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A number of different effects of the violation of the equivalence principle (VEP), taken as subleading
mechanism of neutrino flavor oscillation, are examined within the framework of the DUNE experiment.
We study the possibility of obtaining a misleading neutrino oscillation parameter region caused by our
unawareness of VEP. Additionally, we evaluate the impact on the measurement of CP violation and the
distinction of neutrino mass hierarchy at DUNE. Besides, limits on VEP for a wide variety of textures of
the matrix that connects neutrino gravity eigenstates to flavor eigenstates are imposed. An extra task of our
study is to set limits on Hamiltonian added terms considering different energy dependencies (Ed−3, with
d ¼ 3, 4, 5, 6) that can be associated to the usual Lorentz violating terms defined in the Standard Model
extension Hamiltonian. In order to understand our results, approximated analytical three neutrino
oscillation probability formulae are derived.
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I. INTRODUCTION

The neutrino oscillation is caused by slight differences
between neutrino masses (squared masses), which are
already small in themselves, and the lack of coincidence
between neutrino mass eigenstates and flavor eigenstates
[1–9]. The long-distance interferometry characteristic of
neutrino oscillations, in addition to their energy depend-
ency, allows us to test subleading effects that can be
produced by a variety of beyond standard oscillation
physics such as nonstandard interaction [10–14], neutrino
decay [15–24], quantum decoherence [25–31], among
others [32–34]. Nowadays, we are moving toward a
neutrino oscillation physics precision era which implies
that our sensitivity for performing searches for signatures
from nonstandard physics would be increased as well. One
example of subleading nonstandard physics that can be
probed through oscillation physics is the violation of
equivalence principle (VEP). The equivalence principle
is a central, heuristic principle that led Einstein to formulate
his gravitation theory. In particular, the weak equivalence
principle states that, given a gravitational field, the trajec-
tory followed by any falling body is independent of its
mass. In the weak field limit, it says that in a given
gravitational field all bodies fall in vacuum with the same
acceleration, regardless of their masses. This is a

manifestation of the equivalence between gravitational
and inertial mass. The VEP mechanism, assuming massless
neutrinos, was first introduced in order to explain the
solar neutrino problem [35–42]; then, once the oscillation
induced by mass was established as solution of the neutrino
data, the studies involving VEP were reoriented in order to
look for constraints on its parameters [43–47].
In this paper, we examine the potential of DUNE

experiment [48,49] for imposing constraints on VEP
parameters. Also we evaluate how its projected precision
measurements of (sensitivity to) neutrino oscillation param-
eters could be affected by the presence of subleading VEP
effects. In addition, we reinterpret our results beyond the
context of VEP transforming its linear energy dependency
into a quadratic, cubic, etc. In fact, we can make a
correspondence between the aforementioned kind of terms
with the Lorentz violating (LV) interaction terms appearing
in the Standard Model extension (SME) [50,51]. The SME
is a low-energy effective field theory that contains all
possible LV operators, composed by ones originated from
spontaneous Lorentz symmetry violation [52] and others
explicitly constructed. We must point out that the biggest
sensitivity for these type of effects should be given by
astrophysical neutrinos [53–55], however, if we consider a
manmade neutrino source, DUNE experiment will be the
most sensitive tool at our disposal.
This paper goes as follows: in the second section we

discuss the VEP theoretical framework. Then, in the third
one, we make a full detailed description, at the level of
probabilities, of the set of scenarios under study. In the
fourth section, we present our findings. In the final section,
we present our conclusions.
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II. VEP THEORETICAL FRAMEWORK

The VEP is usually introduced through the breaking of
the universality of Newton’s gravitational constant, GN ,
being modified by a parameter γi which depends on
the mass of the ith-particle. As a result, a new constant
G0

N ¼ γiGN is defined, and, consequently, a mass-
dependent gravity potential Φ0 ¼ γiΦ.
On the other hand, after replacing the space-time metric

in the weak field approximation given by: gμνðxÞ ¼
ημν þ hμνðxÞ, where hμνðxÞ ¼ −2γiΦðxÞδμν and ημν ¼
diagð1;−1;−1;−1Þ is the Minkowski metric, in the
relativistic invariant: gμνpμpν ¼ m2, a modified energy-
momentum relation is attained: E2ð1 − 2γiΦÞ ¼ p2ð1þ
2γiΦÞ þm2 [45]. From the last relation, and taking
p2 ≫ m2 and neglecting terms Φm2=p and of OðΦ2Þ
we get:

Ei ≃ pð1þ 2γiΦÞ þm2
i

2p
ð1Þ

that leads us to the familiar expression:

ΔEij ¼
Δm2

ij

2E
þ 2EΔγij ð2Þ

where Δγij ¼ Φðγi − γjÞ. At the right-hand side of the
latter equation, the two contributions for the energy shift
are shown: one due to the differences between neutrino
mass eigenstates and the other one because of the
differences between neutrino gravitational eigenstates.
For Eq. (1), the mass and gravitational eigenstates,

coincide, this means that the mixing matrix connecting
both eigenstates with the flavor ones is the same. In fact, the
latter case is reviewed in Sec. III A. However, in general,
the mass and gravitational eigenstates can be different, and,
consequently, the matrices (mixing matrices) that diago-
nalize their Hamiltonians in the flavor basis are not the
same. This general approach, that can be found in [56–60],
is adopted in our Hamiltonian prescription as can be seen at
follows.

A. Hamiltonian and oscillation probabilities

The flavor basis Hamiltonian Hf
osc for three neutrino

generation in matter is given by:

Hf
osc ¼

1

2E
½UHoscU† þAmatt� ð3Þ

with

Hosc ¼ diagð0;Δm2
21;Δm2

31Þ ð4Þ

Amatt ¼ diagðACC; 0; 0Þ ð5Þ

where ACC ¼ 2
ffiffiffi
2

p
GFNeE. A generic Hamiltonian for the

neutrino-gravitational eigenstates, written in the flavor
basis, can be added to it:

Htot
osc ¼ Hf

osc þHf
g ð6Þ

with

Hf
g ¼ 2EUgHgU

†
g ð7Þ

Hg ¼ diagð0;Δγ21;Δγ31Þ ð8Þ

where U is the usual PMNS matrix and Ug is the analogous
matrix that connects the neutrino-gravitational eigenstates to
the flavor eigenstates. In order to get the matter oscillation
probabilities formulas, that include perturbatively the gravi-
tational effects, it is enough to take the formulae given in
[61], developed in the context of nonstandard interactions,
and make a careful replacement of the analogous terms. With
this aim in hands, some definitions are presented to begin
with. First, Vg ¼ 2EHf

g ¼ 4E2UgHgU
†
g where:

Vg ¼ kE

0
BB@

vee veμeiϕeμ veτeiϕeτ

veμe−iϕeμ vμμ vμτeiϕμτ

veτe−iϕeτ vμτe−iϕμτ vττ

1
CCA ð9Þ

with kE ¼ 4E2. We write UgHgU
†
g in terms of the generic

matrix elements v, and their complex phases, with the
purpose of having an easy match between these elements
and their corresponding ϵ (and their phases) present in the
prescription given in [61]. Then, we can rewrite Eq. (6):

Htot
osc ¼

1

2E
½UHoscU† þAmatt þ Vg� ð10Þ

where:

