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Modeling few-body resonances in finite volume
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Under the assumption of separable interactions, we illustrate how the few-body quantization condition
may be formulated in terms of phase shifts, in general, which may be useful for describing and modeling

few-body resonances in finite volume.
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I. INTRODUCTION

Few-hadron dynamics plays an important role in hadron
and nuclear physics. There have been many good examples
of physics processes that can only be understood through
few-body interactions, such as the u- and d-quark mass
difference in # — 3z [1-7], Efimov states [8,9], and halo
nuclei [10,11]. The understanding of few-body interactions
is also crucial in recent experimental efforts in the study of
exotic hadrons since most exotic hadron states are expected
to appear as few-hadron resonances. On the theory side,
lattice quantum chromodynamics (LQCD) provides an
ab initio method for the study of exotic hadron states.
However, LQCD computation is usually performed in
Euclidean space with certain periodic boundary conditions;
normally, only discrete energy spectra are measured in
numerical simulations. Hence, mapping out few-hadron
dynamics from the discrete energy spectrum is a key step
for the study of exotic hadron states in LQCD. In the
two-body sector, the Liischer formula [12] and its variants
[13-22] provide an elegant form of mapping out two-body
phase shifts from discrete energy levels.

In the past few years, much progress has been made
using different approaches [23-54], going beyond the
three-body threshold. Although few-body quantization
conditions are formulated differently among these groups,
it has been very clear [52] that in few-body sectors, the few-
body amplitudes are not directly extracted from lattice
results. Particle interactions or their associated subprocess
amplitudes are in fact essential ingredients in quantization
conditions. The infinite volume few-body amplitudes that
are generated by particle interactions through coupled
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integral equations must be computed in a separate step
once these dynamical ingredients are determined. In order
to make predictions or fit lattice results, dynamical ingre-
dients of quantization conditions, such as interaction
potentials or off-shell subprocess amplitudes, must be
modeled one way or another. In addition, the number of
partial waves involved in some physical processes may be
large, which may add some extra complications on top of
the uncertainty in modeling itself. Therefore, to have
reliable and controllable predictions, the modeling of
dynamical ingredients must be constrained or guided by
experimental data or effective theory. Nevertheless, there
are two physical regions in which predictions and calcu-
lations may be fairly reliable: (1) near threshold, which is
the region where the physical reaction can be described
rather precisely by nonrelativistic potential theory or
relativistic effective perturbation theory; and (2) near res-
onances region, where resonance properties may be less
affected by modeling and other partial waves.

In the present work, we focus on the near-resonance
region and aim to provide an approximate means for
the modeling of few-body resonances in finite volume.
Based on the separable interaction potential assumption,
we illustrate how the few-body quantization condition
may be formulated in terms of subprocess phase shifts.
Hence, the resonances may be modeled and inserted
into the quantization condition through phase shifts.
Both two-body and three-body subprocess amplitudes
appear to be Liischer formulalike, and solutions are given
by algebra equations. The aim of this work is to illustrate a
simple way to parametrize dynamics of few-body reso-
nances in finite volume. Under the separable short-range
potential approximation, the few-body formalism is greatly
simplified, with the trade-off that the approximation may
only be valid for the description of sharp resonance
dynamics. As a simple illustration, the formalism is only
presented in nonrelativistic kinematics; the extension to
relativistic kinematics may be possible by replacing non-
relativistic few-body propagators with relativistic ones;
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see [49,51]. The relativistic extension of the formalism will
be presented in future publications.

The paper is organized as follows. With a separable
interactions approximation, the technical details of formu-
lating quantization conditions in terms of phase shifts are
presented in Sec. II. A summary is given in Sec. IIL

II. QUANTIZATION CONDITION UNDER THE
SEPARABLE INTERACTIONS ASSUMPTION

The few-body quantization condition in finite volume
can be formulated from homogeneous Faddeev-type equa-
tions; see [50-53]. As a simple example, we consider three
nonrelativistic identical bosons of mass m interacting with
both a pairwise interaction and a three-body force in what
follows. Because of exchange symmetry, only two inde-
pendent Faddeev amplitudes are required: 7 ?%) and 7 %),
which are associated with the pairwise two-body interac-
tion V(%) and the three-body interaction V3”) by

Tb3) (K| Kky) = —(K Ky |mV?030) @), (1)

where W stands for the three-body total wave function. The
(ki, k,) e =2 2’”‘ ,n € Z3 refer to particle-1 and -2 momenta,
respectlvely, and the third particle momentum is con-
strained by total momentum conservation,

k3 - _kl - kz.

