
 

Alternative derivation of the relativistic three-particle
quantization condition

Tyler D. Blanton * and Stephen R. Sharpe †

Physics Department, University of Washington, Seattle, Washington 98195-1560, USA

(Received 14 August 2020; accepted 10 September 2020; published 30 September 2020)

We present a simplified derivation of the relativistic three-particle quantization condition for identical,
spinless particles described by a generic relativistic field theory satisfying a Z2 symmetry. The
simplification is afforded by using a three-particle quasilocal K matrix that is not fully symmetrized,

K̃ðu;uÞ
df;3 , and makes extensive use of time-ordered perturbation theory (TOPT). We obtain a new form of the

quantization condition. This new form can then be related algebraically to the standard quantization
condition, which depends on a fully symmetric three-particle K matrix, Kdf;3. The new derivation is fully
explicit, allowing, for example, a closed-form expression forKdf;3 to be given in terms of TOPTamplitudes.
The new form of the quantization condition is similar in structure to that obtained in the “finite-volume
unitarity” approach, and in a companion paper we make this connection concrete. Our simplified approach
should also allow a more straightforward generalization of the quantization condition to nondegenerate
particles, and perhaps also to more than three particles.

DOI: 10.1103/PhysRevD.102.054520

I. INTRODUCTION

One of the present frontiers of lattice QCD (LQCD) is
the study of systems containing three or more particles.
The aims include the determination of the three-nucleon
interaction and the study of resonances decaying to
three or more particles. Advances have been made
both in the ability to calculate multiple finite-volume
energy levels using numerical simulations, and in the
theoretical formalism needed to interpret the results.
Examples of the successful combination of these methods
are in Refs. [1–11].1
A key output of the theoretical formalism is a qua-

ntization condition, an equation whose solutions give the
finite-volume three-particle energy levels in terms of
infinite-volume scattering quantities. The latter quantities
are then related to infinite-volume scattering amplitudes in
a second step that involves solving integral equations. Our
aim in this work is to provide a simplified method for
deriving the quantization condition in a generic relativistic
effective field theory (RFT). Our hope is that our new

method will simplify the generalization of the quantization
condition to systems not heretofore studied, for example to
three nondegenerate particles and to more than three
particles, as well as allow the unification of the different
approaches used to develop the three-particle formalism (to
be described below).
The two-particle quantization condition has been known

for decades and is now a standard tool in LQCD [13–23].
(See Ref. [24] for a review.) The three-particle formalism
has been developed more recently, using three main
approaches2:
(1) The RFT approach, which is the most general and

also the most complicated. This formalism was
derived in Refs. [37,38] for the case of identical
scalar particles with a Z2, G-parity-like, symmetry.
We refer to these papers in the following as HS1 and
HS2, respectively. The formalism has been sub-
sequently generalized to allow 2 ↔ 3 transitions
[39], K matrix poles [40,41], and nonidentical but
degenerate particles [42]. The numerical implemen-
tation of the formalism has been studied in
Refs. [41,43,44], and recently applied to extract
the 3πþ interaction [8] using results for the 3πþ
spectrum from Ref. [7].

(2) The nonrelativistic effective field theory (NREFT)
approach of Refs. [45–48]. Here the derivation is
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1For related applications in lattice simulations of ϕ4 theory see
Ref. [12].

2See also the foundational work of Ref. [25], the threshold
expansions of Refs. [26–30], and the alternative approaches in
Refs. [31–34]. For recent reviews, see Refs. [35,36].
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much simpler, but to date the formalism has been
developed only for two-particle interactions re-
stricted to the s-wave.

(3) The “finite-volume unitarity” (FVU) approach of
Refs. [6,9,10,49]. This is a relativistic formalism that
is based on general forms for the three-particle
scattering amplitude developed in Refs. [50,51] that
incorporate s-channel unitarity. As for the NREFT
approach, it has to date been developed only for s-
wave two-particle interactions. It has been applied to
the 3πþ spectrum from LQCD in Refs. [9,10].

Our aim, as already noted, is to simplify the RFT derivation
given in HS1 and HS2. As a side benefit, our result
provides a further check on the original formalism, adding
to the checks provided in Refs. [29,52–54].
The derivation of HS1 and HS2 uses TOPT to identify

the loop integrals that lead to power-law finite-volume
effects, but the main analysis is based on a skeleton
expansion using Feynman diagrams. The strategy is,
crudely speaking, to convert loop sums into integrals plus
a volume-dependent remainder at every opportunity. This
leads to complicated intermediate expressions involving
kernels that are not symmetric under interchanges of
external momenta, and are given by implicit, constructive
definitions. Considerable effort is then required to rewrite
the final quantization condition in terms of a symmetric
three-particle K matrix (called Kdf;3). Our alternative
approach uses TOPT throughout,3 converts fewer sums
into integrals, and does not aim for full symmetrization in
the initial quantization condition. This allows for a simpler
derivation that is completely explicit and is written in terms
of K matrices that are not symmetric under particle
exchange. A second step then leads to the HS1 form of
the quantization condition in terms of Kdf;3, which is fully
symmetric. We stress that, despite the differences, many
technical steps in our approach are based closely on the
developments and technical results of HS1 and HS2.
We emphasize two general points about our approach

and derivation. The first concerns the use of asymmetric K
matrices. This corresponds to picking out two of the
particles (the “dimer”) and, in some sense, considering
their internal interactions first, with the asymmetric three-
particle K matrix then corresponding to the interaction of
this dimer with the third (“spectator”) particle. Such a
description is similar in spirit to that used in the non-
relativistic study of three-particle systems based on the
Fadeev equations, and is also built into the NREFT and
FVU approaches to the three-particle quantization con-
dition. Given the relative simplicity of these approaches, it

is not surprising that the use of asymmetric K matrices
leads to a simpler form of the quantization condition.
The second point concerns Lorentz invariance. Here

there are two separate, but related, properties: (i) the
formalism is valid in the kinematic regime where the
particles are relativistic, and (ii) the K matrices that enter
the final results are themselves Lorentz invariant. While
clearly one would like both to hold, it is the first property
that is essential in order for the formalism to be valid in the
relativistic domain, and we refer to any quantization
condition that satisfies this requirement as relativistic.
All quantization conditions that we consider here—both
that of HS1, as well as the new asymmetric form we derive
using TOPT—are relativistic in this sense.
The HS1 quantization condition also satisfies the second

requirement—the K matrix that enters (Kdf;3) can be
defined to be relativistically invariant.4 However, as might
be expected given that TOPT picks out a particular frame,
the new quantization condition that we derive here involves

a K matrix, K̃ðu;uÞ
df;3 , that is not Lorentz invariant. Thus this

new form does not satisfy requirement (ii). This is
problematic for practical applications since these usually

involve multiple frames, and the transformation of K̃ðu;uÞ
df;3

between frames is nontrivial. We are able to resolve this
problem, however, in two ways. The first is that we are able
to rewrite the quantization condition in terms of a sym-

metric K matrix (related to K̃ðu;uÞ
df;3 by an integral equation

and a symmetrization operation) that in fact is identical to
that introduced in HS1, and in particular is Lorentz
invariant.5 The second resolution is that we show that
the original HS1 quantization condition can be “asymme-
trized” into exactly the same form as our new quantization

condition, except that it now involves a K matrix, K0ðu;uÞ
df;3 ,

that is Lorentz invariant. Strictly speaking, our new
derivation is not needed to obtain this new form of the
quantization condition, but it was only after comparing the
new and old forms that it became apparent that the old HS1
form could be asymmetrized.
We close the introduction with a more detailed summary

of our approach, which also serves to describe the organi-
zation of the paper. The new derivation of the quantization
condition is presented in Sec. II, and is broken into several
steps. We begin in Sec. II Awith a recap of the essentials of
TOPT, and then, in Sec. II B, explain how the three-particle
correlation function can be written in terms of two- and
three-particle irreducible TOPT amplitudes. This is the
analog in TOPT of the Feynman-diagram-based skeleton

3Aside from an initial use of Feynman diagrams to analyze
self-energy diagrams, as described in Appendix A. We note that
extension of the derivation of HS1 to theories without the Z2

symmetry, given in Ref. [39], makes more extensive use of TOPT,
and we use several results concerning TOPT from that work.

4The form of Kdf;3 used in HS1 is not Lorentz invariant, but,
as noted in Refs. [39,44], by a small technical change in the
form of the switch kernel G̃ (which does not invalidate the
derivation), Kdf;3 can be made invariant.

5Again, modulo some technical details. The relativistic form of
G̃ must be used, including the boost of HS1.
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expansion used in HS1. The advantage of the TOPT
approach is that the result, given in Eq. (24), is a simple
geometric series that is straightforward to derive. The next
step, described in Sec. II C, is to rewrite the expression for
the correlator in terms of on-shell quantities. This is
achieved by the results in Eqs. (52) and (57), which
introduce two finite-volume quantities G̃ and F̃ that are
closely related to the G and F appearing in HS1. Using
these results, the form for the correlator can be reorganized
into a geometric series involving on-shell, infinite-volume
kernels, Eq. (75). As described in Sec. II D, this immedi-
ately leads to our new form of the quantization condition,
Eq. (81). While simple in form, this has the disadvantage of

involving an asymmetric three-particle K matrix (K̃ðu;uÞ
df;3 ).

The next sections of this work show how the quantization
condition can be rewritten in terms of a symmetrized three-
particle K matrix using relatively simple algebraic steps,
with the final result, presented in Eq. (115), having exactly
the same form as that of HS1. A spin-off from this analysis
is that we obtain an explicit expression for the symmetric
three-particle K matrix of HS1, Kdf;3, in terms of TOPT
amplitudes connected by a sequence of integral operators.
Although these final symmetrization steps are straight-

forward, we take a somewhat indirect path to obtain them.
This involves first, in Sec. III, using the TOPT method-
ology to determine an expression for an asymmetric finite-
volume three-particle scattering amplitude, M̃ðu;uÞ

3;L , in

terms of K̃ðu;uÞ
df;3 , Eq. (86); second, in Sec. IVA, comparing

that to the result for the similar amplitude Mðu;uÞ
3;L intro-

duced in HS2; third, in Sec. IV B, asymmetrizing the HS1
result so that it is written in terms of an asymmetric

amplitude Kðu;uÞ
df;3 , and using this to show that the HS1

quantization condition can be recast in exactly the same
form as our new version; and, finally, in Sec. IV C,
reversing the algebraic steps to show that our quantization
condition can be rewritten in symmetric HS1 form. We
close the paper with a summary and outlook.
We include several appendixes collecting technical

results. Appendix A concerns TOPT. Appendix B describes
the relation of three- and two-particle finite-volume ampli-
tudes, and gives details on the pole prescription that we use.
Appendix C explains a set of complicated though straight-
forward matrix manipulations that are needed in the main
text. Appendix D derives the asymmetrization identities
needed in the main text. Appendix E derives the relation
between K̃ðu;uÞ

df;3 and M3. Appendix F gives details of the

steps needed to relate K̃ðu;uÞ
df;3 and Kðu;uÞ

df;3 . We also include
Appendix G in which we briefly describe a variant of our
approach that leads to a slightly different form of the
quantization condition, and which may be advantageous
when considering generalizations.
In a companion paper [55], we show that our new form

of the quantization condition can be written in terms of the
R matrix of Refs. [50,51]. The provides a generalization of

the FVU quantization condition to all two-particle par-
tial waves.

II. DERIVATION OF THE NEW FORM OF THE
QUANTIZATION CONDITION

We work in a generic relativistic effective field theory
(RFT) of identical scalar particles with physical mass m in
3þ 1-dimensional Minkowski spacetime. We assume the
Lagrangian has a G-parity-like Z2 symmetry so that only
even-legged vertices are allowed. This is exactly the same
setup as in HS1. Our aim is to derive an expression—the
quantization condition—that determines the energy levels
when this theory is considered in a finite spatial box.
Following HS1, we choose a cubic volume of side length L,
with periodic boundary conditions.
The tool we use is the finite-volume (FV) correlation

function for fixed total four-momentum Pμ ¼ ðE;PÞ:

C3;LðE;PÞ≡
Z
L
d4xeiðEx0−P·xÞh0jTσðxÞσ†ð0Þj0i; ð1Þ

where P ¼ 2π
L nP with nP ∈ Z3, the integral is over x0 ∈ R

and x ∈ ½0; LÞ3, j0i is the true vacuum state of the
interacting theory, and σðxÞ is an interpolating field
coupling to three-particle states. Throughout this paper,
we assume the kinematic constraint m < E� < 5m, where
E� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − P2

p
is the total energy in the overall center-of-

mass (CM) frame. This constraint ensures that only three-
particle states may go entirely on shell, a restriction that is
crucial to our derivation (as well as that of HS1).
For fixed P, the correlator C3;LðE;PÞ will have poles in

E at the energies of the FV states that have the quantum
numbers of σ†, namely all states with odd particle number.
By deriving an expression for the pole positions, we will
obtain the desired FV quantization condition.
The derivation in HS1 involves summing over all

Feynman diagrams contributing to C3;LðE;PÞ. The expres-
sions for each diagram differ from those in infinite volume
only by the replacement of spatial loop integrals with sums
over discrete spatial momenta, k ∈ 2π

L Z3. One of the key
initial steps in the derivation is to note that some spatial-
momentum sums have negligible dependence on L and can
therefore be replaced with (infinite-volume) integrals. More
precisely, if a summand/integrand fðkÞ is smooth over the
integration domain, with the derivatives scaling as appro-
priate powers of m, then, from the Poisson summation
formula, the sum-integral difference is exponentially sup-
pressed in mL6:

1

L3

XUV
k

fðkÞ ¼
Z

UV d3k
ð2πÞ3 fðkÞ þOðe−mLÞ: ð2Þ

6Or, more precisely, falls faster than any power of mL.
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Here we have included an ultraviolet (UV) cutoff, the
nature of which is unimportant as the sum-integral differ-
ence is an infrared effect. We assume throughout thatmL is
large enough that Oðe−mLÞ terms can be safely neglected.
An immediate consequence of this assumption is that the
difference between a FV quantity and its infinite-volume
analog is only non-negligible if the quantity contains a
singularity in the spatial-momentum summand.
The next key step in HS1 is to utilize certain results from

TOPT as a tool for identifying which Feynman diagrams
can possess singularities and which cannot, as this greatly
restricts the classes of Feynman diagrams that need to be
considered to capture all significant FV contributions.
However, this is the full extent to which TOPT is applied
in HS1; actual time-ordered diagrams are never used.

A. TOPT basics

We begin the derivation proper by a brief recapitulation
of the essential features of TOPT. A good source for the
derivation of these results is Ref. [56]; further discussion in
a context closely related to that considered here is given in
Appendix B of Ref. [39]. The main subtlety in applying
TOPT concerns the use of renormalized propagators, and
we discuss this technical point in Appendix A.
In TOPT, one rewrites each Feynman diagram contrib-

uting to C3;L as a sum of all time orderings of the vertices,
with each ordering corresponding to a unique time-ordered
diagram. Each propagator in the diagram is associated with
an on-shell four-momentum pμ ¼ ðωp;pÞ, with positive

energy ωp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and gives rise to a factor of

1=ð2ωpÞ. Spatial momentum is conserved at vertices, but
energy is not. Each “cut” between consecutive vertices
gives a kinematic factor

iKt ≡ i
Et −

P
pon∈Pt

ωp þ iϵ
; ð3Þ

where Pt is the set of spatial momenta passing through the
cut at time t, and

Et ≡
8<:

þE if tσ > t > tσ†

−E if tσ† > t > tσ
0 otherwise;

ð4Þ

with tσ† and tσ denoting the times at which σ† and σ occur
in the diagram, respectively.7 The factor of iϵ has no impact
in finite volume, and can be set to zero in that case. When
evaluating vertices with derivatives (which are present with
arbitrary order in the generic RFT), the corresponding
momenta are placed on shell. Symmetry factors are

included as for Feynman diagrams. Finally, all spatial
momenta are summed/integrated with the standard
measure.
As discussed in Appendix A, by using an appropriate on-

shell renormalization scheme and restricting to our kin-
ematic regime in which only three particles can go on shell
simultaneously, all self-energy diagrams can be absorbed
into changes in the vertices, and it is the physical mass that
enters into the factors of ωp.
Given these rules, the only singularities in diagrams are

due to the kinematic factors Kt; by assumption, the vertices
are polynomials in momenta and thus nonsingular.
Furthermore, within our range of E�, the only singularities
occur if Et ¼ þE and jPtj ¼ 3, i.e., if the cut at time t
contains three lines and comes after tσ† and before tσ. We
shall refer to such cuts as “relevant three-particle cuts” or
simply “relevant cuts.”8 The remaining cuts, which we refer
to as “irrelevant,” occur if either (i) Et ¼ þE with jPtj ≠ 3,
or (ii) Et ∈ f−E; 0g. Since jPtj is necessarily odd for all
cuts through C3;L, case (i) corresponds to having either a
single particle in the cut, leading to a singularity at E� ¼ m,
or at least five particles, for which singularities occur for
E� ≥ 5m. Both of these possibilities lie outside our
kinematic range. For case (ii), there are no singularities
because the denominator of Kt is negative definite.
Examples of relevant and irrelevant cuts are shown for
simple diagrams in Fig. 1.
Given this classification, irrelevant cuts yield a smooth

Kt, and we can use Eq. (2) to take the infinite-volume limits
of all spatial-momentum sums involving the cut, i.e., to
replace the sums with integrals. This was the key result
from TOPT that HS1 used to identify which Feynman
diagrams contained singularities, but here we continue
working with time-ordered diagrams.
Later in this work (in Sec. III) we will consider scattering

amplitudes, i.e., amputated correlation functions, both in
finite and infinite volume. The corresponding Feynman
diagrams can also be broken up into time-ordered compo-
nents using TOPT. The rules are the same as above, except
that the operators creating incoming (destroying outgoing)
particles are always placed at the earliest (latest) time. In
addition, there are no 1=ð2ωÞ factors for the external
propagators; the first cut occurs after the first vertex, and
the last cut before the final vertex. In general such an
amplitude is off shell. The on-shell amplitude, whose
absolute square is related to the scattering cross section,
is obtained by choosing the initial and final spatial
momenta such that the initial- and final-state energies both
sum to E. In this on-shell limit, the result for the amplitude
is identical to that given by the expression obtained using
Feynman diagrams, and, in particular, is Lorentz invariant.