AmattþVg¼kE

0
BB@

ACC
kE

þvee veμeiϕeμ veτeiϕeτ

veμe−iϕeμ vμμ vμτeiϕμτ

veτe−iϕeτ vμτe−iϕμτ vττ

1
CCA: ð11Þ

Thus, for getting the matter oscillation probability formulae
it is necessary to replace ACC

kE
þ vee → 1þ ϵee and kE → A,

while for the rest v → ϵ and ϕ → ϕ in Eq. (4) [Eq. (15)]
given in [61] ([62]) for the channels νμ → νe (νμ → νμ).
On top of these replacements we introduce the following
notation:
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Ã ¼ kE
EL

¼ 4E
L

ṽαβ ¼ ELvαβ

Ãṽαβ ¼ kEvαβ ð12Þ

where L is the neutrino source-detector distance. Once all the aforementioned details are applied, the νμ → νe oscillation
probability turns out to be

PVEP⨁SO
νμ→νe ≃ PSO

νμ→νe þ 4Âṽeμfxf½s223f cos ðϕeμ þ δCPÞ þ c223g cos ðΔþ δCP þ ϕeμÞ�
þ yg½c223g cosϕeμ þ s223f cos ðΔ − ϕeμÞ�g þ 4Âṽeτs23c23fxf½f cos ðϕeτ þ δCPÞ − g cos ðΔþ δCP þ ϕeτÞ�
− yg½g cosϕeτ − f cos ðΔ − ϕeτÞ�g þ 4Â2g2c223jc23ṽeμeiϕeμ − s23ṽeτeiϕeτ j2
þ 4Â2f2s223js23ṽeμeiϕeμ þ c23ṽeτeiϕeτ j2 þ 8Â2fgs23c23fc23 cosΔ½s23ðṽ2eμ − ṽ2eτÞ
þ 2c23ṽeμṽeτ cos ðϕeμ − ϕeτÞ� − ṽeμṽeτ cos ðΔ − ϕeμ þ ϕeτÞg þOðs213ṽαβ; s13ṽ2αβ; ṽ3αβÞ ð13Þ

where

x ¼ 2s13s23; y ¼ 2rs12c12c23; r ¼ jΔm2
21=Δm2

31j

f; f̄ ¼ sin ½Δð1∓ Âṽ0eeÞ�
1∓ Âṽ0ee

; g ¼ sin ðÂṽ0eeΔÞ
Âṽ0ee

ṽ0ee ¼
ACC

Ã
þ ṽee; Δ ¼

����Δm
2
31L

4E

����; Â ¼
���� Ã
Δm2

31

����
ð14Þ

and sij ¼ sin θij, cij ¼ cos θij. The antineutrino equation
ν̄μ → ν̄e is given by the Eq. (13), changing Â → −Â (then f̄

instead of f), δCP → −δCP and ϕαβ → −ϕαβ. For the
inverted hierarchy Δ → −Δ, y → −y and Â → −Â. The
ṽαβ, one of the key parameters of expansion, is ∼Δγ̃ij ¼
ELΔγij. Our analytical probability formulas are valid as
long asΔγ̃ij are taken to be not greater thanOð0.1Þ in order
to get less than 5% error between this analytical formula
and the numerical one, within a neutrino energy ranging
from 7 GeV to 14 GeV depending on the case. Other
important parameters of expansion are the usual ones:
s13 ∼ 0.1 and r≡ jΔm2

21=Δm2
31j ∼ 0.01.

On the other hand, the oscillation probability for νμ → νμ
disappearance channel is described by:

PVEP⨁SO
νμ→νμ ≃ PSO

νμ→νμ − ṽμτÂ cosϕμτ sinð2θ23Þ½2Δs223 sinð2ΔÞ þ 4cos2ð2θ23Þsin2Δ�
þ Âðṽμμ − ṽττsin2ð2θ23Þ cosð2θ23ÞÞ½Δ sinð2ΔÞ − 2sin2Δ� þOðr; s13; ṽ2αβÞ: ð15Þ

It is important to note that we have rewritten the
probabilities in such a way that the pure standard oscillation
contribution, PSO

να→νβ , is separated from those terms which
mixed the new physics parameters and the standard ones.
Additionally, whenever we use these analytical oscillation
probabilities formulas, the PSO

να→νβ term is numerically
calculated. This is done in order to achieve a better
agreement between these (semi) analytical probabilities
and those fully numerically calculated.

B. Lorentz violation interpretation

Before we proceed it is worthwhile to mention that the
VEP prescription presented here, and its posterior results,
can be reinterpreted for a general energy exponent case.
The latter can be implemented since the only parameter
that encodes the VEP effects in our probability formulation
is Δγ̃ij ¼ ELΔγij. Therefore, for translating VEP into

Lorentz invariance violation (LIV), it is enough to replace:
2E → Ed−3 ⇒ E → Ed−3=2 [63]. The latter is equivalent
to replace Hf

g ∝ 2E → Hf
g ∝ Ed−3, in order to make our

probability formulas able to test a power-law energy
dependency, for a given exponent, and, accordingly, with
the chance of reinterpreting the results that we present here
for a general situation. The cases when d ¼ 3; 4; 5;…
match with the isotropic Lorentz violating terms described
in the effective Hamiltonian of the SME [64], the minus
sign in some coefficients can be reabsorbed in Δγij.

III. VIOLATION OF EQUIVALENCE
PRINCIPLE SCENARIOS

In this section, we study a set of VEP cases correspond-
ing to different choices for Ug and Δγ̃ijð¼ ELΔγijÞ,
deriving their specific oscillation probabilities from our
general formulas given in Eq. (13) and Eq. (15). For a direct
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and simple understanding of a given case, these specific
formulas should be a much shorter version of the general
one. Our simplification criteria is to preserve only the most
relevant terms responsible for the main patterns of behavior
of a given case.
We define a Ug with a similar structure to U. Therefore,

for the neutrino appearance channel νμ → νe,

ṽee ¼ ðcg13sg12Þ2Δγ̃21 þ ðsg13Þ2Δγ̃31 ð16Þ

ϕeμ ¼ arctan

�
sinδgðk2Δγ̃21− k3Δγ̃31Þ

ðk1− k2 cosδgÞΔγ̃21þ k3 cosδgΔγ̃31

�
ð17Þ

ṽeμ ¼
ðk1 − k2 cos δgÞΔγ̃21 þ k3 cos δgΔγ̃31

cosϕeμ
ð18Þ

ϕeτ ¼ arctan

�
− sinδgðk01Δγ̃21þ k03Δγ̃31Þ

ðk02þ k01 cosδ
gÞΔγ̃21þ k03 cosδ

gΔγ̃31

�
ð19Þ

ṽeτ ¼
ðk02 þ k01 cos δ

gÞΔγ̃21 þ k03 cos δ
gΔγ̃31

− cosϕeτ
ð20Þ

where

k1 ¼ cg12c
g
23c

g
13s

g
12; k2 ¼ sg13s

g
23c

g
13ðsg12Þ2;

k3 ¼ cg13s
g
23s

g
13

k01 ¼ cg23s
g
13c

g
13ðsg12Þ2; k02 ¼ cg12c

g
13s

g
12s

g
23;

