eþγÞ <4.2 × 10−13 6 × 10−14

Bðμþ → eþeþe−Þ <1.0 × 10−12 10−16

Bðμ−Ti → e−TiÞ <4.3 × 10−12 10−17

Bðμ−Au → e−AuÞ <7 × 10−13 10−16

Bðμ−Al → e−AlÞ � � � 10−17

Bðτ− → e−γÞ <3.3 × 10−8 3 × 10−9

Bðτ− → μ−γÞ <4.4 × 10−8 1 × 10−9

Bðτ− → e−eþe−Þ <2.7 × 10−8 4.3 × 10−10

Bðτ− → μ−eþμ−Þ <1.7 × 10−8 2.7 × 10−10

Bðτ− → e−μþe−Þ <1.5 × 10−8 2.4 × 10−10

Bðτ− → μ−μþμ−Þ <2.1 × 10−8 3.3 × 10−10
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ali ¼ −
4mli

e
RecliliR ; Bðμ → eγÞ ¼ m3

μ

4πΓμ
ðjceμR j2 þ jcμeR j2Þ:

ð10Þ

Note that there are in general no correlation between
magnetic moments and lepton flavor violation [27].
When NP particles couple to muon and electron simulta-
neously, one expects ceμR ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ceeR cμμR
p

and the resulting
μ → eγ rate is

Bðμ → eγÞ ¼ αm2
μ

16meΓμ
jΔaμΔaej ∼ 8 × 10−5; ð11Þ

which excesses the MEG bound by 8 order of magnitude
[27]. As an EFT approach only makes use of SM particles
with all NP particles being integrated out, it is generic. For
example, information on ReðcμμR Þ, ReðceeR Þ and jceμR j2 þ
jcμeR j2 can be extracted from data without referring to any
specific NP model. However, to correlate different quan-
tities, such as Δaμ;e and the μ → eγ decay rate, one needs
additional assumption on the underlying NP model. For
example, the above ceμR ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ceeR cμμR
p

relation requires the NP
particles to couple to muon and electron simultaneously
[27]. The class of models adopted here provides a reali-
zation of this situation via one-loop diagrams in Fig. 1. In
addition to the above discussion, note that the so-called F1

photonic penguin and box contributions are usually lumped
into the 4-lepton operators in an EFT approach. As a result,
it will be difficult to separate them. The present approach is

less generic than an EFT approach, but it is more generic
than a specific model, as we try to capture some common
behaviors or ingredients of a class of models concerning the
lepton sector. It is in between of a specify model and an
EFT approach and it can be a bridge to link them. When
comparing to an EFTapproach, the limitation of the present
approach is its less of generality, while the advantage of it is
the ability to provide some correlations and detail infor-
mation, which are in general difficult to obtain in an EFT
approach without introducing additional assumption.
In this work two cases are considered The first case

does not have any built-in cancellation mechanism and
the second case has some built-in mechanism, such as
Glashow-Iliopoulos-Maiani or super-Glashow-Iliopoulos-
Maiani mechanism. These two cases are complementary to
each other and it will be interesting to compare them. This
work is an updated and extended study of [82], where only
μ decays were considered. Note that a similar setup, but in
the quark sector, has been used in a study of the b → sμþμ−
decay [83].
We briefly give the framework in the next section. In

Sec. III, numerical results will be presented, where data on
g − 2, dl and upper limits of LFV rates will be used to
constrain parameters and the correlations between different
processes will be investigated. We give our conclusion in
Sec. IV, which is followed by two Appendices.

II. FRAMEWORK

The generic interacting Lagrangian involving leptons (l),
exotic spin-0 bosons (ϕi), and spin-1=2 fermions (ψn) is
given by

Lint ¼ ψ̄nðgnilLPL þ gnilRPRÞlϕ�
i þ l̄ðgni�lL PR þ gni�lR PLÞψnϕi;

ð12Þ

where indices, l, i and n, are summed and these fields are in
their mass bases. It can contribute to lepton g − 2, dl and
various LFV processes, such as l0 → lγ, l̄0 → ll̄l decays and
l0N → lN transitions, via diagrams shown in Fig. 1. Some
useful formulas can be found in Ref. [82] and are collected
in Appendix A.
As noted in the Introduction, we consider two comple-

mentary cases. In case I there is no any built-in cancellation
mechanism. A typical amplitude, A, may contain several
subamplitudes, Aj, each comes from one of the loop
diagrams (see Fig. 1) giving

A ¼
XN
j¼1

Aj: ð13Þ

To constrain these subamplitudes from data, we will switch
them on one at a time. Different subamplitudes are in
principle independent from each other as there is no any
built-in cancellation mechanism. However, in a realistic

FIG. 1. Diagrams contributing to various processes. Penguin
diagrams contributing to e, μ, and τ, g − 2, dl, l0 → lγ, l̄0 → ll̄l,
and l0N → lN processes are shown in Figs. 1(a) and 1(b), while
box diagrams contributing to the l̄0 → ll̄00l process are shown in
Figs. 1(c) and 1(d). Note that we do not show diagrams involving
self energy parts. Figure 1(d) is for the Majorana case.
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model calculation, it is likely to have several amplitudes to
appear at the same time and interfere. Nevertheless, it is
well known that interference effects can be important only
when the amplitudes are of similar size. For amplitudes of
different sizes, this analysis can constrain the most dom-
inant amplitude. On the other hand, through investigating
the sizes of different subamplitudes the analysis can also
identify the region, where several subamplitudes are of
similar sizes, and, hence, identify where interference can be
potentially important.
The Wilson coefficients of a typical subamplitude can be

obtained by using formulas in Appendix A, but with the
following replacement,

gnilM → glM: ð14Þ

Terms contributing to various processes in case I are shown
in Table II. Note that ΔT3ψ is basically the difference of
weak isospin quantum numbers of ψR and ψL, while κR;L
are defined in Eq. (A12). Note that ΔT3ψ is expected to be
an order one quantity, while κR is expected to be a small
quantity. See Appendix A for more information.

In Fig. 2 we gives two typical diagrams contributing to
the photonic dipole penguins. The left diagram can occur in
a chiral interaction, while the right diagram is possible only
for the so-called nonchiral interaction, where ϕ and ψ

couple to both lL and lð0ÞR at the same time. It is well known
in the literature, see, for example, Ref. [84], that a nonchiral
interaction can provide chiral enhancement in photonic
dipole penguin amplitudes resulting in sizable effects in
quantities and processes such as Δal, l → l0γ decays and so
on. Away to see this is by using the EFT approach. Before
spontaneous symmetry breaking, we have the following
dipole operators, [80]

QeW ¼ ðL̄Lσ
μνlRÞτIHWI

μν; QeB ¼ ðL̄Lσ
μνlRÞHBμν;

ð15Þ

where LL, lR are the isodoublet and singlet lepton fields,
Wμν and Bμν are the SUð2Þ and Uð1Þ field strengths, and H
is the Higgs field. To obtain a photonic dipole interaction
term as shown in Eq. (9), one needs the above operators, but
with the Higgs field replaced by its vacuum expectation
value (VEV), i.e.,H → hHi. In Fig. 2(a), the Higgs-lepton-
lepton Yukawa vertex applies to the external lepton line
with the Higgs field replaced by its VEV, while in Fig. 2(b),
it is required to have either ψL and ψR or ϕL and ϕR being
mixed due to a Higgs VEV, and the other pair of fields
with identical quantum numbers. It is clear that the left and
right diagrams in Fig. 2 are associated with ml and mψ ,
respectively, and the mass ratio gives rise to the chiral
enhancement. It is important to note that only fields with
suitable weak quantum numbers that mix due to a Higgs
VEV can have nonchiral interaction generating chiral
enhancement. Hence, it is nontrivial to have chiral enhance-
ment in a new physics model. For the possible SUð2Þ ×
Uð1Þ quantum numbers of ψ and ϕ, and the combinations
that can generate the nonchiral interaction resulting chiral
enhancement, see Appendix B.

TABLE II. Terms contributing to various processes in case I.

Processes γ-penguin γ-penguin Z-penguin Box

Δal Qϕ;ψ jglLðRÞj2 Qϕ;ψReðg�lRglLÞ
dl Qϕ;ψ Imðg�lRglLÞ
μþ → eþγ Qϕ;ψg�μLðRÞgeLðRÞ Qϕ;ψg�μRðLÞgeLðRÞ
μþ → e−eþe− Qϕ;ψg�μLðRÞgeLðRÞ Qϕ;ψg�μRðLÞgeLðRÞ g�μRðLÞgeRðLÞΔT3ψ ðκRðLÞÞ g�μMgeNg

�
eOgeP

μ−N → e−N Qϕ;ψgμLðRÞg�eLðRÞ Qϕ;ψgμRðLÞg�eLðRÞ gμRðLÞg�eRðLÞΔT3ψ ðκRðLÞÞ gμMg�eNgeOg
�
eP

τ− → e−γ Qϕ;ψgτLðRÞg�eLðRÞ Qϕ;ψgτRðLÞg�eLðRÞ
τ− → e−eþe− Qϕ;ψgτLðRÞg�eLðRÞ Qϕ;ψgτRðLÞg�eLðRÞ gτRðLÞg�eRðLÞΔT3ψ ðκRðLÞÞ gτMg�eNgeMg

�
eN

τ− → μ−γ Qϕ;ψgτLðRÞg�μLðRÞ Qϕ;ψgτRðLÞg�μLðRÞ
τ− → μ−μþμ− Qϕ;ψgτLðRÞg�μLðRÞ Qϕ;ψgτRðLÞg�μLðRÞ gτRðLÞg�μRðLÞΔT3ψ ðκRðLÞÞ gτMg�μNgμMg

�
μN

τ− → e−μþe− gτMg�eNgμMg
�
eN

τ− → μ−eþμþ gτMg�μNgeMg
�
μN

(a) (b)

FIG. 2. Two types of photonic dipole penguin diagrams (photon
line not shown). The diagram in the left panel does not have the
so-called chiral enhancement, while the one in the right panel has.
The crosses denote mass insertions or mixings that connect lL and
lR, ψL and ψR, ϕL and ϕR fields. Since lL and lR have different
weak quantum numbers, the cross in the left diagram and one of
the crosses in the right diagram need to couple to
the Higgs VEV, while the other cross in the right diagram
connects fields with identical weak quantum numbers. See text
for more details.
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In the second case (case II), there is a built-in cancella-
tion mechanism. Now some subamplitudes in Eq. (13) are
related intimately. They need to be grouped together to
allow the cancellation mechanism to take place, and the
resulting group of amplitudes should be viewed as a new
subamplitude. To constrain these new subamplitudes from
data, we will turn them on one at a time. To be specify, we
consider the following replacement,

gnilM → gilM ¼ glMΓil
M; ð16Þ

where glM is real (as the phase is absorbed into ΓM) and we
have M ¼ L, R. These Γ satisfy the following relations:

Γ†li
M m2

iΓil0
N ¼ ðm2

ϕÞll
0

MN; Γ†li
M Γil0

N ¼ δll
0
δMN; ð17Þ

where the δs are Kronecker deltas. Typical terms in a
Wilson coefficient given in Appendix A should now be
replaced accordingly:

X
i

gi�l0Mfðm2
ψ ; m2

ϕi
ÞgilN → m2

ϕ

∂
∂m2

ϕ

fðm2
ψ ; m2

ϕÞgμMgeNδMN
l0l ;

ð18Þ

where m2
ϕ is the average of the mass squared of ϕi and δMN

l0l
is the mixing angle defined in the usual way (do not
confuse it with the Kronecker delta): [84]

δMN
l0l ≡ 1

m2
ϕ

ΓM†
l0i ðm2

ϕi
−m2

ϕÞΓN
il ¼

ðm2
ϕÞMN

l0l

m2
ϕ

: ð19Þ

Note that as a common practice only the leading terms of δ
are kept in the amplitudes. Therefore, to employ the “δ”
parametrization, one needs to assume a large degree of
flavor-alignment of the new fields to the SM leptons, i.e.,
the mass matrices of these new fields are almost diagonal in

the mass basis of the SM leptons, and the small misalign-
ment can be encoded in these δs. Usually this requires
introducing additional symmetry to the model.
Terms contributing to various processes in case II are

shown in Table III.