In what follows, we also use the symbols (k3. Kk(3),) to
describe two independent relative momenta of three par-
ticles, where

1/ + ks B \/Z
K3 = g( > kz)— gkz- (2)

The stationary states of three-body dynamics in finite
volume are described by homogeneous Faddeev-type
equations (see [50-53]),

T (k,, K,) = 1 ) (k3 py + kz)
bR Pl kI +(pi ko)’
pp mE—="—"———

x 270" (kyp) + TP (p1.ky)]  (3)

and

b)(K;P)

PP E(Pi+pa)?
2

1
709 (k. ky) = —76 Z
P2 n

4)

where

T(Zb) (pl ’pZ),

27n

_, nez’.
L

(plvp2) €

The symbol (K, P) stand for 6-dimensional vectors; they
are related to relative momenta (k 3, k(13),) by

k 4
K = {ki3. kzp} = { k; +—2,—\/:k2 )

2 3

p 4
P={pisPusp} = {Pl +727—\/;P2}- (5)

The length of 6D vectors is given by

K = \/k; + K3, =

P=./pi;+ p%13)2 =

The symbols 7(2») and z»), which are associated with two-
body interaction V(*”) and three-body interaction V(3%),
respectively, are used to describe off-shell subprocess
transition amplitudes between initial and final momenta
states. For example, 7(2?) in the (13) isobar channel, with
particle 2 carrying a momentum k,, satisfies two-body
inhomogeneous Lippmann-Schwinger equations,

720 (K 5:k);) = —mVP) (|k 5 — Kis5))

L mV® (k3 —py = %)

L3 Pk +(pi+ky)?
mE — >

P
k,
x 72 )<P1+ 5" k/13> (7)

and similarly 703?) satisfies a three-body equation,

)(K;K') = —m\7(3b)(|K ~K|)

V(K =P)
L z _ P+ pips) (P K).
pi.p> M 2
(8)
Here, 7®») and 7(**) are the dynamical input of finite

volume Faddeev equations in Egs. (3) and (4), and must be
solved first.

The quantization condition without the cubic irreducible
representation projection is given by
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L35k2,p127<2b)(k13; P>+ %)
mE — 2% — (p, + )2
(k3 p + )7 ({p + % sz}
[mE—TZ—(prkZ)](mE P?)

0 = det |:L65k1,p15k2,132 +

Z

©)

where 7(?”) and (%), in principle, are given by the solutions
of Egs. (7) and (8), respectively. In Sec. Il A, we show that
with a separable interaction approximation, Egs. (7) and (8)
may be converted into algebraic equations. Hence, the
solutions of 7(2?) and 7(*”) are Liischer formulalike and can
be formulated in terms of conventional two-body phase
shifts in 3D and unconventional but mathematically con-
venient three-body phase shifts in 6D. We remark that the
momentum sum in the quantization condition must be
regulated in the numerical evaluation of discrete energy
levels, which are either associated with ultraviolet diver-
gence or normalization of the determinant condition. In our
current work, since the technical regularization is not our
focus, the specific procedure of regularization has been left
out, and we refer interested readers to Refs. [28,29].

