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We calculate the two-loop beta functions of the right-handed neutrino mass matrix in the Standard Model
extended with right-handed neutrinos. We show that two-loop quantum effects induced by the heavier
right-handed neutrinos can induce sizable contributions (sometimes dominant) to the physical masses of
the lighter right-handed neutrinos. These effects can significantly affect the masses of the active neutrinos
in the seesaw mechanism and the low-energy phenomenology.
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I. INTRODUCTION

Neutrino oscillation experiments have demonstrated
the existence of at least two nonvanishing neutrino masses.
The measured mass differences are much smaller than the
electroweak symmetry breaking scale or the mass of any
other Standard Model fermion. Besides, the misalignment
between the neutrino interaction and mass eigenstates is
qualitatively different to the one measured for the quarks,
and the mass hierarchy between the largest and next-to-
largest active neutrino masses is milder than the one
observed in the quark or charged lepton sectors. All of
these facts suggest that the mechanism generating neutrino
masses could be fundamentally different to the one gen-
erating quark or charged lepton masses.
Neutrinos are the only electrically neutral fermions in the

Standard Model, and therefore the only Standard Model
particles that admit a Majorana mass. It is then conceivable
that the differences between the neutrino and the quark or
charged lepton parameters could be related to the Majorana
nature of the neutrinos.
In an effective theory approach, Majorana masses for

the active neutrinos can be incorporated into the Standard
Model by adding a SUð2ÞL ×Uð1ÞY gauge-invariant
dimension-five operator, the so-called Weinberg operator
[1]. This description is only valid up to a cutoff scale, where
the effective theory must be replaced by a renormalizable
theory involving new degrees of freedom. Interestingly,

current experiments indicate that this effective description
of neutrino masses in terms of a Weinberg operator cannot
be valid up to the Planck scale, MP ¼ 1.2 × 1019 GeV.
Should this be the case, all neutrino masses should be
mν ≲ hH0i2=MP ∼ 10−6 eV [2], which is too small to
explain the measured mass splittings (here, hH0i ¼
174 GeV is the Higgs vacuum expectation value).
Therefore, current experiments demonstrate that either
the fundamental energy cutoff of nature is smaller than
the Planck scale, or that new particles exist with masses
between the electroweak and the Planck scale, which are
responsible for the generation of neutrino masses.
One of the simplest ultraviolet completions to the

Weinberg operator consists in adding to the Standard
Model particle content several right-handed neutrinos,
with mass much larger than the electroweak symmetry
breaking scale, but smaller than the Planck scale [3–5]. In
this framework, the heavy neutrinos are integrated out at the
energy scales relevant to oscillation experiments, generat-
ing a Weinberg operator which is suppressed by the mass
scale of the heavy neutrinos. Correspondingly, the active
neutrino masses which arise after the electroweak sym-
metry breaking can be larger than 10−6 eV, thus enabling to
reproduce the oscillation data by adjusting the parameters
of the model.
At energy scales between the fundamental cutoff of

nature, possibly the Planck scale, and a given right-handed
neutrino mass, the corresponding right-handed neutrino
is a dynamical degree of freedom and can affect the values
of the model parameters through quantum effects. The
renormalization group equations (RGEs) of the Yukawa
couplings were calculated in Ref. [6] at one loop and in
Ref. [7] at two loops; the RGEs of the right-handed mass
matrix were calculated in Ref. [8] at one loop. In this work
we will present for the first time the full two-loop RGE of
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the right-handed mass matrix in the Standard Model
extended with right-handed neutrinos.
We are motivated by the fact that two-loop quantum

effects on the right-handed neutrino mass matrix can have a
significant impact on the values of the physical parameters,
in contrast to the two-loop quantum effects on the neutrino
Yukawa couplings which just give small corrections to the
eigenvalues and diagonalization matrices. The crucial
difference between the RGE of a Majorana mass matrix
and that of a Yukawa matrix lies in the violation in the
former case of the total lepton number. Since a given right-
handed Majorana mass is (in general) not protected by any
symmetry, it can receive contributions proportional to other
right-handed neutrino masses. In particular, the physical
mass of the lighter right-handed neutrinos can be much
larger than their tree-level values due to two-loop contri-
butions from the heavier right-handed neutrinos [9,10].1 In
particular, it was argued in Ref. [9] that the breaking of the
lepton number at the Planck scale could naturally lead to
active neutrino masses of Oð0.1Þ eV, if one of the right-
handed neutrino masses is dominated by two-loop quantum
effects.
The paper is organized as follows. In Sec. II, we present

the two-loop RGEs for the right-handed neutrino mass
matrix in the Standard Model extended with right-handed
neutrinos. In Sec. III, we study the implications of the two-
loop RGEs for the active neutrino masses in a scenario with
two right-handed neutrinos, focusing on the case where the
cutoff value of the heaviest right-handed mass is close to
the Planck scale and that of the lightest is very small, such
that its physical mass is dominated by quantum effects. In
Sec. IV we extend the analysis to the three right-handed
neutrino scenario, where again the heaviest right-handed
neutrino mass is close to the Planck scale, and either one or
two of the lighter right-handed neutrino masses are domi-
nated by two-loop quantum effects. Finally, in Sec. V we
present our conclusions.

II. TWO-LOOP RGEs OF RIGHT-HANDED
NEUTRINO PARAMETERS

We consider an extension of the Standard Model by ng
right-handed neutrinos, Ni, i ¼ 1;…; ng. The most general
renormalizable Lagrangian involving the right-handed
neutrinos reads

LN ¼ 1

2
Nii=∂Ni − YαiLα H̃ Ni −

1

2
MijNc

i Nj þ H:c:; ð1Þ

where Lαðα ¼ e; μ; τÞ are the lepton doublets and H̃ ¼
iτ2H� is the charge conjugate of the Standard Model Higgs
doublet H.
The Yukawa matrix Y and the mass matrix M are

generated by some yet unknown mechanism at a high
energy scale Λ, below which the model is well described by
the Lagrangian (1). The parameters of the model, on the
other hand, are subject to quantum effects. In this paper we
focus on the effects proportional to logðΛ=MiÞ (where Mi
are the physical masses of the right-handed neutrinos)
which can be calculated using the RGEs.
The RGE of the right-handed Majorana mass matrix up

to two loops is given by

dM
d log μ

¼ βð1ÞM þ βð2ÞM ; ð2Þ

where βð1ÞM and βð2ÞM are the one- and two-loop beta
functions. The one-loop β function was calculated in
Ref. [8], while the two-loop beta function is to the best
of our knowledge a new result:

16π2βð1ÞM ¼ MðY†YÞ þ ðY†YÞTM;

ð16π2Þ2βð2ÞM ¼ 4ðY†YÞTMðY†YÞ

−
1

4
½MðY†YÞðY†YÞ þ ðY†YÞTðY†YÞTM�

þ
�
17

8
g21 þ

51

8
g22 −

9

2
y2t −

3

2
TrðY†YÞ

�
× ½MðY†YÞ þ ðY†YÞTM�: ð3Þ

(We choose to work in the MS scheme.) Here, g1 and g2
are the gauge couplings corresponding to the Uð1ÞY and
SUð2ÞL symmetries and yt is the top Yukawa coupling. We
have neglected the effects in the running of the remaining
Standard Model Yukawa couplings.
Besides, the RGE of the neutrino Yukawa coupling is

dY
d log μ

¼ βð1ÞY þ βð2ÞY ; ð4Þ

where βð1ÞY and βð2ÞY are the one- and two-loop beta
functions. These were calculated in Ref. [7] (see also
Ref. [13]), and are reproduced here for completeness:

1An analogous mechanism leads to a lower bound on the
lightest active neutrino mass from two-loop quantum effects
induced by the heaviest active neutrino [11,12].
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16π2βð1ÞY ¼
�
3y2t þ TrðY†YÞ − 3

4
g21 −

9

4
g22

�
Y þ 3

2
YY†Y;

ð16π2Þ2βð2ÞY ¼
�
93

16
g21 þ

135

16
g22 −

27

4
y2t −

9

4
TrðY†YÞ − 12λ

�
YY†Y

þ
�
6λ2 −

27

4
y4t −

9

4
TrððY†YÞ2Þ − 9

4
g21g

2
2 þ

35

24
g41 −

23

4
g42

þ
�
85

24
g21 þ

45

8
g22 þ 20g2s

�
y2t þ

�
5

8
g21 þ

15

8
g22

�
TrðY†YÞ

�
Y þ 3

2
YðY†YÞ2; ð5Þ

where λ is the Higgs quartic coupling and gs is the SUð3Þc
gauge coupling.
To discuss the main qualitative new features of the two-

loop quantum effects on the right-handed neutrino mass
matrix it is convenient to introduce the quantities

P ¼ 1

16π2
Y†Y;

G ¼ 1

16π2

�
17

8
g21 þ

51

8
g22 −

9

2
y2t

�
−
3

2
TrP;

Q ¼ ð1þ GÞP −
1

4
P2: ð6Þ

Then the RGE for the mass matrix can be recast as

dM
d log μ

¼ MQþQTM þ 4PTMP: ð7Þ

The RGEs for the right-handed neutrino mass eigenval-
ues and eigenvectors can be obtained following the lines of
Ref. [14]. We decompose the mass matrix in terms of a real
diagonal matrix containing the mass eigenvalues DM and a
complex unitary matrix UM, such that M ¼ U�

MDMU
†
M.

Then, the real and imaginary parts of the diagonal elements
of the RGE are

dMi

d log μ
¼ 2MiQ̂ii þ 4

X
k

MkReðP̂2
kiÞ; ð8Þ

−2MiIm

�
U†

M
dUM

d log μ

�
ii
¼ 4
X
k

MkImðP̂2
kiÞ; ð9Þ

and those of the off-diagonal elements are

ðMj −MiÞRe
�
U†

M
dUM

d log μ

�
ij

¼ ðMi þMjÞReðQ̂ijÞ þ 4
X
k

MkReðP̂kiP̂kjÞ; ð10Þ

− ðMj þMiÞIm
�
U†

M
dUM

d log μ

�
ij

¼ ðMi −MjÞImðQ̂ijÞ þ 4
X
k

MkImðP̂kiP̂kjÞ; ð11Þ

where P̂ ¼ U†
MPUM and Q̂ ¼ U†

MQUM. Notice that
the Hermiticity of the matrices P̂ and Q̂ implies
ImðP̂iiÞ; ImðQ̂iiÞ ¼ 0.
From the form of the RGEs one can already draw the

following conclusions:
(1) The lighter right-handed neutrinos can receive siz-

able contributions to their mass from the heaviest
ones. This phenomenon can be traced back to the
fact that (in general) the Lagrangian (1) possesses no
global symmetry protecting the lighter right-handed
masses [9,10]. Therefore, lighter right-handed
neutrinos can receive sizable (or even dominant)
contributions to their masses from quantum effects
induced by heavier right-handed neutrinos. This
effect, potentially very important for correctly de-
scribing the phenomenology of the seesaw model, is
not manifest in a one-loop calculation and requires at
least a two-loop calculation.

(2) When the right-handed neutrino mass Mi vanishes at
the cutoff scale (or more generically, when the
quantum contribution to the physical right-handed
mass dominates over the tree-level contribution), the
RGE evolution drives the right-handed mixing matrix
to a quasifixed point in the infrared [cf. Eq. (9)]:

X
k≠i

MkImðP̂2
kiÞ ≃ 0: ð12Þ

(3) When two right-handed neutrino masses are degen-
erate at the cutoff scale (or more generically, when
the quantum contribution to the physical mass
difference between the two right-handed neutrinos
dominates over the tree-level mass difference), the
RGE evolution drives the right-handed mixing
matrix to a quasifixed point in the infrared satisfying

X
k≠i;j

MkP̂kiP̂kj ≃ 0; ð13Þ

ifMi ¼ Mj ¼ 0 andMk ≠ 0 [cf. Eqs. (10) and (11)],
and

TWO-LOOP RENORMALIZATION GROUP EQUATIONS FOR … PHYS. REV. D 102, 055011 (2020)

055011-3



MiReðQ̂ijÞ þ 2
X
k

MkReðP̂kiP̂kjÞ ≃ 0; ð14Þ

if Mi ¼ Mj ≠ 0 [cf. Eq. (10)].
Let us analyze in the following some implications of the

two-loop quantum effects on seesaw models with two or
three right-handed neutrinos, focusing on the case where
the mass hierarchy is large at the cutoff scale, such that the
physical mass of at least one of the right-handed neutrinos
is dominated by the quantum effects induced by the heavier
right-handed neutrinos.