III. RESULTS

In this section we present the numerical results for cases I
and II. Experimental inputs are from Refs. [4,17,18,22–24]
and are shown in Table I. Further inputs not listed in the
table are from Ref. [4].

A. Case I

In Table IV, we present the constraints on parameters in
case I using x≡mϕ=mψ ¼ 1 and mψ ¼ 500 GeV. Results
for other mψ can be obtained by scaling the results with a

mψ

500 GeV factor for Qϕ;ψg�lð0ÞRglL and ð mψ

500 GeVÞ2 for other
quantities. Results in ½…� are obtained by using the future
experimental sensitivities. Both results for the cases of
Dirac and Majorana fermion are given, where results in
f…g are for the Majorana case. Note that some of the
results are unphysical. For example, the values of
Qϕ;ψ jgeRj2 andQϕ;ψ jgμRj2 required to produce large enough
Δae and Δaμ as required by data are much larger than 4π.
Perturbative calculation breaks down and the results are
untrustworthy, hence, unphysical. We naïvely state these
results simply to indicate that contributions fromQϕ;ψ jgeRj2
and Qϕ;ψ jgμRj2 cannot generate the desired results on Δae
and Δaμ. Results for x ¼ 0.5 and 2 are given in Tables V
and VI, respectively.
In Figs. 3(a) and 3(b), we show the allowed para-

meter space for ∓Qϕ;ψ jgeLðRÞj2, ∓Qϕ;ψReðg�eRgeLÞ, and
jQϕ;ψ Imðg�eRgeLjÞ constrained by Δae and de. In Figs. 3(c)
and 3(d), allowed parameter space for �Qϕ;ψ jgμLðRÞj2,
�Qϕ;ψReðg�μRgμLÞ, and jQϕ;ψ Imðg�μRgμLÞj constrained by
Δaμ and dμ are shown. In Fig. 3(e) the allowed parameter

TABLE III. Terms contributing to various processes in case II.

Processes γ-penguin γ-penguin Z-penguin Box

Δal Qϕ;ψ jglLðRÞj2 Qϕ;ψReðg�lRglLδllRLÞ
dl Qϕ;ψ Imðg�lRglLδllRLÞ
μþ → eþγ Qϕ;ψg�μMgeMδ

μe
MM Qϕ;ψg�μRðLÞgeLðRÞδ

μe
RLðLRÞ

μþ → e−eþe− Qϕ;ψg�μMgeMδ
μe
MM Qϕ;ψg�μRðLÞgeLðRÞδ

μe
RLðLRÞ g�μMgeMΔT3ψδ

μe
MM g�μMgeMg

�
eNgeNδ

μe
MM

μ−N → e−N Qϕ;ψgμMg�eMδ
eμ
MM Qϕ;ψgμRðLÞg�eLðRÞδ

eμ
LRðRLÞ gμMg�eMΔT3ψδ

eμ
MM gμMg�eMgeNg

�
eNδ

eμ
MM

τ− → e−γ Qϕ;ψgτMg�eMδ
eτ
MM Qϕ;ψgτRðLÞg�eLðRÞδ

eτ
LRðRLÞ

τ− → e−eþe− Qϕ;ψgτMg�eMδ
eτ
MM Qϕ;ψgτRðLÞg�eLðRÞδ

eτ
LRðRLÞ gτMg�eMΔT3ψδ

eτ
MM gτMg�eMgeNg

�
eNδ

eτ
MM

τ− → μ−γ Qϕ;ψgτMg�μMδ
eτ
MM Qϕ;ψgτRðLÞg�μLðRÞδ

eτ
LRðRLÞ

τ− → μ−μþμ− Qϕ;ψgτMg�μMδ
μτ
MM Qϕ;ψgτRðLÞg�μLðRÞδ

μτ
LRðRLÞ gτMg�μMΔT3ψδ

μτ
MM gτMg�μMgμNg

�
μNδ

μτ
MM

τ− → e−μþe− gτMg�eNgμOg
�
ePδ

eτ
NMδ

eμ
PO

τ− → μ−eþμþ gτMg�μMgeOg
�
μPδ

μτ
NMδ

μe
PO
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space for jQϕ;ψg�μRðLÞgeLðRÞj constrained by μ → eγ and the

parameter space on jQϕ;ψ jjReðg�eRgeLÞReðg�μRgμLÞj1=2 to
produce Δae and Δaμ are presented. These results are
given for mψ ¼ 500 GeV. For other mψ , scale plots in (a)
and (c) with ð500 GeV=mψÞ2, and scale plots in (b), (d) and
(e) with 500 GeV=mψ .
In Figs. 4–6, the parameter space excluded or projected

by various bounds or expected sensitivities on μ → e,
τ → e, and τ → μ lepton flavor violating processes

are shown. They are contributed from photonic penguin,
Z-penguin and box diagrams. In Fig. 7, the parameter space
excluded or projected by using various bounds or projected
sensitivities on τ− → e−μþe−; μ−eþμ− processes through
contributions from box diagrams are shown.
From these results we can extract several messages. First

we note that chiral interactions (gL × gR ¼ 0) are unable to
generate large enough Δae and Δaμ to accommodate the
experimental results, Eqs. (1) and (2). From Tables IV–VI,

TABLE IV. Constraints on parameters in case I using x≡mϕ=mψ ¼ 1 and mψ ¼ 500 GeV from various
processes are shown. Results are applicable with L and R interchanged. Results for other mψ can be obtained by
scaling with a ð mψ

500 GeVÞ2 or
mψ

500 GeV factor, where the latter is forQϕ;ψg�lð0ÞRglL. Results in ½…� are obtained by using the
future experimental sensitivities, results in f…g are for the Majorana case.

Processes Constraints Constraints Constraints Constraints

QϕjgeRj2 Qψ jgeRj2 QϕReðg�eRgeLÞ QψReðg�eRgeLÞ
Δae −1597� 653 1597 ∓ 653 ð−4.1� 1.6Þ × 10−4 ð2.0 ∓ 0.8Þ × 10−4

QϕjgμRj2 Qψ jgμRj2 QϕReðg�μRgμLÞ QψReðg�μRgμLÞ
Δaμ 115� 31 −115 ∓ 31 ð6.1� 1.6Þ × 10−3 ð−3.0 ∓ 0.8Þ × 10−3

QϕjgτRj2 Qψ jgτRj2 QϕReðg�τRgτLÞ QψReðg�τRgτLÞ
Δaτ ð−7 ∼ 2Þ × 106 ð−2 ∼ 7Þ × 106 ð−7 ∼ 2Þ × 103 ð−0.8 ∼ 3Þ × 103

jQϕImðg�eRgeLÞj jQϕImðg�eRgeLÞj jQϕImðg�μðτÞRgμðτÞLÞj jQψ Imðg�μðτÞRgμðτÞLÞj
de, dμ, dτ 2.6 × 10−10 1.3 × 10−10 4.6(38.3) 2.3(19.1)

jQϕg�μRgeRj jQψg�μRgeRj jQϕg�μRgeLj jQψg�μRgeLj
μþ → eþγ 0.002[0.0008] 0.002[0.0008] 11½4� × 10−8 6½2� × 10−8

μþ → e−eþe− 0.046[0.0005] 0.030[0.0003] 224½2� × 10−8 112½1� × 10−8

μ−Au → e−Au 0.020[0.0002] 0.016[0.0002] 236½3� × 10−8 118½1� × 10−8

μ−Ti → e−Ti 0.051[0.00008] 0.046[0.00007] 569½0.9� × 10−8 284½0.4� × 10−8

μ−Al → e−Al [0.00010] [0.00009] ½1.1 × 10−8� ½0.5 × 10−8�
jg�μRgeRΔT3ψ j jg�μRgeRκRj jg�μRgeRg�eRgeRj jg�μRgeRg�eLgeLj

μþ → e−eþe− 393½4� × 10−6 115½1� × 10−6 0.01f−g½1 × 10−4f−g� 7f7g × 10−3½7f7g × 10−5�
μ−Au → e−Au 492½6� × 10−7 145½2� × 10−7

μ−Ti → e−Ti 1718½3� × 10−7 5049½8� × 10−8

μ−Al → e−Al ½4 × 10−7� ½1 × 10−7�
jQϕgτRg�eRj jQψgτRg�eRj jQϕgτRg�eLj jQψgτRg�eLj

τ− → e−γ 1.4[0.4] 1.4[0.4] 13½4� × 10−4 6½2� × 10−4

τ− → e−eþe− 13.2[1.7] 10.0[1.3] 11½1� × 10−3 56½7� × 10−4

jgτRg�eRΔT3ψ j jgτRg�eRκRj jgτRg�eRgeRg�eRj jgτRg�eRgeLg�eLj
τ− → e−eþe− 0.15[0.02] 0.05[0.006] 4.3f−g½0.5f−g� 2.9f2.9g½0.4f0.4g�

jQϕgτRg�μRj jQψgτRg�μRj jQϕgτRg�μLj jQψgτRg�μLj
τ− → μ−γ 1.7[0.3] 1.7[0.3] 15½2� × 10−4 7½1� × 10−4

τ− → μ−μþμ− 30.7[3.9] 12.5[1.6] 21½3� × 10−3 11½1� × 10−3

jgτRg�μRΔT3ψ j jgτRg�μRκRj jgτRg�μRgμRg�μRj jgτRg�μRgμLg�μLj
τ− → μ−μþμ− 0.14[0.02] 0.04[0.005] 3.8f−g½0.5f−g� 2.5f2.5g½0.3f0.3g�

jgτRg�eRgμRg�eRj jgτRg�eRgμLg�eLj jgτRg�eLgμRg�eLj
τ− → e−μþe− 3.2f−g½0.4f−g� 2.3f2.3g½0.3f0.3g� 6.4f6.4g½0.8f0.8g�

jgτRg�μRgeRg�μRj jgτRg�μRgeLg�μLj jgτRg�μLgeRg�μLj
τ− → μ−eþμþ 3.4f−g½0.4f−g� 2.4f2.4g½0.3f0.3g� 6.8f6.8g½0.9f0.9g�
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Figs. 3(a) and 3(c), we see that Qϕ;ψ jgeRðLÞj2 and
Qϕ;ψ jgμRðLÞj2 need to be unreasonably large to produce
the experimental value of Δae and Δaμ. This implies the
incapability of chiral interactions to generate large enough
Δae and Δaμ to accommodate the experimental results.
Although nonchiral interactions are capable to generate

Δae and Δaμ successfully accommodating the experimen-
tal results, they are not contributed from the same source.
From Tables IV–VI, we see that, for x ¼ 0.5, 1, and 2,
Qϕ;ψReðg�eRgeLÞ and Qϕ;ψReðg�μRgμLÞ of orders 10−4 and
10−3, respectively, are able to produce the experimental
values of Δae and Δaμ. However, the contributions cannot

come from the same source, i.e., from diagrams involving
the same set of ϕ and ψ . The reasons are as follows. If Δae
and Δaμ are generated from the same set of ψ and ϕ,
the very same set of ψ and ϕ will also generate μ → eγ
decay with rate exceeding the experimental bound.
Indeed, from Fig. 3(e) we see that the μ → eγ data
constraints jQϕ;ψg�μRðLÞgeLðRÞj to be less than 10−7 to

10−6, but experimental data on Δae and Δaμ require
jQϕ;ψ jjReðg�eRgeLÞReðg�μRgμLÞj1=2 to be of the order of
10−3 to 10−1, which is larger than the constrain from μ →
eγ by more than 4 orders of magnitude. Hence, the
contributions to Δae and Δaμ do not come from the same

TABLE V. Same as Table IV, but with x≡mϕ=mψ ¼ 0.5.