k03 ¼ cg13c
g
23s

g
13: ð21Þ

For the neutrino disappearance channel νμ → νμ

ṽμμ ¼ ðcg13sg23Þ2Δγ̃31 þ ½ðcg12cg23Þ2 þ ðsg12sg13sg23Þ2
− 2cg12c

g
23s

g
12s

g
13s

g
23 cos δ

g�Δγ̃21 ð22Þ

ṽττ ¼ ðcg13cg23Þ2Δγ̃31 þ Δγ̃21½ðcg12sg23Þ2 þ ðsg12sg13cg23Þ2
− 2cg12s

g
23s

g
12s

g
13c

g
23 cos δ

g� ð23Þ

ϕμτ ¼ arctan

�
sin δgðf3 þ f4ÞΔγ̃21

Δγ̃31f1 þ Δγ̃21½f2 þ cos δgðf3 − f4Þ�
�

ð24Þ

ṽμτ ¼
Δγ̃31f1 þ Δγ̃21½f2 þ cos δgðf3 − f4Þ�

cosϕμτ
ð25Þ

with

f1 ¼ sg23c
g
23ðcg13Þ2; f2 ¼ cg23s

g
23ðsg12sg13Þ2 − sg23c

g
23ðcg12Þ2

f3 ¼ cg12s
g
12s

g
13ðsg23Þ2; f4 ¼ cg12s

g
12s

g
13ðcg23Þ2: ð26Þ

A. Ug =U

The simplest case to study is when we take Ug equal to
the PMNS matrix U, i.e., θgij ¼ θij and δg ¼ δCP.
Considering the mixing angles and the Δγ̃ij, the ṽαβ and
ϕαβ are explicitly written for νμ → νe and νμ → νμ keeping
the coefficients of order not greater than s213Δγ̃ij or rΔγ̃ij or
s13Δγ̃2ij, i.e., only up to Oð0.001Þ, given that s13 ∼Oð0.1Þ,
r ∼Oð0.01Þ, and Δγ̃ij ∼Oð0.1Þ.
In the following calculations, and within the scenario

Ug ¼ U, two cases are studied: (Δγ21 ¼ 0 ≠ Δγ31) and
(Δγ21 ≠ 0 ¼ Δγ31).

1. Case 1

In this case, Δγ21 ¼ 0 and Δγ31 ≠ 0, the expression for
νμ → νe is:

PVEP⨁SO
νμ→νe ≃ PSO

νμ→νe þ C1s213Δγ̃31 ð27Þ

C1 ¼ 8f2s223=Δ ð28Þ

meanwhile, the νμ → νμ disappearance channel is given by:

PVEP⨁SO
νμ→νμ ≃ PSO

νμ→νμ − sin 2Δ sin2 2θ23Δγ̃31 ð29Þ

In Fig. 1 we can see that there are slight differences
between VEP⨁SO and pure SO in the νμ → νe appearance
channel along the energy range. In turn, the impact is a
bit more significant in the νμ → νμ disappearance channel.
The higher differences in the νμ → νμ disappearance
channel can be explained by the presence of terms of orders

FIG. 1. Oscillation probability depending on the neutrino energy
and considering scenario A/case 1. Figures (b) and (d) represent
the ν̄e appearance and ν̄μ disappearance oscillation probability,
respectively. We consider δCP ¼ −π=2 and L ¼ 1300 km.
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Δγ̃31 ∼Oð0.1Þ in Eq. (29). While, the minor discrepancies
in νμ → νe are because only terms scaled by s213Δγ̃31 ∼
Oð0.001Þ are appearing in Eq. (27). This contribution has
the same sign of Δγ̃31, regardless it is a neutrino or an
antineutrino due to the absence of δCP in that term. In the
case of the channel νμ → νμ the contribution is negative
respect to the sign of Δγ̃31 and it is independent of
being neutrino or antineutrino (there is no δCP in the
corresponding term).

2. Case 2

In this case, Δγ21 ≠ 0 and Δγ31 ¼ 0, the expression for
νμ → νe is

PVEP⨁SO
νμ→νe ≃ PSO

νμ→νe þ C1 cos δCPs13Δγ̃21
− C2 sin δCPs13Δγ̃21
þ C3rΔγ̃21 − C4s213Δγ̃21 þ C5ðΔγ̃21Þ2 ð30Þ

with:

C1 ¼ 8fg cosΔs12c12s23c23=Δ

C2 ¼ 8fg sinΔs12c12s23c23=Δ

C3 ¼ 8g2s212c
2
12c

2
23=Δ

C4 ¼ 8f2s212s
2
23=Δ

C5 ¼ 4g2s212c
2
12c

2
23=Δ2 ð31Þ

where the survival probability of νμ → νμ is:

PVEP⨁SO
νμ→νμ ≃ PSO

νμ→νμ þ sin 2Δc212 sin2 2θ23Δγ̃21: ð32Þ

In contrast to the former case, and as it is shown in Fig. 2,
higher differences between VEP⨁SO and SO are regis-
tered for the νμ → νe channel than for the case of the
νμ → νμ channel. In the νμ → νe channel, the increment of
the discrepancy, respect to the former case, relies on the fact
that in this probability there are terms of order of
s13Δγ̃21 ∼Oð0.01Þ. The sign of the overall contribution
is positive (negative) for neutrinos and Δγ21 > 0 (antineu-
trinos and Δγ21 < 0). The neutrino/antineutrino sign
dependency occurs because of the emergence of δCP in
the dominant terms of the contribution (note that the
term associated to C1 vanishes given that δCP ¼ −π=2).
For the νμ → νμ channel, despite there is a term scaled for
Δγ̃21 ∼Oð0.1Þ, the unlikeness is less noticeable, in com-
parison to the transition channel, since the contribution of
this term is just smaller, by contrast with the magnitude
of PSO

νμ→νμ , than the corresponding ones for the transition
channel.
On the other hand, it is interesting to note, that the

probabilities for the degenerate case, Δγ21 ¼ Δγ ¼ Δγ31,
can be attained simply by replacing s212 → c212 in C4.

The behavior of the relative differences between proba-
bilities are rather similar than those shown here for the
general case.

B. Ug ≠ U

The general Ansatz for VEP Ug ≠ U is also studied in
our manuscript. Here, under this condition, we develop
three cases, which are selected according to three different
choices of texture for the mixing matrix of the gravity
eigenstates, Ug. Each texture is denoted by Uij

g which
means that θgij is the only angle set as different from zero in
this matrix.

1. Texture θ13
The Ug matrix for this case is given by

U13
g ¼

0
BB@

cg13 0 sg13
0 1 0

−sg13 0 cg13

1
CCA ð33Þ

where cgij ≡ cos θgij and sgij ≡ sin θgij. To select θg13 ≠ 0

implies a two generation reduction of the probability
formula keeping only Δγ31, from the gravitational sector.
After the proper replacements and simplifications the
νμ → νe oscillation channel takes the following form:

PVEP⨁SO
νμ→νe ≃PSO

νμ→νe þC1cosδCPs13Δγ̃31þC2 sinδCPs13Δγ̃31
−C3rΔγ̃31þC4ðΔγ̃31Þ2 ð34Þ

FIG. 2. Oscillation probability depending on the neutrino energy
and considering scenario A/case 2. Figures (b) and (d) represent
the ν̄e appearance and ν̄μ disappearance oscillation probability,
respectively. We consider δCP ¼ −π=2 and L ¼ 1300 km.
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where:

C1 ¼ 8fðf − g cosΔÞs223c23sg13cg13Δ
C2 ¼ 8fg sinΔs223c23s

g
13c

g
13=Δ

C3 ¼ 8gðg − f cosΔÞs12c12s23c223sg13cg13=Δ
C4 ¼ 4ðf2 þ g2 − 2fg cosΔÞs223c223sg213cg213=Δ2: ð35Þ

In the same way, the νμ → νμ disappearance channel is
given by:

PVEP⨁SO
νμ→νμ ≃ PSO

νμ→νμ −
2

Δ
sinΔðΔ cosΔ − sinΔÞ

× s23c23 sin 4θ23c
g2
13Δγ̃31 ð36Þ

As it is observed in Fig. 3 the differences in the νμ → νe
channel are of the same order than in the last case, which is
because of the appearance in the probability of terms
s13Δγ̃31 ∼Oð0.01Þ, similar to those in Eq. (30). Since here
Δγ31 is taken as positive, the sign of the overall contribution
depends only on them being neutrinos (negative) or
antineutrinos (positive). Also, as it can be extrapolated
from the probability, the maximum disparity with respect to
the SO is arising when θg13 ¼ �π=4, because it maximizes/
minimizes sin 2θg13. The divergences between the νμ → νμ
probabilities are negligible because of the term containing
VEP is proportional to sin 4θ23 ∼ 0, recalling that θ23 is
close to π=4.