(2b)

A. Separable interactions and algebraic
solutions of 7(?) and 7(*)
Under the assumption of separable short-range potentials
for both V(2/) and VGP) the partial wave expansion of
potentials have the forms

V) (k5 — ki)
—ZYLM ki3)gr” (ki) VED g (K3 Yy (ki) (10)

and
V(K - K|)
> 3b 3b) (3b % (D
= > vy R)g (KW g (KDY (K, (1)

]

where ¥, ,(k3) is a 3D spherical harmonic function with
quantum numbers |LM) representing orbital angular
momentum configurations between particles 1 and 3, while
particle 2 acts as a spectator and is not involved in the
interaction. Here, Y|, (K) stands for the 6D hyperspherical
harmonic basis function (see Refs. [55,56] and also
Appendix), and the quantum numbers [J] represent a
specific angular momentum configuration of three particles
with a total angular momentum J. Note that ¥, (K) may be
constructed through two 3D spherical harmonic functions.
For example, consider a configuration with angular
momentum state |L;3M,3) between particles 1 and 3,
coupled with particle 2 in relative angular momentum state

|L(132M13),) into total angular momentum  state

[[V]) = [IML3L(13)); thus, Y[j](K) is given by

Y (K) = Y (Li3My3. Li3pMi3p|IM)
My3.M 132
X Y1, (Ki3) Y, (R(13)2) P, (€)-
(12)
where
ki3
¢ =tan~! ——.
k(13)2

The function PJLBL“S)Z(d)) is related to the Jacobi poly-
nomial by (see also [55,56])

PiLyrs, (@) = Nip,i,, (sin b)" 2 (cos p) o

(Lis L) (cos2¢), "

J-L13-L13)
2

x P

and the normalization factor Ny, .1 ., is determined by the

orthonormal relation

A2 dgp sin® ¢ cos ¢PJL13L(13)2 (d))PJ’LBL(l;)z (¢) =3y
(14)

(2b)

The form factors g, (30)

]

V(Lzh) and V§3h) may be considered as model parameters.

Usually, the form factors, such as g(LZb)

correct threshold behavior,

and ¢;;  and potential strengths

, must show the

92 (k = 0) ~ K" (15)

The potential strengths V ) and V may be used to

model two-body and three body resonances; for example,

the two-particle resonance of mass m% Y in the (13) isobar

pair channel with particle 2 carrying momentum k, may be
given by

1
V)" . (16)

(E=35) = mg"

A three-particle resonance of mass m$b>

modeled similarly by

thus may be

1
3b

Separable interactions suggest that z(2*) in Eq. (7) and
703%) in Eq. (8) may be given by Liischer formulalike
algebra equations (see detailed discussion in Appendix),
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1Kk3
T(Zb)(kl3§k/13)

YLM(k13)9L (k13)9y (k/l?;) 2/M/( 3)

_%k%)gu (\/ mE _%k%)
L1 (2b) 312
X i I-coto mE—Zk2
3 -1
_M(Zb,kz)<1/mE_Zk%)] , (18)

LM.L'M'

mE —
1672

LML'M’ g<L2b) (

Y (K)gl (K)gly (K'Y, (R')
3

x i/~ [L- cot 8P (VmE) = MO (VmE) . (19)
Generalized Liischer zeta functions, M 2?2 in 3D and
MGBP) in 6D, are given, respectively, by

k (2b.k,) ik
1672 MLM,LZ’M’(k) = 5LM,L’M’ 16722

2dp (
Sy L
+ LM,LM/ 27:)@(( > K2 —
gLr (
)

b ( ) P)Yiu(®)Yrm (P)
L Z a Rg (k) K =P
(20)
|

Z ZzTLM p> +

T (ky) =

)gy (|k2+p2|)YL’M’(k2+ %)

and
(mE)2 (3b) N z(mE)2
85 M (VmE) =8y~

Psap [ ¢§7(P) \* 1
+‘5“]’[”/ (2n)° <g§bj><¢m) mE — P?
1 g( (P} b)(P) Y, (B)Y(P)
T o B ) mE P

(1)

The two-body phase shift 5(LZb) is defined in a conventional
way, which may be modeled and constrained by exper-
imental data. The unconventional three-body phase shift
553]’) may be interpreted as scattering of one particle off a
short-range potential in 6D. It may only serve as a
mathematically convenient tool for modeling of the
three-body resonance of total spin J.