Processes Constraints Constraints Constraints Constraints

QϕjgeRj2 Qψ jgeRj2 QϕReðg�eRgeLÞ QψReðg�eRgeLÞ
Δae −811� 332 1059 ∓ 433 ð−2.3� 1.0Þ × 10−4 ð1.5 ∓ 0.7Þ × 10−4

QϕjgμRj2 Qψ jgμRj2 QϕReðg�μRgμLÞ QψReðg�μRgμLÞ
Δaμ 58� 16 −76 ∓ 20 ð3.5� 0.9Þ × 10−3 ð−2.3 ∓ 0.6Þ × 10−3

QϕjgτRj2 Qψ jgτRj2 QϕReðg�τRgτLÞ QψReðg�τRgτLÞ
Δaτ ð−4 ∼ 1Þ × 106 ð−1 ∼ 5Þ × 106 ð−4 ∼ 1Þ × 103 ð−0.7 ∼ 3Þ × 103

jQϕImðg�eRgeLÞj jQϕImðg�eRgeLÞj jQϕImðg�μðτÞRgμðτÞLÞj jQψ Imðg�μðτÞRgμðτÞLÞj
de, dμ, dτ 1.5 × 10−10 1.0 × 10−10 2.6(22.0) 1.8(14.9)

jQϕg�μRgeRj jQψg�μRgeRj jQϕg�μRgeLj jQψg�μRgeLj
μþ → eþγ 0.001[0.0004] 0.001[0.0005] 7½2� × 10−8 4½2� × 10−8

μþ → e−eþe− 0.024[0.0002] 0.021[0.0002] 129½1� × 10−8 87½0.9� × 10−8

μ−Au → e−Au 0.008[0.0001] 0.013[0.0002] 136½2� × 10−8 92½1� × 10−8

μ−Ti → e−Ti 0.022[0.00003] 0.038[0.00006] 327½0.5� × 10−8 222½0.3� × 10−8

μ−Al → e−Al ½4 × 10−5� ½7 × 10−5� ½6.2 × 10−9� ½4.2 × 10−9�
jg�μRgeRΔT3ψ j jg�μRgeRκRj jg�μRgeRg�eRgeRj jg�μRgeRg�eLgeLj

μþ → e−eþe− 274½3� × 10−6 148½1� × 10−6 6f7g × 10−3½6f7g × 10−5� 3f3g × 10−3½3f3g × 10−5�
μ−Au → e−Au 343½4� × 10−7 186½2� × 10−7

μ−Ti → e−Ti 1120½2� × 10−7 649½1� × 10−7

μ−Al → e−Al ½3 × 10−7� ½1 × 10−7�
jQϕgτRg�eRj jQψgτRg�eRj jQϕgτRg�eLj jQψgτRg�eLj

τ− → e−γ 0.7[0.2] 1.0[0.3] 7½2� × 10−4 5½1� × 10−4

τ− → e−eþe− 6.8[0.9] 6.9[0.9] 65½8� × 10−4 44½6� × 10−4

jgτRg�eRΔT3ψ j jgτRg�eRκRj jgτRg�eRgeRg�eRj jgτRg�eRgeLg�eLj
τ− → e−eþe− 0.11[0.01] 0.06[0.007] 2.5f2.7g½0.3f0.3g� 1.1f1.1g½0.1f0.1g�

jQϕgτRg�μRj jQψgτRg�μRj jQϕgτRg�μLj jQψgτRg�μLj
τ− → μ−γ 0.8[0.1] 1.1[0.2] 9½1� × 10−4 58½9� × 10−5

τ− → μ−μþμ− 16.7[2.1] 8.9[1.1] 12½2� × 10−3 8½1� × 10−3

jgτRg�μRΔT3ψ j jgτRg�μRκRj jgτRg�μRgμRg�μRj jgτRg�μRgμLg�μLj
τ− → μ−μþμ− 0.09[0.01] 0.05[0.006] 2.2f2.4g½0.3f0.3g� 1.0f1.0g½0.1f0.1g�

jgτRg�eRgμRg�eRj jgτRg�eRgμLg�eLj jgτRg�eLgμRg�eLj
τ− → e−μþe− 1.8f2.0g½0.2f0.3g� 0.9f0.9g½0.1f0.1g� 1.9f1.9g½0.2f0.2g�

jgτRg�μRgeRg�μRj jgτRg�μRgeLg�μLj jgτRg�μLgeRg�μLj
τ− → μ−eþμþ 2.0f2.2g½0.2f0.3g� 1.0f1.0g½0.1f0.1g� 2.1f2.1g½0.3f0.3g�
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source. Our finding agrees with Ref. [27], where a common
explanation of Δae and Δaμ was investigated and it was
found that the present μ → eγ bound do not support a
common explanation of the deviations.
Presently, the upper limit in μ → eγ decay gives the

most severe constraints on photonic penguin contributions
in μ → e transitions, agreeing with [79,80], but the
situation may change when we include future experi-
mental sensitivities in the analysis. From Tables IV–VI
and Figs. 4(a)–4(d), we see that the present μ → eγ bound
constrains the jQϕ;ψg�μRgeRj and jQϕ;ψg�μRgeLj much better
than the present μ → 3e and μN → eN upper limits. In fact,
the bounds obtained from μ → eγ decay are better than

those from other processes by at least one order of
magnitude. The situation is altered when considering future
experimental searches. From the tables and the figures, we
see that, on the contrary, in near future experiments the
μ → 3e and μN → eN processes may be able to probe the
photonic penguin contributions from jQϕ;ψg�μRgeRj and
jQϕ;ψg�μRgeLj better than the future experiment search on
μ → eγ decay.
The Z-penguin diagrams can constrain chiral interaction

better than photonic penguin diagrams in μ → e transitions.
From Tables IV–VI, Figs. 4(a), 4(b), 4(e), and 4(f) we see
that the bounds on jg�μRgeRΔT3ψ j and jg�μRgeRκRj from
Z-penguin contributions are more severe (by two orders of

TABLE VI. Same as Table IV, but with x≡mϕ=mψ ¼ 2.

Processes Constraints Constraints Constraints Constraints

QϕjgeRj2 Qψ jgeRj2 QϕReðg�eRgeLÞ QψReðg�eRgeLÞ
Δae −4234� 1732 3247 ∓ 1328 ð−9.4� 3.8Þ × 10−4 ð3.2 ∓ 1.3Þ × 10−4

QϕjgμRj2 Qψ jgμRj2 QϕReðg�μRgμLÞ QψReðg�μRgμLÞ
Δaμ 305� 82 −234 ∓ 63 ð14.0� 3.7Þ × 10−3 ð−4.8 ∓ 1.3Þ × 10−3

QϕjgτRj2 Qψ jgτRj2 QϕReðg�τRgτLÞ QψReðg�τRgτLÞ
Δaτ ð−20 ∼ 5Þ × 106 ð−4 ∼ 16Þ × 106 ð−16 ∼ 4Þ × 103 ð−1 ∼ 5Þ × 103

jQϕImðg�eRgeLÞj jQϕImðg�eRgeLÞj jQϕImðg�μðτÞRgμðτÞLÞj jQψ Imðg�μðτÞRgμðτÞLÞj
de, dμ, dτ 6.1 × 10−10 2.1 × 10−10 10.5(88.1) 3.6(30.3)

jQϕg�μRgeRj jQψg�μRgeRj jQϕg�μRgeLj jQψg�μRgeLj
μþ → eþγ 0.006[0.002] 0.004[0.002] 26½10� × 10−8 9½3� × 10−8

μþ → e−eþe− 0.120[0.001] 0.056[0.0006] 516½5� × 10−8 177½2� × 10−8

μ−Au → e−Au 0.059[0.0007] 0.024[0.0003] 542½6� × 10−8 187½2� × 10−8

μ−Ti → e−Ti 0.151[0.0002] 0.069[0.0001] 1309½2� × 10−8 450½0.7� × 10−8

μ−Al → e−Al [0.0003] [0.0001] ½2.5 × 10−8� ½0.9 × 10−8�
jg�μRgeRΔT3ψ j jg�μRgeRκRj jg�μRgeRg�eRgeRj jg�μRgeRg�eLgeLj

μþ → e−eþe− 695½7� × 10−6 879½9� × 10−7 0.03f0.05g½2f5g × 10−4� 0.02f0.02g½2f2g × 10−4�
μ−Au → e−Au 87½1� × 10−6 110½1� × 10−7

μ−Ti → e−Ti 3038½5� × 10−7 3845½6� × 10−8

μ−Al → e−Al ½7 × 10−7� ½8 × 10−8�
jQϕgτRg�eRj jQψgτRg�eRj jQϕgτRg�eLj jQψgτRg�eLj

τ− → e−γ 3.8[1.1] 2.9[0.9] 29½8� × 10−4 10½3� × 10−4

τ− → e−eþe− 34.7[4.4] 19.1[2.4] 26½3� × 10−3 9½1� × 10−3

jgτRg�eRΔT3ψ j jgτRg�eRκRj jgτRg�eRgeRg�eRj jgτRg�eRgeLg�eLj
τ− → e−eþe− 0.27[0.03] 0.03[0.004] 9.9f18.9g½1.2f2.4g� 9.2f9.2g½1.2f1.2g�

jQϕgτRg�μRj jQψgτRg�μRj jQϕgτRg�μLj jQψgτRg�μLj
τ− → μ−γ 4.4[0.7] 3.4[0.5] 34½5� × 10−4 11½2� × 10−4

τ− → μ−μþμ− 78.0[9.8] 22.4[2.8] 49½6� × 10−3 17½2� × 10−3

jgτRg�μRΔT3ψ j jgτRg�μRκRj jgτRg�μRgμRg�μRj jgτRg�μRgμLg�μLj
τ− → μ−μþμ− 0.24[0.03] 0.03[0.004] 8.7f16.7g½1.1f2.1g� 8.1f8.1g½1.0f1.0g�

jgτRg�eRgμRg�eRj jgτRg�eRgμLg�eLj jgτRg�eLgμRg�eLj
τ− → e−μþe− 7.4f14.1g½0.9f1.8g� 7.1f7.1g½0.9f0.9g� 31.0f31.0g½3.9f3.9g�

jgτRg�μRgeRg�μRj jgτRg�μRgeLg�μLj jgτRg�μLgeRg�μLj
τ− → μ−eþμþ 7.9f15.0g½1.0f1.9g� 7.5f7.5g½0.9f0.9g� 33.0f33.0g½4.2f4.2g�
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magnitude) than bounds on jQϕ;ψg�μRgeRj from photonic
penguin contributions. In addition, from Figs. 4(e) and 4(f)
we see that μN → eN transitions give better constraints on
jg�μRgeRΔT3ψ j and jg�μRgeRκRj than the μ → 3e decay.
In case I, either in the Dirac or Majorana case,

box contributions to μ → 3e decay are subleading.
Furthermore, there are cancelation in box contributions
in the Majorana fermionic case making the contributions
even smaller. Figures 4(g) and 4(h) show the bounds on

jg�μRgeRg�eRgeRj and jg�μRgeRg�eLgeLj obtained by considering
box contributions to μ → 3e decay. Note that the con-
straint on jg�μRgeRΔT3ψ jjg�eLgeLj obtained from μAu → eAu
upper limit and perturbativity is much severe than the
jg�μRgeRg�eRgeRj bound by one to two orders of magnitude,
while jQϕ;ψg�μRgeLjjg�eLgeRj obtained from μ → eγ, Δae,
and de experimental results is much severe than the
jg�μRgeRg�eLgeLj bound by more than 8 orders of magnitude.
One can also use the values in Tables IV–VI to obtain

(a) (b)

(c) (d)

(e)

FIG. 3. We show in (a) and (b), allowed parameter space for ∓Qϕ;ψ jgeLðRÞj2, ∓Qϕ;ψReðg�eRgeLÞ, and jQϕ;ψ Imðg�eRgeLÞj constrained
by Δae and de, in (c) and (d), allowed parameter space for �Qϕ;ψ jgμLðRÞj2, �Qϕ;ψReðg�μRgμLÞ, and jQϕ;ψ Imðg�μRgμLÞj constrained
by Δaμ and dμ, in (e) allowed parameter space for jQϕ;ψg�μRðLÞgeLðRÞj constrained by μ → eγ and the parameter space on

jQϕ;ψ jjReðg�eRgeLÞReðg�μRgμLÞj1=2 to produce Δae and Δaμ. These results are given for mψ ¼ 500 GeV. For other mψ , plots in (a)
and (c) scale with ð500 GeV=mψ Þ2, while plots in (b), (d) and (e) scale with 500 GeV=mψ .
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similar findings. These results imply that box contributions
to μ → 3e decay are subleading.
From Tables IV–VI, we see that the present bounds on

Δaτ cannot constrain Qϕ;ψ jgτRðLÞj2 and Qϕ;ψReðg�τRgτLÞ

well. Even the bound on dτ cannot give good constraints on
Qϕ;ψ Imðg�τRgτLÞ. There is still a long way to go.
In τ → e (μ) transitions, the τ → eγðμγÞ upper limit

constrains photonic penguin contributions better than the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Parameter space excluded or projected by various experimental bounds or expected sensitivities on μ → e LFV processes from
photonic penguin, Z-penguin, and box contributions.
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τ → 3e ð3μÞ upper limit, agreeing with [80], and Z-penguin
constrains chiral interaction better than photonic penguin.
From Tables IV–VI, Figs. 5(a)–5(d) and 6(a)–6(d), we see
that bounds on jQϕ;ψg�τRgeðμÞRj and jQϕ;ψg�τRgeðμÞLj are
constrained by the τ → eγðμγÞ data more severely than

by the τ → 3e ð3μÞ upper limit. Note that the bounds
of these parameters using the proposed sensitivities on
τ → 3e and τ → 3μ decays by Belle II are superseded
by the bounds using the present limits of τ → eγ and τ →
μγ decays. From Tables IV–VI, Figs. 5(e), 5(f), 6(e),

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. Same as Fig. 4, but for τ → e transition.
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and 6(f), we see that bounds on jg�τRgeðμÞRΔT3ψ j and
jg�τRgeðμÞRκRj from Z-penguin contributions are more
severe (by one order of magnitude) than those on
jQϕ;ψg�τRgeðμÞRj from photonic penguin contributions.

