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We present results on the isovector momentum fraction, hxiu−d, helicity moment, hxiΔu−Δd, and
the transversity moment, hxiδu−δd, of the nucleon obtained using nine ensembles of gauge
configurations generated by the MILC Collaboration using 2þ 1þ 1-flavors of dynamical highly
improved staggered quarks. The correlation functions are calculated using the Wilson-Clover
action, and the renormalization of the three operators is carried out nonperturbatively on the lattice
in the RI0-MOM scheme. The data have been collected at lattice spacings a ≈ 0.15, 0.12, 0.09, and
0.06 fm and Mπ ≈ 310, 220, and 135 MeV, which are used to obtain the physical values using a

simultaneous chiral-continuum-finite-volume fit. The final results, in the MS scheme at 2 GeV, are
hxiu−d ¼ 0.173ð14Þð07Þ, hxiΔu−Δd ¼ 0.213ð15Þð22Þ, and hxiδu−δd ¼ 0.208ð19Þð24Þ, where the first
error is the overall analysis uncertainty and the second is an additional systematic uncertainty due to
possible residual excited-state contributions. These results are consistent with other recent lattice
calculations and phenomenological global fit values.
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I. INTRODUCTION

The elucidation of the hadron structure in terms of
quarks and gluons is evolving from determining the charges
and form factors of nucleons to including more complex
quantities such as parton distribution functions (PDFs) [1],
transverse momentum dependent PDFs (TMDs) [2], and
generalized parton distributions (GPDs) [3] as experiments
become more precise [4,5]. These distributions are not
measured directly in experiments, and phenomenological
analyses including different theoretical inputs are needed to

extract them from experimental data. Input from lattice
QCD is beginning to play an increasingly larger role in
such analyses [6]. In cases where both lattice results and
phenomenological analyses of experimental data (global
fits) exist, one can compare them to validate the control
over systematics in the lattice calculations and, on the other
hand, provide a check on the phenomenological process
used to extract these observables from experimental data. In
other cases, lattice results are predictions. The list of
quantities for which good agreement between lattice
calculations and experimental results, and their precision,
has grown very significantly as discussed in the recent
Flavour Lattice Averaging Group (FLAG) 2019 report [7].
While steady progress has been made in developing the
framework for calculating distribution functions using
lattice QCD [8,9], even calculations of their moments have
had large statistical and/or systematic uncertainties prior to
2018. This was the case even for the best studied quantity,
the isovector momentum fraction hxiu−d [6]. In this work,
we show that the lattice data for the momentum fraction,
helicity, and transversity moments are now of quality
comparable to that for nucleon charges (zeroth moments).
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Together with much more precise data from the planned
electron-ion collider [4] and the Large Hadron Collider,
which will significantly improve the phenomenological
global fits, we anticipate steady progress toward a detailed
description of the hadron structure.
In this paper we present results on the three moments

from high statistics calculations done on nine ensembles
generated using 2þ 1þ 1-flavors of highly improved
staggered quarks (HISQ) [10] by the MILC collaboration
[11]. The data at four values of lattice spacings a,
three values of the pion mass, Mπ , including two ensem-
bles at the physical pion mass, and on a range of large
physical volumes, characterized byMπL, allow us to carry
out a simultaneous fit in these three variables to address
the associated systematics uncertainties. We also inves-
tigate the dependence of the results on the spectra of
possible excited states included in the fits to remove
excited-state contamination (ESC), and assign a
second error to account for the associated systematic
uncertainty. Our final results are hxiu−d ¼ 0.173ð14Þð07Þ,
hxiΔu−Δd ¼ 0.213ð15Þð22Þ, and hxiδu−δd ¼ 0.208ð19Þð24Þ
in the MS scheme at 2 GeV. On comparing these
with other lattice and phenomenological global fit results
in Sec. VI, we find a consistent picture emerging.
The paper is organized as follows: In Sec. II, we briefly

summarize the lattice parameters and methodology. The
definitions of moments and operators investigated are
given in Sec. III. The two- and three-point functions
calculated, and their connection to the moments, are
specified in Sec. IV, and the analysis of excited state
contributions to extract ground state matrix elements is
presented in Sec. V. Results for the moments after the
chiral-continuum-finite-volume (CCFV) extrapolation are
given in Sec. VI and compared with other lattice calcu-
lations and global fits. We end with conclusions in
Sec. VII. The data and fits used to remove excited-state
contamination are shown in the Appendix A and the
results for renormalization factors, ZVD;AD;TD, for the three
operators in Appendix B.