2. Texture θ12
For this texture the Ug is given by:

U12
g ¼

0
B@

cg12 sg12 0

−sg12 cg12 0

0 0 1

1
CA ð37Þ

Here the expression for the νμ → νe appearance channel
turns out to be

PVEP⨁SO
νμ→νe ≃ PSO

νμ→νe þ C1 cos δCPs13Δγ̃21
− C2 sin δCPs13Δγ̃21
þ C3rΔγ̃21 þ C4ðΔγ̃21Þ2 ð38Þ

where:

C1¼8fðfs223þgc223cosΔÞs23sg12cg12=Δ
C2¼8fgsinΔs23c223s

g
12c

g
12=Δ

C3¼8gðfs223 cosΔþgc223Þs12c12c23sg12cg12=Δ
C4¼4ðf2s423þg2c423þ2fgs223c

2
23cosΔÞsg212cg212=Δ2 ð39Þ

On the other hand, the νμ → νμ disappearance channel is

PVEP⨁SO
νμ→νμ ≃ PSO

νμ→νμ þ
2

Δ
sinΔðΔ cosΔ − sinΔÞ

× s23c23 sin 4θ23c
g2
12Δγ̃21 ð40Þ

As it can be seen in Fig. 4, the pattern of the probabilities
are akin to those presented in the former case, which is
reasonable to expect in light of the similarities in the
formulae for both cases. Therefore, parallel arguments used
for explaining the previous case can be applied here. The
only change is that the sign of the overall contribution, that
distinguish VEP⨁SO from SO, is positive for neutrinos
and negative for antineutrinos in the νμ → νe channel for
this case. In the channel νμ → νμ, as before, the differences
between VEP⨁SO and SO are negligible.

3. Texture θ23
Here, our selection for the texture of Ug goes as follows:

U23
g ¼

0
BB@

1 0 0

0 cg23 sg23
0 −sg23 cg23

1
CCA ð41Þ

Since the Δγ23 can be written as a function of Δγ31 and
Δγ21, we subdivide, this particular texture, into two differ-
ent subcases.

FIG. 3. Oscillation probability depending on the neutrino
energy and considering scenario B/texture θ13. Figures (b) and
(d) represent the ν̄e appearance and ν̄μ disappearance oscillation
probability, respectively. We consider Δγ31 ¼ 2 × 10−24, δCP ¼
−π=2 and L ¼ 1300 km.
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Δγ21 ¼ 0 and Δγ31 ≠ 0.—It can be checked from Eq. (13)
that, for the νμ → νe channel all the perturbative contribu-
tions up to Oð10−3Þ vanish. Meanwhile, the νμ → νμ has
non-null perturbative contribution at Δγ̃31 ∼Oð0.1Þ, where
its expression turns out to be as follows:

PVEP⨁SO
νμ→νμ ≃ PSO

νμ→νμ −
4

Δ
ðΔ cosΔ sin 2θ23 cosð2ðθ23 − θg23ÞÞ

− sinΔ cos 2θ23 sinð2ðθ23 − θg23ÞÞÞ
× sinΔs23c23Δγ̃31 ð42Þ

Δγ21 ≠ 0 and Δγ31 ¼ 0.—As the case above, for the
νμ → νe appearance channel there is no perturbative
contribution up to terms scaled by factors of Oð10−3Þ,
which represents an almost zero contribution. Likewise,
the νμ → νμ channel has non-negligible perturbative
contribution:

PVEP⨁SO
νμ→νμ ≃ PSO

νμ→νμ þ
2

Δ
ðsinΔðΔ cosΔ − sinΔÞ

× sin 4θ23 cos 2θ
g
23 þ ð2 sin2Δ cos2 2θ23

þ Δ sin 2Δ sin2 2θ23Þ sin 2θg23Þs23c23Δγ̃21
ð43Þ

In Fig. 5, where it is only plotted the νμ → νμ channel, it
is possible to note appreciable discrepancies of similar
magnitudes for the subcases a and b between VEP⨁SO
and SO. The magnitudes of these discrepancies are similar

for both subcases but opposite in sign. For subcase a, the
VEP contribution is negative while for b it is positive.
Additionally, for both subcases, as in the textures θg13 and
θg12, it is confirmed that the utmost divergence (maximi-
zation of the VEP effect) is reached when θg ¼ �π=4.
Furthermore, the probabilities for neutrinos are only dis-
played in Fig. 5 since their counterpart for antineutrinos are
identical.

IV. SIMULATION AND RESULTS

In the simulations the inputs from [48] are used con-
sidering the optimized fluxes and an exposure of 3.5 years
for neutrino and antineutrino mode, Forward Horn current
(FHC) and Reverse Horn Current (RHC) respectively. The
default configuration of signal and background given by the
DUNE collaboration ([48,49]) is also used.
Throughout the present work, the values in Table I are

considered as the current best fit values (CBFV). Given that
the probability distributions are non-Gaussian, especially
for θ23, the uncertainty is calculated dividing by 6 the 3σ
allowed region for each parameter. Because the δCP is not
sufficiently constrained, no priors are used, though an
importance to −π=2 is considered because it is the closest
value to the best fit [65].
The GLoBES package is used to simulate DUNE

[66,67]. In this context, the following definition of χ2

[68] is regarded:

FIG. 4. Oscillation probability depending on the neutrino
energy and considering scenario B/texture θ12. Figures (b) and
(d) represent the ν̄e appearance and ν̄μ disappearance oscillation
probability, respectively. We consider Δγ21 ¼ 2 × 10−24, δCP ¼
−π=2 and L ¼ 1300 km.

FIG. 5. Oscillation probability depending on the neutrino
energy and considering scenario B/texture θ23. Figures (a) and
(b) represent the subcases a and b, respectively. We consider
Δγ21 ¼ 2 × 10−24 for subcase a, Δγ31 ¼ 2 × 10−24 for subcase b,
δCP ¼ −π=2 and L ¼ 1300 Km.

TABLE I. DUNE baseline and values for standard oscillation
parameters taken from [65] (January 2018).

Parameter Value Error

θ12 33.62° 0.77°
θ13ðNHÞ 8.54° 0.15°
θ23ðNHÞ 47.2° 1.9°
Δm2

21 7.4 × 10−5 eV2 0.2 × 10−5 eV2

Δm2
31ðNHÞ 2.494 × 10−3 eV2 0.032 × 10−3 eV2

Baseline 1300 Km � � �
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χ2ðζtest; ζtrueÞ ¼
X
i

ðNiðζtestÞ − NiðζtrueÞÞ2
NiðζtrueÞ

ð44Þ

If priors are included, the formula is as follows:

χ2 → χ2 þ
X
j

ðζtestj − ζtruej Þ2
σ2j

ð45Þ

where ζtrue represents the oscillation parameters that take
the values from Table I and ζtest represents the parameters
that are tested against the CBFV and assigned true VEP
parameters, Ni is the number of events in the ith bin, σ2ζ is
the error in the determination of ζ and j is the number of
parameters with nonzero errors.