Hence, Z-penguin constrains chiral interaction better than
photonic penguin.
Box contributions to τ → 3e and τ → 3μ decays can

sometime be comparable to Z-penguin contributions.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. Same as Fig. 4, but for τ → μ transition.
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In Figs. 5(g), 5(h), 6(g), and 6(h) we show the bounds on
jg�τRgeðμÞRg�eðμÞRgeðμÞRj and jg�τRgeðμÞRg�eðμÞLgeðμÞLj obtained

by considering box contributions to τ → 3e ð3μÞ decay.
Note that the constraint on jg�τRgeðμÞRΔT3ψ jjg�eðμÞLgeðμÞLj
obtained from Z-penguin contributions to τ → 3e ð3μÞ
decay and perturbativity is much severe than the
jg�τRgeðμÞRg�eðμÞRgeðμÞRj bound from box contributions for

x≳ 0.4, but it is the other way around for x≲ 0.4. The
bound on jQϕ;ψg�τRgeðμÞLjjg�eðμÞLgeðμÞRj obtained using

τ → eγðμγÞ, ΔaeðμÞ and deðμÞ experimental results is much
severe than the jg�τRgeðμÞRg�eðμÞLgeðμÞLj bound from box

contributions by five to seven (one to three) orders of
magnitude. One can also obtain similar results using the
values in Tables IV–VI. These findings imply that box
contributions to τ → 3e ð3μÞ can sometime be comparable
to Z-penguin contributions.
The τ− → e−μþe− rate is highly constrained by τ → eγ

and μ → eγ upper limits. From Figs. 7(a), 7(c), and 7(e),
Tables IV–VI, we see that the bounds on jg�τRgeRg�μRgeRj,
jg�τRgeLg�μRgeLj, and jg�τRgeRg�μLgeLj, obtained from the upper
limit of the τ− → e−μþe− rate, are larger than the bounds on
jQϕ;ψg�τRgeRjjQϕ;ψg�μRgeRj, jQϕ;ψg�τRgeLjjQϕ;ψg�μRgeLj, and
jQϕ;ψg�τRgeRjjQϕ;ψg�μLgeLj, obtained from the upper limits

(a) (b)

(c) (d)

(e) (f)

FIG. 7. Parameter space excluded or projected by various experimental bounds or expected sensitivities on τ− → e−μþe−; μ−eþμ−
processes from box contributions.
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of τ → eγ and μ → eγ rates, by several orders of magnitude.
Note that the τ− → e−μþe− rate is constrained to be smaller
than the proposed sensitivity. Hence, the τ− → e−μþe− rate
is highly constrained by the present τ → eγ and μ → eγ
upper limits.
The τ− → μ−eþμ− rate is also highly constrained

by τ → μγ and μ → eγ upper limits. From Figs. 7(b),
7(d), and 7(f), Tables. IV–VI, we see that the bounds
on jg�τRgμRg�eRgμRj, jg�τRgμLg�eRgμLj, and jg�τRgμRg�eLgμLj,
obtained from the upper limit of the τ− → μ−eþμ− rate,
are larger than the bounds on jQϕ;ψg�τRgμRjjQϕ;ψg�μRgeRj,
jQϕ;ψg�τRgμLjjQϕ;ψg�μLgeRj, and jQϕ;ψg�τRgμRjjQϕ;ψg�μLgeLj,
obtained from the upper limits of τ → eγ and μ → eγ rates,
by several orders of magnitude. Hence, the τ− → μ−eþμ−
rate is highly constrained by τ → μγ and μ → eγ upper
limits. In fact, the τ− → μ−eþμ− rate is constrained to be
smaller than the proposed sensitivity.
In Table VII, we compare the current experimental upper

limits, future sensitivities and bounds from consistency
for case I on various muon and tau LFV processes. We see
that the present μ → eγ upper limit requires the bounds on
μ → 3e, μTi → eTi and μAu → eAu be lower by two
orders of magnitude, more than one order of magnitude
and almost one order of magnitude, respectively, from their
present upper limits, and the μAl → eAl rate is predicted to
be smaller than 6 × 10−14. These bounds can be further
pushed downward by one order of magnitude if we still
cannot observe μ → eγ decay in MEG II. It is interesting
that the future sensitivities of μ → 3e and μN → eN are
much lower than the above limits based on consistency,
giving them good opportunity to explore these LFV
processes. We find that the situation is similar but the
bounds are slightly relaxed when the μAu → eAu upper
limit instead of the present μ → eγ upper limit is used as an
input. Similarly, using the present τ → eγðμγÞ upper limit

as input, the τ → 3e ð3μÞ bound is smaller than its present
upper limit by one order of magnitude. Note that the
Bðl0 → ll̄lÞ=Bðl0 → lγÞ ratios are close to the values shown
in Eq. (8) [79,80], but not identical to them, as the F1 terms
in photonic penguins also play some roles. Finally, the
τ− → μ−eþμ− and τ− → e−μþe− bounds are lower than
their present upper limits by two orders of magnitude as
required from the present τ → μγ, eγ and μ → eγ upper
limits. These limits are lower than the proposed future
sensitivities.

B. Case II

We now turn to the second case, where we have a built-in
cancellation mechanism.
In Table VIII, we show the constraints on parameters

in case II using x≡mϕ=mψ ¼ 1 and mψ ¼ 500 GeV.
Constraints for other mψ can be obtained by scaling the
results in the table by a ð mψ

500 GeVÞ2 or a
mψ

500 GeV factor, where
the latter is for Qϕ;ψg�lð0ÞRglL. Results in ½…� are obtained by
using the projected sensitivities for future experiments. For
box contributions both results of Dirac and Majorana
fermion are given, where results in f…g are for the
Majorana case. Results for x ¼ 0.5 and 2 are given in
Tables IX and X, respectively.
In Fig. 8, the allowed parameter space for (a) �Qϕ;ψ ×

Reðg�eRgeLδeeRLÞ and jQϕ;ψ Imðg�eRgeLδeeRLÞj constrained by
Δaμ and de, respectively, and (b)∓Qϕ;ψReðg�μRgμLδμμRLÞ and
jQϕ;ψ Imðg�μRgμLδμμRLÞj constrained by Δaμ and dμ, respec-
tively, are shown. These constraints are obtained using
mψ ¼ 500 GeV. For other mψ , apply a ð500 GeVÞ=mψ

factor to the plots.
In Figs. 9–11, we show the parameter space con-

strained by using various experimental bounds or expected
sensitivities on μ → e, τ → e and τ → μ lepton flavor
violating processes. Contributions from photonic penguin,

TABLE VII. Current experimental upper limits, future sensitivities and bounds from consistency in case I on
various muon and tau LFV processes. Experimental bounds are from [4,17,22–24].

Current limit (future sensitivity) Consistency bounds Remarks

Bðμþ → eþγÞ <4.2 × 10−13 (6 × 10−14) <4.2 × 10−13 Input
Bðμþ → eþeþe−Þ <1.0 × 10−12 (10−16) <1.3 × 10−14 From μ → eγ bound

<1.6 × 10−14 From μAu → eAu bound
Bðμ−Ti → e−TiÞ <4.3 × 10−12 (10−17) <9.1 × 10−14 From μ → eγ bound

<3.5 × 10−13 From μAu → eAu bound
Bðμ−Au → e−AuÞ <7.0 × 10−13 (10−16) <1.1 × 10−13 From μ → eγ bound

<7.0 × 10−13 Input
Bðμ−Al → e−AlÞ � � � (10−17) <5.5 × 10−14 From μ → eγ bound

<1.7 × 10−13 From μAu → eAu bound
Bðτ− → e−γÞ <3.3 × 10−8 (3 × 10−9) <3.3 × 10−8 Input
Bðτ− → e−eþe−Þ <2.7 × 10−8 (4.3 × 10−10) <1.2 × 10−9 From τ → eγ bound
Bðτ− → μ−γÞ <4.4 × 10−8 (1 × 10−9) <4.4 × 10−8 Input
Bðτ− → μ−μþμ−Þ <2.1 × 10−8 (3.3 × 10−10) <1.2 × 10−9 From τ → μγ bound
Bðτ− → μ−eþμ−Þ <1.7 × 10−8 (2.7 × 10−10) ≲1 × 10−10 From τ → μγ, μ → eγ bounds
Bðτ− → e−μþe−Þ <1.5 × 10−8 (2.4 × 10−10) ≲7 × 10−11 From τ → eγ, μ → eγ bounds
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Z-penguin, and box diagrams are considered. In Fig. 12,
the parameter space constrained by using various bounds
or expected experimental sensitivities on τ− → e−μþe−;
μ−eþμ− processes through contributions from box contri-
butions are shown.
There are several messages we can extracted from these

results. First we note that, comparing to case I, the built-in
cancellation has more prominent effects in penguin ampli-
tudes than in box amplitudes. Furthermore, the cancellation
affects small-x (x≡mϕ=mψ ) region more effectively. We
can see this clearly in the above figures by noting that
the curves corresponding to penguin contributions bend
upward in the small-x region, hence, relaxing the constraints.

Similar to case I, we note that chiral interactions
(gL × gR ¼ 0) are unable to generate large enough contri-
butions to Δae and Δaμ to accommodate the experimental
results, Eqs. (1) and (2). This can be seen in Tables IV, IX,
and X, where Qϕ;ψ jgeRðLÞj2 and Qϕ;ψ jgμRðLÞj2 need to be
unreasonably and unacceptably large to produce the exper-
imental values of Δae and Δaμ.
Again similar to case I, we find that although nonchiral

interactions are capable to generate Δae and Δaμ success-
fully accommodating the experimental results, they are
contributed from different sources. From Tables VIII–X,
we see that Qϕ;ψReðg�eRgeLδeeRLÞ and Qϕ;ψReðg�μRgμLδμμRLÞ of
orders 10−3 and 10−2 or larger, are able to produce the

TABLE VIII. Same as Table IV (x ¼ 1), but for case II.