7The precise values of the times are irrelevant to the value of
the diagram; they are being used here only to label the ordering of
vertices.

8A potential second type of relevant cut, arising from a single
dressed propagator, is discussed in Appendix A, and shown to be
absent.
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B. Expansion of C3;LðE; PÞ in relevant cuts

Our strategy is to organize the (renormalized) time-
ordered diagrams that contribute to C3;LðE;PÞ by the
number of relevant three-particle cuts they contain,

C3;LðE;PÞ ¼
X∞
n¼0

CðnÞ
3;LðE;PÞ; ð5Þ

where CðnÞ
3;LðE;PÞ is the sum of all diagrams containing

exactly n relevant cuts. Examples of this organization are
shown in Fig. 1.
The n ¼ 0 term Cð0Þ

3;LðE;PÞ denotes the sum of all
diagrams with no such cuts. Since all cuts in each diagram
give smooth iKt contributions, we can use Eq. (2) to
replace all discrete momentum sums with integrals and take
the infinite-volume limit:

Cð0Þ
3;LðE;PÞ ¼ Cð0Þ

3;∞ðE;PÞ þOðe−mLÞ: ð6Þ
From now on we will no longer track terms that are
exponentially suppressed in mL.

For diagrams with at least one relevant cut, the expres-
sions factorize into a form with a right-hand “endcap,”
followed by some (possibly zero) number of 3 → 3 seg-
ments, followed by a left-hand endcap. These pieces are
separated by relevant cuts. This factorization can be seen in

the examples in the Cð1Þ
3;L and Cð2Þ

3;L columns of Fig. 1.

A more extensive example for Cð4Þ
3;L is shown in Fig. 2,

which shows that there are two types of nontrivial 3 → 3
segments: one in which two particles interact with the third
particle spectating, and the other in which all three particles
interact. We label these B̄2;L and B3 respectively, while the
left (right) endcaps are denoted Â0 (Â).9 Before presenting
the general expression for C3;L, we first give the definitions
of these four segments.

FIG. 2. Example of a contribution to Cð4Þ
3;L. Notation is as in Fig. 1. The names for the different types of segment are indicated by the

underbraces.

(a)

(b)

FIG. 1. Examples of time orderings in diagrams contributing to C3;L. Time flows from right to left, with the black circle (blue square)
representing σ† (σ). Relevant cuts are shown by vertical (red) dashed lines, while irrelevant cuts are shown by solid (magenta) integral
signs. The factors associated with these cuts are described in the text. Vertical columns divide contributions according to the number of
relevant cuts. Horizontal rows contain the time orderings of (a) the leading-order Feynman diagram and (b) a Feynman diagram with a
single four-point vertex.

9The “hat” on these quantities is used to distinguish them from
similar, but different, endcaps denoted A0 and A in HS1.
Similarly, we label the intermediate segments with a calligraphic
B, in order to distinguish them from the Bethe-Salpeter kernels
B2 and B3 used in HS1.
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1. Contributing segments

We begin with the left endcap Â0. It is given by the sum
of all time-ordered diagrams that contain σ, are three-
particle irreducible in the s-channel (3PIs),10 and begin with
an amputated three-particle cut. The amputation removes
the factors of 1=ð2ωÞ from each line, as well as the energy
denominator of the relevant cut. These factors will be added
back when we join the segments. For fixed E and P, Â0

depends on the spatial momenta of two of the particles in
the relevant cut, usually denoted k and a. The momentum
of the third, usually denoted bka, or simply b for short, is
given by bka ¼ P − k − a. We define Â0ðk; aÞ to include
all distinct attachments of momentum labels to the external
lines. This is exactly what would result were we to define
this as an amplitude with three single-particle creation
operators and included all Wick contractions. This implies
that it is fully symmetric11

Â0ðk; aÞ ¼ Â0ða;bÞ ¼ Â0ðb;kÞ ¼ Â0ða;kÞ
¼ Â0ðb; aÞ ¼ Â0ðk;bÞ: ð7Þ

It turns out to be convenient to multiply the sum of all
diagrams by a factor of 1=3, as this will cancel a labeling
degeneracy that we describe below. This factor can be
intuitively understood as placing this inherently symmetric
object on the same footing as the inherently asymmetric
segment B̄2;L to be defined below. Examples of diagrams
contributing to this endcap are shown in Fig. 3.
The right endcap Â is defined as the sum of all amputated

3PIs TOPT diagrams containing a σ† and ending with an
amputated three-particle cut, multiplied by 1=3. Diagram-
matically, it is simply the horizontal “reflection” of Â0. It is
fully symmetric.
The fully connected 3 → 3 segment iB3ðk0; a0;k; aÞ

(with fixed E and P implicit) is defined as the sum of
all amputated, connected, 3PIs TOPT diagrams beginning
and ending at a relevant cut.12 All momentum assignments
are included, and it is multiplied by 1=3 for each cut, i.e., by
1=9 in total. It is fully symmetric separately for both initial
and final momenta,

B3ðk0; a0;k; aÞ ¼ B3ða0;k0;k; aÞ ¼ B3ðk0; a0; a;bÞ ¼ � � � :
ð8Þ

FIG. 3. Examples of contributions to the left endcap Â0ðk; aÞ, with notation as in Fig. 1. When evaluating these diagrams, the
external lines (those that end at the relevant cut) are amputated, with the factors of 1=ð2ωÞ dropped, and the energy denominator is
also not included. The factor of 3 on the left-hand side is discussed in the text. The vertices in the diagram can represent interactions
with or without derivatives, but in all cases are fully symmetric. The number of relabelings of a diagram depends on its intrinsic
symmetry under interchange of the external particles. For the first two diagrams, which are symmetric under external particle
interchange, there is only one labeling. For the next diagram, which is symmetric under interchange of the upper two particles, there
are three labelings, as shown. The final diagram, shown on the second and third lines, is completely asymmetric, and all six
relabelings must be included.

10Our definition of 3PIs includes, in principle, the possibility
of a cut through a single propagator that is carrying the full
momentum P. However, as explained in Appendix A, in our
kinematic regime all such single propagators can be collapsed
into vertices, so the issue does not arise.

11A reader making a detailed comparison with HS1 will
observe that the endcaps used initially in that work are asym-
metric, and considerable effort is needed at a later stage to
symmetrize them. One of the advantages of the TOPTapproach is
that we do not need to use asymmetric quantities at this stage,
with the exception of B̄2;L.

12The factor of i is included to match the standard definition of
a scattering amplitude, and follows the notation of HS1.
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The final segment is iB̄2;L, in which only two of the
particles are connected—the “interacting pair”—while the
third spectates. This segment is intrinsically asymmetric,
and we choose the spectator momentum to be k ¼ k0,

iB̄2;LðE;P;k0; a0;k; aÞ≡ δk0k2ωkL3iB2ðE2;k;P2;k; a0; aÞ;
E2;k ≡ E − ωk; P2;k ≡ P − k; ð9Þ

where δk0k ¼ δ3k0;k is the three-dimensional Kronecker
delta. Here B2 is the sum over all amputated TOPT
diagrams describing connected 2 → 2 scattering that are
2PI in the s channel, which we denote as 2PIs diagrams.
Note that the four-momentum flowing through B2 is
ðE2;k;P2;kÞ, since the spectator four-momentum kμ ¼
ðωk;kÞ is subtracted from the total. We also include an
L in the subscript to emphasize the presence of an explicit
factor of L3. Examples of diagrams contributing to B2 are
shown in Fig. 4. It is symmetric under separate interchange
of the momenta within initial and final pairs, i.e.,

B2ðE2;P2; a0; aÞ ¼ B2ðE2;P2;b0;aÞ ¼ B2ðE2;P2;a0;bÞ
¼ B2ðE2;P2;b0;bÞ;

b0 ¼ P2 − a0; b ¼ P2 − a: ð10Þ

It is defined without any overall factors (unlike B3).
The factor of 2ωkL3 in the numerator of Eq. (9) is needed

because the cuts on both sides of B2 include a spectator
propagator, so one must be canceled. This is explained in
greater detail below.
For the quantities Â0, Â, B3, and B2, we can proceed as

for Cð0Þ
3;L and take the infinite-volume limit, since they

contain no relevant cuts in our kinematic region. The lack
of such cuts is by construction for the 3PIs quantities Â0, Â,
and B3. For B2, the lack of relevant three-particle cuts in
B̄2;L implies that B2 can have no on-shell two particle cuts,
since its CM energy E�

2 cannot exceed 4m. Because of the

absence of relevant cuts, Â0, Â, B3, and B2 are all real in
our kinematic range. As discussed in Appendix A, we
implicitly use a diagram by diagram regularization and
renormalization scheme, so that all quantities are UV finite.

2. Evaluating C3;LðE; PÞ
With the 3PIs segments in hand, we can now proceed

toward a general expression for the correlator. To write this
compactly, we introduce a matrix notation, in which the
indices are the two summed finite-volume momenta at each
cut, fkag≡ fk; ag. Thus Â0 becomes a row vector, B3 and
B̄2;L become matrices, and Â becomes a column vector:

Â0
k0a0 ≡ Â0ðk0; a0Þ; ½B3�k0a0;ka ≡ B3ðk0; a0;k; aÞ;
Âka ≡ Âðk; aÞ; ½B̄2;L�k0a0;ka ≡ B̄2;LðE;P;k0; a0;k; aÞ:

ð11Þ

The sum of contributions containing exactly one relevant
cut can then be written

Cð1Þ
3;LðE;PÞ ¼

XUV
k0;a0

XUV
k;a

Â0
k0a03i½DF�k0a0;kaÂka; ð12Þ

¼ Â03iDFÂ; ð13Þ

where in the second line we have left matrix indices
implicit. The matrix associated with the relevant cut is

½DF�k0a0;ka ≡ 1

2!
δk0kδa0aDka; ð14Þ

Dka ≡ 1

2ωkL3

1

2ωbðE − ωk − ωa − ωbÞ
1

2ωaL3
¼ Dak:

ð15Þ

The reason for the subscript F will become clear below.

FIG. 4. Examples of contributions to iB2ðE2;P2; a0; aÞ, with notation as in Figs. 1 and 3. (In this and following figures we do not keep
track of factors of i.) The number of relabelings of a diagram depends on its intrinsic symmetry under interchange of the external
particles. For the first two diagrams, which are symmetric under external particle interchange, there is only one labeling. The next
diagram is symmetric on the left, but not on the right, and so there are two relabelings, as shown. The final diagram is asymmetric under
interchange of both initial and final particles, and thus there are four relabelings, as shown.
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The various terms in Eq. (13) are chosen so that the
correct TOPT expression for Cð1Þ

3;L is obtained when sewing
Â0 and Â together. In particular, Dka plays three roles. First,
it puts back in the propagator factors that have been
removed when amputating Â0 and Â. Second, it contains
the two factors of 1=L3 that are the standard measure
associated with the sums over the loop momenta k and a.
Third, it includes the energy denominator from the kin-
ematic factor Kt.
The numerical factors of 3 [multiplying DF in Eq. (13)]

and 1=2! (in the definition ofDF), are needed to account for
symmetry factors and labeling degeneracy. Recalling that
Â0 and Â each come with a factor of 1=3 included by hand,
the product of these factors is NS ¼ ð1=3Þ × ð3=2!Þ×
ð1=3Þ ¼ 1=3!. If one is considering contributions to Â0

and Â that both correspond to completely asymmetric
underlying diagrams with 3! possible labelings (as in the
example shown in the last two lines of Fig. 3), then
the ð3!Þ2 terms in the product overcount the number of

diagrams contributing to Cð1Þ
3;L by a factor of 3!. This is

canceled by NS. If instead the contributions to both Â0 and
Â are completely symmetric (as in the first two examples
in Fig. 3), then there is only one diagram that appears in
the product, but it needs a symmetry factor of 1=3! that
is provided NS. Cases of intermediate symmetry work
similarly.
For reasons that will become clear shortly, it is useful to

rewrite Eq. (13) as

Cð1Þ
3;L ¼ Â0iðDF þDGÞÂ ð16Þ

½DG�k0a0;ka ≡ δk0aδka0Dka: ð17Þ

The new matrixDG differs fromDF in the manner in which
the momenta are contracted, and also because it lacks the
factor of 1=2!. When adjacent to a symmetric quantity (on
either side) one can replace DG with 2DF, because the
corresponding momentum indices k and a can be freely
interchanged, and because Dka ¼ Dak. Given this substi-
tution, the equivalence of Eqs. (13) and (16) is immediate.
We now move on to the contributions with two relevant

cuts. These can involve either a B3 or a B̄2 between the

endcaps. For the former, using exactly the same arguments
as just described, one finds that

Cð2Þ
3;L ∋ Â03iDFiB33iDFÂ

¼ Â0iðDF þDGÞiB3iðDF þDGÞÂ: ð18Þ

For the latter, it turns out that the same form holds

Cð2Þ
3;L ∋ Â03iDFiB̄2;L3iDFÂ

¼ Â0iðDF þDGÞiB̄2;LiðDF þDGÞÂ; ð19Þ

where the second result follows from the first because both
DF’s are adjacent to a symmetric endcap. To understand

why Eq. (19) gives the correct contribution to Cð2Þ
3;L,

consider the diagram shown in the final column of
Fig. 1. The 2ωkL3 in B̄2;L, Eq. (9), cancels that in one
of the DF’s, so that there is only one such factor in the
overall diagram, as appropriate for the spectator line. Using
the first form in Eq. (19), the numerical factors combine to
give N0

S ¼ ð1=3Þ × ð3=2!Þ × ð3=2!Þ × ð1=3Þ ¼ 1=ð2!Þ2,
which is the correct symmetry factor for the diagram as
a whole. For completely asymmetric contributions to Â0,
B̄2;L, and Â, N0

S serves to cancel the labeling degeneracy.
For cases with intermediate symmetry, N0

S provides a mix
of the needed symmetry factors and cancellation of labeling
degeneracies. The total result with two relevant cuts can
thus be written

Cð2Þ
3;L ¼ Â0iðDF þDGÞiðB̄2;L þ B3ÞiðDF þDGÞÂ: ð20Þ

Generalizing to more cuts is straightforward if only B3

segments appear, for they can be connected together with
factors of 3iDF or, equivalently, iðDF þDGÞ. A compli-
cation arises, however, when one has adjacent factors of
B̄2;L, as occurs in the example shown in Fig. 2. In such
cases the manner in which indices are contracted matters
due to the asymmetry of B̄2;L. In Fig. 2, the intermediate
matrix must be aDG, because the spectator line is switched.
If there is no such switch then the intermediate matrix must
be aDF. This distinction is illustrated in Fig. 5. The relative
factor of 2! betweenDF andDG is also needed to obtain the

FIG. 5. Example of the difference between DF and DG when connecting two B̄2;L segments. Notation as in Fig. 1. In this simple
example, the extra factor of 1=2! contained in the definition ofDF is needed to give the symmetry factor associated with the closed loop
that crosses the central cut in the left-hand diagram. Momentum labels are discussed in the text in Sec. II C.
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correct overall symmetry factor. One way to understand this
is to note that there are two ways to join a spectator to the
interacting pair, compared to only a single way of joining
the spectators. The conclusion of this discussion is that
factors of B̄2;L must be joined by iðDF þDGÞ, with no
freedom to change to any other form. This is why in the
cases above where there was such freedom, we rewrote the
result in terms of the combination DF þDG.
We thus conclude that the result for n ≥ 1 relevant cuts

can be written

CðnÞ
3;L ¼ Â0iðDF þDGÞ½iðB̄2;L þ B3ÞiðDF þDGÞ�n−1Â:

ð21Þ

The full correlator is then given by a geometric series

C3;LðE;PÞ ¼
X∞
n¼0

CðnÞ
3;LðE;PÞ ð22Þ

¼ Cð0Þ
3;LðE;PÞ þ

X∞
n¼1

Â0iðDF þDGÞ

× ½iðB̄2;L þ B3ÞiðDF þDGÞ�n−1Â ð23Þ

¼ Cð0Þ
3;∞ðE;PÞ þ Â0iðDF þDGÞ

×
1

1 − iðB̄2;L þ B3ÞiðDF þDGÞ
Â: ð24Þ

We have obtained a closed-form expression for C3;LðE;PÞ
in which the building blocks are infinite-volume “TOPT
amplitudes”—Â0, B3, B2 (contained in B̄2;L), and Â.
Volume dependence enters through the fact that momenta
are summed over the set of FV values, and through the
explicit factors of L3 associated with the sums and
contained in B̄2;L. The simplicity of the result and the
straightforward manner of its derivation are two of the main
advantages of using the TOPT approach.

C. On-shell projection

At this stage our expression for C3;L is built from
infinite-volume quantities, but these are, in general, off
shell. To obtain a useful quantization condition we need to
rewrite C3;L in terms of fully on-shell quantities, which in
turn can be related to physical amplitudes. By fully on-
shell, we mean that the incoming and outgoing four-
momenta are both individually on shell and sum to the
total four-momentum Pμ ¼ ðE;PÞ. Within TOPT the first
condition is automatically satisfied, as is the conservation
of spatial momenta, so the issue to address is that, in
general, the three particles at a relevant cut do not satisfy
ωkþωaþωb¼E. We stress that for the TOPT amplitudes
B3 and B̄2;L, one must separately consider on-shellness for
the incoming and outgoing momenta—these amplitudes

can, for example, be on shell on one side but off shell on
the other.
The method we use in this subsection is to expand the

amplitudes about their on-shell points. For fixed E and P,
these expansions are made in the spatial momenta of the
external particles. This necessarily involves consideration
of external momenta that do not lie in the discrete set
allowed for finite volumes. Although such external
momenta do not enter into the expression for C3;L,
Eq. (24), the TOPT amplitudes are well defined for all
external momenta. This is because all internal loops have
been converted to infinite-volume integrals, so changes in
external momenta can be propagated through the diagrams
into small changes in loop momenta. Since the integrands
are nonsingular by construction, the dependence on exter-
nal momenta is smooth. This result was used in HS1 and
HS2 in the context of Feynman amplitudes.
We separately analyze cuts involving DG and DF, which

we refer to as “G cuts” and “F cuts,” respectively, and then
apply the results to C3;LðE;PÞ.

