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In this article, we apply the path optimization method to handle the complexified parameters in the 1þ 1

dimensional pureUð1Þ gauge theory on the lattice. Complexified parameters make it possible to explore the
Lee-Yang zeros which helps us to understand the phase structure and thus we consider the complex
coupling constant with the path optimization method in the theory. We clarify the gauge fixing issue in the
path optimization method; the gauge fixing helps to optimize the integration path effectively. With the
gauge fixing, the path optimization method can treat the complex parameter and control the sign problem. It
is the first step to directly tackle the Lee-Yang zero analysis of the gauge theory by using the path
optimization method.
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I. INTRODUCTION

Exploring the phase structure of theories and models
with finite external parameters such as the temperature (T),
the chemical potential (μ) and the external magnetic field
(B) is an important subject to understand our Universe. For
example, the phase structure of quantum chromodynamics
(QCD) at finite T, μ and B is directly related to the early
Universe, current heavy ion collision experiments, neutron
star physics and so on; see Ref. [1] as an example.
One of the interesting approaches to investigate the

phase structure is the Lee-Yang zero analysis [2,3]. In the
analysis, we complexify external parameters and search
zeros of the partition function in the complex plane of the
external parameters. Then, an approaching tendency of
zeros to the real axis indicates the existence of the phase
transition because singularities of the partition function are
the origin of the ordinary phase transition. Particularly, the
experimental observation [4] and the quantum computation
by using a quantum computer [5] for the zeros are currently
possible and thus the analysis has attracted much more
attention recently.
There have been some attempts to perform the Lee-Yang

zero analysis in the gauge theory; an interesting example is
QCD with the complexified μ [6–8]. In the calculation, one
first gathers numerical data at finite imaginary chemical

potential (μI) and after they construct the grand canonical
partition function with the complex μ by using the Fourier
transformation and the fugacity expansion; see Ref. [9].
However, the Fourier transformation becomes much more
difficult with decreasing T because the oscillation becomes
severer and thus this approach cannot tell us the phase
structure at low T; for example, see Ref. [10]. The reason
why we use the imaginary chemical potential to perform the
Lee-Yang zero analysis in QCD is that there is the sign
problem at complexified external parameters and then the
Monte-Carlo calculation sometimes fails; see Ref. [11] for
details of the sign problem and Ref. [12] for details of the
imaginary chemical potential. If we can directly perform the
Monte-Carlo calculation with finite complexified parame-
ters, there is the possibility that we can better understand
properties of the phase structure via the Lee-Yang zero
analysis. In addition, such complexification of chemical
potential may be related to the investigation of the confine-
ment-deconfinement transition at finite density [13,14].
In the Lefschetz thimble and path optimization methods,

dynamical variables are complexified and then the integral
path and/or the configurations are generated such that those
obeying the manifold on which the sign problem is weak.
Since these approaches can weaken the sign problem and
thus it is natural to expect that these approaches can be
applied to explore the system with complexified external
parameters. In this study, we concentrate on the application
of the path optimization method to the system with com-
plexified parameters.
The path optimization method is based on the standard

path integral formulation with the complexification of
dynamical variables [15,16]; the actual procedure is per-
formed as follows:
(1) The cost function, which reflects the seriousness of

the sign problem, is prepared.
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(2) Dynamical variables are complexified.
(3) The integral path in the complex domain is modified

to minimize the cost function.
After taking the prescription, we can have a better integral
path (manifold) which has larger jeiθj; 0 ≤ jeiθj ≤ 1 is the
average phase factor which is responsible for the serious-
ness of the sign problem. Thanks to Cauchy’s integral
theorem, the modified integral path provides us the same
result as that obtained on the original integral path if there
are no poles or cuts between the modified and original
paths and the infinite regions of the integral path do not
contribute to the results. There are some attempts to apply
the method to various quantum field theories and models,
e.g., the complex λϕ4 theory [16], the Polyakov-loop
extended Nambu–Jona-Lasinio model [17,18] and the
0þ 1 dimensional QCD [19].
In this article, we apply the path optimization method to

deal with the complexified parameters. We here employ
one plaquette system in the 1þ 1 dimensional Uð1Þ gauge
theory with complexified coupling constant on the lattice;
some results for this theory are obtained by using a
modification of the integral path, see Refs. [20,21]. In
Sec. II, we show the formulation of the theory on the lattice
and the explanation of the path optimization method.
Numerical results are shown in Sec. III. Section IV is
devoted to the summary.