A. Distorsion in the extraction of the
SO parameters at DUNE

In this analysis we asses the possible distortions in the
allowed regions of the SO parameters when these are
obtained from neutrino oscillation data, with VEP effects
inside, fitted against the pure SO formula. Considering the
latter aim, we simulated DUNE data in accordance to the
following parameters: Δγtrue ¼ 0, 10−24, or 2 × 10−24,
δtrueCP ¼ −π=2 while the remaining true values for the SO
parameters are the CBFV. On the other hand, taken indeed
Δγtest ¼ 0, we have marginalized over all SO parameters in
order to find the minimum χ2.

χ2ðθtest13 ; δ
test
CP;Δγtestij ¼ 0; θtrue13 ; δtrueCP ;Δγtrueij Þ ð46Þ

The parameters that minimize the χ2 are called θfit13 and δ
fit
CP.

If the contours of Δχ2 are analyzed on the plane sin2 θ13 vs
δCP, the next expression is used:

Δχ2 ¼ χ2ðθtest13 ; δ
test
CP;Δγtestij ¼ 0; θtrue13 ; δtrueCP ;Δγtrueij Þ

− χ2minðθfit13; δfitCP;Δγtestij ¼ 0; θtrue13 ; δtrueCP ;Δγtrueij Þ ð47Þ

The same procedure described in Eqs. (46) and (47) is
applied to generate the contours in the plane Δm2

31 vs δCP.
The changes between the SO fitted allowed regions,

obtained with non-null VEP data, and those regions,
obtained from pure SO data with its true values fixed at
the CBFV can be qualitatively understood through the
differences between the VEP⨁SO probability, encoded in
the data, and its corresponding SO probability evaluated at
the SO best fit point. Undoubtedly, and viewed at depth, the
fitting of data represents the exercise of shortening the
differences between the SO and the VEP⨁SO probabil-
ities by varying (increasing or decreasing) the SO param-
eters in the former. Thus, it is useful to recall the
approximated standard oscillation probabilities formulae
engaged in our work. One is the transition oscillation
channel νμ → νe where its expression is given by:

PSO
νμ→νe ≃ C1s213 þ C2 cos δCPrs13 − C3 sin δCPrs13 þ C4r2

ð48Þ

where:

C1 ¼ 4f2s223

C2 ¼ 8fg cosΔs12c12s23c23
C3 ¼ 8fg sinΔs12c12s23c23
C4 ¼ 4g2s212c

2
12c

2
23 ð49Þ

All the coefficients are positive for most of the relevant
energy range and the coefficients f and g are defined as in
Eq. (14), but without the effect of VEP.
Another relevant probability is the survival channel,

νμ → νμ, which has the following expression:

PSO
νμ→νμ ≃ 1 − 4 sin2Δs223c223 þ 4Δ sin 2Δc212s223c223r ð50Þ

Up to the order presented in this approximation, δCP
does not appear. However, for higher orders of expansion,
terms proportional to cos δCP start to appear. Here, we do
not present the formula up to such higher order since the
size of the modifications caused by the related terms is
extremely small.

1. Ug =U, Δγ21 = 0 and Δγ31 ≠ 0

In Fig. 6(a), the plane Δm2
31 vs δCP is displayed, where it

is clear the shift of the fitted Δm2
31 to higher values than

the one corresponding to the CBFV. The shifting can be
understood taking into account the distinct discrepancy
between the VEP⨁SO and SO probabilities in the νμ → νμ
channel, shown in Fig. 1. As we can observe there, to
achieve a better pairing between these probabilities it is
required to decrease the absolute value of the SO νμ → νμ
channel, which can be obtained by increasing Δm2

31

FIG. 6. Scenario A/case 1. The solid lines are Δγtrue31 ¼ 0 (SO).
Figure (a) represents VEP with Δγtrue31 ¼ 10−24 (dashed lines) and
VEP with Δγtrue31 ¼ 2 × 10−24 (dotted lines). While in Fig. (b) is
shown VEP with Δγtrue31 ¼ −10−24 (dashed lines) and Δγtrue31 ¼
−2 × 10−24 (dotted lines). We consider δtrueCP ¼ −π=2.
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[see Eq. (50)]. Given the above explanation, when
Δγ̃31 < 0, the behavior is exactly the opposite, which is
observed in Fig. 6(b). The plane sin2 θ13 vs δCP is not
shown since the variations between allowed regions are
negligible. The behavior of the variations on the latter plane
are correlated with the size of discrepancies between the
VEP⨁SO and SO νμ → νe probabilities, which are as a
matter of fact small as shown in Fig. 1.
We have verified that if we choose, instead of VEP, any

of the LV terms in the SME Hamiltonian (see Sec. II B),
other than the one with d ¼ 4 energy dependency, the
behavior of the allowed regions follows a similar pattern.
These similarities are present in scenarios A (U ¼ Ug) and
B (U ≠ Ug), throughout all the cases.

2. Ug =U, Δγ21 ≠ 0 and Δγ31 = 0
Contrary to the former case, in this one there are

significant deviations between the allowed regions pre-
sented in the plane sin2 θ13 vs δCP, as can be seen in Fig. 7.
These changes, when Δγ21 > 0, are characterized by the
shifting to higher values of sin2 θ13 than the one of the SO
best fit, as can be seen in Fig. 7(a). This shifting is
explained by the need to increase sin2 θ13 in order to
match the SO with the VEP⨁SO νμ → νe probabilities,
as it is shown in Fig. 2. This match means to enhance the
SO neutrino transition probability, which can be attained by
increasing the first term C1s213, see Eq. (48). From Eq. (48),
it is also clear that the need to decrease the SO antineutrino
transition probability is satisfied through the flipped sign in
term C3 sin δCPrs13. The shrinking of the allowed regions
around the δCP ∼ −π=2, where its effect is maximal,
happens because of the higher separation among the
neutrino and antineutrino VEP⨁SO νμ → νe probabilities
than the corresponding for the SO neutrino antineutrino
probability difference, evaluated at the CBFV. Therefore, in
order to mimic this separation for VEP⨁SO neutrino-
antineutrino probabilities the fitted SO probability needs

to amplify the CP effects, aim which is fulfilled by
choosing a narrower set of values for the δCP interval
around the maximal δCP ∼ −π=2. When Δγ21 < 0, there is
a lower separation between the neutrino and antineutrino
VEP⨁SO νμ → νe probabilities and the corresponding
for the SO neutrino antineutrino probability difference,
at the CBFV. Then, and following the same reasoning
for Δγ21 > 0, but seen in opposite way, we need to adjust
the fitted SO probability in order to reduce the CP effects,
diminishing (increasing) the neutrino (antineutrino) SO
transition channel. This can be reached through the
selection of δCP distant from where the maximal CP effect
takes place, ∼ − π=2, of the fitted SO probabilities, and, by
opting for slightly smaller values of s13 that can help
modulating the reduction (rise) of the neutrino (antineu-
trino) transition probability magnitude [see Eq. (48)]. The
aforementioned behavior is totally reflected in Fig. 7(b).
In the latter figure, we can observe a misconstrued δCP,
which is a result of how the fitted SO probabilities try to
emulate the VEP effect. Finally, there is no need to display
the plane Δm2

31 vs δCP since the discrepancies in the
survival probabilities, correlated with the results in this
plane, are not relevant, as seen in Fig. 2.