II. LATTICE METHODOLOGY

The parameters of the nine HISQ ensembles are sum-
marized in Table I. They cover a range of lattice spacings
(0.057 ≤ a ≤ 0.15 fm), pion masses (135 ≤ Mπ ≤ 310)
MeV, and lattice sizes (3.7 ≤ MπL ≤ 5.5). Most of the
details of the lattice methodology, the strategies for the
calculations, and the analyses are already given in
Refs. [12–14]. We construct the correlation functions
needed to calculate the matrix elements using Wilson-
clover fermions on these HISQ ensembles. This mixed-
action, clover-on-HISQ, formulation is nonunitary and
can suffer from the problem of exceptional configura-
tions at small, but a priori unknown, quark masses. We
have not found evidence for such exceptional configu-
rations on any of the nine ensembles analyzed in
this work.
For the parameters used in the construction of the two-

and three-point functions with Wilson-clover fermion
see Table II of Ref. [14]. The Sheikholeslami-Wohlert
coefficient [15] used in the clover action is fixed to its
tree-level value with tadpole improvement, csw ¼ 1=u0,
where u0 is the fourth root of the plaquette expectation
value calculated on the hypercubic (HYP) smeared [16]
HISQ lattices.
The masses of light clover quarks were tuned so that

the clover-on-HISQ pion masses, Mval
π , match the HISQ-

on-HISQ Goldstone ones, Msea
π . Mval

π values are given in
Table I. Msea

π values are available in Ref. [14]. All fits in
M2

π to study the chiral behavior are made using the
clover-on-HISQ Mval

π since the correlation functions, and
thus the chiral behavior of the moments, have a greater
sensitivity to it. Henceforth, for brevity, we drop the
superscript and denote the clover-on-HISQ pion mass as
Mπ . The number of high precision (HP) and low
precision (LP) measurements made on each configura-
tion in the truncated solver bias corrected method
[17,18] for a cost-effective increase in statistics are
specified in Table I.

TABLE I. Lattice parameters, nucleon massMN , number of configurations analyzed, and the total number of high precision (HP) and
low precision (LP) measurements made. For the a06m310W ensemble, HP data were not collected; however, we note that the bias
correction factor on all other eight ensembles was negligible.

Ensemble ID a [fm] Mval
π [MeV] L3 × T Mval

π L τ=a aMN Nconf NHP NLP

a15m310 0.1510(20) 320.6(4.3) 163 × 48 3.93 f5; 6; 7; 8; 9g 0.8287(24) 1917 7, 668 122, 688

a12m310 0.1207(11) 310.2(2.8) 243 × 64 4.55 f8; 10; 12; 14g 0.6660(27) 1013 8, 104 64, 832
a12m220 0.1184(09) 227.9(1.9) 323 × 64 4.38 f8; 10; 12; 14g 0.6289(26) 1156 4, 624 73, 984
a12m220L 0.1189(09) 227.6(1.7) 403 × 64 5.49 f8; 10; 12; 14g 0.6125(21) 1000 4, 000 128, 000

a09m310 0.0888(08) 313.0(2.8) 323 × 96 4.51 f10; 12; 14; 16g 0.4951(13) 2263 9, 052 144, 832
a09m220 0.0872(07) 225.9(1.8) 483 × 96 4.79 f10; 12; 14; 16g 0.4496(18) 960 7, 668 122, 688
a09m130 0.0871(06) 138.1(1.0) 643 × 96 3.90 f10; 12; 14; 16g 0.4204(23) 1041 8, 328 99, 936

a06m310W 0.0582(04) 319.6(2.2) 483 × 144 4.52 f18; 20; 22; 24g 0.3304(23) 500 � � � 66, 000
a06m135 0.0570(01) 135.6(1.4) 963 × 192 3.7 f16; 18; 20; 22g 0.2704(32) 751 6, 008 48, 064
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III. MOMENTS AND MATRIX ELEMENTS