1. G cuts

To evaluate Eq. (24), we must repeatedly consider
quantities of the form13

½X0DGX�ka;pr ¼ ½X0�ka;k0a0 ½DG�k0a0;p0r0 ½X�p0r0;pr;

X0 ∈ fÂ0; B̄2;L;B3g; X ∈ fÂ; B̄2;L;B3g:
ð25Þ

Our aim is to rewrite these in terms of a part in which the
right-hand momenta of X0 (with indices k0a0) and the left-
hand momenta of X (with indices p0r0) are both on shell,
plus a residue that does not have a pole in E. In the
following we refer to the momenta that we will set on shell
as the “inside” momenta, while those that are left off shell
(here ka and pr) as the “outside” momenta.
We consider in detail the case where X0 ¼ X ¼ B̄2;L,

from which the results for other choices can easily be
deduced. Writing this out, we have

½B̄2;LDGB̄2;L�ka;pr ¼ ½B̄2;L�ka;k0a0 ½DG�k0a0;p0r0 ½B̄2;L�p0r0;pr

ð26Þ

¼ B2ðE2;k;P2;k; a;pÞ
1

2ωbkpðE − ωk − ωp − ωbkpÞ
× B2ðE2;p;P2;p;k; rÞ; ð27Þ

where in the first line repeated indices are summed. The
choice of momentum labels is illustrated in the right-hand
diagram of Fig. 5.

13If X0 ¼ Â0 or X ¼ Â then the corresponding outer momen-
tum labels are absent.
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Our aim in the following is to expand the two factors of
B2 about the points at which their internal momenta are on
shell. Consider first the left-hand B2. Its internal (right-
hand) momenta are p and bpk ¼ P − k − p≡ b. We wish
to adjust p (which also changes b since P is fixed) until
ωp þ ωb ¼ E2;k. The way we do so is adapted from the
approach used in Sec. IVB of HS1. We first change
variables to those in the center-of-mass frame (CMF) of
the scattered pair. Since the four-momentum of the pair is
ðωp þ ωb;P2;kÞ, the boost to this frame has parameters

βk ¼
jP2;kj

ωp þ ωb
; γk ¼

ωp þ ωb

2ω�
p

;

4ω�2
p ¼ ðωp þ ωbÞ2 − P2

2;k; ð28Þ

such that ðωp;pÞ is boosted to ðω�
p;p�

kÞ, with

p�
kk ¼ γkðpk − βkωpÞ; p�

k⊥ ¼ p⊥; ð29Þ

where parallel and perpendicular components are relative to
P2;k. Similarly, ðωb;bÞ is boosted to ðω�

p;−p�
kÞ. Here the

subscripts “k” are a reminder that the boost depends on k.
This boost differs from that used in HS1, because here all
particles are on shell while energy is not conserved,
whereas in HS1 the particle with momentum b is off shell
and energy is conserved. The boost used here has the
advantage that it is well defined for all choices of k, since
jβkj < 1. We refer to it below as the “Wu boost.”14 We also
stress that p�

k completely fixes p since it determines
E�
2;k ¼ 2ω�

p, from which, for given P2;k, one obtains ωp þ
ωb and thus the inverse boost. Thus we can change
variables15 in B2 from p to p�

k ¼ p�
kp̂

�
k:

B2ðE2;k;P2;k; a;pÞ≡ B�
2ðE2;k;P2;k; a;p�

kÞ; ð30Þ

where the asterisk on B�
2 simply indicates the same function

expressed in terms of the new variables.
The next step is to decompose the angular dependence of

B�
2 into spherical harmonics,

B�
2ðE2;k;P2;k; a;p�

kÞ≡ B�
2ðE2;k;P2;k; a;p�

kÞlm
ffiffiffiffiffiffi
4π

p
Ylmðp̂�

kÞ;
ð31Þ

where there is an implicit summation on angular-
momentum indices, and the factor of

ffiffiffiffiffiffi
4π

p
follows the

conventions of HS1. We use real spherical harmonics
throughout to avoid an overabundance of asterisks. Since
we expect B2 to be nonsingular in our kinematic regime, the

coefficients B�
2ðE2;k;P2;k;a;p�

kÞlm should be smooth func-
tions of p�

k. Indeed, if we can Taylor-expand B�
2ðE2;k;P2;k;

a;p�
kÞ about p�

k ¼ 0, it follows that, in order to avoid
singularities at p�

k ¼ 0 from the spherical harmonics or the
absolute value, we can pull out a factor of p�l

k from B�
2,

B�
2ðE2;k;P2;k; a;p�

kÞlm ≡ B��
2 ðE2;k;P2;k; a;p�2

k Þlmp�l
k ;

ð32Þ

where B��
2 is a smooth function of p�2

k . Thus we can rewrite
the expansion as

B2ðE2;k;P2;k; a;pÞ ¼ B��
2 ðE2;k;P2;k; a;p�2

k ÞlmYlmðp�
kÞ;

Ylmðp�
kÞ≡

ffiffiffiffiffiffi
4π

p
Ylmðp̂�

kÞp�l
k : ð33Þ

The Ylm are simply the harmonic polynomials, rescaled
by

ffiffiffiffiffiffi
4π

p
.

The final step is to set the amplitude on shell (on its right-
hand side) by adjusting p�2

k . If we set16

p�2
k ¼ q�22;k ≡ E�2

2;k=4 −m2; where E�2
2;k ¼ E2

2;k − P2
2;k;

ð34Þ

then we achieve the desired result:

p�2
k ¼ q�22;k ⇒ 4ω�2

p ¼ E�2
2;k

⇒ ðωp þ ωbÞ2 − P2
2;k ¼ E2

2;k − P2
2;k

⇒ E2;k ¼ ωp þ ωb ⇒ E ¼ ωk þ ωp þ ωb:

ð35Þ

We note that as jkj increases, q�22;k becomes negative, so
that enforcing the on-shell condition of Eq. (34) requires an
extrapolation of B2 below the two-particle threshold. In
other words, even though k is such that, for the given values
of E and P, the other two particles cannot go on shell, we
still must include a contribution from the TOPT amplitudes
extrapolated below threshold. This feature is common to all
three-particle quantization conditions [25]. However, we do
not expect the three-particle levels to be sensitive to
amplitudes far below threshold. To avoid this region, we
introduce a functionHðkÞ that cuts off the sum over k (and
depends implicitly on E and P). At this stage, the details of
this function do not matter, aside from four properties: (i) it
must equal unity for all values of k for which an on-shell
three-particle state is kinematically allowed, (ii) it must
remain unity for a finite distance of OðmÞ below threshold,
(iii) it must be smooth in k, and (iv) it must vanish for large
k. The first property ensures that the pole terms that can
lead to power-law FV dependence are fully incorporated

14We learned of this boost from J.-J. Wu, who used it in the
context of the Hamiltonian effective field theory description of
finite-volume effects [57].

15The fact that B2 is not Lorentz invariant presents no
obstruction to this change of variables.

16The definitions of q�2;k and E�
2;k are the same as in HS1, and

the on-shellness conditions also match.
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into the analysis. The second ensures that exponentially
suppressed volume terms are suppressed by expð−δLÞ with
δ ¼ OðmÞ. The third property is needed to avoid intro-
ducing unwanted power-law dependence, as we will see
shortly. The final property truncates the sum over k, which
is essential to turn the quantization condition into a
practical tool. Functions with these properties can be
constructed easily from the example given in HS1. We
stress that the quantization condition that we derive is valid
for any cutoff function satisfying these properties, up to
exponentially suppressed corrections. In other words, we
do not lose control of power-law volume dependence when
we add the cutoff function by hand.
We now write B2 in terms of an on-shell part and a

residue

B2ðE2;k;P2;k;a;pÞ ¼ B��
2 ðE2;k;P2;k;a;q�22;kÞlmYlmðp�

kÞHðkÞ
þ δB2ðE2;k;P2;k;a;pÞ; ð36Þ

where the residue is

δB2ðE2;k;P2;k;a;pÞ
¼ ½B��

2 ðE2;k;P2;k;a;p�2
k Þlm−B��

2 ðE2;k;P2;k;a;q�22;kÞlm�
×Ylmðp�

kÞHðkÞþB2ðE2;k;P2;k;a;pÞ½1−HðkÞ�: ð37Þ

The key point here is that δB2 cancels the pole in the energy
denominator in Eq. (27). For the first term, the smoothness
of B��

2;lm implies that

½B��
2 ðE2;k;P2;k; a;p�2

k Þlm − B��
2 ðE2;k;P2;k; a; q�22;kÞlm�

∝ p�2
k − q�22;k ¼ −

1

4
ðE − ωk þ ωp þ ωbÞ

× ðE − ωk − ωp − ωbÞ; ð38Þ

which explicitly cancels the pole. For the second term in
δB2, the factor of 1 −HðkÞ vanishes for all choices of k for
which on-shell kinematics are possible, and in a finite
neighborhood thereof, so that the pole is avoided. Thus the
total summand involving δB2 is finite and smooth, allowing
loop sums involving momenta crossing the cut to be
converted to integrals, as discussed further below.
Our final step for the left-hand amplitude is to rewrite it

in terms of B�
2;lm, i.e., the angular components of the on-

shell amplitude. Then Eq. (36) becomes

B2ðE2;k;P2;k; a;pÞ ¼ B�
2ðE2;k;P2;k; a; q�2;kÞlm

×
Ylmðp�

kÞ
q�l2;k

HðkÞ

þ δB2ðE2;k;P2;k; a;pÞ: ð39Þ

The construction makes clear that the apparent pole at
q�2;k ¼ 0 is canceled by the behavior ofB�

2;lm near threshold.

We now make an analogous decomposition of the right-
hand B2. The steps are the same with the roles of k and p
interchanged. We thus find

B2ðE2;p;P2;p;k;rÞ¼HðpÞYlmðk�
pÞ

q�l2;p
B�
2ðE2;p;P2;p;q�2;p;rÞlm

þOðE−ωk−ωp−ωbÞ: ð40Þ
Here we have set the left-hand momenta on shell.
We also find it convenient to rewrite the pole in the

relativistic form used in Refs. [39,41,44]

1

2ωbðE − ωk − ωp − ωbÞ

¼ 1

b2 −m2
½1þOðE − ωk − ωp − ωbÞ�; ð41Þ

where b here is the four-vector

b ¼ ðE − ωk − ωp;P − k − pÞ
¼ ðωb;bÞ þ ðE − ωk − ωp − ωb; 0Þ: ð42Þ

This step is not essential, and we could proceed with the
derivation with the form of the pole used in HS1.
Inserting the results from Eqs. (39), (40), and (41) into

Eq. (27), we find the pole part

B�
2ðE2;k;P2;k; a; q�2;kÞlmGb

klm;pl0m0B�
2ðE2;p;P2;p; q�2;p; rÞl0m0 ;

ð43Þ

where the “switch matrix” Gb is17

Gb
klm;pl0m0 ¼ Ylmðp�

kÞ
q�l2;k

HðkÞHðpÞ
b2 −m2

Yl0m0 ðk�
pÞ

q�l0
2;p

: ð44Þ

Equation (43) has achieved our goal of pulling out a term in
which the inner indices are set on shell. Whenever the index
set fklmg appears instead of, say, fkag, this indicates that
an on-shell projection has been carried out following the
procedure explained above.
To package the final result in a way that generalizes to

other choices of X0 and X in Eq. (25), we reintroduce the
factors of 2ωL3 that cancel if X0 ¼ X ¼ B̄2;L but do not
cancel in general18:

17This is the same as the object Gb appearing in HS1, except
that we use the relativistic form of the pole and the Wu boost.

18Here G̃ is related to the matrix G of HS1 by G̃klm;pl0m0 ¼
ð2ωkL3Þ−1Gklm;pl0m0 , except that we use the relativistic form of
the pole and the Wu boost. In fact, at this stage we could change
to using the boost of HS1 (and, if desired, the nonrelativistic form
of the pole) in G̃. This only leads to a change in δG̃. For
completeness, we note that our G̃ differs from the similar quantity
of the same name used in Refs. [41,43,44]: our version contains
an extra factor of 1=L3.
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½B̄2;L�ka;k0lm ¼ 2ωkL3δkk0B�
2ðE2;k;P2;k; a; q�2;kÞlm ð45Þ

½B̄2;L�p0l0m0;pr ¼ 2ωpL3δp0pB�
2ðE2;p;P2;p; q�2;p; rÞl0m0 ð46Þ

G̃klm;pl0m0 ¼ 1

2ωkL3
Gb

klm;pl0m0
1

2ωpL3
: ð47Þ

Using these matrices we have

½B̄2;LDGB̄2;L�ka;pr ¼ ½B̄2;LðG̃þ δG̃ÞB̄2;L�ka;pr: ð48Þ

where the G̃ term contains the pole, while δG̃ is simply the
sum of all nonsingular contributions. We will not need an
explicit form for δG̃. Equation (48) gives the result in a
convenient, but highly compact, notation. It should always
be kept in mind that any object adjacent to a factor of G̃ is
projected on shell. The δG̃ contribution, however, does not
include an on-shell projection. The result (48) is shown
diagrammatically in the upper panel of Fig. 6, where the δG̃
term is seen to sew together the two B2’s into an enlarged,
infinite-volume amplitude.
The analysis proceeds similarly if we replace one or both

of the B̄2;L’s with one of the other TOPT amplitudes. As an
example, consider

½B3DGB̄2;L�k0a0;pr ¼ ½B3�k0a0;ka½DG�ka;p0r0 ½B̄2;L�p0r0;pr; ð49Þ

which is illustrated in the middle panel of Fig. 6. For
notational convenience we have interchanged the dummy

indices fkag and fk0a0g compared to earlier. The
differences from the analysis above are (i) that k ≠ k0,
so that the on-shell projection for B3 involves a boost
determined by the inner momentum (here k); (ii) the
1=ð2ωkL3Þ factor in DG is not canceled; (iii) k is summed
in the final result—with 1=ð2ωkL3Þ providing the correct
measure factor; and (iv) in the finite δG̃ term, the sum over
k can be converted to an integral, since the pole has been
canceled, and this attaches a B2 to the B3 to create an
enlarged infinite-volume amplitude. This step relies also on
the smoothness of HðkÞ. This last point implies that we
should view δG̃ as an operator that acts differently depend-
ing on the adjacent kernels, and in particular implies
integration over all internal loops that cross the original cut.
To give an explicit expression we need to define the

version of B3 after on-shell projection on the right,

½B3�k0a0;klm ≡ B�
3ðk0; a0;k; a�k ¼ q�2;kÞlm

Ylmða�kÞ
q�l2;k

; ð50Þ

using which we have

½B3DGB̄2;L�k0a0;pr ¼ ½B3ðG̃þ δG̃ÞB̄2;L�k0a0;pr; ð51Þ

i.e., a result of exactly the same form as when X0 ¼
X ¼ B̄2;L.
The other cases follow analogously, and we do not

discuss them in detail. Dropping external indices, the
general result is simply

FIG. 6. Diagrammatic illustration of on-shell projection for G cuts, specifically of the results Eq. (48) [upper panel], Eq. (49) [middle
panel], and Eq. (52) with X0 ¼ Â0 and X ¼ B3 [lower panel]. The relevant cut corresponding toDG is shown by the dashed (red) vertical
line, while the insertion of the matrix G̃ is shown by the solid (red) vertical line. Rounded ends of kernels are off shell, while straightened
ends are on shell. The angled double solid line connecting amplitudes indicates that the pole in the energy denominator has been
canceled. A loop containing “∞” is integrated, while other loops are summed.
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X0DGX ¼ X0ðG̃þ δG̃ÞX: ð52Þ
The only new feature that enters if both X0 and X are
symmetric kernels is that both factors of 1=ð2ωL3Þ are
uncanceled, so both internal momenta end up summed (for
the G̃ term) or integrated (for the δG̃ term). This is illustrated
for X0 ¼ Â0 and X ¼ B3 in the lower panel of Fig. 6.

2. F cuts

Next, we wish to derive an analogous result for X0DFX.
One option is to split up the on- and off-shell contributions
exactly as for DG; we refer to this as the “Σ̃F approach,” as
the analog to G̃ that arises is a sum over spatial momenta.
Although the Σ̃F approach is perfectly valid and well
defined, we relegate its details to Appendix G, as there is a
more standard method—following essentially the same
approach as in HS1—that we now discuss. We shall refer
to the standard method as the “F̃ approach,” for reasons that
will soon be apparent.
The results we obtain are illustrated in Fig. 7. As the

figures show, an essential difference between the G and F
cuts is that, for the latter, at least one of the momenta
crossing the cut is part of an internal loop. This feature is
exemplified by the explicit expression for X0 ¼ X ¼ B̄2;L,

½B̄2;LDFB̄2;L�ka0;pr0

¼ δkp2ωkL3
X
a

1

2ωaL3
B2ðE2;k;P2;k; a0; aÞ

×
1

2ωbkaðE − ωk − ωa − ωbkaÞ
B2ðE2;k;P2;k; a; r0Þ; ð53Þ

which is shown diagrammatically in the upper panel in
Fig. 7. The a loop is always present, and, in the F̃ approach,
is treated first. The method is that introduced in Ref. [16]
and extended in HS1: one replaces the sum in Eq. (53)
using the identity

P ¼ ½P−PV
R � þ PV

R
. Here PV

indicates that we are using a generalized principal-value
(PV) pole prescription, in the class introduced in Ref. [41].
The sum-integral difference projects the inner momenta of
the adjacent amplitudes on shell, as shown by the identity
derived in Appendix A of HS1.19 Using this identity, we
find, in our example,

½B̄2;LDFB̄2;L�ka0;pr0 ¼ ½B̄2;L�ka0;k0lmF̃k0lm;p0l0m0 ½B̄2;L�p0l0m0;pr0

þ ½B̄2;LĨFB̄2;L�ka0;pr0 ; ð54Þ

where the partially on-shell amplitudes are defined in
Eqs. (45) and (46), F̃ is a matrix acting in the on-shell
index space20

FIG. 7. Diagrammatic illustrations of on-shell projection for F cuts. Notation as in Fig. 6 except that the insertion of the matrix F̃ is
shown by the solid (purple) vertical line. The integral over the momentum a (the upper loop) requires a pole prescription, for which we
use a generalized PV prescription. Momentum labels are matched to the discussion in the text.