3. Ug ≠ U, Texture θ13
From the probabilities point of view, see Fig. 3, this

case can be seen as opposed to the preceding one. This
means that for this case, Δγ31 > 0ðΔγ31 < 0Þ corresponds
to Δγ21 < 0ðΔγ21 > 0Þ for scenario A/case 2. Therefore,
the explanations for the former case could be applied to this
one. On the other hand, as it can be noted in Fig. 3, the
differences between the VEP⨁SO and SO νμ → νμ prob-
abilities are almost null.

4. Ug ≠ U, Texture θ12
This case is equivalent to scenario A/case 2. This

equivalency is rooted in the similar conduct observed in
the transition probabilities, shown in Fig. 4 and Fig. 2.
Hence, the arguments used for explaining the allowed
regions behavior for scenario A/case 2 are totally suitable to
be applied to this case.

5. Ug ≠ U, Texture θ23
As pointed out in Secs. III B 3 a and III B 3 b only in the

νμ → νμ channel the discrepancies between the VEP⨁SO
and the SO are observable (evaluated at the CBFV).
Therefore, the planeΔm2

31 vs δCP is the appropriate parameter
space region, where the impact of these differences can be
revealed. Scenario B/texture θ23-a, Δγ21 ¼ 0 and Δγ31 ≠ 0,
exhibits a quite similar behavior to that shown in Fig. 6 for
scenario A/case 1. Scenario B/texture θ23-b, Δγ31 ¼ 0;
Δγ21 > 0ðΔγ21 < 0Þ corresponds to Δγ31 < 0ðΔγ31 > 0Þ
for scenario A/case 1. Both tendencies in Fig. 6(a) and (b)
are in agreement to what is expected from the probabilities

FIG. 7. Scenario A/case 2. The solid lines are Δγtrue21 ¼ 0 (SO).
Figure (a) represents VEP with Δγtrue21 ¼ 10−24 (dashed lines) and
VEP with Δγtrue21 ¼ 2 × 10−24 (dotted lines). While VEP with
Δγtrue21 ¼ −10−24 (dashed lines) and Δγtrue21 ¼ −2 × 10−24 (dotted
lines) is shown in Fig. (b). We consider δtrueCP ¼ −π=2.
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displayed in Fig. 5. For texture θ23-a (θ23-b), the fitted
SO probability has to lessen (augment) its value to match
with the VEP⨁SO, which means to increase (decrease)
Δm2

31, as can be checked in Eq. (50).

B. VEP sensitivity limits

We analyze the sensitivity of DUNE to VEP parameters
generating a pure standard oscillation simulated data, fixing
the following true values: Δγtrue ¼ 0, and a given value of
δtrueCP , marginalizing over the remaining standard oscillation
parameters.

χ2 ¼ χ2ðΔγtest; δtrueCP ;Δγtrue ¼ 0Þ ð51Þ

The Δγtest is the test parameter paying attention that
ΔγtrueðΔγtestÞ either would take the value of Δγtrue31 ðΔγtest31 Þ
or Δγtrue21 ðΔγtest21 Þ depending on the case to be studied.

1. Scenario A

In Fig. 8 it is displayed the sensitivity to the VEP
parameter for the different cases of scenario A. For case 1,
the sensitivity toΔγ31 is given by ½0.4; 1.1; 1.8� × 10−24 and
−½0.4; 1.4; 2.4� × 10−24 at the 1σ, 3σ, and 5σ levels,
respectively. In this plot we can see that the sensitivity
toΔγ31 is almost constant irregardless the value of δCP. The
latter can be inferred from the probabilities given in
Eqs. (27) and (29), where δCP is not appearing, unless
up to the perturbation order that we present in these
formulas. When we consider negative values of Δγ31,
the formula predicts the same correction, which implies
a same constant behavior, and rather similar values for the
sensitivity, as the positive case. This can be seen in Fig. 8.
In this figure a plot for case 2 is shown, as well. For

this case, the sensitivity to Δγ21 for its positive values is
½0.3–0.4; 1.1–1.4; 1.8–2.4� × 10−24 and for its negative
values is −½0.3–0.5; 0.9–1.4; 1.4–2.3� × 10−24 at the 1σ,
3σ, and 5σ levels. As it can be seen from Fig. 2, the highest
discrepancies between VEP⨁SO and pure SO are present
in the νμ → νe transition channel. Consequently, it should
be expected that the shape of the curve of the sensitivity is

affected, at some degree, by the transition channel.
Therefore, for getting a qualitative understanding of this
shape we use the analytical expression of the νμ → νe
transition channel. In particular, the two lowest order
perturbative (most relevant) terms in Eq. (30) can be
grouped into a single term proportional to cosðΔþ δCPÞ.
Fixing the neutrino energy at 2.5 GeV (the mean energy at
DUNE), for which Δ is close to 0.5π, it is possible to have
a rough idea about the location of the maximum and
minimum sensitivities. Then, if Δ is close to 0.5π, it is
expected that the maximum sensitivity points are located in
values of δCP in the vicinity of −0.5π and 0.5π. This is what
we observe for positive values ofΔγ21. Before we continue,
it is convenient to point out that maximum sensitivity points
correspond to the highest deflections of the VEP⨁SO-
probability respect the SO one. On the other hand, mini-
mum sensitivity is obtained for values of δCP at the vicinity
of 0, π and −π. For negative values of Δγ21, minimum
sensitivity for δCP close to 0 still survives. However, the
other minima and maxima are erased because of the
influence of the terms following the first and second ones
in the correction.
It should be stressed that the VEP phenomenom, in the

framework of scenario A, was tested with IceCube-high
energy atmospheric neutrinos obtaining the following
upper limits: jΔγ21j ∼ 9.1 × 10−27 and jΔγ31j ∼ 6 × 10−27

at 90% C.L. [47]. Our limits within the DUNE framework
and in the same confidence level are jΔγ21j ∼ 5.2 × 10−25

and jΔγ31j ∼ 6.4 × 10−25, which should be the best limits
that could be attained by a manmade neutrino source.