In this work, we calculate the first moments of spin
independent (or unpolarized), q ¼ q↑ þ q↓, helicity (or
polarized), Δq ¼ q↑ − q↓, and transversity, δq ¼ q⊤ þ q⊥
distributions, defined as

hxiq ¼
Z

1

0

x½qðxÞ þ q̄ðxÞ�dx; ð1Þ

hxiΔq ¼
Z

1

0

x½ΔqðxÞ þ Δq̄ðxÞ�dx; ð2Þ

hxiδq ¼
Z

1

0

x½δqðxÞ þ δq̄ðxÞ�dx; ð3Þ

where q↑ð↓Þ corresponds to quarks with helicity aligned
(antialigned) with that of a longitudinally polarized target,
and q⊤ð⊥Þ corresponds to quarks with spin aligned (anti-
aligned) with that of a transversely polarized target.
These moments, at leading twist, can be extracted from

the hadron matrix elements of one-derivative vector, axial-
vector, and tensor operators at zero momentum transfer.
The unpolarized and polarized moments hxiq and hxiΔq of
the nucleon are also obtained from phenomenological
global fits while a computation of the nucleon transversity
hxiδq using lattice QCD is still a prediction due to the lack
of sufficient experimental data [6].
We are interested in extracting the forward nucleon

matrix elements hNðpÞjOjNðpÞi, with the nucleon initial
and final 3-momenta, p⃗, taken to be zero in this work. The
complete set of one-derivative vector, axial-vector, and
tensor operators is the following:

Oμν
Va ¼ q̄γfμD

↔νgτaq;

Oμν
Aa ¼ q̄γfμD

↔νgγ5τaq;

Oμνρ
Ta ¼ q̄σ½μfν�D

↔ρgτaq; ð4Þ

where q ¼ fu; dg is the isodoublet of light quarks and

σμν ¼ ðγμγν − γνγμÞ=2. The derivative D
↔

ν ≡ 1
2
ðD⃗ν − D⃖νÞ

consists of four terms:

ψ̄ðΓD⃗ν − ΓD⃖νÞψðxÞ≡ 1

2
½ψ̄ðxÞΓUνðxÞψðxþ νÞ

− ψ̄ðxÞΓU†
νðx − νÞψðx − νÞ

þ ψ̄ðx − νÞΓUνðx − νÞψðxÞ
− ψ̄ðxþ νÞΓU†

νðxÞψðxÞ�: ð5Þ

Lorentz indices within fg in Eq. (4) are symmetrized and
within ½� are antisymmetrized. It is also implicit that, where
relevant, the traceless part of the above operators is taken.
Their renormalization is carried out nonperturbatively in

the regularization independent RI0-MOM scheme as dis-
cussed in Appendix B. A more detailed discussion of these
twist-2 operators and their renormalization can be found in
Refs. [19,20].
In this work, we consider only isovector quantities.

These are obtained from Eq. (4) by choosing τa ¼ τ3 for
the Pauli matrix. The decomposition of the matrix elements
of these operators in terms of the generalized form factors at
zero momentum transfer is as follows:

hNðp; s0ÞjOμν
Va jNðp; sÞi ¼ ūpNðs0ÞA20ð0ÞγfμpνgupNðsÞ; ð6Þ

hNðp;s0ÞjOμν
Aa jNðp;sÞi¼ iūpNðs0ÞÃ20ð0Þγfμpνgγ5upNðsÞ;

ð7Þ

hNðp; s0ÞjOμνρ
Ta jNðp; sÞi ¼ iūpNðs0ÞAT20ð0Þσ½μfν�pρgupNðsÞ:

ð8Þ

The relation between the momentum fraction, the helicity
moment, and the transversity moment and the generalized
form factors is hxiq ¼ A20ð0Þ, hxiΔq ¼ Ã20ð0Þ, and hxiδq ¼
AT20ð0Þ, respectively.
We end this discussion by mentioning that other

approaches have been proposed to calculate the moments
of PDFs from lattice QCD in recent years [21–23].