II. FORMULATION

In this section, we summarize detailed formulation of the
1þ 1 dimensional Uð1Þ lattice gauge theory and explain
how we apply the path optimization method to the theory.
We here consider the one plaquette system and thus the
following formulation is corresponding to the system.

A. Action and partition function

TheWilson’s plaquette action [22] for only one plaquette
in the case of the Uð1Þ gauge theory is written as

SG ¼ β

2
fPþ P−1g; ð1Þ

where β ¼ 1=g2 is the lattice gauge coupling constant and
P (P−1) denotes the plaquette (its inverse). The definition of
P is given by

P ≔ U1U2U−1
3 U−1

4 ; ð2Þ

where Un are the Uð1Þ link variables defined as

Un ≔ eigAn ∈ Uð1Þ; ð3Þ

here An denotes the Uð1Þ gauge field, g2 ¼ 1=β and n ¼ 1,
2, 3, 4.

The present theory can be analytically solved as

Z ¼
Z Y

n

dUne−SG ¼ I0ðβÞ; ð4Þ

where I0 denotes the modified Bessel function of the first
kind. It should be noted that we can obtain an analytic result
of the partition function for any system volume with
periodic or open boundary conditions on the lattice
[20,21,23]. For real β, I0ðβÞ is always positive and thus
there are no zeros of Z in Eq. (4), but the gauge coupling
constant is now complex, β ∈ C, and thus the partition
function can be 0 which is nothing but the Lee-Yang zeros.
These zeros play an important role in understanding the
phase structure.
For the gauge theory, the action is invariant under the

gauge transformation. In this case, to use the gauge trans-
formation, one can reduce the degree of freedom to
ndeg ¼ 1;…; 4;

Un ¼
�
Un n ¼ 1;…; ndeg
I otherwise:

ð5Þ

B. Path optimization method

In the path optimization method, we extend dynamical
variables from real (t ∈ R) to complex (z ∈ C). In the
present case, we need to extend the plaquette and the link
variable as

P ¼ U1U2U−1
3 U−1

4 ; ð6Þ

Un ¼ eigAn ≕Unezn; ð7Þ

whereAn ∈ C and then zn ∈ R represents the modification
of the integral path. To represent zn, we employ the
artificial neural network as the model to generate the
integral path. We here use the simple neural network which
has the mono input, hidden and output layers. In this
network, the variables in the hidden layer nodes (yj) and the
output variables (zn) are given as follows:

zn ¼ ωnFðwð2Þ
jn yj þ bjÞ;

yj ¼ Fðwð1Þ
ij ti þ bjÞ; ð8Þ

where ti denotes the parametric variable which is set to
ReUn0 , ImUn0 , i ¼ 1;…; 2 × ndeg, w, b and ω are param-
eters of the neural network (weight and bias) and F is the
so-called activation function. In this study, we chose the
tangent hyperbolic function as the activation function.
To perform the path optimization, we need the cost

function (F ); we here use
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F ½zðtÞ� ¼
Z

dntjeiθðtÞ − eiθ0 j2 × jJðtÞe−SGðtÞj; ð9Þ

where JðtÞ is the Jacobian, θ0 denotes the phase of the
average phase factor and θðtÞ is the phase of JðtÞe−SGðtÞ ¼
eiθðtÞjJðtÞe−SGðtÞj. Of course, we do not know the actual
value of θ0 except with β ∈ R, θ0 ¼ 0, and thus we replace
θ0 with hθpreiEMA, where hθpreiEMA is the exponential
moving average (EMA)of the phase obtained in the previous
optimization steps. Minimization of the above cost function
makes phases of e−SG as a function of z take similar values on
the modified integral path when the regions are relevant to
the final result. In otherwords, there is no need to care for the
phase of the Boltzmann weight in irrelevant regions which
should be automatically suppressed.
Since there is the sign problem in the case of the complex

coupling constant by definition, we use the phase reweight-
ing to perform the Monte-Carlo calculation as

hOi ¼ hOeiθipq
heiθipq

; ð10Þ

where O represents any operator and h� � �ipq means the
phase quenched expectation values where jJe−SG j is used as
the Boltzmann weight. Since the Boltzmann weight,
jJe−SG j, is now real, we can perform the Monte-Carlo
calculation exactly. It should be noted that we are not
restricted to the original integral path in the estimation of
Eq. (10) unlike the ordinary reweighting calculation.
The machine learning technique was first introduced to

the path optimization method in Ref. [16] to represent the
modified integral path with a weaker sign problem.
The machine learning technique was also introduced to
the generalized Lefschetz thimble method [24] to learn the
integral manifold where the sign problem is mild in
Ref. [25] a few days before Ref. [16].