III. TWO RIGHT-HANDED NEUTRINO MODEL

We consider first a simplified scenario containing only
two right-handed neutrinos. We choose to work in the basis
where the right-handed neutrino mass matrix at the cutoff
scale Λ is diagonal and real, with eigenvalues M1 and M2

(with M2 > M1):

MðΛÞ ¼
�
M1 0

0 M2

�
: ð15Þ

It is straightforward to integrate Eq. (7), to obtain the
right-handed neutrino mass at the scale μ < Λ (for details,
see the Appendix):

MðtÞ ≃M þ tðMPþ PTMÞ − t
4
ð1 − 2tÞðMPPþ PTPTMÞ

þ tð4þ tÞPTMP; ð16Þ

with t≡ logðμ=ΛÞ. Since we are interested in the leading
effects, we have neglected terms proportional to G in
Eq. (6), and we have kept terms up to OðP2Þ which, as
we will see below, can be crucial in some instances.
Below the scale μ ≃M2 the phenomenology of the

model can be conveniently described by the effective
Lagrangian:

Leff ≃
1

2

Yα2Yβ2

M22

ðLα H̃ÞðH̃TLc
βÞ − Y α1Lα H̃ N1

−
1

2
M11Nc

1N1 þ H:c:; ð17Þ

where the parameters must be evaluated at the scale μ ≃M2

and where we have defined

Y α1 ¼ Yα1 −
M12Yα2

M22

;

M11 ¼ M11 −
M12M21

M22

: ð18Þ

We obtain for the physical mass of N1

Mphys
1 ≃M11jμ¼M1

≃M1 − 4M2P2
21 log

�
Λ
M2

�
: ð19Þ

This result could have been also derived from Eq. (8), using
that at the cutoff scale the mixing matrix isUM ¼ 1, and the
fact that in this case UM does not change substantially
under the RG running.
Finally, for energy scales μ≲Mphys

1 the lightest right-
handed neutrino N1 can also be integrated out, and the
theory is simply described by the Weinberg operator

Leff ≃
1

2

�
Yα2Yβ2

M22

����
μ¼M2

þ Y α1Y β1

M11

����
μ¼M1

�
× ðLα H̃ÞðH̃TLc

βÞ þ H:c:; ð20Þ
from where one can calculate the active neutrino masses,
running the Weinberg operator down to the electroweak
scale [15].2 On the other hand, the most relevant RGE
effects occur in this scenario at scales μ > M2, and there-
fore one can approximate the neutrino mass eigenvalues by
considering the values of the parameters frozen at μ ¼ M2.
Namely,

Mν ≃ ðYM−1YTÞjμ¼M2
hH0i2: ð21Þ

The most notable feature of the two-loop quantum
effects is the contribution proportional to M2 to the mass
of the lightest right-handed neutrino [cf. Eq. (19)], which
arises from the term PTMP in the RGE. This term may
dominate over the tree-level contribution when the mass
hierarchy is strong at the cutoff scale, and ought to be
included for correctly describing the phenomenology of
the model.
To emphasize the main implications of this term, we will

consider in what follows the limit M1 ¼ 0, although the
same conclusions hold as long as M1 ≪ 4M2P2

21 logð Λ
M2
Þ.

In the toy model with only one lepton doublet L1, discussed
in Ref. [9], the active neutrino mass reads

mν ≃
�
Y2
12

M2

����
μ¼M2

þ Y2
11

M1

����
μ¼M1

�
hH0i2

≃
�
Y2
12 −

ð16π2Þ2
4Y2

12 logðΛ=M2Þ
� hH0i2

M2

; ð22Þ

where we have used Y 11 ≃ Y11, which follows from the fact
that M12=M22Y12 ∼ Y11Y2

12=ð16π2Þ ≪ Y11. In this sce-
nario, therefore, the active neutrino mass is mostly gen-
erated by the coupling of the lepton doublet to N1. Yet,
the neutrino mass is fairly insensitive to the value of Y11,
since the right-handed mass M1 is generated by two-loop
quantum effects induced by N2, and depends itself on Y11.
More concretely,

2A numerical factor in the RGE was corrected in Ref. [16].
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jmνj ≃ 0.05 eV

�
Y12

0.6

�
−2
�

M2

1.2 × 1019 GeV

�
−1
; ð23Þ

where we have assumed M2 not far from the cutoff, such
that logðΛ=M2Þ ≃ 1. One then concludes that if the right-
handed neutrino mass spectrum is very hierarchical at the
cutoff of the theory (which we assume to be the Planck
scale), and if the lepton number is broken by a Majorana
mass close to the cutoff scale, then quantum effects induced
by a Yukawa coupling Y12 ¼ Oð1Þ generate an active
neutrino mass in the ballpark of the experimental values.
In the realistic case with three lepton doublets, the active

neutrino masses can be obtained by constructing the matrix
invariants involving the neutrino mass matrix (21). Using
the Faddeev-LeVerrier algorithm, and assuming thatMν is
real, these are

I1 ¼ Tr½Mν� ¼ ð16π2ÞTr½M−1P�hH0i2;

I2 ¼
1

2
ðTr½Mν�2 − Tr½M2

ν�Þ

¼ ð16π2Þ2
2

ðTr½M−1P�2 − Tr½M−1PM−1P�ÞhH0i4;

I3 ¼
1

6
ðTr½Mν�3 − 3Tr½Mν�Tr½M2

ν� þ 2Tr½M3
ν�Þ

¼ ð16π2Þ3
6

ðTr½M−1P�3 − 3Tr½M−1P�Tr½M−1PM−1P�
þ 2Tr½M−1PM−1PM−1P�ÞhH0i6: ð24Þ

For a model with three lepton doublets and two right-
handed neutrinos, I3 ¼ 0. On the other hand, using that
I3 ¼ m1m2m3 we obtain the well-known result m1 ¼ 0.3

From the other two invariants, and keeping the leading
terms in P, we obtain4

I1 ¼ m2 þm3 ≃ ð16π2ÞhH0i2 P11

M1

;