IV. CORRELATION FUNCTIONS
AND MOMENTS

We use the following interpolating operator N to create/
annihilate the nucleon state

N ¼ ϵabc
�
qaT1 ðxÞCγ5 ð1� γ4Þ

2
qb2ðxÞ

�
qc1ðxÞ; ð9Þ

where fa; b; cg are color indices, q1; q2 ∈ fu; dg, and C ¼
γ0γ2 is the charge conjugation matrix. The nonrelativistic
projection ð1� γ4Þ=2 is inserted to improve the signal, with
the plus and minus signs applied to the forward and
backward propagation in Euclidean time, respectively
[19]. At zero momentum, this operator couples only to
the spin 1

2
state. The zero momentum two-point and three-

point nucleon correlation functions are defined as

C2pt
αβ ðτÞ ¼

X
x

h0jN αðτ; xÞN βð0; 0Þj0i; ð10Þ

C3pt
O;αβðτ; tÞ ¼

X
x0;x

h0jN αðτ; xÞOðt; x0ÞN βð0; 0Þj0i; ð11Þ

where α and β are spin indices. The source is placed at time
slice 0, the sink is at τ, and the one-derivative operators,
defined in Sec. III, are inserted at time slice t. Data have
been accumulated for the values of τ specified in Table I
and in each case for all intermediate times 0 ≤ t ≤ τ.
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To isolate the various operators, projected two- and
three-point functions are constructed as

C2pt ¼ TrðP2ptC2ptÞ; ð12Þ

C3pt
O ¼ TrðP3ptC

3pt
O Þ: ð13Þ

The projector P2pt ¼ 1
2
ð1þ γ4Þ in the nucleon correlator

gives the positive parity contribution for the nucleon
propagating in the forward direction. For the connected
three-point contributions P3pt ¼ 1

2
ð1þ γ4Þð1þ iγ5γ3Þ is

used. With these spin projections, the explicit operators
used to calculate the forward matrix elements are as
follows:

hxiu−d∶ O44
V3 ¼ q̄

�
γ4D

↔
4 −

1

3
γ ·D

↔
�
τ3q; ð14Þ

hxiΔu−Δd∶ O34
A3 ¼ q̄γf3D

↔
4gγ5τ3q; ð15Þ

hxiδu−δd∶ O124
T3 ¼ q̄σ½1f2�D

↔
4gτ3q: ð16Þ

Our goal is to obtain the matrix elements (ME), of these
operators within the ground state of the nucleon. TheseME
are related to the moments as follows:

h0jO44
V3 j0i ¼ −MNhxiu−d; ð17Þ

h0jO34
A3 j0i ¼ −

iMN

2
hxiΔu−Δd; ð18Þ

h0jO124
T3 j0i ¼ −

iMN

2
hxiδu−δd; ð19Þ

where MN is the nucleon mass. The three moments are
dimensionless, and their extraction on a given ensemble
does not require knowing the value of the lattice scale a. It
enters only when performing the chiral-continuum extrapo-
lation to the physical point as discussed in Sec. VI.