19Strictly speaking, the argument given in HS1 must be slightly
modified to use the boost introduced above, but the essence is
unchanged.

20Here F̃ is related to the matrix F of HS1 by F̃klm;pl0m0 ¼
ð2ωkL3Þ−1Fklm;pl0m0 . The fact that we use a different boost in the
on-shell projection only changes the sum-integral difference by
exponentially-suppressed terms. This is true also if the pole in
Dka is changed to the relativistic form used for G̃, and for changes
in the UV regulator. Our F̃ differs from the quantity of the same
name used in Refs. [41,43,44] by having an additional factor
of 1=L3.
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F̃klm;pl0m0 ≡ δkpHðkÞ
�
1

L3

XUV
a

−PV
Z

UV

a

�
×
Ylmða�kÞ
q�l2;k

L3Dka

2!

Yl0m0 ða�kÞ
q�l0
2;k

; ð55Þ

with
R
a ≡

R
d3a=ð2πÞ3, and the action of the integral

operator ĨF is

½B̄2;LĨFB̄2;L�ka0;pr0

≡ X
k0;p0;r

�
HðkÞPV

Z
UV

a
þ½1 −HðkÞ�

Z
UV

a

�
½B̄2;L�ka0;k0a

×
L3Dk0aδk0p0δar

2!
½B̄2;L�p0r;pr0 : ð56Þ

The integral operator ties together the two factors of B2, as
shown in the figure. Note that the overall factor of L3

cancels that in the 1=ð2ωaL3Þ contained in Dka.
One subtle feature of Eqs. (55) and (56) is the appearance

of factors of HðkÞ. As for the G cuts, these are introduced
so as to cut off the sum over k. The identity (54) is valid for
any choice of HðkÞ satisfying the properties enumerated
earlier. In particular, the second integral on the right-hand
side of Eq. (56) originates as a sum over a, but can be
converted to an integral because the overall 1 −HðkÞ
cancels the pole in Dka.

21

The results for other choices of X0 and X take the same
form, and are illustrated in the middle and lower panels of
Fig. 7. The only new feature occurs when both X0 and X are
symmetric amplitudes. In this case the sum over k is not
resolved by Kronecker deltas, and remains as an internal
loop. Here we can use the result that the PV integral over a
leads to a smooth function of k, despite the pole in the
integrand. This is shown for the standard PV prescription in
Appendix B of HS1, and holds also for the generalizations
of Ref. [41]. Because of this result, and the smoothness of
the TOPTamplitudes, the sum over k in the ĨF term can be
replaced by an integral, as exemplified by the last term in
the lower panel in the figure. Thus, as for δG̃, the integral
operator ĨF acts in a manner that depends on the adjacent
amplitudes.
In summary, the general result (with matrix indices

implicit) is

X0DFX ¼ X0ðF̃ þ ĨFÞX; ð57Þ

where any amplitude adjacent to F̃ is placed on shell with
indices fklmg.

3. Application to C3;LðE; PÞ
We can use the results Eqs. (52) and (57) to rewrite our

expression for the three-particle correlator, Eq. (24), so as
to isolate on-shell contributions,

C3;L − Cð0Þ
3;∞ ¼ Â0iðF̃ þ G̃þ ĨF þ δG̃Þ

×
1

1 − iðB̄2;L þ B3ÞiðF̃ þ G̃þ ĨF þ δG̃Þ Â

ð58Þ

¼ δC3;∞ þ Ã0ðuÞiðF̃ þ G̃Þ 1

1 − iK̃ðu;uÞ
df;23;LiðF̃ þ G̃Þ

ÃðuÞ;

ð59Þ

where

iK̃ðu;uÞ
df;23;L ≡ 1

1 − iðB̄2;L þ B3ÞiðeIF þ δG̃Þ iðB̄2;L þ B3Þ;

ð60Þ

Ã0ðuÞ ≡ Â0 1

1 − iðeIF þ δG̃ÞiðB̄2;L þ B3Þ
; ð61Þ

ÃðuÞ ≡ 1

1 − iðB̄2;L þ B3ÞiðeIF þ δG̃Þ Â; ð62Þ

δC3;∞ ≡ Â0iðeIF þ δG̃Þ 1

1 − iðB̄2;L þ B3ÞiðeIF þ δG̃Þ Â:

ð63Þ

Since Ã0ðuÞ, K̃ðu;uÞ
df;23;L, and ÃðuÞ all appear adjacent to F̃ þ G̃,

they are all projected into the on-shell fklmg index space.
We will refer them as “on-shell kernels.”
Various aspects of these results deserve further explan-

ation. The first is our use of tildes. We have added these in
order to distinguish the kernels from quantities in HS1 that
have similar names, but different definitions.
The second new feature is the appearance of superscripts

(u) and ðu; uÞ. This notation, borrowed from HS1, indicates
asymmetric quantities.22 The asymmetry here arises from
the presence of the asymmetric amplitude B̄2;L. When we
expand out the geometric series in Eqs. (60)–(62), the
external amplitude can either be a B̄2;L or a symmetric
amplitude. For example, we can rewrite Eq. (62) as

21Note also that, despite appearances, the HðkÞ dependence of
the two integrals in Eq. (56) do not cancel, because they are
defined with different pole prescriptions: PV for the first integral,
while no prescription is needed for the second (since the pole is
avoided). This is equivalent to using the iϵ prescription for the
second integral.

22An important caveat, however, is that the precise nature of
the asymmetry here differs from that in HS1. We discuss this
further below.
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ÃðuÞ ¼ Âþ iðB̄2;L þ B3ÞiðeIF þ δG̃Þ

×
1

1 − iðB̄2;L þ B3ÞiðeIF þ δG̃Þ Â: ð64Þ

The presence of the B̄2;L in the second term on the right-
hand side implies that this is an asymmetric quantity, since
k is always associated with the spectator momentum when
connecting to B̄2;L.
The third new aspect is the subscript “df, 23” on K̃ðu;uÞ

df;23;L,
as well as the use of the name K. To explain these features,
we expand the geometric series in Eq. (60), leading to the
contributions shown diagrammatically in Fig. 8. These are
exactly the set of diagrams that give rise, in TOPT, to the
2 → 2 amplitude (with a spectator) combined with the
3→3 amplitude, except that we have replaced the relevant
cuts with integral operators. This is similar to what one does
when defining a K matrix, namely removing the imaginary
parts that arise from unitary cuts. In particular, since all the
integrals that appear either use a PV prescription or avoid

the pole, K̃ðu;uÞ
df;23;L is real. Because of this similarity, we refer

to it as a K matrix, and, indeed, the connection to standard
K matrices can, in part, be made more precise, as we show
below. We use the subscript “23” to indicate that it contains
amplitudes for both two- and three-particle scattering.
Finally, “df” stands for “divergence free,” which is to
say that, by construction, it contains no singularities due to
three-particle cuts. This use of “df” is taken over from HS1.
The final issue concerns the volume dependence of the

kernels. We find that Ã0ðuÞ, ÃðuÞ, and δC3;∞ are infinite-

volume quantities, and that K̃ðu;uÞ
df;23;L can be simply related

to infinite-volume quantities, both results holding up
to exponentially suppressed corrections. These results,

derived in the next subsection, will allow us to make all
L dependence explicit.

4. Volume (in)dependence of kernels

The most complicated of the kernels is K̃ðu;uÞ
df;23;L, and we

address this first. As is clear from Fig. 8, the 2 → 2 part of

K̃ðu;uÞ
df;23;L is given by the geometric series

iK̄2;L ≡ iB̄2;L
1

1− iĨFiB̄2;L
¼ iB̄2;L þ iB̄2;LiĨFiB̄2;L þ � � � :

ð65Þ

The off-shell version of this quantity, i.e., with indices
fka; prg, will be a key building block in the final
expression. The factors of 2ωkL3 cancel in pairs, leaving
a single overall factor of this type, allowing us to write

½K̄2;L�ka;pr ¼ 2ωkL3½K2�ka;pr; ð66Þ

½K2�ka;pr ≡ δkpK2ðE2;k;P2;k; a; rÞ; ð67Þ

where K2ðE2;P2; a; rÞ is the infinite-volume 2 → 2 quan-
tity obtained by sewing together any number of B2 kernels
with the two-particle version of ĨF. As the name suggests,
it is related to a two-particle K matrix. Indeed, we show in
Appendix B that the on-shell restriction is given by

½K̄2;L�klm;pl0m0 ¼ 2ωkL3½K2�klm;pl0m0 ; ð68Þ

½K2�klm;pl0m0 ¼ δkpδll0δmm0KðlÞ
2 ðq�2;kÞ; ð69Þ

FIG. 8. Diagrams contributing to ½K̃ðu;uÞ
df;23;L�klm;pl0m0 . Notation as in Figs. 6 and 7. Factors of i are implicit.
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where KðlÞ
2 is the lth partial-wave amplitude in the two-

particle CMF, with q�2;k the magnitude of the momentum of

each particle. KðlÞ
2 has a known relation to the correspond-

ing partial wave of the scattering amplitude,MðlÞ
2 , given in

Eq. (B5). K2 becomes the standard K matrix if we use the
standard PV scheme and set HðkÞ ¼ 1 for all k.
Returning to K̃ðu;uÞ

df;23;L, we now reorder the terms in the
geometric series (60) by first summing subsets of diagrams
involving sequences of B̄2;L ’s and ĨF’s into K̄2;L’s. This is
illustrated in the first panel of Fig. 9. We next sum
sequences of the resulting K̄2;L’s connected by factors of
δG̃, leading to the 3 → 3 quantity

iD̃ðu;uÞ
3;L ≡ iK̄2;LiδG̃iK̄2;L

1

1 − iδG̃iK̄2;L
; ð70Þ

as shown in the lower panel of Fig. 9. Factors of 2ωL3

cancel except for an inverse such factor for every internal
loop, which would be absorbed if we could convert each
loop sum into an integral. This requires, however, that the
summand is smooth. Here we face a new issue: while the
(double-line) connectors between adjacent K2’s are non-
singular,K2 itself can have singularities as a function of the
loop momentum. For example, in the second contribution

to D̃ðu;uÞ
3;L shown in the figure, the four-momentum

ðE2;a0 ;P2;a0 Þ passing through the lower K2 clearly depends
on the loop momentum a0. We know that the on-shell K2

has poles for real momenta whenever there is a nearby
narrow resonance, and, following the arguments of
Ref. [40], we expect this to extend to the off-shell K
matrix that enters here. There can also be subthreshold
poles in K2, given our particular definition [43]. Thus there
is, in general, a barrier to converting the sum into an
integral, and, for this reason, the derivation of HS1 works
only assuming the absence of singularities in K2. However,
it has subsequently been understood that by generalizing
the definition of the PV prescription, one can define a class

of two-particle K matrices, and that by adjusting the
parameters of the prescription, one can find definitions
that are nonsingular for any given physical scattering
amplitude [41]. We assume henceforth that such a pre-

scription has been used, and thus that D̃ðu;uÞ
3;L is an infinite-

volume quantity.
To combine these ingredients we use algebraic manip-

ulations that recur frequently in this work, and which we
derive in Appendix C. These lead to

iK̃ðu;uÞ
df;23;L ¼ iK̄2;L þ iK̃ðu;uÞ

df;3 ; ð71Þ

iK̃ðu;uÞ
df;3 ≡ iD̃ðu;uÞ

3;L þ ð1þ iD̃ðu;uÞ
23;L iĨFGÞiB3

×
1

1 − ðiĨFG þ iĨFGiD̃
ðu;uÞ
23;L iĨFGÞiB3

× ð1þ iĨFGiD̃
ðu;uÞ
23;L Þ; ð72Þ

ĨFG ≡ ĨF þ δG̃; ð73Þ

iD̃ðu;uÞ
23;L ≡ iK̄2;L þ iD̃ðu;uÞ

3;L ¼ iK̄2;L
1

1 − iδG̃iK̄2;L
: ð74Þ

In K̃ðu;uÞ
df;3 , there is an additional loop sum associated with

each factor of ĨFG adjacent to a D̃ðu;uÞ
23;L , with the summand

including a factor of K2. Using our generalized PV
prescription, all such sums can be converted to integrals,

and this absorbs all remaining factors of 2ωL3. Thus K̃ðu;uÞ
df;3

is an infinite-volume quantity.
Using similar expansions for Ã0ðuÞ, ÃðuÞ, and δC3;∞, we

find that the factors of L3 in B̄2;L, ĨF, and δG̃ either cancel
or can be used to convert sums into integrals, again
assuming a PV prescription such that K2 is smooth.
Thus these three kernels are also infinite-volume quantities.

FIG. 9. Diagrams contributing to K̄2;L and Dðu;uÞ
3;L . Notation as in Figs. 6 and 7. Factors of i are implicit.
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5. Summary

We close this subsection by taking stock of what has
been achieved. We started from the closed-form expression
for the three-particle correlator, Eq. (24), which is com-
posed of infinite-volume amplitudes, but has the disadvant-
age that these amplitudes are off shell. After some technical
effort, which involved generalizing results from HS1 so that
they applied to TOPT amplitudes, we obtained two simple
equations, (52) and (57), that allow the correlator to be
expressed in terms of on-shell kernels, as shown explicitly
in Eq. (59). In a final step, we determined the volume (in)
dependence of these kernels. These steps lead to the
following result for the correlation function,

C3;LðE;PÞ ¼ C̃3;∞ðE;PÞ þ Ã0ðuÞiðF̃ þ G̃Þ

×
1

1 − ið2ωL3K2 þ K̃ðu;uÞ
df;3 ÞiðF̃ þ G̃Þ

ÃðuÞ;

ð75Þ

where contributions with no L dependence are collected
into23

C̃3;∞ ≡ Cð0Þ
3;∞ þ δC3;∞; ð76Þ

and we have introduced the diagonal matrix

½2ωL3�klm;pl0m0 ¼ δkpδll0δmm02ωkL3: ð77Þ

All L dependence is now explicit, entering through the
quantities F̃, G̃, and 2ωL3.
Our result can be compared to Eq. (250) of HS1,

rewritten to match our notation:

C3;L ¼ C3;∞ þ A0iF3

1

1 − iKdf;3iF3

A; ð78Þ

F3 ¼ F̃

�
1

3
−

1

1=ð2ωL3K2Þ þ F̃ þ G̃
F̃

�
: ð79Þ

This shows the trade-off that we have made: by using
an asymmetric form of the three-particle K matrix, our
final expression is simpler, containing only the combination
F̃ þ G̃ and no factors of 1=3. Another gain is that we have
explicit expressions for all quantities in terms of the
underlying TOPT amplitudes, in contrast to HS1, where
the definitions of the kernels are constructive and not
explicit.

D. New form of the quantization condition

To make contact with the FV energy spectrum of the
theory, we exploit the fact that C3;LðE;PÞ has a simple pole
whenever E lies in the FV spectrum. Since C̃3;∞; Ã

0ðuÞ, ÃðuÞ

are all smooth infinite-volume quantities, any singularity in
C3;L must arise from the quantity lying between Ã0ðuÞ and
ÃðuÞ in Eq. (75). This quantity is a matrix in the fklmg
index space, and must have a diverging eigenvalue for C3;L

to have a pole. Equivalently, the determinant of its inverse
should vanish,

det ½F̃ þ G̃�−1 det ½1 − ið2ωL3K2 þ K̃ðu;uÞ
df;3 ÞiðF̃ þ G̃Þ� ¼ 0:

ð80Þ

The energies where det½F̃ þ G̃�−1 ¼ 0 are the free three-
particle energies where E ¼ ωk þ ωa þ ωbka for some
choice of FV momenta k; a ∈ 2π

L Z3. For general K2 and

K̃ðu;uÞ
df;3 , we expect that the product of the two determinants

will not vanish at these energies, because the second
determinant will diverge.24 Physically this corresponds to
the fact that a general interaction will shift all FV energies
from their free values. We therefore conclude that for a
given P, an energy E can only be in the finite-volume
spectrum of the interacting theory if

det ½1þ ð2ωL3K2 þ K̃ðu;uÞ
df;3 ÞðF̃ þ G̃Þ� ¼ 0: ð81Þ

This is our alternate form of the three-particle quantization
condition.
This result has a superficially similar form to that from

HS1, which follows from Eq. (78),

det ½1þKdf;3F3� ¼ 0; ð82Þ

but many of the details are different. For example, in
Eq. (81), the infinite-volume K matrices appear together
and separate from the FV quantities F̃ and G̃, whereas F3 in
Eq. (82) is a relatively complicated function of K2, F̃, and
G̃. We return to the relation between the two approaches
in Sec. IV.

III. TOPT EXPRESSION FOR M3;L

In order to understand the relation between quantization
conditions, we need to first extend the developments of the
previous section from the correlator C3;L to the finite-
volume 3 → 3 amplitude M3;L. This extension also allows
us to determine the infinite-volume relation between our

23Our notation (with the subscript ∞) is slightly misleading
because C̃3;∞ is not the complete infinite-volume limit of C3;L,
since the other term on the right-hand side of Eq. (75), which
contains all the volume dependence, has a nonvanishing infinite-
volume limit.