C. Setting of numerical calculation

Numbers of the unit in the input, hidden and output
layers are Ninput¼2×ndeg, Nhidden ¼ 10 and Noutput ¼ ndeg,
respectively. To determine the parameters in the neural
network, we optimize these by using the ADADELTA [26],
one of the stochastic gradient methods, as an optimizer with
the Xavier initialization [27], the batch normalization [28],
the minibatch training and the exponential moving average;
see Ref. [16] for details of the optimization.
Actual configurations are generated by using the path

optimization method with the hybrid Monte-Carlo (HMC)
method [29] in the systems which includes the single
plaquette with the open boundary condition. It should be
noted that we here use the HMC with the replica exchange
method (exchange HMC) [30,31] because there is the
global sign problem even on the modified integral path
[32] which means that there are some separated regions on

the modified integral path relevant to the integration.
Integration over these separated regions is quite difficult
to pick up by using ordinary HMC: We prepare the
Nrep replicas characterized by the parameters in neural
network as

Cx ¼
x

Nrep
C; ð11Þ

where x means the replica number, x ¼ 1;…; Nrep, and C
represents the parameters of the optimized neural network
[C ¼ w, b, ω in Eq. (8)]. We set Nrep ¼ 5 in the numerical
calculation. We use the exchange probability of the replicas
PðUx ↔ Ux0 Þ as

PðUx ↔ Ux0 Þ ¼ min

�
1;
PðUx;Cx0 ÞPðUx0 ;CxÞ
PðUx;CxÞPðUx0 ;Cx0 Þ

�
;

PðUx;CxÞ ¼ jJðUx;CxÞe−SGðUðUx;CxÞÞj: ð12Þ

In Ref. [16], we used the sampling of configurations based
on the symmetry of the modified integral path, but the
method is only available if we know the good modified
integral path which can have the symmetry. In this paper,

FIG. 1. The flowchart of the algorithm to generate practical
configurations in this work. Symbols, J o and J m, denote the
original and the modified integral path, respectively. The closed
loop in the flowchart is the one cycle of the optimization
procedure of the integral path.
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we employ the exchange HMC method to generally
perform the path optimization.
The expectation values are calculated with 2500 con-

figurations and then the corresponding errors are estimated
by using the jackknife method with the bin size 50. For
the parameter of the theory, we set β ¼ βR þ iβI with
βR; βI ∈ R.
Figure 1 shows the flowchart of the algorithm to generate

practical configurations where J o and J m are the original
and modified integral path, respectively.

III. NUMERICAL RESULTS

In this section, we show the numerical results of the
1þ 1 dimensionalUð1Þ gauge theory on the lattice with the
complex coupling by using the path optimization method.
Here, we show the results of the 1þ 1 dimensional Uð1Þ
gauge theory only with the single plaquette; i.e., the
simplest setting of the theory. Actually, it is nothing but
the ndeg-dimensional integral.
Figure 2 shows the scatter plot on the ReP − ImP plane

with β ¼ 2i. Here, we show the results with the gauge
fixing:

Un ¼
�
Un n ¼ 1

I n ≠ 1:
ð13Þ

We can clearly see the modification of the integral
path from Fig. 2. In addition, we can see the bias of the
distribution in P × eiθ which plays a crucial role in the
calculation of hPi; this bias makes hPi finite because
the phase quenched expectation value of P becomes 0. The
histogram of the phase for the case of Fig. 2 is shown in
Fig. 3. On the original integral path, θ distribution is widely
spread, but the distribution on the modified integral path is
well localized; we can generate configurations strongly
localized around two separated regions. The replica
exchange method works well in both cases.
Figure 4 shows the average phase factor, heiθiEMA, as a