V. CONTROLLING EXCITED STATE
CONTAMINATION

To calculate the matrix elements of the operators defined
in Sec. III between ground-state nucleons, contributions of
all possible excited states need to be removed. The lattice
nucleon interpolating operatorN given in Eq. (9), however,
couples to the nucleon, all its excitations, and multiparticle
states with the same quantum numbers. Previous lattice
calculations have shown that the ESC can be large [24–26].
In our earlier works [12–14,27], we have shown that this
can be controlled to within a few percent. We use the same
strategy here. In particular, we use HYP smearing of the
gauge links before calculating Wilson-clover quark propa-
gators with optimized Gaussian smeared sources using the

multigrid algorithm [28,29]. Correlation functions con-
structed from these smeared source propagators have
smaller excited state contamination [27]. To extract the
ground state matrix elements from these, we fit the three-
point data at several τ values (listed in Table I) simulta-
neously using the spectral decomposition given in Eq. (21).
Fits to the zero-momentum two-point functions, C2pt,

were carried out keeping up to four states in the spectral
decomposition:

C2ptðτÞ ¼
X3
i¼0

jAij2e−Miτ: ð20Þ

Fits are made over a range fτmin − τmaxg to extract Mi and
Ai, the masses and the amplitudes for the creation/
annihilation of these states by the interpolating operator
N . In fits with more than two states, estimates of the
amplitudesAi and massesMi for i ≥ 2were sensitive to the
choice of the starting time slice τmin. We used the largest
time interval allowed by statistics, i.e., by the stability of the
covariance matrix. We perform two types of 4-state fits. In
the fit denoted f4g, we use the empirical Bayesian
technique described in Ref. [30] to stabilize the three
excited-state parameters. In the second fit, denoted
f4Nπg, we use as prior for M1 either the noninteracting
energy of Nð−1Þπð1Þ or the Nð0Þπð0Þπð0Þ state, which are
both lower than the M1 obtained from the f4g fit, and
roughly equal for the nine ensembles. The lower energy
Nð−1Þπð1Þ state has been shown to contribute in the axial
channel [31], whereas for the vector channel the
Nð0Þπð0Þπð0Þ state is expected to be the relevant one.
We find that these two fits to the two-point function cannot
be distinguished on the basis of the χ2=dof; in fact, the full
range ofM1 between the two estimates from f4g and f4Nπg
are viable first-excited-state masses on the basis of χ2=dof
alone. The same is true of the values for M2. We therefore,
investigate the dependence of the results for moments on
the excited-state spectra by doing the full analysis with
multiple strategies as discussed below. The ground-state
nucleon mass obtained from the various fits is denoted by
the common symbol MN ≡M0 and the mass gaps
by ΔMi ≡Mi −Mi−1.
The analysis of the zero-momentum three-point func-

tions, C3pt
O , is performed retaining up to three states jii in

the spectral decomposition:

C3pt
O ðτ; tÞ ¼

X2
i;j¼0

jAijjAjjhijOjjie−Mit−Mjðτ−tÞ: ð21Þ

The operators, O, are defined in Eqs. (14), (15), and (16).
By fixing the momentum at the sink to zero and inserting
the operator at zero momentum transfer we get the forward
matrix element. The practical challenge discussed above is
determining the relevantM1 andM2 to use and, failing that,
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to investigate the sensitivity of h0jOj0i to possible values of
M1 and M2 and including that variation as a systematic
uncertainty.
For all the strategies used to determine M1 and M2, we

extract the desired ground state matrix element h0jOj0i by
fitting the three-point correlators C3pt

O ðt; τÞ for a subset of
values of t and τ simultaneously. This subset is chosen to
reduceESC—we select the largest values of τ and discard tskip
number of points next to the source and sink for each τ. These
values of τ and of tskip are given in Table II.
The data for the ratio C3pt

O ðτ; tÞ=C2ptðτÞ are shown in
Figs. 5 and 6 in Appendix A for all nine ensembles. The
signal in the three-point correlators decreases somewhat

from momentum fraction to helicity moment to transversity
moment. Nevertheless, we are able to make 3�state
(3-state with h2jOj2i ¼ 0) fits in all cases. The spectral
decomposition predicts that the data for all three quantities
is symmetric about t ¼ τ=2; however, on some of the
ensembles, and for some of the larger values of τ, the data
show some asymmetry, which is indicative of the size of
statistical fluctuations that are present.
The fits to C2ptðτÞ and C3pt