B. Quantization condition with separable
interactions approximation
Algebraic solutions of 7(?) in Eq. (18) and 7*”) in
Eq. (19) suggest that the partial expansion of 7 *?) (k, k)
may have the form

TC (ky, ky) P hs)TE) (ko). (22)

ZYLM kiz)g

The separable form 7 ?%) (k, k,) thus allows one to further
reduce Faddeev equations, Egs. (3) and (4), to

2b
22T (9y)

P> L'M

mE —3k3 — (P2+%)2

T8 (), (23)

2b N
} :E : Z TLM (ki3) 7 3b)(K§P)g(y >(P13)YL’M’(P13)
L3 Lo mE — K2 mE — P?

p> L'M k;.p;

where 7221‘12)(1(/13) is defined by the relation

7(20) (ki3 k’13

ZYLM(kB)gL (ki3)eg (k). (24)

Therefore, a partially expanded quantization condition is given by
2b
2 (P2 + )9, (ks + % )Y iar (K> +%)
mE —3K3 — (Pz +—)

1 3T(LM>(k )< )(K P)gL, (pB)YLM’(pB)

L& (mE — K2)(mE — P?)

det |:5LM.L/M’L35RZ.P2 +
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As a specific example, let us consider a simple case with
only S-wave contributions in both two-body and three-
body channels, that is to say, J = L3 = L33 = 0. Thus,

7(2P) and z0%) are given, respectively, by phase shifts 5(51?):0

and 533:3 only,

/ 3 4
T(Zb)(klg,; ki;) = 7(2b.k) ( mE — Zk%) S
\/mE —3K3

1

cot 52 (. Ik - gkg) M) (« fmE — gn@)

X

(26)
and
B9)(K; K') = 7839 (VmE)
12872 1
(mE) cot 5™ (v/mE) — Myt (VmE)
(27)

The quantization condition in this case is given by a simple

form,
27(2b.ks) (, /mE — % k%)

mE - 3K3 — (p, + %)

e

(mE — K?)(mE — P?)

det |:L35k2,p2 +

k;.p;

(28)

The two-body and three-body resonances hence can be

inserted through modeling of 5(Lz,l:):0 and 55’?

II1. SUMMARY

In summary, with the separable interaction approxima-
tion, we show that the subprocess transition amplitudes are
Liischer formulalike, and the quantization condition may be
formulated in terms of both two-body and three-body phase
shifts that may be useful for describing resonances in few-
body interactions. Two-body phase shifts may be modeled
and constrained by experimental data, and three-body
phase shifts may serve as a convenient tool for inserting
three-body resonances with a specific spin into the quan-
tization condition.
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APPENDIX: LUSCHER FORMULA
IN D-DIMENSIONAL SPACE

1. Scattering in D-dimensional space

Let us start with an N-body Schrédinger equation in the
center-of-mass frame,

N-1
B+ YV & K) = V(@ K). (A1)
=1
The relative coordinates of the N-particle are given by

[ 2 (1
& = m(;;xi_xj+l>,

J

J 1 .
—E ki—Kki ], =1,..., N-1,
Tl )

J =

q, =

(A2)
where x; and K; stand for the coordinate and momentum of
the ith particle, respectively. Here, the D =3(N —1)

dimensional vectors (€ K) are defined by the relative
coordinates and momenta of the particles,

§:{§17627"°7§N—1}7 5_

K= {(]1,(]2,“qu—1}

Note that the D-dimensional Laplace operator has a
separable form between the radial and orbital terms [55,56],

N-1 2
V=S v 2 0 E ) )

2.V =g gt e

where L2 (Qp) is the grand orbital operator. The eigenstates
of the orbital equation

L*(Qp)Y1y(Qp) = L(L+ D =2)Y;(Qp) (AS5)

are given by the hyperspherical harmonic Y[ (€p) [55,56],
where [L] is a set of D — 1 quantum numbers, including
total orbital angular momentum L. The hyperspherical
harmonic Y;(€p) basis defines a complete set of ortho-
normal angular functions in D-dimensional space,
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/ dQpY(,(Qp)Y (1) (Qp) = i1y 1)- (A6)

The scattering in D-dimensional space can also be
described by the Lippmann-Schwinger equations

W(EK) = oKE / dE G (E—E:E)mV (& )y (E:K).

dQ elQ E_E/)
Gp(E-E,E)= _—, A7
where the Green’s function satisfies the equation
mE +VhlGp(E—E:E) =6(E-E).  (A8)