2. Scenario B

In the same way, Fig. 9 shows the sensitivity to the
new parameters for textures θ13, θ12, and θ23 of scenario B.
First we focus on texture θ13 and texture θ12. For texture
θ13, the sensitivity to Δγ31 is given by ½0.5–1.5; 1.6–4.6;
2.6–7.2� × 10−24 for the positive values and −½0.5–1.7;
1.5–5.3; 2.5–8.4� × 10−24 for the negative ones at the 1σ,
3σ, and 5σ levels respectively. For texture θ12 of the same
scenario, the sensitivity to Δγ21 is given by ½0.3–0.7;
0.7–1.5; 1.2–2.1� × 10−24 and −½0.3–0.6; 0.8–1.5; 1.3–2� ×
10−24 at the 1σ, 3σ, and 5σ levels respectively.
The sensitivity behavior for theses textures, θ13 and θ12,

is almost absolutely dominated by the νμ → νe transition
channel, given that only in this channel there are (observ-
able) discrepancies between VEP⨁SO and pure SO (see
Figs. 3 and 4). In particular, it is possible to get a feeling of
the approximated position of the maximum and minimum
sensitivity points analyzing the first two terms in the
transition probabilities for both textures. These two terms
are proportional to C1 cos δCP � C2 sin δCP. Then, when
C1 < C2ðC1 > C2Þ the maximum (minimum) sensitivity in
δCP is located in the neighborhood of 0.5π and −0.5π (0, π,
and −π) for texture θ13 (textures θ12). In the minimum

FIG. 8. Sensitivity to VEP considering scenario A/case 1 (a)
and case 2 (b), depending on δtrueCP .
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(maximum) sensitivity point is where the lowest (highest)
discrepancies between VEP⨁SO and pure SO are found.
For both signs of Δγ the behavior is similar, unless, of
course, some shifts due to the influence of the other terms.
Fig. 9 presents the sensitivity to Δγ31 and Δγ21 in the

context of scenario B, texture θ23 and subcases a and b
respectively. Thus, the sensitivity to Δγ31 ðΔγ21Þ is given
by ½0.4; 1.2; 1.8� × 10−24 and −½0.4; 1.4; 2.5� × 10−24

(½0.4; 1.4; 2.5� × 10−24 and −½0.4; 1.2; 1.8� × 10−24) at the
1σ, 3σ, and 5σ levels respectively. It is important to note
that in both subcases the dependence on δCP is negligible,
since, there are only deviations from SO in the νμ → νμ
survival channel. For subcases a and b, there are no VEP-
related terms in the transition probability νμ → νe up to the
level of the developed perturbation order. On the other
hand, subcase a deflects from the SO case more visibly
than subcase b. That is why the former has higher
sensitivity than the latter. It is good to mention that the
aforementioned situation cannot be easily noted in the
corresponding probability plots (see Fig. 5). In addition,
there is a symmetric behavior for both signs of Δγij.

C. Lorentz violation estimated sensitivities

As we have pointed out our VEP prescription can be
reapplied to test the different isotropic Lorentz violating
terms of the SME Hamiltonian with their respective energy
dependencies, as discussed in Sec. II B. Here we have set up
different sensitivities imposed on each of the aforementioned

terms, in the context of DUNE, working with them in
individual manner. Since this is an indirect result of this
manuscript, we only present them on Table II. As similar
works can be found in [69,70].
Table II presents the sensitivity of DUNE experiment to

LV. It can be seen that scenario B/texture θ12 shows the
greatest constraint to the parameterΔγ21 for almost all d. In
the meantime, scenario B/texture θ13 presents precisely the
opposite for constraining Δγ31. This is exactly the same
pattern found for VEP, whence the explanation is the same.
Therefore, scenario B/texture θ13 is sensitive to higherΔγ31
values, while scenario B/texture θ12 is sensitive to lower
Δγ21 values.
Table III shows the comparison between the previous

estimations with those calculated in this work. These
sensitivities can be also extracted from [71]. Scenario B
has been considered because of the similarity with the
textures used for Lorentz violation. We have translated our
sensitivities in terms of aeμ, aeτ, and aμτ, where we have
used the textures θ12, θ13, and θ23, respectively. For cαβ we
have proceed in the same way. The gravitational angle, θg,
is considered equal to π=4 for all the textures. When d ¼ 3,
the estimations determined in this work are lower than the
previous ones for aeμ and aeτ shown in [70,72–74].
However, for aμτ, our bounds are lower than the preceding
ones excluding the result in [64], which is lower than ours.
For d ¼ 4, lower values are obtained with the exception of
those in [64,72], while for d ¼ 5 and d ¼ 6 we only have

FIG. 9. Sensitivity to VEP considering scenario B/textures θ13 (left), θ12 (center) and θ23 (right) depending on δtrueCP . In the plot on the
right, the solid and dashed lines represent the subcases a and b respectively. We consider θg12, θ

g
23, and θg13 equal to π=4.

TABLE II. Estimated sensitivities for Lorentz violation at 3σ level considering Δγ > 0 and Δγ < 0. For the scenario B, θg12, θ
g
23 and

θg13 are considered equal to π=4.

Scenario −Δγ ×10−23 GeV (d ¼ 3) ×10−24 (d ¼ 4) ×10−25 GeV−1 (d ¼ 5) ×10−26 GeV−2 (d ¼ 6)

A=1 − Δγ31 1.4 −1.3 2.2 −2.7 1.6 −3.3 0.9 −2.3
A=2 − Δγ21 [0.7 − 1.3] −½0.7 − 1.3� [2.1 − 2.7] −½1.8 − 2.9� [2.1 − 3.0] −½1.4 − 2.3� [1.3 − 1.8] −½0.8 − 1.3�
B=θ13 − Δγ31 [1.0 − 2.8] −½0.9 − 3.0� [3.2 − 9.2] −½3.1 − 10.5� [6.7 − 10.9] −½6.5 − 9.9� [5.1 − 7.3] −½5.1 − 6.8�
B=θ12 − Δγ21 [0.9 − 1.2] −½0.8 − 1.2� [1.5 − 3.0] −½1.6 − 2.9� [1.2 − 2.2] −½1.3 − 2.2� [0.7 − 1.2] −½0.8 − 1.3�
B=θ23-a −Δγ31 1.4 −1.4 2.3 −2.8 1.7 −3.3 1.0 −2.2
B=θ23-b −Δγ21 1.4 −1.4 2.8 −2.3 3.3 −1.7 2.3 −1.0
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previous calculations established by [64]. which is much
lower than the ones we have obtained. It is very important
to note that in order to obtain our estimations we have
treated separately each energy dependent term in the
Hamiltonian, in contrast, for instance, with the procedure
adopted in [64].

D. CP violation and mass hierarchy

1. CP violation sensitivity

This section discusses the effect of VEP on CP violation
sensitivity at DUNE experiment. To refer to DUNE
sensitivity to CP violation, the definition shown in
[49,68] are taken into account.

Δχ2CP ¼ Min½Δχ2ðδtest ¼ 0;Δγtest ¼ 0; δtrue;ΔγtrueÞ;
Δχ2ðδtest ¼ π;Δγtest ¼ 0; δtrue;ΔγtrueÞ� ð52Þ

To calculateΔχ2CP, δCP, andΔγ are set as fixed while it is
marginalized over the rest of the parameters. The CP
violation sensitivity is studied by fitting the data as SO and
considering VEP as an unknown but existing effect. In most
cases it is observed an increase in the significance level to
reject the null hypothesis depending on δtrueCP . However,
some cases show a decrease of this significance level for
certain values of δtrueCP , all with respect to SO. This way of
analysis is very important to study the consequences of
omitting an existing VEP scenario in nature in our
theoretical framework.
In Fig. 10, scenario A/case 1, an increase in the signifi-

cance level to reject the null hypothesis can be observed even
when δtrueCP ¼ 0;�π, generating a fake CPV. This is because
there is a relatively constant increment on sensitivity and
is a reflection of the δCP-independent discrepancy between
the VEP⨁SO and SO in the νμ (and ν̄μ) disappearance
probabilities for scenario A/case 1 [see Eq. (29)]. The
increase of the number of events for the Δγ < 0 reduces
the

ffiffiffiffiffiffiffiffi
Δχ2

p
making it harder to achieve similar values of

sensitivity to those obtained for the Δγ > 0 case. These
results are qualitatively similar to those shown in scenario B/
texture θ23-a. Additionally, scenario B/texture θ23-b Δγ21 >
0ðΔγ21 < 0Þ corresponds to Δγ31 < 0ðΔγ31 > 0Þ for sce-
nario A/case 1.
In Fig. 11(a), scenario A/case 2, the displayed results

are due to the increased asymmetry between the νμ → νe
and ν̄μ → ν̄e appearance channels amplifying the