Processes Constraints Constraints Constraints Constraints

QϕjgeRj2 Qψ jgeRj2 QϕReðg�eRgeLδeeRLÞ QψReðg�eRgeLδeeRLÞ
Δae −1597� 653 1597 ∓ 653 ð8 ∓ 3Þ × 10−4 ð−8� 3Þ × 10−4

QϕjgμRj2 Qψ jgμRj2 QϕReðg�μRgμLδμμRLÞ QψReðg�μRgμLδμμRLÞ
Δaμ 115� 31 −115 ∓ 31 ð−12 ∓ 3Þ × 10−3 ð−12� 3Þ × 10−3

QϕjgτRj2 Qψ jgτRj2 QϕReðg�τRgτLδττRLÞ QψReðg�τRgτLδττRLÞ
Δaτ ð−7 ∼ 2Þ × 106 ð−2 ∼ 7Þ × 106 ð−3 ∼ 13Þ × 103 ð−13 ∼ 3Þ × 103

jQϕImðg�eRgeLδeeRLÞj jQϕImðg�eRgeLÞδeeRLj jQϕImðg�lRglLδllRLÞjl¼μðτÞ jQψ Imðg�lRglLδllRLÞjl¼μðτÞ
de, dμ, dτ 5.3 × 10−10 5.3 × 10−10 9.1(76.5) 9.1(76.5)

jQϕg�μRgeRδ
μe
RRj jQψg�μRgeRδ

μe
RRj jQϕg�μRgeLδ

μe
RLj jQψg�μRgeLδ

μe
RLj

μþ → eþγ 0.004[0.0014] 0.005[0.0020] 23½9� × 10−8 23½9� × 10−8

μþ → e−eþe− 0.077[0.0008] 0.085[0.0008] 448½4� × 10−8 448½4� × 10−8

μ−Au → e−Au 0.028[0.0003] 0.074[0.0009] 471½6� × 10−8 471½6� × 10−8

μ−Ti → e−Ti 0.072[0.0001] 0.219[0.0003] 1137½2� × 10−8 1137½2� × 10−8

μ−Al → e−Al [0.0001] [0.0004] ½2 × 10−8� ½2 × 10−8�
jg�μRgeRΔT3ψδ

μe
RRj jg�μRgeRg�eRgeRδμeRRj jg�μRgeRg�eLgeLδμeRRj

μþ → e−eþe− 118½1� × 10−5 0.04f0.04g½4f4g × 10−4� 0.03f0.06g½3f6g × 10−4�
μ−Au → e−Au 148½2� × 10−6

μ−Ti → e−Ti 5155½8� × 10−7

μ−Al → e−Al ½1 × 10−6�
jQϕgτRg�eRδ

eτ
RRj jQψgτRg�eRδ

eτ
RRj jQϕgτRg�eLδ

eτ
LRj jQψgτRg�eLδ

eτ
LRj

τ− → e−γ 2.4[0.7] 3.6[1.1] 26½8� × 10−4 26½8� × 10−4

τ− → e−eþe− 22.2[2.8] 27.3[3.5] 22½3� × 10−3 22½3� × 10−3

jgτRg�eRΔT3ψδ
eτ
RRj jgτRg�eRgeRg�eRδeτRRj jgτRg�eRgeLg�eLδeτRRj

τ− → e−eþe− 0.46[0.06] 17.2f17.2g½2.2f2.2g� 12.2f24.3g½1.5f3.1g�
jQϕgτRg�μRδ

μτ
RRj jQψgτRg�μRδ

μτ
RRj jQϕgτRg�μLδ

μτ
LRj jQψgτRg�μRδ

μτ
LRj

τ− → μ−γ 2.8[0.4] 4.2[0.6] 30½4� × 10−4 30½4� × 10−4

τ− → μ−μþμ− 19.5[2.4] 24.1[3.0] 20½2� × 10−3 20½2� × 10−3

jgτRg�μRΔT3ψδ
μτ
RRj jgτRg�μRgμRg�μRδμτRRj jgτRg�μRgμLg�μLδμτRRj

τ− → μ−μþμ− 0.41[0.05] 15.2f15.2g½1.9f1.9g� 10.7f21.4g½1.3f2.7g�
jgτRg�eRgμRg�eRδeτRRδeμRRj jgτRg�eRgμLg�eLδeτRRδeμLLj jgτRg�eLgμRg�eLδeτLRδeμLRj jgτRg�eLgμLg�eRδeτLRδeμRLj

τ− → e−μþe− 32.0f16.0g½4.1f2.0g� 15.1f22.7g½1.9f2.9g� 21.4f21.4g½2.7f2.7g� 45.3f22.7g½5.7f2.9g�
jgτRg�μRgeRg�μRδμτRRδμeRRj jgτRg�μRgeLg�μLδμτRRδμeLLj jgτRg�μLgeRg�μLδμτLRδμeLRj jgτRg�μLgeLg�μRδμτLRδμeRLj

τ− → μ−eþμþ 34.1f17.1g½4.3f2.1g� 16.1f24.1g½2.0f3.0g� 22.7f22.7g½2.9f2.9g� 48.2f24.1g½6.1f3.0g�
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experimental values of Δae and Δaμ. As Δae is generated
from Qϕ;ψReðg�eRgeLδeeRLÞ, while Δaμ is generated from
Qϕ;ψReðg�μRgμLδμμRLÞ, the contributions are not from the
same source (meaning the same ψ and ϕ). We also note
that these values are larger than Qϕ;ψReðg�eRgeLÞ and
Qϕ;ψReðg�μRgμLÞ in case I by roughly one order of magni-
tude. This is reasonable as we have cancellation in this case.
Furthermore, comparing Figs. 3(b), 3(d), 8(a), and 8(b), we
can clearly see the relaxation in the small-x region.
The upper limit in μ → eγ decay gives the most severe

constraints on photonic penguin contributions in μ → e
transitions, agreeing with [79,80], but the constraints
on parameters are relaxed, especially in the small-x

region, comparing to case I. From Tables VIII–X and
Figs. 9(a)–9(d), we see that the bounds on jQϕ;ψg�μRgeRδ

μe
RRj

and jQϕ;ψg�μRgeLδ
μe
RLj are severely constrained by the

μ → eγ upper limit. Indeed, the μ → eγ bound is more
severe than the μ → 3e and μN → eN bounds. The
situation is altered when considering future experimental
searches. From the tables and the figures, we see that, on
the contrary, the μ → 3e and μN → eN processes can probe
the photonic penguin contributions from jQϕ;ψg�μRgeRδ

μe
RRj

and jQϕ;ψg�μRgeLδ
μe
RLj better than the μ → eγ decay in near

future experiments.
Similar to case I, the Z-penguin diagrams can constrain

chiral interaction better than photonic penguin diagrams in

TABLE IX. Same as Table VIII, but with x≡mϕ=mψ ¼ 0.5.

Processes Constraints Constraints Constraints Constraints

QϕjgeRj2 Qψ jgeRj2 QϕReðg�eRgeLδeeRLÞ QψReðg�eRgeLδeeRLÞ
Δae −812� 332 1059 ∓ 433 ð8 ∓ 3Þ × 10−4 ð−13� 6Þ × 10−4

QϕjgμRj2 Qψ jgμRj2 QϕReðg�μRgμLδμμRLÞ QψReðg�μRgμLδμμRLÞ
Δaμ 58� 16 −76 ∓ 20 ð−1.2 ∓ 0.3Þ × 10−2 ð−20� 5Þ × 10−3

QϕjgτRj2 Qψ jgτRj2 QϕReðg�τRgτLδττRLÞ QψReðg�τRgτLδττRLÞ
Δaτ ð−4 ∼ 1Þ × 106 ð−1 ∼ 5Þ × 106 ð−3 ∼ 13Þ × 103 ð−22 ∼ 5Þ × 103

jQϕImðg�eRgeLδeeRLÞj jQϕImðg�eRgeLÞδeeRLj jQϕImðg�lRglLδllRLÞjl¼μðτÞ jQψ Imðg�lRglLδllRLÞjl¼μðτÞ
de, dμ, dτ 5.0 × 10−10 8.7 × 10−10 8.7(73.0) 15.0(126.2)

jQϕg�μRgeRδ
μe
RRj jQψg�μRgeRδ

μe
RRj jQϕg�μRgeLδ

μe
RLj jQψg�μRgeLδ

μe
RLj

μþ → eþγ 0.003[0.0011] 0.007[0.0027] 22½8� × 10−8 4½1� × 10−7

μþ → e−eþe− 0.063[0.0006] 0.115[0.0011] 427½4� × 10−8 739½7� × 10−8

μ−Au → e−Au 0.015[0.0002] 0.136[0.0016] 449½5� × 10−8 777½9� × 10−8

μ−Ti → e−Ti 0.040[0.00006] 0.416[0.0006] 1084½2� × 10−8 1875½3� × 10−8

μ−Al → e−Al [0.00001] [0.0008] ½2 × 10−8� ½4 × 10−8�
jg�μRgeRΔT3ψδ

μe
RRj jg�μRgeRg�eRgeRδμeRRj jg�μRgeRg�eLgeLδμeRRj

μþ → e−eþe− 142½1� × 10−5 0.04f0.01g½4f1g × 10−4� 0.01f0.02g½1f2g × 10−4�
μ−Au → e−Au 178½2� × 10−6

μ−Ti → e−Ti 6226½9� × 10−7

μ−Al → e−Al ½1 × 10−6�
jQϕgτRg�eRδ

eτ
RRj jQψgτRg�eRδ

eτ
RRj jQϕgτRg�eLδ

eτ
LRj jQψgτRg�eLδ

eτ
LRj

τ− → e−γ 1.9[0.6] 4.7[1.4] 24½7� × 10−4 42½13� × 10−4

τ− → e−eþe− 18.0[2.3] 36.8[4.6] 21½3� × 10−3 37½5� × 10−3

jgτRg�eRΔT3ψδ
eτ
RRj jgτRg�eRgeRg�eRδeτRRj jgτRg�eRgeLg�eLδeτRRj

τ− → e−eþe− 0.56[0.07] 16.4f4.5g½2.1f0.6g� 5.0f6.4g½0.6f0.8g�
jQϕgτRg�μRδ

μτ
RRj jQψgτRg�μRδ

μτ
RRj jQϕgτRg�μLδ

μτ
LRj jQψgτRg�μRδ

μτ
LRj

τ− → μ−γ 2.2[0.3] 5.4[0.8] 28½4� × 10−4 49½7� × 10−4

τ− → μ−μþμ− 15.8[2.0] 32.4[4.1] 18½2� × 10−3 33½4� × 10−3

jgτRg�μRΔT3ψδ
μτ
RRj jgτRg�μRgμRg�μRδμτRRj jgτRg�μRgμLg�μLδμτRRj

τ− → μ−μþμ− 0.49[0.06] 14.4f4.0g½1.8f0.5g� 4.4f5.6g½0.6f0.7g�
jgτRg�eRgμRg�eRδeτRRδeμRRj jgτRg�eRgμLg�eLδeτRRδeμLLj jgτRg�eLgμRg�eLδeτLRδeμLRj jgτRg�eLgμLg�eRδeτLRδeμRLj

τ− → e−μþe− 41.9f6.1g½6.3f0.8g� 7.5f8.6g½1.0f1.1g� 10.7f10.7g½1.3f1.3g� 59.3f29.6g½7.5f3.7g�
jgτRg�μRgeRg�μRδμτRRδμeRRj jgτRg�μRgeLg�μLδμτRRδμeLLj jgτRg�μLgeRg�μLδμτLRδμeLRj jgτRg�μLgeLg�μRδμτLRδμeRLj

τ− → μ−eþμþ 44.6f6.5g½5.6f0.8g� 8.0f9.2g½1.0f1.2g� 11.3f11.3g½1.4f1.4g� 63.1f31.5g½7.9f4.0g�
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TABLE X. Same as Table VIII, but with x≡mϕ=mψ ¼ 2.