24As is well known from numerical investigations, if one
truncates the partial-wave expansions ofK2 and K̃

ðu;uÞ
df;3 , then there

will be solutions to the quantization condition at free energies
[41,43,44].
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asymmetric K matrix K̃ðu;uÞ
df;3 and the full 3 → 3 amplitude

M3. This latter relation is somewhat off the main line of
development of this paper, so we relegate it to Appendix E.
M3;L is defined as the amputated, connected, 3 → 3

finite-volume amplitude. It is in general off shell, and thus a
matrix in fkag space. It is simpler to begin by considering

an asymmetric version of the amplitude, M̃ðu;uÞ
3;L , defined so

that, if there is an external factor of B̄2;L, the spectator
propagator is always labeled with one of the external
momenta (typically called k or p). This definition is
illustrated in Fig. 10.25 As we have seen several times
above, results are simplified if we combine the asymmetric
three-particle amplitude with the corresponding two-
particle quantity, here M̄2;L. (This is defined in Eq. (B1),
and is simply M2;L packaged with an inverse spectator
propagator.) The TOPT result for this combination is a
geometric series,

iðM̄2;L þ M̃ðu;uÞ
3;L Þ ¼ 1

1 − iðB̄2;L þ B3ÞiðDF þDGÞ
× iðB̄2;L þ B3Þ: ð83Þ

To obtain the fullM3;L we symmetrize by summing over the
different attachments of the external momenta

½M3;L�ka;k0a0 ¼
X
x∈P

X
x0∈P0

½M̃ðu;uÞ
3;L �x;x0 ; P ¼ fka; ab; bkg;

P0 ¼ fk0a0; a0b0; b0k0g: ð84Þ

Only three terms are needed on both sides (rather than the 3!
one might have expected) because B2 is symmetric under
a ↔ b interchange. No overall factor of 1=9 is needed
because this factor is built into B3—see the discussion
above Eq. (8).
The remaining steps are essentially a repeat of those we

used for C3;L. We find that Eq. (59) is replaced by26

iðM̄2;L þ M̃ðu;uÞ
3;L Þ ¼ iK̃ðu;uÞ

df;23;L
1

1 − iðF̃ þ G̃ÞiK̃ðu;uÞ
df;23;L

;

ð85Þ

Using the algebraic result (C13), as well as the decom-

position of K̃ðu;uÞ
df;23;L, Eq. (71), and the result for M̄2;L,

Eq. (B3), we can extract the expression for M̃ðu;uÞ
3;L :

iM̃ðu;uÞ
3;L ¼ iDðu;uÞ

L þ iM̃ðu;uÞ
df;3;L ð86Þ

where

iDðu;uÞ
L ≡ iM̄2;LiG̃iM̄2;L

1

1 − iG̃iM̄2;L
; ð87Þ

iM̃ðu;uÞ
df;3;L ≡ ½1þ iDðu;uÞ

23;L iðF̃ þ G̃Þ�iT̃ ðu;uÞ
L

× ½1þ iðF̃ þ G̃ÞiDðu;uÞ
23;L �; ð88Þ

FIG. 10. Diagrams contributing toMðu;uÞ
3;L in TOPT. Notation as in Fig. 1. The asymmetric feature of this amplitude is that the momenta

k and p are always assigned to a spectator line, if one is present.

25We include a tilde on M̃ðu;uÞ
3;L since it is different from the

similar quantity Mðu;uÞ
3;L defined in HS2, with the latter having an

asymmetry based on the Feynman skeleton expansion. We stress,
however, that the symmetrized version M3;L is the same as in
HS2 (when evaluated on shell).

26Strictly speaking, this way of writing the result only holds if
all quantities are on shell, so that all matrices are square. Indeed,
we have only considered above the on-shell form of K̃ðu;uÞ

df;23;L.
However, its definition, given in Eqs. (71) and (72), can be
extended off shell. The same is true for the result here, if one
expands out the geometric series and evaluates it term by term,
and also for Eq. (86). These extensions are convenient, but not
essential for the following discussion.
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with

iT̃ ðu;uÞ
L ≡ iK̃ðu;uÞ

df;3
1

1− ½1þ iðF̃þ G̃ÞiDðu;uÞ
23;L �iðF̃þ G̃ÞiK̃ðu;uÞ

df;3

;

ð89Þ

iDðu;uÞ
23;L ≡ iM̄2;L þ iDðu;uÞ

L ¼ iM̄2;L
1

1 − iG̃iM̄2;L
: ð90Þ

Here Dðu;uÞ
L is the same as the quantity of the same name

appearing in HS2, since the asymmetry arises from the
external M̄2;L, which is the same in both approaches.27

These results can also be expressed in terms of K̄2;L instead
of M̄2;L,

iM̃ðu;uÞ
df;3;L

¼ 1

1 − iK̄2;LiðF̃ þ G̃Þ iK̃
ðu;uÞ
df;3

×
1

1 − iðF̃ þ G̃Þ 1
1−iK̄2;LiðF̃þG̃Þ iK̃

ðu;uÞ
df;3

1

1 − iðF̃ þ G̃ÞiK̄2;L
;

ð91Þ

iDðu;uÞ
23;L ¼ 1

1 − iK̄2;LiðF̃ þ G̃Þ iK̄2;L: ð92Þ

These forms are used in our companion paper [55].
The results (86)–(90) make all volume dependence of

M̃ðu;uÞ
3;L explicit: it enters through F̃, G̃, and M̄2;L. We also

note that this result holds both for the off-shell amplitude
and its on-shell limit.
We end this subsection with a side remark. As was

pointed out in HS2, the quantization condition can be

obtained from the off-shell M̃ðu;uÞ
3;L instead of C3;L, since the

former is an (amputated) three-particle correlator. This is
made particularly clear by the fact that, by comparing
Eqs. (24) and (83), we can explicitly relate the two
quantities:

C3;L − Cð0Þ
3;∞ ¼ Â0iðDF þDGÞÂþ Â0iðDF þDGÞ

× iðM̄2;L þ M̃ðu;uÞ
3;L ÞiðDF þDGÞÂ: ð93Þ

IV. RELATION TO QUANTIZATION
CONDITION OF HS1

In this section we show that our new quantization
condition, Eq. (81), can be rewritten in the HS1 form of
Eq. (82), and that the two approaches therefore lead to

equivalent results. We refer to this transformation as the
“symmetrization” of the quantization condition, since the
HS1 form is written in terms of a symmetric three-particle
K matrix. As a side benefit, we obtain the algebraic relation
between our asymmetric amplitude K̃ðu;uÞ

df;3 and the sym-
metric quantity of HS1, Kdf;3.

A. Recap of result for Mðu;uÞ
3;L from HS2

The connection to the HS1 QC is provided by studying
the result for Mðu;uÞ

3;L , the asymmetric finite-volume three-
particle amplitude introduced in HS2. This is defined as for

our M̃ðu;uÞ
3;L , except that its asymmetry is based on the

skeleton expansion in terms of 2PIs and 3PIs Bethe-
Salpeter (B-S) kernels built from Feynman diagrams.
Specifically, if the external legs connect to a 2PIs B-S
kernel, then the spectator propagator associated with that

kernel is connected to the spectator momentum of Mðu;uÞ
3;L .

This is the analog of our definition of M̃ðu;uÞ
3;L (see Fig. 10)

except that we use an expansion in terms of TOPT
amplitudes, and for us B2 plays the role of the 2PIs B-S
kernel. Since B2 contains only a subset of the time
orderings that contribute to the 2PIs B-S kernel, more

contributions are symmetrized in M̃ðu;uÞ
3;L than in Mðu;uÞ

3;L .
We stress, however, that, after complete symmetrization,
both objects lead to the same amplitude, M3;L. This is an
example of the fact that there are many different ways to
define asymmetric amplitudes, all of which symmetrize to
the same quantity.
The result for Mðu;uÞ

3;L is given in Eq. (67) of HS2.
Converting the expressions to our notation, we have

iMðu;uÞ
3;L ¼ iDðu;uÞ

L þ ðLðuÞ
L ÞðiKdf;3Þ

1

1 − ðiF3ÞðiKdf;3Þ
ðRðuÞ

L Þ;

ð94Þ

where

ðLðuÞ
L Þ ¼ ð10Þ þ iDðu;uÞ

23;L iF̃ð11Þ; ð95Þ

ðiKdf;3Þ ¼
 

iKðu;uÞ
df;3 iKðu;sþs̃Þ

df;3

iKðsþs̃;uÞ
df;3 iKðsþs̃;sþs̃Þ

df;3

!
; ð96Þ

ðiF3Þ ¼
�
1

1

�
iF3ð11Þ ¼

�
1

1

�
½1=3þ iF̃Dðu;uÞ

23;L �iF̃ð11Þ;

ð97Þ

ðRðuÞ
L Þ ¼

�
1

0

�
þ
�
1

1

�
iF̃iDðu;uÞ

23;L : ð98Þ

Here Dðu;uÞ
L and Dðu;uÞ

23;L , defined in Eqs. (87) and (90),

respectively, are the same as in our result for M̃ðu;uÞ
3;L ,

27This equality holds only on shell, which is all that we require
in the following subsection.
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Eq. (86). We note that the expression for F3 given on the
right-hand side of Eq. (97) is an alternative way of writing
the earlier form, Eq. (79).
The quantities in round braces in Eqs. (94)–(98) live in a

two-dimensional space: ðLðuÞ
L Þ being a row vector, ðiKdf;3Þ

and ðiF3Þ being matrices, and ðRðuÞ
L Þ being a column

vector. The 1 in the denominator of Eq. (94) indicates the
identity matrix in this space. The indices in this space are
(u) and ðsþ s̃Þ, as exemplified by the expression for
ðiKdf;3Þ in Eq. (96). These indices were introduced in
HS1 to denote the different ways in which the spectator-
momentum label is attached to diagrams. The precise
definition is given in Appendix D 1. As an example of
this matrix notation, the symmetrized Kdf;3 (which is
differentiated from the matrix version by the absence of
surrounding parentheses) is given by

iKdf;3 ≡ ð1 1ÞðiKdf;3Þ
�
1

1

�
¼ iKðu;uÞ

df;3 þ iKðu;sþs̃Þ
df;3

þ iKðsþs̃;uÞ
df;3 þ iKðsþs̃;sþs̃Þ

df;3 : ð99Þ

This is the quantity that appears in the quantization
condition of HS1, Eq. (78).
A noteworthy feature of the result (94) is that Mðu;uÞ

3;L is
not given in terms only of the symmetrized Kdf;3. This is

because of the (1 0) term in ðLðuÞ
L Þ, and the corresponding

term in ðRðuÞ
L Þ, which project onto asymmetric components

of ðKdf;3Þ. If one symmetrizes, and considers M3;L, then it
is possible to write the result in terms of the symmetric
Kdf;3, as shown by Eq. (68) of HS2.

The dependence ofMðu;uÞ
3;L brings up a potential conflict.

On the one hand, we expect that we can obtain the HS1

quantization condition from Mðu;uÞ
3;L , since any three-par-

ticle correlation function should have poles at the spectral
energies. We know that the resulting quantization con-
dition, Eq. (78), contains the symmetric Kdf;3. On the other

hand, Mðu;uÞ
3;L depends also on asymmetric components of

Kdf;3, as just noted. The resolution is that the central portion
of the second term on the right-hand side of Eq. (94) can be
rewritten as

ðiKdf;3Þ
1

1 − ðiF3ÞðiKdf;3Þ
¼ ðiKdf;3Þ

þ ðiKdf;3Þ
1

1 − ðiF3ÞðiKdf;3Þ
× ðiF3ÞðiKdf;3Þ ð100Þ

¼ ðiKdf;3Þ þ ðiKdf;3Þ
�
1

1

�
1

1 − iF3iKdf;3

× iF3ð1 1ÞðiKdf;3Þ: ð101Þ

This shows that the geometric series leading to the poles
does contain the symmetric Kdf;3.
One final technical point needs to be mentioned. In HS1

and HS2, the versions of F̃ and G̃ differ from those used
here in three ways: (i) they use a different boost to the
interacting pair CMF (which only changes G̃); (ii) F̃ uses
the original PV prescription rather than the generalized one
used here; and (iii) G̃ is defined with the nonrelativistic
energy denominator. However, the derivations of HS1 and
HS2 go through essentially unchanged if one uses our
versions of F̃ and G̃, and, in particular, the expressions
given in Eqs. (94)–(98) remain valid.

B. Asymmetrizing Mðu;uÞ
3;L

The expressions for M̃ðu;uÞ
3;L and Mðu;uÞ

3;L , given in
Eqs. (86) and (94), have a similar structure, but differ in
many details. In this subsection we bring the almost

symmetric result for Mðu;uÞ
3;L into an asymmetric form

similar to that of M̃ðu;uÞ
3;L .

In Appendix D we derive the following three “asymmet-
rization” identities (valid up to exponentially suppressed
corrections, and for both the Wu boost and the boost
of HS1)

XðuÞF̃ð 1 1 Þ ¼ XðuÞðF̃ þ G̃ − I⃗GÞð1 0Þ ð102Þ

�
1

1

�
F̃XðuÞ ¼

�
1

0

�
ðF̃ þ G̃ − I⃖GÞXðuÞ; ð103Þ

�
1

1

�
F̃
3
ð1 1Þ ¼

�
1

0

�
ðF̃ þ G̃þ ⊗GÞð1 0Þ: ð104Þ

where XðuÞ is a generic asymmetric amplitude, e.g., M̄2;L

or Dðu;uÞ
23;L , and there is an implicit matrix of amplitudes such

as ðKdf;3Þ on the right of Eq. (102), on the left of Eq. (103),
and on both sides of Eq. (104). The integral operators I⃗G,
I⃖G, and ⊗G are defined in the appendix. The first two are
similar to ĨF, but their action is directional, as indicated by
the arrows. The effect of all three operators is to sew
together the adjacent amplitudes leading to new infinite-
volume quantities.
Using the three identities, we can rewrite the expression

for Mðu;uÞ
3;L , Eq. (94), solely in terms of Kðu;uÞ

df;3 :

iMðu;uÞ
df;3;L ≡ iMðu;uÞ

3;L − iDðu;uÞ
L ð105Þ

¼ ½1þ iDðu;uÞ
23;L iðF̃ þ G̃ − I⃗GÞ�iT ðu;uÞ

L

× ½1þ iðF̃ þ G̃ − I⃖GÞiDðu;uÞ
23;L �; ð106Þ
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iT ðu;uÞ
L ¼ iKðu;uÞ

df;3
1

1 − ½iðF̃ þ G̃þ ⊗GÞ þ iðF̃ þ G̃ − I⃖GÞiDðu;uÞ
23;L iðF̃ þ G̃ − I⃗GÞ�iKðu;uÞ

df;3

: ð107Þ

In Appendix F, we show that this result can be reorganized into

iMðu;uÞ
df;3;L ¼ ½1þ iDðu;uÞ

23;L iðF̃ þ G̃Þ�iK0ðu;uÞ
df;3

1

1 − ½1þ iðF̃ þ G̃ÞiDðu;uÞ
23;L �iðF̃ þ G̃ÞiK0ðu;uÞ

df;3

½1þ iðF̃ þ G̃ÞiDðu;uÞ
23;L �; ð108Þ

where the primed version of the HS1 asymmetric amplitude is

iK0ðu;uÞ
df;3 ≡ ð1 − iK̄2iI⃗GÞiKðu;uÞ

df;3
1

1 − ½i ⊗G þiI⃖GiK̄2iI⃗G�iKðu;uÞ
df;3

ð1 − iI⃖GiK̄2Þ: ð109Þ

We observe that the form of Eq. (108) is identical to that of
the result for M̃ðu;uÞ

3;L , Eq. (88), with K0ðu;uÞ
df;3 playing the role

of K̃ðu;uÞ
df;3 .

An interesting implication of this result is that the HS1
quantization condition can be rewritten in the form derived

here, Eq. (81), but with K̃ðu;uÞ
df;3 replaced by K0ðu;uÞ

df;3 :

det ½1þ ð2ωL3K2 þK0ðu;uÞ
df;3 ÞðF̃ þ G̃Þ� ¼ 0: ð110Þ

To show this, we use the result, noted above, that the
quantization condition can be derived from the poles in

Mðu;uÞ
3;L . To obtain an expression for Mðu;uÞ

3;L , we start from
Eq. (108), and reverse the steps leading from Eq. (85) to
Eq. (88), obtaining

iðM̄2;L þMðu;uÞ
3;L Þ ¼ ið2ωL3K2 þK0ðu;uÞ

df;3 Þ

×
1

1 − iðF̃ þ G̃Þið2ωL3K2 þK0ðu;uÞ
df;3 Þ

;

ð111Þ

the denominator of which leads immediately to the quan-
tization condition Eq. (110).
We now have two quantization conditions of exactly the

same form, Eqs. (81) and (110), but containing different

asymmetric three-particle K matrices, K̃ðu;uÞ
df;3 and K0ðu;uÞ

df;3

respectively. This does not, however, imply that these two
K matrices are the same. One way of seeing this is to note
that asymmetrization is not unique: there are many ways to
divide a symmetric amplitude into asymmetric compo-
nents. This is because, for a given asymmetric diagram (in
either the Feynman or TOPT approach), one can choose to
assign it directly to the asymmetric amplitude, or to first
symmetrize and then assign. When using the identities
(102)–(104), the left-hand sides involve only the symmetric
part ofKdf;3, while the right-hand sides involve only the (u)
parts. Since the latter are ambiguous, the identity must be
satisfied for all possible choices of asymmetric amplitude.

In other words, the operators appearing on the right-hand
sides, e.g., F̃ þ G̃ − I⃗G, must have (an infinite number of)
zero modes. These observations do not impact the deriva-
tion just given, in which we choose a particular asymmet-
rization. However, they imply that we could have made

another choice, in which case the resulting K0ðu;uÞ
df;3 would

have been different while the form of the resulting
quantization condition, Eq. (110), would have been
unchanged.

C. Symmetric form of the new quantization condition

Having understood how asymmetrization turns the HS1
quantization condition into our new form, we now follow
the inverse path and bring our quantization condition into
HS1 form.