I2 ¼ m2m3 ≃ ð16π2Þ2hH0i4 P11P22 − P2
12

M1M2

: ð25Þ

Therefore, for the phenomenologically interesting case
where the light neutrinos are hierarchical,

m3 ≃ I1 ≃ ð16π2ÞhH0i2 P11

M1

����
μ¼M2

;

m2 ≃
I2
I1

≃ ð16π2Þ hH
0i2

M2

�
P11P22 − P2

12

P11

�����
μ¼M2

: ð26Þ

We parametrize the P matrix as P ¼ 1
16π2

UTdiagðy21; y22ÞU,
whereU is a 2 × 2 unitary matrix and y1, y2 are the Yukawa
eigenvalues. Then, the light neutrino eigenvalues can be
cast as

m3 ≃
ð16π2Þ2ðy21U2

11 þ y22U
2
21ÞhH0i2

4M2ðy22 − y21Þ2U2
11U

2
12 logðM2=ΛÞ

;

m2 ≃
y21y

2
2hH0i2

M2ðy21U2
11 þ y22U

2
21Þ

; ð27Þ

which clearly only depend on right-handed mixing angles
(see also Ref. [17]). Here, we have assumed that M2 is not
far from the cutoff scale, so that one can approximate
logðΛ=M2Þ ∼ 1. As in the one-generation case, m3 is in the
ballpark of the experimental values, provided the right-
handed mixing is sizable, and provided y2 ∼ 1. However,
this scenario tends to generate a mass hierarchy betweenm3

and m2 which is too large to explain oscillation experi-
ments. Concretely, it can be checked that the mass
hierarchy is bounded from below by����m3

m2

����≳ ð16π2Þ2
ðy22 − y21Þ2 logðM2=ΛÞ

; ð28Þ

thus requiring fairly large Yukawa couplings to reproduce
the experimental upper limit jm3=m2j≲ 5.7. The heaviest
active neutrino mass and mass hierarchy are shown in
Fig. 1, taking for concreteness Λ ¼ MP, M2 ¼ MP=

ffiffiffiffiffiffi
8π

p
,

FIG. 1. Scan plot with the predicted largest active neutrino mass
jm3j and mass hierarchy jm3=m2j for a model with two-right
handed neutrinos and three lepton doublets. We have assumed
M2 ¼ MP=

ffiffiffiffiffi
8π

p
, M1 ¼ 0 at the cutoff scale Λ ¼ MP, and we

have scanned the Yukawa eigenvalues in the range 10−2 ≤ y2 <
y1 ≤

ffiffiffiffiffi
4π

p
and the right-handed mixing angle between 0 and 2π.

3Two-loop quantum effects between the scale M1 and the
electroweak scale generate a nonvanishing value for m1, which is
however too small to be of phenomenological interest [11,12].

4For the general complex case, the invariants must be
constructed using the Hermitian matrix M†

νMν. Namely,
I1 ¼ Tr½M†

νMν� ¼ m2
2 þm2

3, etc.
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and scanning the Yukawa eigenvalues in the range 10−2 ≤
y2 < y1 ≤

ffiffiffiffiffiffi
4π

p
and the right-handed mixing angle between

0 and 2π. As seen in the figure, it is possible to reproduce
m3 ¼ Oð0.05Þ eV, for appropriate choices of parameters,
but the mass hierarchy tends to be too large.

IV. THREE RIGHT-HANDED NEUTRINO MODEL

Finally, we consider the model with three right-handed
neutrinos. At the cutoff scale Λ, the right-handed neutrino
mass matrix is given by

MðΛÞ ¼

0
B@M1 0 0

0 M2 0

0 0 M3

1
CA; ð29Þ

with M1 ≪ M2 ≪ M3. The mass M3 receives typically
small corrections, while M1 and M2 may receive sizable
or even dominant contributions from quantum effects
proportional to M3. In either case, one can integrate N3

out, leading to the effective Lagrangian

Leff ≃
1

2

Yα3Yβ3

M33

ðLα H̃ÞðH̃TLc
βÞ − Y αiLα H̃ Ni

−
1

2
MijNc

i Nj þ H:c:; ð30Þ

where we have defined

Y αi ¼
�
Yαi −

Mi3Yα3

M33

�
;

Mij ¼
�
Mij −

Mi3Mj3

M33

�
; ð31Þ

with i, j ¼ 1, 2 and couplings evaluated at the scale
μ ¼ M3. The Weinberg operator in Eq. (30) gives a
contribution to the active neutrino masses ≲10−6 eV.
Thus, to study the generation of the atmospheric and solar
mass scales it is sufficient to consider the role ofN2 andN1.
The effective Lagrangian can then be approximated by

Leff ≃ −Y αiLα H̃ Ni −
1

2
MijNc

i Nj þ H:c: ð32Þ

The right-handed masses at the scale μ ¼ M3 can be
calculated from the invariants

I1¼Tr½M�¼M1ðtÞþM2ðtÞ
≃M1þM2þ4M2P2

21tþ4M3ðP2
31þP2

32Þt;
I2¼det½M�¼M1ðtÞM2ðtÞ
≃M1M2þ4ðM2

1P
2
21þM2

2P
2
21Þtþ4M3ðM1P2

32þM2P2
31Þt

þ32M2
3½P21ðP2

31−P2
32Þ−ðP11−P22ÞP31P32�2t3; ð33Þ

with t≡ logðμ=ΛÞ. In these expressions, we have kept only
the leading contributions [including terms OðP4Þ in the
Picard expansion that, as we will see later, are relevant in
some scenarios]. In the generically expected case that the
right-handed masses are hierarchical, one can approximate

M2jμ¼M3
≃ I1;

M1jμ¼M3
≃
I2
I1
: ð34Þ

The masses of the right-handed neutrinos, and accord-
ingly those of the active neutrinos, crucially depend on the
relative size of the quantum and the tree-level contributions
to the right-handed neutrino masses. One can identify the
following scenarios:
(a) Both right-handed neutrino masses are dominated by

their tree-level values.
(b) One right-handed neutrino mass is dominated by

quantum contributions, while the other is dominated
by its tree-level value.

(c) Both right-handed neutrino masses are dominated by
quantum contributions.

Case (a) corresponds to the well-studied case in the
literature, save for small quantum corrections that do not
qualitatively affect the phenomenology. In the next sub-
sections we will then focus on cases (b) and (c), where the
predictions of the model can be significantly different to
those from the tree-level (and even one-loop) calculations.
Furthermore, since one (or two) tree-level parameters are
washed out by the RG evolution, the predictivity of the
model gets enhanced.