TABLE III. Comparison between the existing bounds and the
estimated sensitivities calculated in this work. Estimations
marked * and † represent 95.5% and 99.7% C.L. respectively.

d Previous estimation This work

3 jaeμj 7.0 × 10−24 GeV [70] 2.8 × 10−24 GeV *
2.5 × 10−23 GeV [72] 4.0 × 10−24 GeV †
4.2 × 10−21 GeV [74]

jaeτj 1.0 × 10−23 GeV [70] 3.0 × 10−24 GeV *
5.0 × 10−23 GeV [72] 4.5 × 10−24 GeV †
2.8 × 10−21 GeV [74]

jaμτj 2.9 × 10−24 GeV [64] 4.5 × 10−24 GeV *
1.7 × 10−23 GeV [70] 7.0 × 10−24 GeV †
8.3 × 10−24 GeV [72]
5.9 × 10−23 GeV [73]
5.1 × 10−21 GeV [74]

4 jceμj 1.1 × 10−26 [72] 3.8 × 10−25 *
3.7 × 10−19 [74] 5.6 × 10−25 †

jceτj 1.4 × 10−24 [72] 7.5 × 10−25 *
2.5 × 10−19 [74] 1.2 × 10−24 †

jcμτj 3.9 × 10−28 [64] 6.0 × 10−25 *
6.1 × 10−27 [72] 9.0 × 10−25 †
5.0 × 10−24 [73]
4.5 × 10−19 [74]

5 jaeμj � � � 4.5 × 10−26 GeV−1 *
� � � 6.0 × 10−26 GeV−1 †

jaeτj � � � 2.4 × 10−25 GeV−1 *
� � � 3.3 × 10−25 GeV−1 †

jaμτj 2.3 × 10−32 GeV−1 [64] 6.0 × 10−26 GeV−1 *
9.0 × 10−26 GeV−1 †

6 jceμj � � � 2.0 × 10−27 GeV−2 *
� � � 2.6 × 10−27 GeV−2 †

jceτj � � � 1.4 × 10−26 GeV−2 *
� � � 2.0 × 10−26 GeV−2 †

jcμτj 1.5 × 10−36 GeV−2 [64] 2.6 × 10−27 GeV−2 *
3.8 × 10−27 GeV−2 †

FIG. 10. CP violation sensitivity for scenario A/case 1.

FIG. 11. CP violation sensitivity for scenario A/case 2.
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discrimination of the CP violation case, see Fig. 2. This
also includes an extra fake CPV caused by the connection
between the VEP term and the matter potential.
Notwithstanding, as a consequence of the opposite behav-
ior (decrease) of the asymmetry between the νμ → νe and
ν̄μ → ν̄e appearance channels, when Δγ21 < 0, it is
observed a decrease in the level of significance, that could
be even lower to the SO case in the neighborhood of
δtrueCP ¼ �π=2, where this case reaches its peak of sensi-
tivity. This means that the capacity to reject the null
CP-hypothesis when δtrueCP takes values close to its maxi-
mum would be reduced. As already stated, the results for
scenario A/case 2 are qualitatively similar to those shown in
scenario B/texture θ12. Moreover, scenario B/texture θ13
Δγ31 > 0ðΔγ31 < 0Þ corresponds to Δγ21 < 0ðΔγ21 > 0Þ
for scenario A/case 2. Therefore, we could apply Fig. 11
and explanations for scenario A/case 2 to these ones.

2. Mass hierarchy sensitivity

One of the main goals of DUNE experiment is to figure
out the mass hierarchy (MH). This is related to the fact that
one of the main features of DUNE experiment is its
baseline (1300 Km), resulting in a high sensitivity to the
matter effect. This means that a considerable difference in
the oscillation channels νμ → νe and ν̄μ → ν̄e is expected as
a result, on which MH depends. Therefore, studying the
sensitivity to MH is extremely important, since we have
shown VEP scenarios where the asymmetry of these
channels is clearly affected. The MH sensitivity is obtained
as follows [49,68].

Δχ2MH ¼ χ2ðΔm2
31

test < 0;Δγtest ¼ 0;

Δm2
31

true > 0; δtrueCP ;ΔγtrueÞ ð53Þ

Taking into account the analysis explained in the previous
section we study the impact on the MH sensitivity con-
sidering VEP/NH in nature and assuming SO/IH as
theoretical hypothesis. We do not display the scenarios
with low discrepancies on νμ → νe, which are scenario
A/case 1 and scenario B/texture θ23-a and texture θ23-b
since those scenarios have MH sensitivities rather similar to
SO MH.
In Fig. 12 the MH sensitivities for scenario A/case 2

are presented. In order to explain the behavior of these
sensitivity curves we define two probability differences:

ΔPSO ¼ PSOðNHÞ
νμ→νe − PSOðIHÞ

νμ→νe and ΔPVEP ¼ PVEP⨁SOðNHÞ
νμ→νe −

PSOðIHÞ
νμ→νe with ΔVEP-SOðNHÞ ¼ ΔPVEP − ΔPSO. The ΔPVEP is

associated with the VEP sensitivity whileΔPSO is related to
the SO one. For this scenario the most important VEP-
terms of s13Δγ̃21 ∼Oð0.01Þ of the transition probability
[see Eq. (30)] can be written into a single term proportional
to fgΔγ̃21, considering Δ ∼ π=2. For Δγ21 > 0,
ΔVEP-SOðNHÞ ∝ fgΔγ̃21 at δtrueCP ¼ −π=2, therefore the VEP

sensitivity reaches a higher significance than the SO
one. While, at δtrueCP ¼ π=2, ΔVEP-SOðNHÞ ∝ −fgΔγ̃21, which
means that the VEP sensitivity attains lower significance
than the SO one. For Δγ21 < 0, what happens is exactly the
opposite. These results are applicable for scenario B/texture
θ13 and texture θ12, as well.

V. CONCLUSIONS

We have tested the impact of fitting simulated data
generated for different VEP scenarios, and considering pure
standard oscillation as theoretical hypothesis. Among our
findings, we have found the displacement of the Δm2

31, the
increase of sin2 θ13 (Δγ > 0) or the change of δCP (Δγ > 0)
toward the decrease of the magnitude of CP violation,
which are scenario-dependent effects. Furthermore, the
DUNE CP sensitivity, treating VEP as before, increases
for the majority of scenarios having all in common the
introduction of a fake CP violation. The DUNE signifi-
cance for identifying the MH for Δγ > 0 (Δγ < 0)
increases (decreases) and decreases (increases) for δCP ∈
½−π; 0� and δCP ∈ ½0; π�. In addition, we have also found
sensitivities for VEP, for the variety of scenarios under
study, being the most stringent Δγ ∼ 0.7 × 10−24 GeV
which corresponds to the scenario B/texture θ12. Finally,
we have estimated sensitivity limits for LV terms of the
SME Hamiltonian, with different energy dependencies.
The most restrictive one corresponds to the scenario B/
texture θ12, as well, and is Δγ ¼ f8; 1.5; 0.12; 0.007g ×
10−24 GeV4−d that corresponds to d ¼ 3, 4, 5, 6, respec-
tively at 99.7% C.L. These limits are going to be the best
that we can achieve using a manmade neutrino source.
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