The analytic expression of the Green’s function and its
partial wave expansion in terms of the hyperspherical
harmonic basis are given, respectively, by

i (mE)3! H(%]_)l(v mE¢)

Gp(§&E) = 2 (2”)§_1 (\/’HTE'@%—I

and

—i(mE)=

My (VmEE) T (VmEE)Y;

GpE—E;E)=
XZY

1)(Q¢),

(A10)

HY(2) = TL(2) +iN L (2). (A12)

Assuming that the potential V(&) is spherical and short-
ranged, and also using partial wave expansion of the plane
wave in D-dimensional space,

. N o~
K& — \/;T(zﬂ)zzli Yy (QE)YE‘L] (Qk)JT L (VmEE),
(L]

(A13)

the asymptotic form of the wave function is obtained,

(f K)Lar965\/‘ 2” ZILY Q{‘ QK)

X[JL(ch)ﬂLifL (VmEYH (VmEE)],  (Al4)

where f (LD)

2 (22)? ,
ﬁ(mE)DTzzféw_ )iy ()

- [ @Yy @) T (RE MY (@w(EK). (a15)

is defined by

Thus, f (LD) may be interpreted as the partial wave scattering
amplitude in D-dimensional space, and it can be para-

metrized in terms of the D-dimensional phase shift 8," (k)
[55,56] by

1P E) = —

cot5 (\/_)—z'

(A16)

2. Lippmann-Schwinger equation in momentum space
and separable potential approximation

The off-shell transition amplitude between initial and
final momentum states |K) and |K’) may be introduced by

(PKK) = [ dee X mv@pEK).  (A17)

Thus, Eq. (A7) can be converted into a momentum-space
Lippmann-Schwinger equation,

P)(K,K') = —-mV(|[K = K'|)

dQ mV(|K - QD) .o
+/(27r) mE — Q?

PI(Q.K).

(A18)
The partial wave expansion of the above equation yields
{2 (K K'Y = —=mV, (K. K')

0P 'dQmV (K, Q)
(2m)P mE - Q2

+ (0.K).
(A19)

where the expansion relations of the potential and ampli-
tude are given by

V(K-K|)=> ¥, (K)V, (K, K)Yp,(K)  (A20)
(L]
and
tP(K.K') = %}:Y[L] (K)r (K. K'Y (K). (A21)
Under the assumption of a separable potential,
VLK.K) =" (K)Vig” (K. (A22)
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where giD) and V; stand for the form factor and interaction

strength of the potential; thus, a closed algebra form of the

off-shell partial wave amplitude, th)(K, K'), may be
obtained (see [57]),
(D) (D) ( gt
K K
(KK = - (K)g. ) . (A23)
fQD ldQ )
mVL b mE Q2
Compared with the on-shell scattering amplitude
fL (\/ E) in Eq. (A15), we find
D D
0o gy 9 (K)g” (K)
tL ( ’ )_ (D) 2
(9. (VmE))
2 (2nx)P 1
(22" " . (A24)
7 (mE)> cotd; ' (VmE) — i
and also the useful relation
1 0"-140 (4" (0))
mVL (27)P mE - Q?
mE)*=
+ @ (VmE) EPEL T cots?) (VmE)]
2 (2n)
(A25)

Therefore, the off-shell partial wave amplitude t(LD)(K ,K')
may be modeled in terms of the on-shell physical quantity:
phase shifts 52D)(\/ﬁ).

We remark that the separable potential approximation is
in fact based on the assumption of a hyperspherical short-
range interaction. The hyperspherical partial wave expan-
sion of the momentum-space potential is given by

V(K -K'|) = / de~K-K)€y (&)
x ZY

X jL (K/§> L] (K/)

/ ED-14ET, (KE)V(&)
(A26)

For a short-range potential, asymptotically one obtains

/ EPNAET (KEV(E) T L (K'E) ~ KLV K™, (A27)

which thus yields the expression in Eq. (A22). The
separable potential approximation may be useful for
modeling sharp few-body resonances that are predomi-
nantly generated by quark and gluon dynamics. Hence,
the hadron-hadron interactions may be well approximated
by a short-range energy-dependent interaction, and the

Breit-Wigner formula is a good example of such an
approximation.