A. One right-handed neutrino mass dominated
by quantum effects

We consider first the case where one of the tree-level
masses is much larger than the radiative contributions
proportional to M3, while the other is much smaller.
Using Eqs. (33) and (34), we obtain for the masses at
the scale μ ¼ M3

Mijμ¼M3
≃ 4M3ðP2

31 þ P2
32Þ log

�
M3

Λ

�
;

Mjjμ¼M3
≃
M1P2

32 þM2P2
31

P2
31 þ P2

32

; ð35Þ

where we have implicitly assumed that Mijμ¼M3
, Mjjμ¼M3

are much larger than the Dirac neutrino mass; this is
generically the case for the Planck-scale lepton-number-
breaking scenario, and for generic structures in the Yukawa
couplings. Note that the concrete mass ordering of these
two right-handed neutrinos depends on the model param-
eters at the cutoff scale, and hence we have left unspecified
whether i ¼ 1 or 2 (and j ¼ 2 or 1). Note also thatMjjμ¼M3

is a linear combination of the two masses M1 and M2.
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This is due to the non-negligible right-handed mixing
generated by the RG evolution. Concretely, at the scale
μ ¼ M3 the 2 × 2 right-handed mass matrix in Eq. (32) is
diagonalized as M ≃ VdiagðMi;MjÞVT , with

V ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
31 þ P2

32

p �
P32 P31

−P31 P32

�
; ð36Þ

which has in general sizable entries.
In the high-scale seesaw scenario under consideration in

this paper, the heaviest right-handed neutrino (with mass
M3 ∼MP) gives a contribution to the active neutrino
masses ≲10−6 eV, and only the effects of the two lightest
right-handed neutrinos are relevant for oscillation experi-
ments. The active neutrino mass matrix can then be
approximated using the two right-handed neutrino
Lagrangian (32). It reads

Mν ≃ YM−1Y ThH0i2: ð37Þ

The eigenvalues can be calculated along the lines of
Sec. III [cf. Eq. (24)]:

I1 ¼ Tr½Mν� ¼ ð16π2ÞTr½M−1P�hH0i2;

I2 ¼
1

2
ðTr½Mν�2 − Tr½M2

ν�Þ

¼ ð16π2Þ2
2

ðTr½M−1P�2 − Tr½M−1PM−1P�ÞhH0i4;

I3 ¼
1

6
ðTr½Mν�3 − 3Tr½Mν�Tr½M2

ν� þ 2Tr½M3
ν�Þ

¼ ð16π2Þ3
6

ðTr½M−1P�3 − 3Tr½M−1P�Tr½M−1PM−1P�
þ 2Tr½M−1PM−1PM−1P�ÞhH0i6: ð38Þ

with P≡ 1
16π2

Y TY .
We obtain I3 ¼ 0, which implies m1 ¼ 0, and

I1 ¼m2 þm3 ≃
16π2hH0i2
Mjjμ¼M3

P22P2
31 þP11P2

32 − 2P31P32P21

P2
31 þP2

32

;

I2 ¼m2m3 ≃
ð16π2Þ2hH0i4

Mijμ¼M3
Mjjμ¼M3

ðP11P22 −P2
21Þ: ð39Þ

Therefore, for a hierarchical spectrum of light neutrinos, one
obtains the following analytic expressions for mα and mβ:

mα ≃ I1 ¼
16π2hH0i2
Mjjμ¼M3

P22P2
31 þ P11P2

32 − 2P31P32P21

P2
31 þ P2

32

;

mβ ≃
I2
I1

¼ 16π2hH0i2
Mijμ¼M3

ðP2
31 þ P2

32ÞðP11P22 − P2
21Þ

P22P2
31 þ P11P2

32 − 2P31P32P21

;

ð40Þ

where we have left unspecified the labeling of the states, as
the mass or ordering is not determined a priori. Finally,
using P ¼ 1

16π2
UTdiagðy21; y22; y23ÞU we find that in most of

the parameter space the light neutrino masses can be
approximated by

mα ≃
y22hH0i2
M2

U2
13

U2
31

;

mβ ≃
ð16π2Þ2hH0i2

4M3y23U
2
33 logðM3=ΛÞ

; ð41Þ

with all seesaw parameters now evaluated at the cutoff scale.
Specifically, this expression corresponds to the generic case
where Mjjμ¼M3

is dominated by the tree-level mass M2.
However, for special choices of parameters, namely when
P31=P32 ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1=M2

p
,Mjjμ¼M3

could be dominated byM1.
In this case, mα ≃ y22hH0i2=M1U2

13=U
2
32.

Alongside our analysis for the two right-handed neutrino
case analyzed in Sec. III, we show in Fig. 2 the expected
masses m3 (violet) and m2 (green) as a function of the
Yukawa eigenvalue y2, resulting from a random scan of the
mixing angles between 0 and 2π, and assuming y3 ¼ 1,
y1 ¼ 0, Λ ¼ MP,M3 ¼ MP=

ffiffiffiffiffiffi
8π

p
andM2 ¼ 109 GeV (left

plot) or M2 ¼ 1 GeV (right plot). One of the mass
eigenvalues is in the ballpark of the experimental values
and can be adjusted by an appropriate choice of y3, M3

and/or the mixing angles. The other mass eigenvalue, on
the other hand, is very sensitive to y2 and M2, and requires
special choices of parameters (not necessarily fine-tuned).
For example, for the parameters of the left (right) plot, it is
necessary to postulate y2 ∼ 10−2 (∼10−7) to reproduce the
observations.