Processes Constraints Constraints Constraints Constraints

QϕjgeRj2 Qψ jgeRj2 QϕReðg�eRgeLδeeRLÞ QψReðg�eRgeLδeeRLÞ
Δae −4234� 1732 3247 ∓ 1328 ð13 ∓ 6Þ × 10−4 ð−8� 3Þ × 10−4

QϕjgμRj2 Qψ jgμRj2 QϕReðg�μRgμLδμμRLÞ QψReðg�μRgμLδμμRLÞ
Δaμ 305� 82 −234 ∓ 63 ð−20 ∓ 5Þ × 10−3 ð12� 3Þ × 10−3

QϕjgτRj2 Qψ jgτRj2 QϕReðg�τRgτLδττRLÞ QψReðg�τRgτLδττRLÞ
Δaτ ð−21 ∼ 5Þ × 106 ð−4 ∼ 16Þ × 106 ð−6 ∼ 23Þ × 103 ð−13 ∼ 3Þ × 103

jQϕImðg�eRgeLδeeRLÞj jQϕImðg�eRgeLÞδeeRLj jQϕImðg�lRglLδllRLÞjl¼μðτÞ jQψ Imðg�lRglLδllRLÞjl¼μðτÞ
de, dμ, dτ 8.7 × 10−10 5.0 × 10−10 15.0(126.2) 8.7(73.0)

jQϕg�μRgeRδ
μe
RRj jQψg�μRgeRδ

μe
RRj jQϕg�μRgeLδ

μe
RLj jQψg�μRgeLδ

μe
RLj

μþ → eþγ 0.007[0.0027] 0.007[0.0027] 38½14� × 10−8 22½8� × 10−8

μþ → e−eþe− 0.152[0.0015] 0.103[0.0010] 739½7� × 10−8 427½4� × 10−8

μ−Au → e−Au 0.069[0.0008] 0.064[0.0008] 777½9� × 10−8 449½5� × 10−8

μ−Ti → e−Ti 0.177[0.0003] 0.183[0.0003] 1875½3� × 10−8 1084½2� × 10−8

μ−Al → e−Al [0.0003] [0.0004] ½4 × 10−8� ½2 × 10−8�
jg�μRgeRΔT3ψδ

μe
RRj jg�μRgeRg�eRgeRδμeRRj jg�μRgeRg�eLgeLδμeRRj

μþ → e−eþe− 142½1� × 10−5 0.07f0.54g½7f54g × 10−4� 0.12f0.76g½1f8g × 10−3�
μ−Au → e−Au 178½2� × 10−6

μ−Ti → e−Ti 623½1� × 10−6

μ−Al → e−Al ½1 × 10−6�
jQϕgτRg�eRδ

eτ
RRj jQψgτRg�eRδ

eτ
RRj jQϕgτRg�eLδ

eτ
LRj jQψgτRg�eLδ

eτ
LRj

τ− → e−γ 4.8[1.4] 4.7[1.4] 4.2½1.3� × 10−3 24½7� × 10−4

τ− → e−eþe− 43.7[5.5] 33.9[4.3] 37½5� × 10−3 21½3� × 10−3

jgτRg�eRΔT3ψδ
eτ
RRj jgτRg�eRgeRg�eRδeτRRj jgτRg�eRgeLg�eLδeτRRj

τ− → e−eþe− 0.56[0.07] 28.3f210.5g½3.6f26.6g� 46.3f297.7g½5.8f37.6g�
jQϕgτRg�μRδ

μτ
RRj jQψgτRg�μRδ

μτ
RRj jQϕgτRg�μLδ

μτ
LRj jQψgτRg�μRδ

μτ
LRj

τ− → μ−γ 5.5[0.8] 5.4[0.8] 49½7� × 10−4 28½4� × 10−4

τ− → μ−μþμ− 38.5[4.8] 29.9[3.7] 33½4� × 10−3 19½2� × 10−3

jgτRg�μRΔT3ψδ
μτ
RRj jgτRg�μRgμRg�μRδμτRRj jgτRg�μRgμLg�μLδμτRRj

τ− → μ−μþμ− 0.49[0.06] 25.0f185.6g½3.1f23.3g� 40.9f262.5g½5.1f32.9g�
jgτRg�eRgμRg�eRδeτRRδeμRRj jgτRg�eRgμLg�eLδeτRRδeμLLj jgτRg�eLgμRg�eLδeτLRδeμLRj jgτRg�eLgμLg�eRδeτLRδeμRLj

τ− → e−μþe− 41.9f194.1g½5.3f24.5g� 48.7f274.5g½6.2f34.7g� 68.9f68.9g½8.7f8.7g� 59.3f29.6g½7.5f3.7g�
jgτRg�μRgeRg�μRδμτRRδμeRRj jgτRg�μRgeLg�μLδμτRRδμeLLj jgτRg�μLgeRg�μLδμτLRδμeLRj jgτRg�μLgeLg�μRδμτLRδμeRLj

τ− → μ−eþμþ 44.6f206.6g½5.6f26.0g� 51.9f292.2g½6.5f36.8g� 73.4f73.4g½9.2f9.4g� 63.1f31.5g½7.9f4.0g�

(a) (b)

FIG. 8. Allowed parameter space for (a) �Qϕ;ψReðg�eRgeLδeeRLÞ and Qϕ;ψ Imðg�eRgeLδeeRLÞj constrained by Δaμ and de, respectively, and
(b) ∓Qϕ;ψReðg�μRgμLδμμRLÞ and Qϕ;ψ Imðg�μRgμLδμμRLÞj constrained by Δaμ and dμ, respectively. These constrains are obtained using
mψ ¼ 500 GeV, for other mψ , apply ð100 GeVÞ=mψ to the plots.
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μ → e transitions. From Tables VIII–X, Figs. 9(a), 9(b),
and 9(e) we see that the bounds on jg�μRgeRΔT3ψδ

μe
RRj from

Z-penguin contributions are more severe (by one to two
orders of magnitude) than the bounds on jQϕ;ψg�μRgeRδ

μe
RRj

from photonic penguin contributions. In addition, from

Fig. 9(e) we see that the upper limits of μN → eN
transitions give better bounds on jg�μRgeRΔT3ψδ

μe
RRj than

the μ → 3e bound.
For x larger than 0.2, box contributions to μ → 3e decay

are subleading comparing to Z penguin contributions,

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 9. Same as Fig. 4, but for case II.
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but the former can be important for x≲ 0.2. In Figs. 9(f)
and 9(g) we show the bounds on jg�μRgeRδμeRRg�eRgeRj and
jg�μRgeRδμeRRg�eLgeLj obtained by considering box contribu-
tions to μ → 3e decay. Note that the constraint on
jg�μRgeRΔT3ψδ

μe
RRjjg�eRðLÞgeRðLÞj obtained from μAu → eAu

upper limit and perturbativity is much severe than the
jg�μRδμeRRgeRg�eRðLÞgeRðLÞj bound. However for x smaller

than 0.2, box contributions can be important. This is
different from case I, as penguin contributions have larger
cancellation in the small-x region in the present case and, as

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 10. Same as Fig. 5, but for case II.
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a result, box contributions become relatively important in
this region.
From Tables VIII–X, we see that similar to case I the

present bound on Δaτ cannot constrain Qϕ;ψ jgτRðLÞj2 and

Qϕ;ψReðg�τRgτLδττRLÞ well. Even the bound on dτ cannot give
good constraints on Qϕ;ψ Imðg�τRgτLδττRLÞ.
In τ → e (μ) transitions, the τ → eγðμγÞ upper limit

constrains photonic penguin contributions better than

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 11. Same as Fig. 6, but for case II.
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the τ → 3e ð3μÞ upper limit, agreeing with [80], and
the Z-penguin constrains chiral interaction better than
the photonic penguin. From Tables VIII–X, Figs. 10(a)–
10(d) and 11(a)–11(d), we see that bounds on

jQϕ;ψg�τRgeðμÞRδ
τeðτμÞ
RR j and jQϕ;ψg�τRgeðμÞLδ

τeðτμÞ
RL j are con-

strained by the τ → eγðμγÞ data more severely than by
the τ → 3e ð3μÞ upper limit. Note that even the bounds
using the proposed sensitivities on τ → 3e and τ → 3μ
decays in Belle II are superseded by the bounds using
the present limits of τ → eγ and τ → μγ decays in most
of the parameter space. From Tables VIII–X, Figs. 10(e)
and 11(e), we see that bounds on jg�τRgeðμÞRΔT3ψδ

τeðτμÞ
RR j

from Z-penguin contributions are more severe (by one
order of magnitude) than those on jQϕ;ψg�τRgeðμÞRj from
photonic penguin contributions. Hence, Z-penguin con-
strains chiral interaction better than photonic penguin.
These features are similar to case I, but comparing
Figs. 5, 6, 10, and 11 we can clearly see that the bounds
are significant relaxed in the small-x region in the
present case.
Box contributions to τ → 3e and τ → 3μ decays can

sometime be comparable to Z-penguin contributions. We
show in Figs. 10(g), 10(h), 11(g), and 11(h) the bounds on

jg�τRgeðμÞRδτeðτμÞRR g�eðμÞRgeðμÞRj and jg�τRgeðμÞRδτeðτμÞRR g�eðμÞLgeðμÞLj
obtained by considering box contributions to τ → 3e ð3μÞ

(a) (b)

(c) (d)

(e) (f)

FIG. 12. Same as Fig. 7, but for case II.
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decay. Note that the constraint on jg�τRgeðμÞRδτeðτμÞRR ΔT3ψ j ×
jg�eðμÞLgeðμÞLj obtained from Z-penguin contributions to τ →

3e ð3μÞ decay and perturbativity is much severe than the

jg�τRgeðμÞRδτeðτμÞRR g�eðμÞRgeðμÞRj bound for x≳ 0.6, but it is the

other way around for x≲ 0.6. One can also obtain these
results using thevalues inTablesVIII–X.These results imply
that box contributions to τ → 3e; 3μ can sometime be
comparable to Z-penguin contributions. This is similar to
case I, but in a different region of x.
The τ− → e−μþe− rate is constrained by τ → eγ and μ →

eγ upper limits. The bounds on jg�τRgeRδτeRRg�μRgeRδμeRRj,
jg�τRgeLδτeRLg�μRgeLδτeRLj, and jg�τRgeRδτeRRg�μLgeLδμeLLj obtained
from constraining box contributions using the upper limit
of the τ− → e−μþe− rate are shown in Figs. 12(a), 12(c),
and 12(e), Tables VIII–X. They are larger than the bounds
on jQϕ;ψg�τRgeRδ

τe
RRjjQϕ;ψg�μRgeRδ

μe
RRj, jQϕ;ψg�τRgeLδ

τe
RLj×

jQϕ;ψg�μRgeLδ
μe
RLj, and jQϕ;ψg�τRgeRδ

τe
RRjjQϕ;ψg�μLgeLδ

μe
LLj

obtained by using the upper limits of τ → eγ and μ →
eγ rates. Note that for x≳ 0.2 even the proposed sensitivity
on τ− → e−μþe− rate is constrained. Hence, the τ− →
e−μþe− rate is constrained by the present τ → eγ and
μ → eγ upper limits. This is similar to case I, but the
constraints from τ → eγ and μ → eγ upper limits are
relatively relaxed.
Similarly the τ− → μ−eþμ− rate is constrained by

τ → μγ and μ → eγ upper limits. From Figs. 12(b),
12(d), and 12(f), Tables VIII–X, we see that the bounds
on jg�τRgμRδτμRRg�eRgμRδeμRRj, jg�τRgμLδτμRLg�eRgμLδeμRLj, and
jg�τRgμRδτμRRg�eLgμLδeμRRj obtained from the upper limit
of the τ− → μ−eþμ− rate are larger than the bounds
on jQϕ;ψg�τRgμRδ

τμ
RRjjQϕ;ψg�μRgeRδ

μe
RRj, jQϕ;ψg�τRgμLδ

τμ
RLj×

jQϕ;ψg�μLgeRδ
μe
LRj, and jQϕ;ψg�τRgμRδ

τμ
RRjjQϕ;ψg�μLgeLδ

μe
LLj

obtained from the upper limits of τ → μγ and μ → eγ

rates. Hence, the τ− → μ−eþμ− rate is constrained by
τ → μγ and μ → eγ upper limits. Note that for x≳ 0.2
even the proposed sensitivity on τ− → μ−eþμ− rate is
highly constrained. This is similar to case I, but the
constraints obtained using τ → μγ and μ → eγ upper limits
are relatively relaxed.
In Table XI, we compare the current experimental upper

limits, future sensitivities, and bounds from consistency
for case II on various muon and tau LFV processes. We see
that the present μ → eγ upper limit requires the bounds on
μ → 3e and μTi → eTi be lower by more than one order of
magnitude from their present upper limits, while the
μAu → eAu bound is close to its present limit and the
μAl → eAl rate is predicted to be smaller than 3 × 10−13.
Comparing to case I we see that the μ → 3e, μAu → eAu,
and μAl → eAl bounds are relaxed, while the μTi → eTi
bound is tighten. We find that the situation is similar when
the present μAu → eAu upper limit instead of the present
μ → eγ upper limit is used as an input. Using the present
τ → eγðμγÞ upper limit as input, the τ → 3e ð3μÞ bound is
smaller than its present upper limit by one order of
magnitude. These bounds are relaxed compared to those
in case I. Note that the Bðl0 → ll̄lÞ=Bðl0 → lγÞ ratios are
close to the values shown in Eq. (8) [79,80], but not
identical to them, as the F1 terms in photonic penguins also
play some roles. Finally, the τ− → μ−eþμ− and τ− →
e−μþe− bounds are similar to their present upper limits
when the present τ → μγ, eγ and μ → eγ upper limits are
used. These limits are significantly relaxed compared to
those in case I.