What we need to do is to rewrite our result for M̃ðu;uÞ
df;3;L,

Eq. (88), in the form given in Eq. (106), for then we can use
the asymmetrization identities in reverse and obtain the
HS2 form, Eq. (94). In order to follow these steps we must
first invert Eq. (109). We can do so by discretizing
momentum space so that all relations are matrix equations.
Then we obtain

iK̃0ðu;uÞ
df;3 ¼ iZ̃ðu;uÞ 1

1þ ½i ⊗G þiI⃖GiK̄2iI⃗G�iZ̃ðu;uÞ ; ð112Þ

iZ̃ðu;uÞ ≡ 1

1 − iK̄2iI⃗G

iK̃ðu;uÞ
df;3

1

1 − iI⃖GK̄2

: ð113Þ

The next step is to obtain the other components of this

new version of the K matrix, namely K̃0ðsþs̃;uÞ
df;3 , etc. This is

done using relations from HS1, which are recalled in
Appendix D. Then the steps above lead to the analog of
Eq. (94),

iM̃ðu;uÞ
df;3;L ¼ ðLðuÞ

L ÞðiK̃0
df;3Þ

1

1 − ðiF3ÞðiK̃0
df;3Þ

ðRðuÞ
L Þ; ð114Þ
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with ðLðuÞ
L Þ, (F3), and ðRðuÞ

L Þ unchanged from
above. Finally, we can use the arguments at the end of
Sec. IVA to determine the quantization condition from

M̃ðu;uÞ
df;3;L, obtaining

det ½1þ K̃0
df;3F3�; ð115Þ

where the symmetrized K matrix is

K̃0
df;3 ¼ K̃0ðuþsþs̃;uþsþs̃Þ

df;3 : ð116Þ

Thus we find that the symmetrized version of our new
quantization condition is of exactly the same form as that
of HS1.
We now argue that the symmetrized K matrix obtained

here and that of HS1 are the same, i.e.,28

K̃0
df;3 ¼ Kdf;3: ð117Þ

To do so, we use the result from HS2 that, by symmetrizing
the infinite-volume limit of Eq. (94), the full M3 can
be written in terms of integral equations containing Kdf;3

alone—the asymmetric form Kðu;uÞ
df;3 is not needed, unlike

for Mðu;uÞ
df;3 . Similarly, by symmetrizing the infinite-volume

limit of Eq. (114), M3 is given by exactly the same
expression in terms of K̃0

df;3. Now we assume that this
relation is invertible and one-to-one. If so, the two
symmetrized K matrices must be equal. Another way of
stating this claim is that we are effectively assuming that
there are no redundant parts of the symmetrized K matrices,
which we view as plausible given the explicit construction
presented here. This is in contrast to the asymmetrized K
matrices, which we know are ambiguous.
The equality of K̃0

df;3 andKdf;3 is also consistent with the
quantization condition having the same form in both cases.
However, this is not a sufficient argument to demonstrate
equality of the K matrices, since the asymmetric form of the
quantization conditions also agree, and yet we know that
the asymmetric K matrices differ.
The result (117) connects the Feynman-diagram-based

method of HS1/HS2 and the TOPTapproach followed here.
It also provides an explicit expression for Kdf;3 that goes
beyond the constructive definition given in HS1.
We close by emphasizing two points. First, we stress that

the steps leading to the result (114) for M̃ðu;uÞ
df;3;L do not

depend on the derivations of HS1 and HS2. While we have
made use of results from these works as motivation for the
logical progression of our approach, in the end the steps
needed are simply algebraic. Second, although the sym-
metric K matrices are the same, this does not mean that

Mðu;uÞ
3;L and M̃ðu;uÞ

3;L are the same, because they depend also

onKðu;uÞ
df;3 and K̃ðu;uÞ

df;3 , respectively, and these differ. This is an

important consistency check, as we know that Mðu;uÞ
3;L and

M̃ðu;uÞ
3;L are in fact different.

V. CONCLUSIONS

In this paper we provide a more direct and explicit path
to the relativistic, model-independent, three-particle quan-
tization condition of HS1 [37]. Although it is reassuring to
check the result of the complicated and lengthy derivation
of HS1, this is not our fundamental motivation. Instead, we
expect that our method will simplify the generalization to
nondegenerate particles, and hope to present results for this
shortly. This is a complementary generalization to that
achieved recently in Ref. [42], which considers degenerate,
but potentially distinguishable, spinless particles. We
expect it to be profitable to combine the two approaches.
As part of our derivation, we have shown that the three-

particle quantization condition can be written in a simpler
form in terms of asymmetric amplitudes [see Eqs. (81) and
(110)]. We do not necessarily propose this as a practical
alternative to the HS1 form, because the asymmetric
amplitudes will require, at any order in the threshold
expansion of Refs. [43,44], a larger number of parameters
for a general description than the symmetric form appear-
ing in the HS1 quantization condition.29 The parametriza-
tions must therefore be redundant, a result that is
presumably related to the ambiguity in defining an asym-
metric amplitude. However, we do expect that the new,
asymmetric form of the quantization condition has theo-
retical implications. Indeed, in a companion paper we show
that it allows one to derive a form of the quantization
condition in terms of the R matrix of Refs. [50,51] and thus
obtain a generalization of the result of the FVU approach to
all partial waves [55].
A more distant goal of our approach is to allow the

generalization to more than three particles. In this regard we
note that the complications associated with the possibility
of on-shell intermediate states in three-particle scattering,
which led in HS1 to the introduction of the divergence-free
three-particle K matrix, Kdf;3, are dealt with very simply
and automatically in the TOPT approach used here. This
gives us some hope that the additional complications that
arise with more than three particles will be manageable. In
this regard, the alternative approach for dealing with F cuts
that is sketched in Appendix Gmay be helpful as it does not
require a choice of PV prescription.
Finally, we comment on the issue of Lorentz invariance

of the various K matrices, which we discussed in the
introduction. This question arises because of our use of

28We stress that this result will hold only if the same choice of
boost in G̃ and cutoff function HðkÞ is used in both cases.

29This can be seen explicitly in chiral perturbation theory from
the leading-order result for Kðu;uÞ

df;3 .
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TOPT, which is manifestly Lorentz noninvariant. While
this issue is not relevant to the technical steps in the
derivation, it is important for practical applications, since
invariance restricts the number of terms that contribute. We
summarize the status here. First, we stress again that all the
quantization conditions presented here—both the original
HS1 form and our asymmetric form, and for both choices of
boost—hold for all kinematically allowed choices of
Pμ ¼ ðE;PÞ. In particular they hold for choices of Pμ

for which the three particles are relativistic, which is why
we call the quantization conditions relativistic. This is,
however, a separate issue from the relativistic invariance
of the K matrices. Here the status is that, if we define G̃
using the boost of HS1 and the relativistic form of the pole
(which is possible for both the HS1 K matrices and the new
TOPT versions introduced here), then the original sym-

metric Kdf;3 and the asymmetric version K̃0ðu;uÞ
df;3 are both

Lorentz invariant.30 These appear, respectively, in the
original HS1 quantization condition, Eq. (82), and the
asymmetric form found here, Eq. (110). On the other hand,

the asymmetric K matrix K̃ðu;uÞ
df;3 appearing in the TOPT

version of the asymmetric quantization condition, Eq. (81),
is not invariant (see Appendix E). Nevertheless, the sym-
metrized quantity K̃0

df;3 is invariant, since it equals Kdf;3.
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APPENDIX A: TECHNICAL COMMENTS ON
TIME-ORDERED PERTURBATION THEORY

In this appendix we address two technical issues con-
cerning the application of TOPT described in the main text.
These are, first, the use of the physical, renormalized mass
in energy denominators—and more generally, our apparent
neglect of self-energy diagrams—and, second, the presence
of an additional class of diagrams with relevant (three-
particle) cuts. Both issues have been partially addressed
previously in Ref. [39], and our discussion here leans
heavily on the analysis in that work.
We begin with the first issue, which we first restate in

more detail. In the discussion in the main text, the
kinematic factor associated with each cut involves the
physical mass m rather than the bare mass. In particular,
the factors of ωk that appear in both energy denominators
and propagator factors are given by ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. This

appears to ignore the fact that the full propagator in any
RFT has a more complicated analytic form than a simple

pole, due to the usual iteration of self-energy diagrams. In
fact, we are not ignoring self-energy diagrams, but instead
dealing with them first in the context of a Feynman diagram
decomposition, and then converting to TOPT to give the
rules described in Sec. II A.
To explain our approach, we begin by writing the

quantity under consideration, i.e., C3;L or M̃ðu;uÞ
3;L , in terms

of the Feynman diagrams that follow from the Lagrangian
of our generic relativistic effective field theory. Following
HS1, we organize these diagrams into a skeleton expansion
in terms of Bethe-Salpeter kernels and appropriately
defined dressed propagators. The only subtlety here is that
for diagrams in which all of the momentum is carried by a
single propagator, the self-energy diagrams that dress this
propagator must be 3PIs, instead of the usual 1PIs. This
allows all possible contributions with three-particle inter-
mediate states to be made explicit. This is explained in the
text surrounding Eq. (49) of HS1, and the distinction
between 1PIs and 3PIs self-energies is illustrated (in the
context of a theory without the Z2 symmetry) in Fig. 4
of Ref. [39].
At this stage HS1 use TOPT in a qualitative way to

explain why all the self-energy diagrams in both types of
dressed propagators (1PIs- and 3PIs-dressed) can be
evaluated in infinite volume [see footnote 18 of HS1].
We now follow Ref. [39] and use a diagram-by-diagram
regularization, in which each Feynman diagram is accom-
panied by counterterms chosen such that it satisfies the
renormalization conditions given in Eq. (14) of Ref. [39].
In words, these conditions ensure that all self-energy
diagrams, and their first derivatives with respect to p2,
vanish on shell (when evaluated in infinite volume). Each
self-energy diagram thus behaves as ðp2 −m2Þ2 close to
the on-shell point, where we are using the result that
Feynman diagrams yield Lorentz-invariant expressions.
It then follows that, in the usual geometric series that
builds up the fully dressed propagator, only the leading
term—a single, undressed propagator—has a pole, and
this is of unit residue and at the position of the physical
mass. All other contributions to the dressed propagator
are either momentum-independent constants or vanish as
powers of p2 −m2. For example, a sequence with an
undressed propagator followed by a self-energy and
another undressed propagator has the leading behavior
ðp2 −m2Þ−1ðp2 −m2Þ2ðp2 −m2Þ−1, i.e., a constant. Such
contributions correspond in position space to delta func-
tions or derivatives thereof, and thus can be collapsed to
point-like interactions. (Examples of this collapse, albeit in
a slightly different context, are given in Appendix B.2 of
Ref. [39].) Any tadpole loops that result (propagators
beginning or ending at the same vertex) can also be
collapsed, since, as discussed in Appendix B.1 of
Ref. [39], they have nonsingular summands that cannot
enter into a cut. The end result of these manipulations is that
we are left to evaluate the subset of diagrams in which there

30The latter result follows because K̃0ðu;uÞ
df;3 is related to the

Lorentz invariant quantity Mðu;uÞ
3 by integral equations of the

same form as given in Appendix E, which are boost invariant.
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are no self-energy contributions or tadpole loops, except for
self-energy diagrams involving three-particle cuts if they
are on a single propagator that carries all the momentum.
[An example of such a diagram is Fig. 11(a), viewed as a
Feynman diagram.] When evaluating this reduced class of
diagrams we must use modified vertices, due to the collapse
of propagators and tadpole loops, but the key point is that
all propagators that remain have their free form in terms of
the physical mass.
At this stage we can break each Feynman diagram into

its constituent time orderings, following the method
explained, for example, in Ref. [56]. This leads to the
rules described in Sec. II A, with all factors of ω containing
the physical mass. The only subtlety is the need to break up
counterterms for vertex diagrams into Lorentz noncovariant
parts so that each TOPT diagram is finite. This does not
present problems, as discussed in Appendix B.5 of
Ref. [39]. Thus we have resolved the first issue.
We now turn to the second issue, which concerns a class

of diagrams that leads to “fake” three-particle cuts. By fake,
we mean that they will be canceled when all time orderings
are added. Diagrams in this class all have the momentum
carried by a single propagator, and involve the self-energy
diagrams that allow three-particle cuts. These are the self-
energy diagrams that were not part of collapsed dressed
propagators in the analysis above. In TOPT, such diagrams
can have genuine three-particle cuts, as shown for example
in Fig. 11(a), as well “Z-type” configurations that have fake
cuts, as in Fig. 11(b). We know the latter cuts must cancel,
because if we sum over all time orderings, we will end up
with a result having singularities (higher-order poles) only
at p2 ¼ m2.
The simplest way of dealing with this issue is to

restrict E� to lie far above m, so that we do not approach
the single-particle pole. For example, we could consider
E�>E�

0¼2m, so that p2>E�2
0 ¼4m2 and p2 −m2 > 3m2.

In that case, the single propagator can be Taylor-expanded
about p2 ¼ E�2

0 , and thus collapsed to a series of momen-
tum-dependent vertices. This completely removes the

Z-type time-orderings, while retaining those that lead to
genuine relevant cuts.

APPENDIX B: RELATING K̄2;L TO K2

In this appendix we derive Eqs. (65)–(69) in the main
text, i.e., we show that the two-particle matrix contained in
K̄2;L is indeed (a variant of) the K matrix. A secondary
purpose is to explain the definition of the generalized PV
pole prescription.
Our approach is to consider the two-particle finite-

volume amplitude M2;L, which is given by the sum of
all amputated 2 → 2 diagrams. Since our notation is set up
for three-particle correlators, we package M2;L in an
analogous manner to that used for B̄2;L [Eq. (11)],

½M̄2;L�ka;pr ≡ δkp2ωkL3M2;LðE2;k;P2;k; a; rÞ;
E2;k ≡ E − ωk; P2;k ≡ P − k: ðB1Þ

This amplitude is off shell in general. It is given in TOPT by

iM̄2;L ¼ iB̄2;L
1

1 − iDFiB̄2;L
; ðB2Þ

which, using the on-shell projection result Eq. (57), as well
as the definition of K̄2;L, Eq. (65), can be rewritten as

iM̄2;L ¼ iK̄2;L
1

1 − iF̃iK̄2;L
: ðB3Þ

If we project external indices on shell, so that all matrices
are square, we can invert this result to obtain

ðM̄on
2;LÞ−1 ¼ ðK̄on

2;LÞ−1 þ F̃; ðB4Þ
where the “on” labels indicate that both amplitudes must be
completely on shell for the equation to hold.
The next step is to take the infinite-volume limit in such a

way that the left-hand side goes over to the (inverse of the)
on-shell infinite-volume scattering amplitude. To obtain

FIG. 11. Examples of TOPT diagrams for M̃ðu;uÞ
3;L in which all the momentum flows through a single propagator. Notation as in Fig. 1.

The two panels show different time orderings of the same Feynman diagram, and involve self-energy insertions containing three
propagators. The time-ordering shown in (a) has two genuine three-particle cuts, lying between which is a contribution to B3. Time-
ordering (b) has a fake three-particle cut that cancels when all time orderings are included. If the propagators carrying all the momentum
are collapsed to pointlike vertices, which is valid for p2 ≫ m2 as discussed in the text, then diagrams of type (a) remain, while those with
the Z-type time ordering shown in (b) are removed, since such a time ordering is no longer possible.
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this limit, we first remove extraneous common factors
(introduced by carrying along the spectator) by multiplying
Eq. (B4) by the matrix 2ωL3 [defined in Eq. (77)] and
dropping the δkp that is common to all three terms. We then
take the L → ∞ limit holding E2;k and P2;k fixed, which
ensures that in the CMF of the scattering pair, the
momentum of each particle in the pair is held fixed at
q�2;k. Following the prescription used in HS2, we make this
limit well defined by reintroducing the factors of iϵ into the
energy denominators contained in the factors of DF in
Eq. (B2), and only then turning sums into integrals. The
result is

δll0δmm0 ½MðlÞ
2 ðq�2;kÞ�−1 ¼ δll0δmm0 ½KðlÞ

2 ðq�2;kÞ�−1

þ δll0δmm0 ρ̃ðlÞPVðq�22;kÞ; ðB5Þ

where MðlÞ
2 is the lth partial wave of M2,

ρ̃ðlÞPVðq�22;kÞ≡HðkÞ
�
ρ̃ðq�22;kÞ þ

1

32π2
IðlÞPVðq�22;kÞ

�
; ðB6Þ

with the phase space factor given by

ρ̃ðq�22;kÞ≡ 1

16πE�
2;k

8<:−ijq�2;kj q�22;k > 0

jq�2;kj q�22;k ≤ 0
; ðB7Þ

and IðlÞPV is an arbitrary real, smooth function. Here we have
assumed that HðkÞ is, in fact, a function of q�22;k, as is the
case in all numerical work to date [8,41,43,44]. The second
term on the right-hand side of Eq. (B5) is obtained using
Eqs. (22)–(26) of HS1 (where the standard PV prescription
is defined in the context of F̃), together with Eq. (3.5) of
Ref. [41] (where the generalized PV prescription is
defined), which together lead to

2ωkL3F̃klm;pl0m0 ¼ δkp½Fiϵ
lm;l0m0 ðkÞ þ δll0δmm0 ρ̃ðlÞPVðq�22;kÞ�;

ðB8Þ

where

Fiϵ
lm;l0m0 ðkÞ≡HðkÞ

2!

�
1

L3

XUV
a

−
Z

UV

a

�
1

2ωa

Ylmða�kÞ
q�l2;k

1

2ωbðE − ωk − ωa − ωb þ iϵÞ
Yl0m0 ða�kÞ

q�l02;k

ðB9Þ

is the quantity defined in Eq. (24) of HS1. Note that Fiϵ →
0 in the “iϵ” L → ∞ limit.