B. Two right-handed neutrino masses dominated
by quantum effects

Let us turn now to the case where the tree-level right-
handed masses M1 and M2 are much smaller than the
quantum contributions proportional to M3. The mass
matrix at the scale μ ¼ M3 can be diagonalized as
M ≃ VdiagðM1;M2ÞVT , where V is still given by
Eq. (36) and the eigenvalues are

M2jμ¼M3
≃ 4M3ðP2

31 þ P2
32Þ log

�
M3

Λ

�
;

M1jμ¼M3
≃ 8M3

ðP21ðP2
31 − P2

32Þ − ðP11 − P22ÞP31P32Þ2
P2
31 þ P2

32

× log2
�
M3

Λ

�
; ð42Þ

as follows from Eqs. (33) and (34). It can be checked that
at order P2 the mass matrix has one vanishing eigenvalue;
however two nonvanishing eigenvalues are generically
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expected since there is no symmetry protecting the
lightest eigenvalue (for generic Yukawa structures). The
nonzero value for M1jμ¼M3

arises at order P4 as is explicit
in Eq. (42). Further, using the eigendecomposition
P ¼ 1

16π2
UTdiagðy21; y22; y23ÞU one finds,

M2jμ¼M3
≃

4

ð16π2Þ2 M3y43U
2
33ðU2

31 þ U2
32Þ log

�
M3

Λ

�
;

M1jμ¼M3
≃

8

ð16π2Þ4 M3y42y
4
3

U2
13U

2
23

ðU2
31 þ U2

32Þ
log2

�
M3

Λ

�
;

ð43Þ

where we have assumed y1 ≪ y2 ≪ y3. It is therefore
necessary to have a Yukawa matrix of rank ≥ 2 in order
to radiatively generate a second mass.
The largest eigenvalue is typically much larger than

any Dirac neutrino mass and practically coincides with
the physical mass of the eigenstate N2, namely Mphys

2 ≃
M2jμ¼M3

. On the other hand, the lightest eigenvalue
M1jμ¼M3

is suppressed by the large factor ð16π2Þ4, as
well as by the factor y42. Therefore, even despite
being proportional to the large mass M3, the resulting
eigenvalue can be small and the corresponding physical
state could have a sizable mixing with the active neutrino
states.
It is convenient to work in the basis of right-handed

neutrinos where the mass matrix M is diagonal. Defining
N0 ¼ VTN one obtains

Leff ≃ −Y 0
αiLα H̃ N0

i −
1

2
MiN0c

i N
0
i þ H:c:; ð44Þ

where Y 0 ¼ YV. After integrating out N0
2 we obtain

Leff ≃
1

2

Y 0
α2Y

0
β2

M2

ðLα H̃ÞðH̃TLc
βÞ − Y 0

α1Lα H̃ N0
1

−
1

2
M1N0c

1 N
0
1 þ H:c: ð45Þ

This Lagrangian yields after electroweak symmetry break-
ing the following 4 × 4 neutrino mass matrix:

Mν ≃

 
−

Y 0
α2Y

0
β2

M2
hH0i2 Y 0

α1hH0i
ðY 0

α1ÞThH0i M1

!
: ð46Þ

To calculate the eigenvalues, it is useful to decompose the
mass matrix as

Mν ≃m1u1uT1 þm2u2uT2 þm3ðu3uT3 − u4uT4 Þ; ð47Þ

where ui are the vectors

u1 ¼
1ffiffiffiffiffiffiffi
P0
22

p
0
BBB@

Y 0
12

Y 0
22

Y 0
32

0

1
CCCA; u2 ¼

0
BBB@

0

0

0

1

1
CCCA;

u3;4 ¼
1ffiffiffiffiffiffiffiffiffiffi
2P0

11

p
0
BBBBB@

Y 0
11

Y 0
21

Y 0
31

� ffiffiffiffiffiffiffi
P0
11

p
;

1
CCCCCA; ð48Þ

which are normalized to unity (but do not form an
orthonormal set), and mi are mass scales (defined such
that mi ≥ 0) given by

FIG. 2. Scan plot of the active neutrino masses jm3j (magenta) and jm2j (green) as a function of the Yukawa eigenvalue y2, for the
scenario with y3 ¼ 1, y1 ¼ 0, M3 ¼ MP=

ffiffiffiffiffi
8π

p
, M2 ¼ 109 GeV (left plot) or M2 ¼ 1 GeV (right plot), and M1 ¼ 0 at the cutoff scale

Λ ¼ MP. The right-handed mixing angles have been randomly scanned between 0 and 2π.
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m1¼−
P0
22

M2

hH0i2; m2¼M1; m3¼
ffiffiffiffiffiffiffi
P0
11

q
hH0i: ð49Þ

Here, we have introduced the 2 × 2 matrix P0 ¼ Y 0†Y 0 ¼
V†Y †YV, with Y and V respectively given in Eqs. (31) and
(36). Explicitly, the matrix elements read

P0
11 ≃ ð16π2ÞP22P2

31 þ P11P2
32 − 2P12P31P32

P2
31 þ P2

32

;

P0
22 ≃ ð16π2ÞP22P2

32 þ P11P2
31 þ 2P12P31P32

P2
31 þ P2

32

;

P0
12 ≃ ð16π2ÞP12ðP2

31 þ P2
32Þ þ P31P32ðP11 − P22Þ
P2
31 þ P2

32

: ð50Þ

Using the eigendecomposition P¼ 1
16π2

UTdiagðy21;y22;y23ÞU
one finds,

P0
11 ≃

U2
13

U2
31 þU2

32

y22;

P0
22 ≃ ðU2

31 þ U2
32Þy23;

P0
12 ≃

2U3
31U32

U2
31 þU2

32

y23: ð51Þ

One can check from the mass matrix (47) that
detðMνÞ ¼ 0, which implies that the lightest eigenvalue
is massless, m1 ¼ 0. The remaining three eigenvalues (m3,
m2 and ms) can be calculated analytically by solving a
cubic equation. The resulting expression is complicated and
provides little insight on the form of the solution. On the
other hand, generically one among the three mass scalesmi
will be much larger than the other two. In these cases, it is
possible to derive (using degenerate perturbation theory)
simple analytical expressions for the eigenvalues. We can
distinguish the following three cases:

(i) m2 ≫ m1;m3.
The nonvanishing eigenvalues read

ms ≃m2 ¼ M1;

m3 ≃ −
m2

3

m2

¼ −
P0
11

M1

hH0i2;

m2 ≃m1 ¼ −
P0
22

M2

hH0i2: ð52Þ

The heaviest eigenstate is an almost sterile neutrino
with mass approximately equal to the lightest right-
handed neutrino mass. The other two eigenstates are
active, with small masses due to the seesaw mecha-
nism. In terms of the cutoff parameters, the masses
read

ms ≃ 8M3

y42y
4
3

ð16π2Þ4
U2

13U
2
23

U2
31 þ U2

32

log2
�
M3

Λ

�
;

m3 ≃ −
ð16π2Þ4hH0i2

8M3y22y
4
3U

2
23log

2ðM3=ΛÞ
;

m2 ≃ −
ð16π2Þ2hH0i2

4M3y23U
2
33 log ðM3=ΛÞ

: ð53Þ

Analogously to Eq. (23), one finds for this
scenario

jm2j ≃ 0.05 eV

�
y3U33

0.6

�
−2
�

M3

1.2 × 1019 GeV

�
−1
;

ð54Þ

which is in the ballpark of the experimental values
for typical values of the parameters [here we have
assumed log ðΛ=M3Þ ∼ 1]. On the other hand, the
mass hierarchy between m3 and m2 is

����m3

m2

���� ≃ ð16π2Þ2
2y22U

2
23 log ðΛ=M3Þ

; ð55Þ

which is always much larger than the ob-
served value.