function of the optimization step in one epoch with β ¼ i
and 2i; one epoch is defined so that one sequence of the
minibatch training is finished. Here, we estimate the
average phase factor by using EMA. From the figure,
we can clearly see that the average phase factor cannot be
enhanced without the gauge fixing. With the gauge fixing,
the average phase factor approaches 1 with β ¼ i. In the
case with β ¼ 2i, there is the serious global sign problem as
shown in Fig. 3 and thus we have the upper limit of the
improvement, but we can well enhance the average phase
factor via the path optimization. It should be noted that the
modified integral path sometimes provides the expectation
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FIG. 2. The scatter plot of P and P × eiθ on the X-Y plane with
β ¼ 2i, where X ¼ ReP and Y ¼ ImP. The top and bottom
panels show the results without and with the path optimization.
Plus signs and crosses indicate P and P × eiθ, respectively.
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FIG. 3. The normalized histogram of the phase, θ, for β ¼ i and
2i. The top and bottom panels show the results without and
with the path optimization. The line in the top panel shows
the probability distribution on the original path, PðθÞ ¼
½πβI sinfarccosðθ=βIÞg�−1.
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value with the larger error bar compared with the original
one even if the average phase factor is enhanced. This
indicates that there is the competition between the improve-
ment of the original sign problem and the modification of
the integral path which is responsible to the statistical error
via the path optimization method. In addition, we can see
from Fig. 5 that the average phase factor becomes larger
with reduction of ndeg by using the gauge fixing; it may be
related to the fact that we have a larger degree of freedom
without the gauge fixing and then the neural network
cannot show sufficient performance to optimize the suitable
integral path.
For the reader’s convenience, we finally show the

expectation value of the plaquette as a function of βI with
βR ¼ 0 where zeros exist in Fig. 6. It is clearly seen that the

modified integral path reproduces the analytic result except
the region near the partition function zeros. At βI ∼ 2.4, 5.5,
8.6, we have the zeros and then there should be the strong
modification of the integral path and/or the serious global
sign problem.

IV. SUMMARY

In this study, we have considered the 1þ 1 dimensional
Uð1Þ lattice gauge theory which has the single plaquette
with the complex coupling constant as a first step to directly
investigate the Lee-Yang zeros in the gauge theory. We
have estimated how the average phase factor is improved
via the modification of integral variables. Since there is the
sign problem when the coupling constant is complex, we
employ the path optimization method to perform the
Monte-Carlo calculation. To represent the modified integral
path in the complex domain of the integral variables, we
employ the artificial neural network.
We have shown that the modification of the integral path

represented by using the neural network can well enhance
the average factor if we impose the gauge fixing to the
theory, but we cannot without the gauge fixing; this
suggests the importance of the gauge fixing to control
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the sign problem in the path optimization method on the
lattice. This issue is demonstrated in the system of the
single plaquette. Also, we have checked that the replica
exchange method works well to generate configuration
localized in the well separated regions which are realized
via the path optimization. From these results, we have
clarified how to use the path optimization method in the
gauge theory. It should be important in the application of
the path optimization method to the more complicated
gauge theory such as QCD.
In the present study, we have restricted the system size to

be small because we are interested in the possibility of
applying the path optimization method to the system with
complexified external parameters. Usually, the sign prob-
lem becomes exponentially worse in terms of the system
volume; there is the competition between the exponential
suppression of it from the system volume and the enhance-
ment of it from the optimization. In the larger volume case,
we should introduce some methods to reduce the numerical
cost to calculate the Jacobian, whose numerical cost is
proportional to the square of the system volume. Examples
of promising methods are the diagonal ansatz of the
Jacobian [33] and the nearest-neighbor lattice-sites ansatz
[34]. We will revisit this issue in our future work.

This study is a first step in the path optimization method
to explore the phase structure of the gauge theory in the
complexified parameter space which is important to under-
stand properties of the phase transition; e.g., for inves-
tigation of the distribution of the Lee-Yang zeros. In the
present work, we employ the simple gauge theory, but we
believe that it sheds light on the complexification of the
integral variables and also the parameters. In the future, we
will apply the path optimization method to the SUð2Þ gauge
theory with the complex coupling constant. It was reported
that the complex Langevin method fails in some parameter
regions; see Ref. [35].
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