APPENDIX C: ALGEBRAIC MATRIX
MANIPULATIONS

In the main text, we encounter several times [see for
example, Eqs. (60) and (85)] matrix expressions of the form

m2 þm3 ¼ ðc2 þ c3Þ
1

1 − ðf þ gÞðc2 þ c3Þ
; ðC1Þ

¼ 1

1 − ðc2 þ c3Þðf þ gÞ ðc2 þ c3Þ; ðC2Þ

m2 ¼ c2
1

1 − fc2
⇒ m−1

2 ¼ c−12 − f; ðC3Þ

from which we wish to determine an expression form3. For
the sake of clarity and completeness, we collect here the
algebraic steps that lead to the form used in the main text.
We stress that these and similar steps have been repeatedly
used in previous RFT papers, i.e., in HS1, HS2, and
Refs. [39–42].
As a first step, we define d23 asm2 þm3 evaluated when

c3 → 0:

d23 ≡ c2
1

1 − ðf þ gÞc2
: ðC4Þ

This can be rewritten as

d−123 ¼ c−12 − f − g ¼ m−1
2 − g ⇒

d23 ¼ m2

1

1 − gm2

¼ m2 þ d3; d3 ≡m2gm2

1

1 − gm2

:

ðC5Þ

In words, m2 is obtained by summing all the c2 terms
joining by factors of f, and d23 is then obtained by putting
in factors of g in all possible ways.
Our aim is to pull out the c3 dependence of m3 from

Eq. (C1). The steps are

m2 þm3 − d23 ¼ ð1þ c3c−12 Þ 1

c−12 − ðf þ gÞð1þ c3c−12 Þ
− d23 ðC6Þ

¼ ð1þ c3c−12 Þ 1

d−123 − ðf þ gÞc3c−12
− d23 ðC7Þ

¼ ð1þ c3c−12 Þ 1

1 − d23ðf þ gÞc3c−12
d23 − d23 ðC8Þ
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¼ c3c−12
1

1 − d23ðf þ gÞc3c−12
d23

þ d23ðf þ gÞc3c−12
1

1 − d23ðf þ gÞc3c−12
d23 ðC9Þ

¼ ½1þ d23ðf þ gÞ�c3c−12
1

1 − d23ðf þ gÞc3c−12
d23 ðC10Þ

¼ 1

1 − c2ðf þ gÞ c3
1

1 − c−12 d23ðf þ gÞc3
c−12 d23: ðC11Þ

This can be further simplified using

c−12 d23 ¼
1

1 − ðf þ gÞc2
¼ 1þ ðf þ gÞd23: ðC12Þ

A useful way of rewriting the final result is

m3 ¼ d3 þ ½1þ d23ðf þ gÞ�c3
×

1

1 − ½1þ ðf þ gÞd23�ðf þ gÞc3
½1þ ðf þ gÞd23�;

ðC13Þ

which is used to obtain, for example, Eqs. (72) and (86).
Clearly this derivation relies on the existence of the

various inverse matrices that appear, and thus, in particular,
it assumes that the matrices are square.

APPENDIX D: ASYMMETRIZATION
IDENTITIES

In this appendix we derive the identities needed in

Sec. IV B to asymmetrize the HS2 amplitude Mðu;uÞ
3;L .

These results are extensions of the symmetrization iden-
tities derived in HS1 [see Eqs. (163) and (198) of that work
and surrounding discussions].

1. General asymmetric kernels

Here we review the notation developed in HS1 to

describe general asymmetric kernels, e.g., Kðu;uÞ
df;3 , as well

as collecting some of their key properties. To lighten the
notation we denote a generic asymmetric kernel as ZðuÞ,
where we only make explicit the symmetry status of one
“side” of the kernel. The meaning of the superscripts (u)
and ðu; uÞ have been explained in the main text, with the
key point being that, in the fklmg index space describing
three on-shell particles, the momentum label k is always
associated with the spectator.
We only consider amplitudes that are fully on shell,

denoting the four-momenta of the three particles as k
(spectator), p, and b ¼ P − k − p (the interacting pair).
The discussion in Sec. II C 1 explains the procedure for on-

shell projection that defines ZðuÞ
klm (where again we show

only one set of indices). Using Eq. (31), the full momentum
dependence of ZðuÞ is given by

ZðuÞðk; p̂�
kÞ ¼ ZðuÞ

klm

ffiffiffiffiffiffi
4π

p
Ylmðp̂�

kÞ; ðD1Þ

where p�
k is obtained by the boost of Eqs. (28) and (29)

(which is equivalent to the boost of HS1 since the particles
are on shell). Since the kernel is on shell, it depends only on
the direction of p�

k and not its magnitude (for given k).
Because we are considering identical particles, ZðuÞ is
invariant under p ↔ b interchange. Since this interchange
is effected in our variables by changing the sign of p̂�

k, Z
ðuÞ

satisfies

ZðuÞðk; p̂�
kÞ ¼ ZðuÞðk; b̂�

kÞ ¼ ZðuÞðk;−p̂�
kÞ ⇔

ZðuÞ
klm ¼ 0 if l is odd: ðD2Þ

We next define asymmetric kernels with superscript (s).
Here the momentum k is assigned to one of the interacting
pair, while p is assigned to the spectator:

ZðsÞðk; p̂�
kÞ ¼ ZðsÞ

kl0m0
ffiffiffiffiffiffi
4π

p
Yl0m0 ðp̂�

kÞ≡ ZðuÞðp; k̂�
pÞ: ðD3Þ

We stress that there is a one-to-one relation between
fk; p̂�

kg and fp; k̂�
pg, i.e., one set of variables uniquely

determines the other.
In the third option, both k and p are assigned to the

interacting pair. Since this configuration is obtained from
the ZðsÞ assignment by interchanging p and b, we have

Zðs̃Þðk; p̂�
kÞ ¼ Zðs̃Þ

kl0m0
ffiffiffiffiffiffi
4π

p
Yl0m0 ðp̂�

kÞ≡ ZðsÞðk;−p̂�
kÞ

⇒ Zðs̃Þ
klm ¼ ð−1ÞlZðsÞ

klm: ðD4Þ

In addition, using the one-to-one relation between fk; p̂�
kg

and fb; p̂�
bg, and the symmetry of ZðuÞ under p ↔ b, we

have

Zðs̃Þðk; p̂�
kÞ ¼ ZðuÞðb; p̂�

bÞ: ðD5Þ

We will also need the result from HS1 that F̃ vanishes if
l0 þ l is odd:

ð−1Þl0F̃k0l0m0;klmð−1Þl ¼ F̃k0l0m0;klm: ðD6Þ

This holds for all boosts that agree on shell, and thus for the
Wu boost we use in this work. Together with the results in
Eqs. (D2) and (D4), this implies the following useful set of
equalities,
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XðuÞF̃Zðs̃Þ ¼ XðuÞF̃ZðsÞ; Xðs̃ÞF̃ZðuÞ ¼ XðsÞF̃ZðuÞ;

XðsÞF̃ZðsÞ ¼ Xðs̃ÞF̃Zðs̃Þ; Xðs̃ÞF̃ZðsÞ ¼ XðsÞF̃Zðs̃Þ; ðD7Þ

where X is another kernel.
The symmetric on-shell amplitude is obtained by adding

all three attachments

Z≡ Zðuþsþs̃Þ ¼ ZðuÞ þ ZðsÞ þ Zðs̃Þ; ðD8Þ

where we are using the convention that adding supers-
cripts corresponds to adding the underlying amplitudes.
Equation (D8) is the on-shell version of the off-shell
symmetrization definition given in Eq. (84).

2. Deriving Eqs. (102) and (103)

The first two asymmetrization identities of Sec. IV B
have essentially been derived in Eq. (163)–(165) of HS1.
Here we need a slightly more explicit form, so we repeat the
essential steps.
We begin with Eq. (102). For concreteness, we act the

identity on the vector of amplitudes ðZðuÞ; Zðsþs̃ÞÞ. Then the
identity to be demonstrated can be rewritten as

Δ⃗≡ XðuÞ½F̃ZðsÞ þ F̃Zðs̃Þ − G̃ZðuÞ� ¼ −XðuÞI⃗GZðuÞ; ðD9Þ

where Δ⃗ is simply a shorthand for the left-hand side of this
equation, with the arrow pointing in the direction of the
amplitudes that are being asymmetrized. Using results from
Eq. (D7), this can be written as

Δ⃗ ¼ XðuÞð2F̃ZðsÞ − G̃ZðuÞÞ
¼ XðuÞð2Σ̃FZðsÞ − 2ĨFZðsÞ − G̃ZðuÞÞ; ðD10Þ

where the second form is obtained by splitting F̃, Eq. (55),
into its sum and integral part, F̃ ¼ Σ̃F − ĨF. The explicit
form for Σ̃F is given in Eq. (G3). Note that the integral ĨF
differs from the integral operator ĨF of Eq. (56), the latter
being denoted by a calligraphic symbol. We regulate the
UV by inserting a factor of HðpÞ, and choose the
relativistic form of the pole term, both choices that only
change F̃ by exponentially suppressed terms. Then, using
the definition of G̃, Eq. (47), we find

XðuÞ½2Σ̃FZðsÞ − G̃ZðuÞ� ¼
X
k

1

2ωkL3

X
p

1

2ωpL3

X
lm

XðuÞ
klm

Ylmðp�
kÞ

q�l2;k

HðkÞHðpÞ
b2 −m2

×

�X
l0m0

�
p�
k

q�2;k

�
l0 ffiffiffiffiffiffi

4π
p

Yl0m0 ðp̂�
kÞZðsÞ

kl0m0 −
X
l0m0

�
k�p
q�2;p

�
l0 ffiffiffiffiffiffi

4π
p

Yl0m0 ðk̂�
pÞZðuÞ

pl0m0

�
: ðD11Þ

The key observation is now that the expression in curly
braces vanishes when b2 ¼ m2, i.e., when all three particles
are on shell. For then p�

k ¼ q�2;k and k
�
p ¼ q�2;p, so the sums

over l0 and m0 can be done, leading to ZðsÞðk; p̂�
kÞ−

ZðuÞðp; k̂�
pÞ, which vanishes because of Eq. (D3). Because

of this cancellation, the sum over p can be replaced by
an integral. This integral requires no pole prescription,
but if we wish to separate the two terms in curly braces,
then we must choose a prescription, and we use the
generalized PV prescription. Then the first term in curly
braces gives 2ĨF, which cancels the−2ĨF term in Eq. (D10).
What remains is

Δ⃗ ¼ −
X
k

1

2ωkL3
PV
Z
p

1

2ωp
XðuÞ
klmG

b
klm;pl0m0Z

ðuÞ
pl0m0 ;

ðD12Þ

where Gb is defined in Eq. (44). What happens to the sum
over k depends on the form of XðuÞ. If XðuÞ ¼ M̄2;L, which
contains a Kronecker delta, k is set equal to the external
spectator momentum. If XðuÞ is a three-particle amplitude

such as Dðu;uÞ
L , then k is an internal index and the sum over

it can be converted to an integral, since the PV integration
over p leads to a smooth function. In either case, XðuÞ and
ZðuÞ are sewed together by an integral operator. We define
I⃗G to be this integral operator, leading to the right-hand
side of the identity Eq. (D9). It is similar to the operator ĨF,
and thus we use a similar name.
To summarize, in the difference Δ⃗, the terms cancel

exactly on shell, allowing the sums to be replaced by (PV-
regulated) integrals. Once this is done, F̃ vanishes, since it
is a sum-integral difference. Thus one simply ends up with
an integral over the −G̃ contribution. We note that the
argument holds for both choices of boost to the CMF of the
scattered pair considered in the main text, i.e., the Wu boost
and the boost used in HS1. One needs only to use the same

boost in G̃ and I⃗G.
The argument for the second identity, Eq. (103), is

essentially the horizontal reflection of that for Eq. (102),
and we do not repeat the steps. The only change is that the
directionality is reversed, leading to the integral operator

I⃖G, which asymmetrizes to the left.
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3. Derivation of Eq. (104)

To derive Eq. (104), we make it concrete by applying
ðXðuÞ; Xðsþs̃ÞÞ on the left and ðZðuÞ; Zðsþs̃ÞÞ on the right.
Since X and Z are stand-ins forKdf;3, they are three-particle
amplitudes for which the spectator momentum labels are
summed, and not constrained by a Kronecker delta. We
denote the difference between the left-hand side of
Eq. (104) and the F̃ þ G̃ term on the right-hand side by

Δ
↔
. Our aim is to show that this is an integral operator. We

begin by breaking it into four parts

3Δ
↔ ≡ Xðuþsþs̃ÞF̃Zðuþsþs̃Þ − 3XðuÞðF̃ þ G̃ÞZðuÞ ðD13Þ

¼ Δ
↔

1 þ Δ
↔

2 þ Δ
↔

3 þ Δ
↔

4; ðD14Þ

where

Δ
↔

1 ¼ XðuÞF̃Zðsþs̃Þ − XðuÞG̃ZðuÞ; ðD15Þ

Δ
↔

2 ¼ Xðsþs̃ÞF̃ZðuÞ − XðuÞG̃ZðuÞ; ðD16Þ

Δ
↔

3 ¼ XðsÞF̃ZðsÞ þ Xðs̃ÞF̃Zðs̃Þ − 2XðuÞF̃ZðuÞ; ðD17Þ

Δ
↔

4 ¼ Xðs̃ÞF̃ZðsÞ þ XðsÞF̃Zðs̃Þ − XðuÞG̃ZðuÞ: ðD18Þ
The first two parts can be evaluated using the identities
Eq. (102) and (103), leading to

Δ
↔

1 ¼ −XðuÞI⃗GZðuÞ and Δ
↔

2 ¼ −XðuÞI⃖GZðuÞ: ðD19Þ
For the remaining two parts a new analysis is needed.

For Δ
↔

3, using the third result in Eq. (D7), we obtain

Δ
↔

3 ¼ 2XðsÞF̃ZðsÞ − 2XðuÞF̃ZðuÞ: ðD20Þ

Separating the F̃’s into sum and integral parts, we have

Δ
↔

3 ≡ Δ
↔

3Σ − Δ
↔

3I; ðD21Þ

Δ
↔

3Σ ¼ 2XðsÞΣ̃FZðsÞ − 2XðuÞΣ̃FZðuÞ; ðD22Þ

Δ
↔

3I ¼ 2XðsÞĨFZðsÞ − 2XðuÞĨFZðuÞ: ðD23Þ

The integral part can be converted into a double integral
because of the smoothness of the first PV-regulated
integral,

Δ
↔

3I ¼
Z
k
PV
Z
p
fXðsÞ

kl0m0Fb
l0m0;lmðk;pÞZðsÞ

klm − XðuÞ
kl0m0Fb

l0m0;lmðk;pÞZðuÞ
klmg; ðD24Þ

where (again regulating the p integral in the UV with HðpÞ, but here keeping the original form of the pole)

Fb
l0m0;lmðk;pÞ ¼

Yl0m0 ðp�
kÞ

q�l02;k

HðkÞHðpÞ
2ωk2ωp2ωbðE − ωk − ωp − ωbÞ

Ylmðp�
kÞ

q�l2;k
: ðD25Þ

The sum part Δ
↔

3Σ has the same form as (D24) except that both integrals are replaced by sums. Naively we might expect
the two terms to cancel, since the difference between (s) and (u) quantities is just a k ↔ p relabeling. To investigate this we
interchange the dummy variables k and p for the second term in the sum, resulting in31

Δ
↔

3Σ ¼ 1

L6

X
k;p

fXðsÞ
kl0m0Fb

l0m0;lmðk;pÞZðsÞ
klm − XðuÞ

pl0m0Fb
l0m0;lmðp;kÞZðuÞ

plmg: ðD26Þ

The summand has a pole at each of the free three-particle energies, with residue

1

8ωkωpωb
½XðsÞðk; p̂�

kÞZðsÞðk; p̂�
kÞ − XðuÞðp; k̂�

pÞZðuÞðp; k̂�
pÞ�jon shell; ðD27Þ

which vanishes due to Eq. (D3). Thus the sum can be converted into an integral. We choose to do the p integral first using
the generalized PV prescription, leading to

Δ
↔

3Σ ¼
Z
k
PV
Z
p
fXðsÞ

kl0m0Fb
l0m0;lmðk;pÞZðsÞ

klm − XðuÞ
pl0m0Fb

l0m0;lmðp;kÞZðuÞ
plmg: ðD28Þ

31An alternative approach, used, for example, in the analysis around Eq. (196) of HS1, is to use the sum-integral identity in reverse to

write the original expression for Δ
↔

3 in terms of off-shell amplitudes, which are more easily manipulated. We do not follow this approach,
however, since it requires accounting for the difference between off-shell amplitudes calculated using Feynman diagrams and TOPT.
Instead, we work entirely with on-shell amplitudes.
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As far as we can see, this difference does not vanish. What we have achieved, however, is to convert the sum part of Δ
↔

3 into
an integral. Subtracting from this the result from Eq. (D24), the terms involving (s) quantities cancel, leading to

Δ
↔

3 ¼
Z
k
PV
Z
p
fXðuÞ

kl0m0Fb
l0m0;lmðk;pÞZðuÞ

klm − XðuÞ
pl0m0Fb

l0m0;lmðp;kÞZðuÞ
plmg ðD29Þ

≡XðuÞI
↔

FZðuÞ: ðD30Þ

We have not found a useful way to simplify this further, but
this result is sufficient for our purposes. The key point is
that it involves an integral operator that acts on the (u)
components of the amplitudes.

Finally, we consider Δ
↔

4, Eq. (D18), which can be
analyzed using a combination of the methods used above.
We only give an outline of the calculation. First, using
Eq. (D7), we see that the first two terms are the same,
so that

Δ
↔

4 ¼ Xðs̃Þ2F̃ZðsÞ − XðuÞG̃ZðuÞ

¼ Xðs̃Þ2Σ̃FZðsÞ − XðuÞG̃ZðuÞ − Xðs̃Þ2ĨFZðsÞ: ðD31Þ

The first two terms involve double sums over k and p. For
the G̃ term we replace the sum over k with that over b,
which is simply a change of variables, and then rename k as
b and vice versa. Then the residue of the pole in E is

1

8ωkωpωb
½Xðs̃Þðk; p̂�

kÞZðsÞðk; p̂�
kÞ

− XðuÞðb; p̂�
bÞZðuÞðp; b̂�

pÞ�jon shell: ðD32Þ

The identities Eqs. (D2) and (D5) imply that this vanishes.
Thus, once again, we can replace the sums by (PV-
regulated) integrals. This sends Σ̃F → ĨF, canceling the
existing ĨF term (which, as above, can be converted to a
double integral) and leaving only the integral over the
G̃ term.
In this way we find

Δ
↔

4 ¼ −XðuÞ
Z
k
PV
Z
p
ZðuÞ
bl0m0Gb

bl0m;plmZ
ðuÞ
plm ≡ XðuÞI

↔

GZðuÞ:

ðD33Þ

We use a bidirectional arrow since the order of integrals
here is irrelevant (as long as the first one is done using the
PV prescription). This can be shown by starting from the
form involving XðsÞF̃Zðs̃Þ.
Pulling together the results for the four components,

given in Eqs. (D19), (D30), and (D33), we have

Δ
↔ ¼ −

1

3
XðuÞðI⃗G þ I⃖G − I

↔

F þ I
↔

GÞZðuÞ ðD34Þ

≡XðuÞ ⊗G ZðuÞ; ðD35Þ

where in the second line we have introduced a compact
notation. All that matters for the argument in the main text
is that this is a known integral joining operator acting on the
asymmetric (u) kernels. As before, this result holds
independent of the choice of boost.