(ii) m3 ≫ m1;m2.
The nonvanishing eigenvalues read

mα;s ≃�m3 ¼ �
ffiffiffiffiffiffiffi
P0
11

q
hH0i;

mβ ≃
P0
11P

0
22 − P02

12

P0
22

m1

m2
3

hH0i2; ð56Þ

where we have left unspecified the labeling of the
states, as the mass ordering is not determined
a priori. The sterile neutrino forms in this case a
pseudo-Dirac state with one of the active neutrinos.

In terms of the cutoff parameters, the masses read

mα;s ≃�y2hH0i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
13

U2
31 þ U2

32

s
;

mβ ≃ −
ð16π2Þ2hH0i2

4M3y23U
2
33 log ðM3=ΛÞ

: ð57Þ

The mass mβ is given by Eq. (54) and again lies
in the ballpark of the experimental values. The mass
hierarchy between mα and mβ reads

����mα

mβ

����¼ M3y2y23
64π4hH0iU

2
33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

13

U2
31þU2

32

s
log

�
Λ
M3

�
; ð58Þ
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and can be larger or smaller than one. In particular,
it can take the observed value for appropriate
parameters.

(iii) m1 ≫ m2;m3.
The nonvanishing eigenvalues read

mα ≃m1 ¼ −
P0
22

M2

hH0i2;

ms;β ≃
1

2

 
m2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ 4m2
3 − 4

P02
12

P0
22

hH0i2
s !

;

ð59Þ

where we have left unspecified the labeling of the
states, as the mass ordering is not determined
a priori. As in case (ii), the sterile neutrino forms
a pseudo-Dirac state with one of the active neutrinos.
Using Eqs. (49) and (51) one finds that

m3 ∼ y2hH0i. Therefore, reproducing the correct
neutrino parameters typically requires y2 ≲ 10−12,
which implies m3 ≫ m2 ¼ M1. The masses in
terms of the cutoff parameters then take a simple
form:

mα ≃ −
ð16π2Þ2hH0i2

4M3y23U
2
33 log ðM3=ΛÞ

;

ms;β ≃�y2hH0i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2
13

U2
31 þ U2

32

s
; ð60Þ

which leads to the same results as in case (ii).
We show in Fig. 3 a scan plot of the mass eigenvalues

resulting from the diagonalization of the full 6 × 6 mass
matrix, as a function of y2, after numerically solving the

two-loop RGE equations for y1 ¼ 0, y3 ¼ 1, Λ ¼ MP,
M3 ¼ MP=

ffiffiffiffiffiffi
8π

p
and random values of the mixing angles

at the cutoff scale. We only show for simplicity ms, m3 and
m2 to illustrate our discussion, and we omit M3 and M2,
which are much heavier, orm1 which is much lighter. In the
figure one can notice the regimes discussed above: case (i)
corresponds to y2 ≳ 10−2, case (ii) to 10−12 ≲ y2 ≲ 10−3

and case (iii) to y2 ≲ 10−12 respectively.
As generically expected, one of the eigenvalues lies in

the ballpark of the experimental values. With our assump-
tions, case (i) leads to a hierarchy between the atmospheric
and the solar mass scales which is much larger than the
measured value. Only when y2 ∼ 10−13–10−11, correspond-
ing to the region between cases (ii) and (iii), is the mass
hierarchy in qualitative agreement with the measured value.
In this case we expect one of the measured mass scales
(solar or atmospheric) to be of Majorana type, and the other
to be of Dirac type.
Let us finish by stressing that for the plot we have

assumed y3 ¼ 1, Λ ¼ MP, M3 ¼ MP=
ffiffiffiffiffiffi
8π

p
motivated by

the fact that one of the predicted neutrino mass scales is
close to the measured experimental value. However, the
analysis could be extended to other cutoff parameters and
there could be viable regions of the parameter space for
case (i), (ii) or (iii), or the intermediate regimes.

V. CONCLUSIONS

In a given model, quantum effects modify the values of
the parameters at low energies compared to their values
at the cutoff scale of the model. The differences can be
significant when those parameters are not protected by
symmetries. In this work we have investigated quantum
effects on the right-handed neutrino parameters in the
seesaw framework. Due to the violation of the total and
family lepton numbers, there is no symmetry protecting the
lighter right-handed masses against quantum corrections
induced by the heavier right-handed neutrinos. As a
consequence, quantum effects can generate sizable (or
even dominant) contributions to the physical masses of
the lighter right-handed neutrinos. The leading effect
appears at the two-loop level. In this paper we have
calculated the two-loop β function for the right-handed
Majorana neutrino mass matrix for the Standard Model
extended with right-handed neutrinos, complementing the
already existing two-loop β functions for the rest of the
parameters of the model, and thus completing the set of
two-loop β functions of the seesaw model.
We have also analyzed some phenomenological impli-

cations of the two-loop renormalization group evolution.
Concretely, we have studied scenarios where one of the
right-handed neutrino masses (or two) are dominated by
quantum effects, such that the values of the masses at the
cutoff scale are washed out by the renormalization group
evolution. For our numerical analysis we have focused on