O ðτ; tÞ are carried out within a
single-elimination jackknife process, which is used to get
both the central values and the errors.
We have investigated five fit types, f4; 2g, f4Nπ; 2g,

f4; 3�g, f4Nπ; 3�g, and f4; 2freeg, based on the spectral

TABLE II. Our best estimates of the unrenormalized moments from the two fit strategies, f4; 3�g and f4; 2freeg, used to analyze the
two- and three-point functions. The second column gives the values of τ used in the fits, and the third column lists tskip ¼ fi; jg, the
number of time slices from the source and sink omitted for each τ for the two fit types to the three-point functions. For each fit-type we
give the result for the ground state matrix element,ME, the moment hxi obtained from it using Eqs. (17)–(19), and the χ2=dof of the fit
to the three-point function. In two cases, the values of τ=a included are different: the � in the second column denotes τ=a ¼ f22; 20; 18g
and † denotes τ=a ¼ f9; 8g were used for the f4; 2freeg fits.

f4; 3�g f4; 2freeg
Ensemble τ=a tskip Observable ME hxi χ2=dof ME hxi χ2=dof

a06m135 f22; 20; 18g f4; 5g hxiu−d −0.042ð4Þ 0.155(14) 0.87 −0.045ð5Þ 0.167(18) 0.99
a06m135 f22; 20; 18g f4; 5g hxiΔu−Δd −0.026ð2Þ 0.191(12) 1.00 −0.027ð3Þ 0.198(22) 1.13
a06m135 f22; 20; 18g f4; 5g hxiδu−δd −0.025ð2Þ 0.185(16) 1.32 −0.027ð3Þ 0.202(23) 1.31

a06m310W f24; 22; 20g* f6; 6g hxiu−d −0.056ð4Þ 0.170(13) 1.02 −0.063ð3Þ 0.193(8) 1.10
a06m310W f24; 22; 20g f6; 6g hxiΔu−Δd −0.037ð2Þ 0.223(15) 1.00 −0.038ð1Þ 0.231(7) 1.33
a06m310W f24; 22; 20g f6; 6g hxiδu−δd −0.035ð3Þ 0.213(18) 0.80 −0.037ð1Þ 0.227(8) 0.83

a09m130 f16; 14; 12g f3; 3g hxiu−d −0.074ð3Þ 0.177(8) 0.93 −0.077ð4Þ 0.184(9) 0.88
a09m130 f16; 14; 12g f3; 3g hxiΔu−Δd −0.046ð2Þ 0.218(7) 1.30 −0.048ð1Þ 0.228(5) 1.33
a09m130 f16; 14; 12g f3; 3g hxiδu−δd −0.045ð2Þ 0.212(11) 1.30 −0.047ð3Þ 0.225(14) 1.41

a09m220 f16; 14; 12g f3; 3g hxiu−d −0.082ð3Þ 0.184(5) 0.89 −0.086ð2Þ 0.191(4) 0.78
a09m220 f16; 14; 12g f3; 3g hxiΔu−Δd −0.051ð1Þ 0.227(4) 0.92 −0.053ð1Þ 0.235(3) 0.60
a09m220 f16; 14; 12g f3; 3g hxiδu−δd −0.053ð1Þ 0.234(6) 1.29 −0.055ð1Þ 0.243(4) 1.26

a09m310 f16; 14; 12g f3; 3g hxiu−d −0.097ð2Þ 0.196(4) 1.25 −0.094ð2Þ 0.190(5) 1.16
a09m310 f16; 14; 12g f3; 3g hxiΔu−Δd −0.058ð1Þ 0.233(3) 1.24 −0.059ð1Þ 0.238(3) 1.25
a09m310 f16; 14; 12g f3; 3g hxiδu−δd −0.059ð1Þ 0.239(4) 0.78 −0.060ð1Þ 0.241(4) 0.79