IV. CONCLUSION

We study anomalous magnetic moments and lepton
flavor violating processes of e, μ, and τ leptons in this
work. We use a data driven approach to investigate the

TABLE XI. Same as Table VII, but for case II.

Current limit (future sensitivity) Consistency bounds Remarks

Bðμþ → eþγÞ <4.2 × 10−13 (6 × 10−14) <4.2 × 10−13 Input
Bðμþ → eþeþe−Þ <1.0 × 10−12 (10−16) <2.2 × 10−14 From μ → eγ bound

<1.6 × 10−14 From μAu → eAu bound
Bðμ−Ti → e−TiÞ <4.3 × 10−12 (10−17) <5.2 × 10−14 From μ → eγ bound

<3.5 × 10−13 From μAu → eAu bound
Bðμ−Au → e−AuÞ <7.0 × 10−13 (10−16) <6.2 × 10−13 From μ → eγ bound

<7.0 × 10−13 Input
Bðμ−Al → e−AlÞ � � � (10−17) <3.2 × 10−13 From μ → eγ bound

<1.7 × 10−13 From μAu → eAu bound
Bðτ− → e−γÞ <3.3 × 10−8 (3 × 10−9) <3.3 × 10−8 Input
Bðτ− → e−eþe−Þ <2.7 × 10−8 (4.3 × 10−10) <1.9 × 10−9 From τ → eγ bound
Bðτ− → μ−γÞ <4.4 × 10−8 (1 × 10−9) <4.4 × 10−8 Input
Bðτ− → μ−μþμ−Þ <2.1 × 10−8 (3.3 × 10−10) <2.5 × 10−9 From τ → μγ bound
Bðτ− → μ−eþμ−Þ <1.7 × 10−8 (2.7 × 10−10) ≲1.3 × 10−8 From τ → μγ, μ → eγ bounds
Bðτ− → e−μþe−Þ <1.5 × 10−8 (2.4 × 10−10) ≲1 × 10−8 From τ → eγ, μ → eγ bounds
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implications of the present data on the parameters of a class
of models, which has spin-0 scalar and spin-1=2 fermion
fields and can contribute to Δal and LFV processes. We
compare two different cases, case I and case II, which does
not have and has a built-in cancelation mechanism,
respectively. Our findings are as follows.

(i) Parameters are constrained using the present data of
Δal, dl and lepton flavor violating processes of e, μ
and τ leptons.

(ii) The built-in cancelation has more prominent effects
in penguin amplitudes than in box amplitudes.
Furthermore, the cancelation affects amplitudes in
small-x (x≡mϕ=mψ ) region more effectively.

(iii) Chiral interactions are unable to generate large
enough Δae and Δaμ to accommodate the exper-
imental results.

(iv) Although Δae and Δaμ can be successfully gen-
erated to accommodate the experimental results by
using nonchiral interactions, they are not contributed
from the same source. This agrees with the finding
in [27].

(v) Presently, the upper limit in μ → eγ decay gives the
most severe constraints on photonic penguin con-
tributions in μ → e transitions, agreeing with
[79,80], but the situation may change in considering
future experimental sensitivities. In fact, the future
μ → 3e and μN → eN experiments may probe the
photonic penguin contributions better than the future
μ → eγ experiment.

(vi) The Z-penguin diagrams can constrain chiral inter-
action better than photonic penguin diagrams inμ → e
transitions. Inaddition,μN → eN transitionsconstrain
Z-penguin contributions better μ → 3e decay.

(vii) In case I, either in the Dirac or Majorana case, box
contributions to μ → 3e decay are subleading. Fur-
thermore, there are cancelation in box contributions
in the Majorana fermionic case making the contri-
butions even smaller. In case II, we find that for
x≳ 0.2, box contributions to μ → 3e decay are
subleading comparing to Z penguin contributions,
but they can be important for x≲ 0.2.

(viii) The present bounds onΔaτ and dτ are unable to give
useful constraints on parameters.

(ix) In τ → e (μ) transitions, the τ → eγðμγÞ upper limit
constrains photonic penguin contributions better than
the τ → 3e ð3μÞ upper limit, agreeing with [80], and
Z-penguin constrains chiral interaction better than
photonic penguin. Note that even the bounds using
the proposed sensitivities on τ → 3e and τ → 3μ
decays by Belle II are superseded by the bounds using
the present limits of τ → eγ and τ → μγ decays for
most of the parameter space. Bounds are significantly
relaxed in the small-x region in case II.

(x) Box contributions to τ → 3e and τ → 3μ decays can
sometime be comparable to Z-penguin contributions.

(xi) The τ− → e−μþe− rate is highly constrained by τ →
eγ and μ → eγ upper limits. Note that in case I even
the proposed sensitivity on τ− → e−μþe− rate is
highly constrained, but in case II, for x≲ 0.2 the
constraints are relaxed.

(xii) The τ− → μ−eþμ− rate is also highly constrained by
τ → μγ and μ → eγ upper limits. Note that in case I
even the proposed sensitivity on τ− → μ−eþμ− rate
is highly constrained, but in case II, for x≲ 0.2 the
constraints are relaxed.

(xiii) We compare the current experimental upper limits,
future sensitivities and bounds from consistency on
various muon and tau LFV processes:
(a) In case I, the present μ → eγ upper limit requires

the bounds on μ → 3e, μTi → eTi and μAu →
eAu be lower by two orders of magnitude, more
than one order of magnitude and almost one
order of magnitude, respectively, from their
present upper limits, and the μAl → eAl rate
is predicted to be smaller than 6 × 10−14. In case
II, the μ → 3e, μAu → eAu and μAl → eAl
bounds are relaxed, while the μTi → eTi bound
is tighten. We agree with [80] that presently the
Bðμ → eγÞ upper limit provides the most severe
constrain on NP contributing to μ → e tran-
sitions.

(b) We find that the situation is similar but the
bounds are slightly relaxed when the μAu →
eAu upper limit instead of the present μ → eγ
upper limit is used as an input.

(c) Using the present τ → eγðμγÞ upper limit as
input, the τ → 3e ð3μÞ bound is smaller than its
present upper limit by one order of magnitude.

(d) In case I, the τ− → μ−eþμ− and τ− → e−μþe−
bounds are lower than their present upper limits
by two orders of magnitude as required from the
present τ → μγ, eγ and μ → eγ upper limits.
These limits are lower than the proposed future
sensitivities. In case II, the τ− → μ−eþμ− and
τ− → e−μþe− bounds are similar to their present
upper limits when the present τ → μγ, eγ and
μ → eγ upper limits are used. These limits are
significant relaxed compared to those in case I.
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APPENDIX A: FORMULAS FOR VARIOUS
PROCESSES

Formulas in this Appendix are taken from Ref. [82] and
are updated. In the weak bases of ψLp, ψRp, ϕLa, and ϕRa,
the interacting Lagrangian is given by
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Lint ¼ ðg0palL ψ̄RplLϕ�
La þ g0palR ψ̄LplRϕ�

RaÞ þ H:c:; ðA1Þ

where ϕLðRÞ are scalar fields coupling to lLðRÞ and p, a
indicate weak quantum numbers. Fields in the weak bases
can be transformed into those in the mass bases,

ϕi ¼ UL
iaϕLa þ UR

iaϕRa; ψnLðRÞ ¼ VLðRÞ
np ψLðRÞp; ðA2Þ

with the help of mixing matrices, U and V. It is useful to
define

gnilLðRÞ ≡ g0palLðRÞV
RðLÞ
np ULðRÞ

ia ðA3Þ

and, consequently, the interacting Lagrangian can be
expressed as in Eq. (12).
The effective Lagrangian for various precesses is given

by

Leff ¼ Ll0lγ þ Ll0ll00l þ Ll0lqq ðA4Þ

with lð0;00Þ ¼ e, μ, τ denoting leptons and q denoting quarks.
For l0 ≠ l, we have

Ll0lγ ¼ l̄0LσμνlRF
μνAL0R þ l̄0RσμνlLF

μνAR0L þ H:c:; ðA5Þ

and

ALR0 ¼ A�
R0L; ARL0 ¼ A�

L0R; ðA6Þ

while for l0 ¼ l, the additional Hermitian conjugated
terms in Eq. (A5) are not required. These As are from

the so-called photonic dipole penguin. The relevant effec-
tive Lagrangians responsible for l̄0 → l̄l00 l̄ decays and l0 → l
conversion processes are given by [19]

Ll0ll00l ¼ gRLRLðl̄0RlLÞðl̄00RlLÞ þ gLRLRðl̄0LlRÞðl̄00LlRÞ
þ gRRRRðl̄0RγμlRÞðl̄00RγμlRÞ þ gLLLLðl̄0LγμlLÞðl̄00LγμlLÞ
þ gRRLLðl̄0RγμlRÞðl̄00LγμlLÞ þ gLLRRðl̄0LγμlLÞðl̄00RγμlRÞ
þH:c:; ðA7Þ

Ll0lqq ¼
X
q¼u;d

½gLVðqÞl̄0LγμlL þ gRVðqÞl̄0RγμlR�q̄γμqþ H:c:;

ðA8Þ

where

gMNOP ≡ e2Qlg
γ
M0MδMNδOPδll00 þ gZM0Mg

Z
lO
δMNδOPδll00

þ gBMNOP;

gM0VðqÞ≡ e2Qqg
γ
M0M þ 1

2
gZM0MðgZqL þ gZqRÞ;

gZX ≡ e
sin θW cos θW

ðT3 − sin2 θWQÞX; ðA9Þ

withM,N,O, P ¼ L, R, gγM0M from the nonphotonic dipole
penguin, gZM0M from the Z-penguin, gBMNOP from the box
diagrams and X ¼ lL; lR; qL; qR and so on.
Using Eq. (12), the Wilson coefficients for Ll0lγ in

Eq. (A5) can be calculated to be [82]