FIG. 3. Scan plot of the active neutrino masses jm3j (magenta),
jm2j (green), and the lightest sterile neutrino mass jmsj (blue) as
a function of the Yukawa eigenvalue y2, for the scenario with
y3 ¼ 1, y1 ¼ 0, M3 ¼ MP=

ffiffiffiffiffi
8π

p
and M1 ¼ M2 ¼ 0 at the cutoff

scale Λ ¼ MP. The right-handed mixing angles have been
randomly scanned between 0 and 2π.
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the case where the total lepton number is broken by a right-
handed neutrino mass close to the Planck scale. This
scenario is particularly predictive, as some of the physical
masses of the right-handed neutrinos (and of the light
neutrinos via the seesaw mechanism) are ultimately related
to known scales. Furthermore, we have identified the
quasifixed points in the infrared for the right-handed
neutrino mixing matrix.
We first analyzed the scenario with two-right handed

neutrinos, assuming that the lightest mass is dominated by
quantum effects induced by the heaviest mass, which we
assumed to be close to the Planck scale. We found that one
of the active neutrinos has a mass which lies, for Oð1Þ
Yukawa couplings, in the ballpark of the experimental
values. However, this scenario tends to generate a mass
hierarchy which is much larger than the one inferred from
oscillation experiments. The correct mass hierarchy can
be obtained by adding to the model a third right-handed
neutrino, with an intermediate-scale mass, larger than the
quantum effects induced by the heaviest right-handed
neutrino. In this scenario, one of the active neutrino masses
lies in the ballpark of the experimental values; the second
active mass is not predicted, but can be reproduced by
adjusting the right-handed neutrino mass and the Yukawa
couplings. Finally, we have considered a scenario with
three right-handed neutrinos, where two of the masses are
dominated by quantum effects. Again, we found that one
of the active neutrino masses lies in the ballpark of the
experimental values. The second active neutrino mass can
be reproduced by adjusting the Yukawa couplings of the
model. We found that this scenario generically leads to a
Dirac mass, either for the active neutrino involved in
atmospheric neutrino oscillations or for the one involved
in solar neutrino oscillations, which could have implica-
tions for neutrinoless double-beta decay experiments.
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APPENDIX: PICARD SERIES

The renormalization group equation of the right-handed
mass matrix reads

dMðtÞ
dt

¼ βM½MðtÞ�; ðA1Þ

where t≡ logðμ=ΛÞ, and the β functions at one and two
loops are given in Eq. (3). The solution to the RGE can be
formally written as

MðtÞ ¼ M0 þ
Z

t

0

βM½Mðt0Þ�dt0; ðA2Þ

withMðt ¼ 0Þ≡M0. The solution can be found iteratively,
using a Picard series. For n ¼ 0 the solution is simply
Mð0ÞðtÞ ¼ M0, and for n ≥ 1

MðnÞðtÞ ¼ M0 þ
Z

t

0

βM½Mðn−1Þðt0Þ�dt0: ðA3Þ

Explicitly, the solution at first order and second order reads

Mð1ÞðtÞ ¼ M0 þ
Z

t

0

βM½Mð0ÞðtÞ�dt0 ¼ M0 þ βM½M0�t;

ðA4Þ

Mð2ÞðtÞ ¼ M0 þ
Z

t

0

βM½Mð1ÞðtÞ�dt0

¼ M0 þ βM½M0�tþ
1

2
ðβM∘βMÞ½M0�t2; ðA5Þ

where we have used that the β function is linear in M,
and we have denoted the function composition ðf∘gÞðxÞ ¼
fðgðxÞÞ. In general, the solution can be written as

MðnÞðtÞ ¼
Xn
k¼0

1

k!
βkM½M0�tk; ðA6Þ

with βnM ¼ βM∘βM∘…∘βM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n−times

, and β0M ¼ 1.

The general form of the β function is

βM ¼
X
n;m

anmðPTÞnMPm; ðA7Þ

where anm ¼ amn, and which are scalar functions in flavor
space (and thus depend on gauge couplings and traces of
Yukawa couplings). Substituting the β function in the
Picard expansion (A6) we obtain, up to OðP4Þ terms,
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MðtÞ ≃M þ a10tðMPþ PTMÞ þ t
2
½a210tþ 2a20�ðMPPþ PTPTMÞ þ t½a11 þ a210t�PTMP

þ t
6
½6a30 þ 6a10a20tþ a310t

2�ðMPPPþ PTPTPTMÞ

þ t
2
½2a21 þ 2a10ða11 þ a20Þtþ a310t

2�ðPTMPPþ PTPTMPÞ

þ t
24

½24a40 þ ð12a220 þ 24a10a30Þtþ 12a210a20t
2 þ a410t

3�ðMPPPPþ PTPTPTPTMÞ

þ t
6
½6a31 þ 6ða10ða21 þ a30Þ þ a11a20Þtþ 3a210ða11 þ 2a20Þt2 þ a410t

3� × ðPTMPPPþ PTPTPTMPÞ

þ t
4
½4a22 þ 2ða211 þ 2a220 þ 4a10a21Þtþ 4a210ða11 þ a20Þt2 þ a410t

3�PTPTMPP: ðA8Þ

From the RGE in Eqs. (7) and (6) one can identify

a00 ¼ 0;

a10 ¼ 1þ Gþ � � � ;

a20 ¼ −
1

4
þ � � � ;

a11 ¼ 4þ � � � ; ðA9Þ

where the dots indicate contributions from higher-order β
functions to the corresponding structure ðPTÞnMPm.
When the right-handed mass matrix is rank-2 at the

cutoff scale, it suffices to consider terms up toOðP2Þ in the
Picard expansion. These depend on anm with nþm ≤ 2,
although only a11 is relevant for the calculation of the
eigenvalues. When the right-handed mass matrix is rank-1
at the cutoff scale, the mass matrix at the scaleM3 is rank-2
when keeping terms up to OðP2Þ and rank-3 when keeping
terms up to OðP4Þ. Therefore, one may wonder whether it
is necessary to calculate the three- and four-loop beta

functions, which contribute to the terms OðP3Þ and OðP4Þ
in the Picard expansion for a precise calculation of the
neutrino mass spectrum.
To address this question we have calculated, using the full

Picard expansion (A8), the parameters M1, M2 and P0 that
determine the light neutrino mass matrix at the scale μ ¼ M3

[cf. Eq. (49)], including terms proportional to anm with
nþm ≤ 4. We find that M2 and P0 do not change at the
leading order in the expansion. On the other hand,M1 reads

M1jμ¼M3
≃ 8M3

ðP21ðP2
31 − P2

32Þ − ðP11 − P22ÞP31P32Þ2
P2
31 þ P2

32

×

�
log2

�
M3

Λ

�
þ 4a22 − a221

32
log

�
M3

Λ

��
;

ðA10Þ

which amounts to a correction to Eq. (42) which we expect
to be at most Oð1Þ for logðΛ=M3Þ ∼ 1, as assumed
throughout the paper.
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