3. Liischer formula in D-dimensional space and
separable potential approximation

The scattering solution in finite volume may be
described by an inhomogeneous Lippmann-Schwinger
equation,
tP)(K,K') = -mV(|K - K/|)

mV (K - Q|) (D)
S A~ 9K/ ki
g "QK)

(A28)

where p; € #® n € 73, and Q* =
the partial wave expansion again,

2>V, p?. Considering

L][L]
(A29)
one finds
(D)
T[L],[L’](K’ K’)
—5[ ][L/]mVL(K K/)
+Z Z mV, (K, Q)Y7,(Q)Y)(Q)
D 2
[1] L7, 4 mE —Q
[1][ 1(Q. K'). (A30)

Again, the separable potential given in Eq. (A22) suggests

that TEZ?[L/] may have the separable form

) (K K') = g (K)Ciyy (E)gp (K'). (A31)
where Ci;),)(E) satisfies a matrix equation,
Ciuy ) (E) = =6 pymVy + Z Z
P
(D) (D) [ ](Q)Y[l] (Q)
x g, (Q)g mE—qz i) (B)-
(A32)

Hence, a closed algebra form of the off-shell solution of

finite volume amplitude, T{Z?[L/], i1s obtained as

y 9 (K)gu(K) 7
i KK = e (/) D P
(A33)
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where
Dy ) (VmE)
__ O]
gL(\/m_E)mVLgL'(\/"E)
oy _alQe) Yiy( QY (@)
L7, 3, ]gL(\/ﬁ)gL’(\/ﬁ) mE - Q?
(A34)

Using the relation given in Eq. (A25), Dy |11 is linked to a
generalized Liischer formula in D-dimensional space,

2 2m)P

rmpyE | e (VmE)

= 5[L],[L’] cot 5(LD)(V mE) - M[L],[L’] (\/ mE), (A35)
where M, is a generalized Liischer zeta function in D-
dimensional space,
2 (27)P My a1y (VimE) = i3 2 (27)P

_ Z Lg,.(0)g1(0) YEFL](Q)Y[L’](Q)
L g (VmE)gy(VmE) mE-Q’

s [QYdo (g7 \' 1
+ [L].[L'] / (271,)0 <g§D) (\/;H—E)> mE — 02 .
(A36)

Therefore, the inverse of Tff])

] is explicitly related to the

Liischer formula by

2 (2x)° 9L<\/ﬁ)gu(\/"ﬁ>f(o) A
ﬂ(mE)¥|: 91(K) g (K') (K’K):|[L],[L’]

= l'L/_L [5[L]-[L/] cot 5(LD) (\/ mE) - M[L],[L’] (\/ mE)}
(A37)

The generalized Liischer zeta function can also be
derived by considering the hyperspherical harmonic basis
function expansion of the Green’s function. In infinite
volume, the hyperspherical harmonic basis expansion of
the Green’s function is given by

dQ Q%) et
/(2ﬂ)D mE - Q*
XZY (@M, (VmEE) T L (VmEE)Y;

—i(mE)"%
1)(Q¢).

(A38)

Similarly to the expansion of an infinite volume Green’s
function, the expansion of a finite volume Green’s function
may be written as

1 0iQ-(6-¢) 5>¢'
LD Y mE) 2 Y Q
L” plvgp]_l mE — (;22 %] [L] E
X [0, N L (VMEE) = My 1 (VmE) T (VmES)]
X T (V)Y Q). o

Combining Egs. (A38) and (A39), we obtain

1 eiQ(E-¢) dQ Q&%)
LD Z mE—Qz_/(Zfr)DmE—Q2

Pis--Pn-1
Z(mE)T Y Vi) (Q) T L (VmEE)
[L].IL]

x (1811 ~ My (VE)T o (VmEE) Y ().

(A40)

Next, using the plane wave expansion formula given in

Eq. (A13) and also replacing ¢\” (k) by k%, we thus find,
again, Eq. (A36), which may also suggest that the form

factor g(LD) may be chosen as gém(k) ~ kL.
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