AM0N ¼ e
32π2

½ðml0gni�l0Ng
ni
lN þmlgni�l0Mg

ni
lMÞðQϕi

F1ðm2
ψn
; m2

ϕi
Þ −Qψn

F1ðm2
ϕi
; m2

ψn
ÞÞ

þmψn
gni�l0Mg

ni
lNðQϕi

F3ðm2
ψn
; m2

ϕi
Þ −Qψn

F2ðm2
ϕi
; m2

ψn
ÞÞ�; ðA10Þ

for M different from N, and Fi are loop functions with the explicit forms to be given below. The Wilson coefficients for
Ll0ll00l and Ll0lqq in Eq. (A9) are given by

gγR0R ¼ 1

16π2
fgni�l0Rg

ni
lR½Qψn

G2ðm2
ϕi
; m2

ψn
Þ þQϕi

G1ðm2
ψn
; m2

ϕi
Þ�

þmψn
ðml0gni�l0L g

ni
lR þmlgni�l0Rg

ni
lLÞ½Qψn

G3ðm2
ϕi
; m2

ψn
Þ þQϕi

G3ðm2
ψn
; m2

ϕi
Þ�g

gZR0R ¼ −
e

16π2m2
Z sin 2θW

2κRijmngmi�
l0R gnjlRFZðm2

ψm
; m2

ψn
; m2

ϕi
; m2

ϕj
; m2

ZÞ

−
e

16π2m2
Z sin 2θW

2ΔTRL
3ψmng

mi�
l0R gnilRGZðm2

ψm
; m2

ψn
; m2

ϕi
Þ;

gBRLRL ¼ 1

16π2
Fðm2

ψm
; m2

ψn
; m2

ϕi
; m2

ϕj
Þðgmi�

l0R g
mj
lL g

nj�
l00Rg

ni
lL − 2ηgmi�

l0R g
mj�
l00R g

ni
lLg

nj
lLÞ;

gBRRRR ¼ 1

16π2

�
η

2
gmi�
l0R gnilRg

mj�
l00R g

nj
lRFðm2

ψm
; m2

ψn
; m2

ϕi
; m2

ϕj
Þ − 1

4
gmi�
l0R gnilRg

nj�
l00Rg

mj
lR Gðm2

ψm
; m2

ψn
; m2

ϕi
; m2

ϕj
Þ
�
;
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gBRRLL ¼ 1

16π2

�
−
1

4
Gðm2

ψm
; m2

ψn
; m2

ϕi
; m2

ϕj
Þðgmi�

l0R g
ni
lLg

nj�
l00Lg

mj
lR þ ηgmi�

l0R g
ni
lLg

mj�
l00L g

nj
lRÞ

−
1

2
gmi�
l0R gnilRg

nj�
l00Lg

mj
lL Fðm2

ψm
; m2

ψn
; m2

ϕi
; m2

ϕj
Þ

þ η

4
gmi�
l0R gnilRg

mj�
l00L g

nj
lLGðm2

ψm
; m2

ψn
; m2

ϕi
; m2

ϕj
Þ
�
; ðA11Þ

with

κLðRÞijmn ≡ sin 2θWðgZlLðRÞδijδmn − gZψRðLÞmnδij − gZϕijδmnÞ=2e;
ΔTRL

3ψmn ≡ VR
mpT3ψRpV

†L
pn − VL

mpT3ψLpV
†R
pn ≡ ΔT3ψmn ¼ −ΔTLR

3ψmn; ðA12Þ

η ¼ 1ð0Þ for Majorana (Dirac) fermionic ψ and the loop functions FðZÞ and Gði;ZÞ will be given shortly. Other g can be
obtained by exchangingR and L. Note thatΔT3ψ is basically the difference of weak isospin quantum numbers of ψR and ψL

and in the case of no mixing, κL;R are vanishing. Therefore, we expect ΔT3ψ to be an order one quantity, while κ to be a
much smaller quantity. Note that in case II the leading order contributions to the Z penguin amplitudes are at the level of
δLRδRL, which is beyond the accuracy of the this analysis and their contributions are, hence, neglected.
The above loop functions are defined as [82]

F1ða; bÞ ¼
1

12ða − bÞ4
�
2a3 þ 3a2b − 6ab2 þ b3 þ 6a2b ln

b
a

�
;

F2ða; bÞ ¼
1

2ða − bÞ3
�
−3a2 þ 4ab − b2 − 2a2 ln

b
a

�
;

F3ða; bÞ ¼
1

2ða − bÞ3
�
a2 − b2 þ 2ab ln

b
a

�
;

G1ða; bÞ ¼
1

36ða − bÞ4
�
−ða − bÞð11a2 − 7abþ 2b2Þ − 6a3 ln

b
a

�
;

G2ða; bÞ ¼
1

36ða − bÞ4
�
−ða − bÞð16a2 − 29abþ 7b2Þ − 6a2ð2a − 3bÞ ln b

a

�
;

G3ða; bÞ ¼
1

36ða − bÞ5
�
−ða − bÞð17a2 þ 8ab − b2Þ − 6a2ðaþ 3bÞ ln b

a

�
;

FZða1; a2; b; b; cÞ ¼ −
a1ð2 ffiffiffiffiffiffiffiffiffiffi

a1a2
p − a1Þ

2ða1 − a2Þða1 − bÞ ln
a1
c
þ a2ð2 ffiffiffiffiffiffiffiffiffiffi

a1a2
p − a2Þ

2ða1 − a2Þða2 − bÞ ln
a2
c
−

bð2 ffiffiffiffiffiffiffiffiffiffi
a1a2

p − bÞ
2ða1 − bÞða2 − bÞ ln

b
c
;

FZða; a; b1; b2; cÞ ¼ −
3

4
þ a2

2ða − b1Þða − b2Þ
ln
a
c
−

b21
2ða − b1Þðb1 − b2Þ

ln
b1
c
þ b22
2ða − b2Þðb1 − b2Þ

ln
b2
c
;

GZða1; a2; bÞ ¼
a1

ffiffiffiffiffiffiffiffiffiffi
a1a2

p
ða1 − a2Þða1 − bÞ ln

a1
b
−

a2
ffiffiffiffiffiffiffiffiffiffi
a1a2

p
ða1 − a2Þða2 − bÞ ln

a2
b
;

Fða; b; c; dÞ ¼ b
ffiffiffiffiffiffi
ab

p

ða − bÞðb − cÞðb − dÞ ln
b
a
−

c
ffiffiffiffiffiffi
ab

p

ða − cÞðb − cÞðc − dÞ ln
c
a
þ d

ffiffiffiffiffiffi
ab

p

ða − dÞðb − dÞðc − dÞ ln
d
a
;

Gða; b; c; dÞ ¼ −
b2

ða − bÞðb − cÞðb − dÞ ln
b
a
þ c2

ða − cÞðb − cÞðc − dÞ ln
c
a
−

d2

ða − dÞðb − dÞðc − dÞ ln
d
a
: ðA13Þ

We do not need the generic expression of FZða1; a2; b1;
b2; cÞ, since only a1 ¼ a2 ¼ a and/or b1 ¼ b2 ¼ b are
used in this work.
Comparing the generic expressions in Eq. (A5) to the

following effective Lagrangians,

Lg−2 ¼ −
eQ
4ml

Δall̄σμνlFμν; LEDM ¼ −
i
2
dll̄σμνγ5lFμν;

ðA14Þ
the Δal and dl can be readily obtained as
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Δal ¼ −
4ml

eQl
ReðARLÞ; dl ¼ 2ImðARLÞ: ðA15Þ

The l̄0 → l̄γ decay rate is related to the above AM0N ,

Γðl̄0 → l̄γÞ ¼ ðm2
l0 −m2

l Þ3
4πm3

l0
ðjAL0Rj2 þ jAR0Lj2Þ; ðA16Þ

the l̄0 → l̄l00 l̄ decay rate is governed by the following
formula, [19]

Γðl̄0 → l̄l00 l̄Þ ¼ m5
l0

3ð8πÞ3
�jgRLRLj2

8
þ 2jgRRRRj2 þ jgRRLLj2 þ 32δll00

				 eAR0L

ml0

				
2

log

�
m2

l0

m2
l

−
11

4

�

þ 16δll00Re

�
eAR0Lg�LLLL

ml0

�
þ 8δll00Re

�
eAR0Lg�LLRR

ml0

��
þ L ↔ R; ðA17Þ

while the l0 → l conversion rate ratio is given by

Bl0N→eN ¼ ωconv

ωcapt
; ðA18Þ

with

ωconv ¼
				A

�
R0LD
2ml0

þ 2½2g�LVðuÞ þ g�LVðdÞ�VðpÞ þ 2½g�LVðuÞ þ 2g�LVðdÞ�VðnÞ
				
2

þ L ↔ R; ðA19Þ

and the numerical values of D, V and ωcapt are taken from
[85,86] and are collected in Table XII for completeness.

APPENDIX B: GAUGE QUANTUM NUMBERS
OF ϕ AND ψ

The ψ − ϕ − l Lagrangian,

Lint ¼ g0Lðψ̄Rϕ
�
LÞiðLLÞi þ g0Rψ̄Lϕ

�
RlR þ H:c:; ðB1Þ

where i is the weak isospin index, is gauge invariant under
the SM gauge transformation. As the lepton quantum
numbers under SUð3Þ × SUð2Þ × Uð1Þ are given by

LL∶
�
1; 2;−

1

2

�
; lR∶ð1; 1;−1Þ; ðB2Þ

the gauge invariant requirement implies that we must have
the following quantum number assignments for these
combinations:

ψ̄Rϕ
�
L∶

�
1; 2;

1

2

�
; ψ̄Lϕ

�
R∶ð1; 1; 1Þ: ðB3Þ

Consequently, the gauge quantum numbers of ψ and ϕ are
related as follows:

ψR∶ðcR; 2IR þ 1; YRÞ;
ϕL∶ðc̄R; 2ðIR � 1=2Þ þ 1; YR − 1=2Þ;
ψL∶ðcL; 2IL þ 1; YLÞ; ϕR∶ðc̄L; 2IL þ 1; YL − 1Þ:

ðB4Þ
Some examples of the assignments of the quantum num-
bers of ψL;R and ϕL;R are given in Table XIII.
As discussed in the main text chiral enhancement in

photonic dipole penguins is an important ingredient to
general sizable Δaμ and Δae. To have chiral enhancement
one needs to connect ϕL and ϕR by Higgs VEV with ψR
and ψL having identical quantum numbers or the other way
around, see Fig. 2 and the related discussion. There are four
possibilities on the quantum numbers of the ψ̄LψR and
ϕ�
LϕR combinations to achieve that:

TABLE XII. The overlap integrate parameters and total capture
rates ωcapt taken from [85,86] are collected.

Dðm5=2
μ Þ VðpÞðm5=2

μ Þ VðnÞðm5=2
μ Þ ωcaptð106s−1Þ

27
13Al 0.0362 0.0161 0.0173 0.7054
48
22Ti 0.0864 0.0396 0.0468 2.59
197
79 Au 0.189 0.0974 0.146 13.07
205
81 Tl 0.161 0.0834 0.128 13.90

TABLE XIII. Some examples of the assignment of the quantum
numbers of ψL;R and ϕL;R.

ψR ϕL ψL ϕR

ð1; 1; YRÞ ð1; 2; YR − 1
2
Þ ð1; 1; YLÞ ð1; 1; YL − 1Þ

ð1; 2; YRÞ ð1; 1; YR − 1
2
Þ ð1; 2; YLÞ ð1; 2; YL − 1Þ

ð3ð3̄Þ; 1; YRÞ ð3̄ð3Þ; 2; YR − 1
2
Þ ð3ð3̄Þ; 1; YLÞ ð3̄ð3Þ; 1; YL − 1Þ

ð3ð3̄Þ; 2; YRÞ ð3̄ð3Þ; 1; YR − 1
2
Þ ð3ð3̄Þ; 2; YLÞ ð3̄ð3Þ; 2; YL − 1Þ
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ðAÞ∶ ψ̄LψR∶ð1; 1; 0Þ; ϕ�
LϕR∶ð1; 2;−1=2Þ;

ðBÞ∶ ψ̄LψR∶ð1; 1; 0Þ; ϕ�
LϕR∶ð1; 2;þ1=2Þ;

ðCÞ∶ ψ̄LψR∶ð1; 2;−1=2Þ; ϕ�
LϕR∶ð1; 1; 0Þ;

ðDÞ∶ ψ̄LψR∶ð1; 2;þ1=2Þ; ϕ�
LϕR∶ð1; 1; 0Þ: ðB5Þ

The above equation imposes additional constraints on the quantum numbers of the new fields:

ðAÞ∶ cR ¼ cL; IR ¼ IL; YR ¼ YL; − YR þ 1

2
þ YL − 1 ¼ −

1

2
;

ðBÞ∶ cR ¼ cL; IR ¼ IL; YR ¼ YL; − YR þ 1

2
þ YL − 1 ¼ þ 1

2
;

ðCÞ∶ cR ¼ cL; IR � 1

2
¼ IL; −YL þ YR ¼ −

1

2
; −YR þ 1

2
þ YL − 1 ¼ 0;

ðDÞ∶ cR ¼ cL; IR � 1

2
¼ IL; −YL þ YR ¼ þ 1

2
; −YR þ 1

2
þ YL − 1 ¼ 0; ðB6Þ

where use of Eq. (B4) has been made.
One can easily see that cases (B) and (D) are invalid as

there are no solutions satisfying their conditions, and we are
left with cases (A) and (C). In case (A), ψL and ψR have
identical quantum numbers, while ϕL and ϕR are mixed via
the Higgs VEV. By contrast, in case (C), ϕL and ϕR have
identical quantum numbers, while ψL and ψR are mixed via

the Higgs VEV. To generate chiral enhancement in pho-
tonic penguins, case (A) is in general more preferable as the
mass of ψ is not limited by the Higgs VEVand the Yukawa
coupling.
In Table XIV, we give some samples of the assignment of
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