APPENDIX E: RELATING K̃ðu;uÞ
df;3 TO M3

The aim in this appendix is to take an appropriate
infinite-volume limit of Eq. (86) and obtain integral

equations relating M3 to K̃ðu;uÞ
df;3 . All quantities in this

subsection will be on shell, so that our M3;L, M2;L, and

Dðu;uÞ
L are strictly the same as those in HS2. Since our result

for M̃ðu;uÞ
3;L is similar to that for the corresponding quantity

Mðu;uÞ
3;L in HS2 [see Eq. (68) of that work], we can take over

much of the analysis essentially without change.
The infinite-volume limit that is required has been

described in Appendix B. It sends

½M3;L�klm;pl0m0 → M3ðk;pÞlm;l0m0 ; ðE1Þ

where now k and p are continuous variables. Analogous

limits hold for M̃ðu;uÞ
3;L , Dðu;uÞ

L , and T̃ ðu;uÞ
L . As noted earlier,

K̃ðu;uÞ
df;3 is already an infinite-volume quantity, so the only

change is to replace discrete with continuous momenta. For
the other quantities, we have

lim
L→∞

½M̄2;L�klm;pl0m0 ¼ δ̄ðk − pÞM2ðkÞlm;l0m0 ; ðE2Þ

δ̄ðk − pÞ≡ 2ωkð2πÞ3δ3ðk − pÞ ðE3Þ

M2ðkÞlm;l0m0 ¼ δll0δmm0MðlÞ
2 ðq�2;kÞ; ðE4Þ

where MðlÞ
2 is the lth partial wave of M2, while from

Eq. (B8) we read off that
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lim
L→∞

2ωkL3F̃klm;pl0m02ωpL3 ¼ δ̄ðk − pÞρ̃PVðkÞlm;l0m0 ;

ðE5Þ

ρ̃PVðkÞlm;l0m0 ¼ δll0δmm0 ρ̃ðlÞPVðq�22;kÞ; ðE6Þ

where ρ̃ðlÞPV, given in Eq. (B6), is a smooth function, and,
finally,

lim
L→∞

2ωkL3G̃klm;pl0m02ωpL3

≡G∞
lm;l0m0 ðk;pÞ ¼ Ylmðp�

kÞ
q�l2;k

HðkÞHðpÞ
b2 −m2 þ iϵ

Yl0m0 ðk�
pÞ

q�l0
2;p

:

ðE7Þ

The latter function, taken from HS2, is simplyGb, Eq. (44),
but with the iϵ added back, and the discrete momentum
indices converted to continuous arguments.
When the L → ∞ limit is taken in this way, it is

straightforward to see that the factors of ð2ωL3Þ−1 coming
with F̃ and G̃ convert all momentum sums into integrals
with Lorentz-invariant measure

X
k

1

2ωkL3
⟶
L→∞

Z
d3k

2ωkð2πÞ3
≡
Z
k

1

2ωk
: ðE8Þ

Matrix equations involving geometric series then become
integral equations. In particular, Eq. (87) becomes

iDðu;uÞðk;pÞ ¼ iM2ðkÞ
Z
s

1

2ωs
iG∞ðk; sÞ½δ̄ðs − pÞiM2ðpÞ þ iDðu;uÞðs;pÞ�; ðE9Þ

where angular-momentum indices are implicit. This is identical to Eq. (85) of HS2. The core geometric series in Eq. (86)
becomes an integral equation for T̃ ðu;uÞ,

iT̃ ðu;uÞðk;pÞ ¼ iK̃ðu;uÞ
df;3 ðk;pÞ þ

Z
r;s;t

1

2ωr2ωs2ωt
½δ̄ðk − rÞiρ̃PVðkÞ þ iG∞ðk; rÞ�

× ½δ̄ðr − sÞiM2ðrÞ þ iDðu;uÞðr; sÞ�½δ̄ðs − tÞiρ̃PVðsÞ þ iG∞ðs; tÞ�iT̃ ðu;uÞðt;pÞ: ðE10Þ

This differs from the corresponding equation in HS2 [Eq. (91) of that work] due to the asymmetry of our K̃ðu;uÞ
df;3 , and the

presence here of factors of F̃ þ G̃ in place of F̃. Finally, the factors on either side of T̃ ðu;uÞ
L in Eq. (86) become integral

operators. That on the left becomes

L̃ðu;uÞðk; sÞ ¼ δ̄ðk − sÞ þ
Z
r

1

2ωr
½δ̄ðk − rÞiM2ðkÞ þ iDðu;uÞðk; rÞ�½δ̄ðr − sÞiρ̃PVðrÞ þ iG∞ðr; sÞ�; ðE11Þ

while that on the right, R̃ðu;uÞ, is given by the horizontal reflection. These also differ from their analogs in HS2 (Lðu;uÞ and
Rðu;uÞ) by the presence here of contributions resulting from F̃ þ G̃ in place of F̃.

Putting these pieces together, we obtain the final expression for M̃ðu;uÞ
3 ,

iM̃ðu;uÞ
3 ðk;pÞ ¼ iDðu;uÞðk;pÞ þ

Z
r;s

1

2ωr2ωs
iL̃ðu;uÞðk; rÞiT̃ ðu;uÞðr; sÞiR̃ðu;uÞðs;pÞ: ðE12Þ

This is then symmetrized to obtain M3ðk;pÞ. The sym-
metrization of on-shell quantities is given by the on-shell
limit of Eq. (84), and has been discussed extensively in HS2
[see discussion around Eqs. (35)–(37) of that work].
One property of this result is that, despite the apparently

Lorentz invariant form of the relations derived in this

appendix, K̃ðu;uÞ
df;3 is not Lorentz invariant. Here by K̃ðu;uÞ

df;3

we refer to the form obtained after multiplying

K̃ðu;uÞ
df;3 ðk;pÞl0m0;lm by spherical harmonics and summing

over angular momentum indices, i.e., the quantity that
depends only on the external momenta. It cannot be

Lorentz invariant because M̃ðu;uÞ
3 is not invariant, as its

asymmetry is defined in terms of TOPT kernels, and these
are frame dependent.
In summary, the relation between our asymmetric

kernel K̃ðu;uÞ
df;3 and M3 is of a similar form to that between

Kdf;3 and M3 obtained in HS2. The main point is that
such a relation exists, so that our new quantization con-
dition has the same logical status as that of HS1. We expect
that solving the integral equations numerically (usually
done by going back to the matrix form) will be of similar
difficulty.
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APPENDIX F: DERIVING EQS. (108) AND (109)

In this appendix we provide some details of the derivation of Eqs. (108) and (109). We make extensive use of the
following identities:

iDðu;uÞ
23;L ¼ 1

1 − iK̄2iðF̃ þ G̃Þ iK̄2 ðF1Þ

¼
�
1þ 1

1 − iK̄2iðF̃ þ G̃Þ iK̄2iðF̃ þ G̃Þ
�
iK̄2; ðF2Þ

iðF̃ þ G̃Þ½1þ iDðu;uÞ
23;L iðF̃ þ G̃Þ� ¼ iðF̃ þ G̃Þ 1

1 − iK̄2iðF̃ þ G̃Þ ¼
1

1 − iðF̃ þ G̃ÞiK̄2

iðF̃ þ G̃Þ; ðF3Þ

where Dðu;uÞ
23;L is defined in Eq. (90).

We start from Eqs. (106) and (107). Using the identities (F2) and (F1) in turn, we find

iDðu;uÞ
23;L ð−iI⃗GÞiK0ðu;uÞ

df;3 ¼
�
1þ 1

1 − iK̄2iðF̃ þ G̃Þ iK̄2iðF̃ þ G̃Þ
�
iK̄2ð−iI⃗GÞiK0ðu;uÞ

df;3 ðF4Þ

¼ ½1þ iDðu;uÞ
23;L iðF̃ þ G̃Þ�iK̄2ð−iI⃗GÞiK0ðu;uÞ

df;3 ; ðF5Þ

so that the factor on the left-hand end of Eq. (106) can be written (when acting to the right on K0ðu;uÞ
df;3 )

½1þ iDðu;uÞ
23;L iðF̃ þ G̃ − I⃗GÞ� ¼ ½1þ iDðu;uÞ

23;L iðF̃ þ G̃Þ�ð1 − iK̄2iI⃗GÞ: ðF6Þ

The factor on the right-hand end of Eq. (106) gives the horizontal reflection of this expression.

To simplify T ðu;uÞ
L , Eq. (107), we first use (F2) to obtain

iI⃖GiD
ðu;uÞ
23;L iI⃗G ¼ iI⃖GK̄2iI⃗G þ iI⃖GK̄2

1

1 − iðF̃ þ G̃ÞiK̄2

iðF̃ þ G̃ÞiK̄2iI⃗G; ðF7Þ

and then expand out the term that lies between factors of Kðu;uÞ
df;3 using (F3)

iðF̃ þ G̃þ ⊗GÞ þ iðF̃ þ G̃ − I⃖GÞiDðu;uÞ
23;L iðF̃ þ G̃ − I⃗GÞ ðF8Þ

¼ i ⊗G þiðF̃ þ G̃Þ 1

1 − iK̄2iðF̃ þ G̃Þ − iðF̃ þ G̃Þ 1

1 − iK̄2iðF̃ þ G̃Þ iK̄2iI⃗G

× iI⃖GiK̄2

1

1 − iðF̃ þ G̃ÞiK̄2

iðF̃ þ G̃Þ þ iI⃖GK̄2iI⃗G þ iI⃖GK̄2

1

1 − iðF̃ þ G̃ÞiK̄2

iðF̃ þ G̃ÞiK̄2iI⃗G ðF9Þ

¼ i ⊗2 þiI⃖GK̄2iI⃗G þ ð1 − iI⃖GiK̄2Þ½1þ iðF̃ þ G̃ÞiDðu;uÞ
23;L �iðF̃ þ G̃Þð1 − iK̄2iI⃗GÞ: ðF10Þ

Inserting Eq. (F6), its reflection, and Eq. (F10) into Eqs. (106) and (107) and reorganizing leads to Eqs. (108) and (109).

APPENDIX G: Σ̃F APPROACH

In Sec. II C 2, we chose to deal with off-shell F cuts using the “F̃ approach,” which is essentially the standard strategy
used in HS1 and subsequent RFT works. In this appendix we sketch an alternative method, which we refer to as the Σ̃F
approach.
The Σ̃F and F̃ approaches share the same goal, namely to rewrite quantities of the form

½X0DFX�p0r0;pr ¼ ½X0�p0r0;k0a0 ½DF�k0a0;ka½X�ka;pr; X0 ∈ fÂ0; B̄2;L;B3g; X ∈ fÂ; B̄2;L;B3g ðG1Þ
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in terms of a part in which the “middle” indices are
projected on-shell and a remainder. In the Σ̃F approach,
we use exactly the same strategy that we used to deal with
G cuts in Sec. II C 1. The end result is an F-cut analog of
Eq. (52):

X0DFX ¼ X0ðΣ̃F þ δF̃ÞX: ðG2Þ

Here

½Σ̃F�k0l0m0;klm ≡ δk0k
2!

HðkÞ
XUV
a

Yl0m0 ða�kÞ
q�l02;k

1

2ωkL3

1

b2ka −m2

×
1

2ωaL3

Ylmða�kÞ
q�l2;k

ðG3Þ

is the analog of G̃,32 while δF̃ plays the analogous role to
δG̃. In particular, δF̃ accounts for all nonsingular off-shell
contributions (with its exact definition depending on the
choice of X0 and X), and we can therefore treat it as an
infinite-volume quantity by replacing all internal sums in
X0δF̃X with integrals.
Two important differences between the F̃ and Σ̃F

approaches are now clear. The first concerns the UV cutoff:
Σ̃F depends on the cutoff, while F̃ does not (up to
exponentially-suppressed terms). We stress, however, that
Σ̃F is well defined for all choices of cutoff function, due to
our use of the Wu boost.
The second difference is that the integrals in δF̃ do not

require a pole prescription, since the integrand is smooth.
This is in contrast to the integral in F̃ (denoted ĨF above),
which requires a PV prescription. This difference is the
main advantage of the Σ̃F approach.

1. Quantization condition

Inserting Eqs. (G2) and (52) into Eq. (24), we find

C3;L − Cð0Þ
3;∞ ¼ Â0iðΣ̃F þ G̃þ δF̃ þ δG̃Þ

×
1

1 − iðB̄2;L þ B3ÞiðΣ̃F þ G̃þ δF̃ þ δG̃Þ Â

ðG4Þ

¼ δCΣF
3;∞ þ A0ΣF;ðuÞiðΣ̃F þ G̃Þ

×
1

1 − iKΣF;ðu;uÞ
df;23;L iðΣ̃F þ G̃Þ

AΣF;ðuÞ; ðG5Þ

where all quantities in the last term are evaluated on shell,
with

iKΣF;ðu;uÞ
df;23;L ≡ 1

1 − iðB̄2;L þ B3ÞiðδF̃ þ δG̃Þ iðB̄2;L þ B3Þ

ðG6Þ

A0ΣF;ðuÞ ≡ Â0 1

1 − iðδF̃ þ δG̃ÞiðB̄2;L þ B3Þ
ðG7Þ

AΣF;ðuÞ ≡ 1

1 − iðB̄2;L þ B3ÞiðδF̃ þ δG̃Þ Â ðG8Þ

δCΣF
3;∞ ≡ Â0iðδF̃ þ δG̃Þ 1

1 − iðB̄2;L þ B3ÞiðδF̃ þ δG̃Þ Â:

ðG9Þ

We note that KΣF;ðu;uÞ
df;23;L can be split up as

KΣF;ðu;uÞ
df;23;L ¼ K̄ΣF

2;L þKΣF;ðu;uÞ
df;3 ; ðG10Þ

where

iK̄ΣF
2;L ≡ 1

1 − iB̄2;LiδF̃
iB̄2;L ¼ 2ωL3iKΣF

2 ; ðG11Þ

½KΣF
2 �k0l0m0;klm ≡ δk0k½KΣF

2 ðkÞ�l0m0;lm: ðG12Þ

Here KΣF
2 and KΣF;ðu;uÞ

df;3 are the respective Σ̃F-approach

analogs of the K matrices K2 and K̃ðu;uÞ
df;3 in the F̃ approach,

with their definitions only differing by using δF̃ in place
of ĨF.
From Eq. (G5), we obtain the quantization condition in

the Σ̃F approach:

det ½1þ ð2ωL3KΣF
2 þKΣF;ðu;uÞ

df;3 ÞðΣ̃F þ G̃Þ� ¼ 0: ðG13Þ

For this to be useful, we need to relate the infinite-volume

quantities KΣF
2 and KΣF;ðu;uÞ

df;3 to scattering amplitudes, and
we do so in the next two subsections.

2. Relating KΣF
2 to M2

From Appendix B and the equations above, we have

iM̄2;L ¼ iB̄2;L
1

1 − iDFiB̄2;L
ðG14Þ

¼ iK̄ΣF
2;L

1

1 − iΣ̃FiK̄
ΣF
2;L

; ðG15Þ

which gives a simple inverse relation between the on-shell
FV amplitudes:

32Following the G-cut procedure exactly actually gives two
factors of HðkÞ in Σ̃F (one from each endcap), but this is overkill
since the spectator is shared by both endcaps. UsingHðkÞ instead
of ½HðkÞ�2 in Σ̃F (and consequently the δF̃ term) is simply a
matter of preference.
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ðM̄on
2;LÞ−1 ¼ ðK̄ΣF;on

2;L Þ−1 þ Σ̃F; ðG16Þ

where again the “on” labels indicate that the amplitudes
must be completely on shell for the equation to hold. To
obtain the corresponding infinite-volume relation between

M2 and KΣ̃F
2 , we follow the same steps as we did in

Appendix B: eliminate the common spectator term by
multiplying by 2ωL3 and dropping the δk0k, take the
L → ∞ limit holding E2;k and P2;k (and therefore q�2;k)
fixed by reintroducing the iϵ term in DF, and convert all
sums to integrals. The result is

δl0lδm0m½MðlÞ
2 ðq�2;kÞ�−1 ¼ f½KΣF

2 ðkÞ�−1gl0m0;lm

þ ½IiϵF ðkÞ�l0m0;lm; ðG17Þ

where

½IiϵF ðkÞ�l0m0;lm ≡HðkÞ
2!

Z
UV

a

1

2ωa

Yl0m0 ða�kÞ
q�l02;k

×
1

b2ka −m2 þ iϵ
Ylmða�kÞ
q�l2;k

: ðG18Þ

A new feature that arises here is that IiϵF is not diagonal in
l and m. This is because, when using the Wu boost, the

transformation to the pair CMF does not lead to an
integrand that, aside from the harmonic polynomials, is
a rotational scalar. It follows from Eq. (G17) that KΣF

2 must
also have off-diagonal terms. This is not a problem in
principle, but is a cumbersome feature of this approach.

3. Relating KΣF;ðu;uÞ
df;3 to M3

We provide only a sketch of the derivation of this
relation, since the analysis follows closely that given in
Appendix E. We start from Eq. (83) and substitute
Eqs. (G2) and (52) to obtain

iðM̄2;L þ M̃ðu;uÞ
3;L Þ ¼ iKΣF;ðu;uÞ

df;23;L
1

1 − iðΣ̃F þ G̃ÞiKΣF;ðu;uÞ
df;23;L

:

ðG19Þ

Following the steps in the main text, we can extract from

this a result for M̃ðu;uÞ
3;L identical to Eqs. (86)–(90) except for

the substitutions K̃ðu;uÞ
df;3 → KΣF;ðu;uÞ

df;3 and F̃ → Σ̃F. We then
take the infinite-volume limit as in Appendix E and obtain

the same set of equations with K̃ðu;uÞ
df;3 → KΣF;ðu;uÞ

df;3

and ρ̃PVðkÞ → IiϵF ðkÞ.
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