a12m220 f14; 12; 10g f3; 3g hxiu−d −0.125ð5Þ 0.199(8) 1.32 −0.130ð5Þ 0.207(8) 1.24
a12m220 f14; 12; 10g f3; 3g hxiΔu−Δd −0.074ð3Þ 0.234(9) 0.92 −0.077ð2Þ 0.245(6) 0.87
a12m220 f14; 12; 10g f3; 3g hxiδu−δd −0.077ð4Þ 0.246(11) 1.24 −0.080ð6Þ 0.254(17) 1.20

a12m220L f14; 12; 10g f3; 2g hxiu−d −0.117ð6Þ 0.191(9) 1.44 −0.120ð4Þ 0.196(7) 1.35
a12m220L f14; 12; 10g f3; 3g hxiΔu−Δd −0.073ð2Þ 0.240(7) 1.33 −0.074ð4Þ 0.241(14) 1.43
a12m220L f14; 12; 10g f3; 3g hxiδu−δd −0.073ð3Þ 0.237(10) 1.25 −0.075ð4Þ 0.244(14) 1.28

a12m310 f14; 12; 10g f3; 3g hxiu−d −0.130ð8Þ 0.195(11) 1.66 −0.137ð5Þ 0.206(8) 1.54
a12m310 f14; 12; 10g f3; 3g hxiΔu−Δd −0.079ð5Þ 0.238(16) 0.76 −0.083ð4Þ 0.250(13) 0.77
a12m310 f14; 12; 10g f3; 3g hxiδu−δd −0.084ð6Þ 0.251(16) 0.69 −0.087ð3Þ 0.261(9) 0.66

a15m310 f9; 8; 7g† f2; 3g hxiu−d −0.177ð5Þ 0.214(6) 1.94 −0.191ð3Þ 0.231(3) 1.90
a15m310 f9; 8; 7g f2; 2g hxiΔu−Δd −0.110ð3Þ 0.266(7) 0.76 −0.111ð3Þ 0.267(7) 0.69
a15m310 f9; 8g f2; 2g hxiδu−δd −0.122ð5Þ 0.293(12) 0.66 −0.119ð4Þ 0.286(9) 0.98
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decomposition to understand and control ESC. The labels
fm; ng denote an m-state fit to the two-point function and
an n-state fit to the three-point function. In the 2free-fit to the
three-point function, M1 is left as a free parameter, while a
3�-fit is a 3-state fit with h2jOj2i ¼ 0. The results from the
five strategies for the momentum fraction, hxiu−d, in
Table III, for the helicity moment, hxiΔu−Δd, in Table IV,
and for the transversity moment, hxiδu−δd, in Table V
illustrate the observed behavior for the a09m310 ensemble,
which has the highest statistics, and the physical mass
ensemble a06m135 at the smallest value of a.
For all three observables, the five results in Tables II–VI

for the ground state matrix element, h0jOj0i, are consistent
within 2σ on the a09m310 ensemble. On the a06m135
ensemble, the difference in ΔM1 ≡M1 −M0 between f4g
and f4Nπg analyses becomes roughly a factor of 2, and
ΔM1 from the f2freeg fit is larger than even the f4g value;
i.e., the f2freeg fit does not prefer the small ΔM1 given by
f4Nπg. On the other hand, the ΔM1 from a two-state fit is

expected to be larger since it is an effective combination of
the mass gaps of the full tower of excited states. Due to a
small ΔM1, fits with the spectrum from f4Nπg fail on
a06m135, whereas, on both ensembles, the f4; 3�g and
f4; 2freeg fits give results consistent within 2σ. The esti-
mates from these two fit-types are given in Table II. To
summarize, our overall strategy is to keep as many excited
states as possible without overparametrization of the fits.
We, therefore, choose, for the central values, the f4; 3�g
results, and to take into account the spread due to the fit-
type, we add a second, systematic, uncertainty to the final
results in Table VII. This is taken to be the difference
between the results obtained by doing the full analysis with
the f4; 3�g and f4; 2freeg strategies.
The renormalization of the matrix elements is carried out

using estimates of ZVD; ZAD, and ZTD calculated on the
lattice in the RI0-MOM scheme and then converted to the
MS scheme at 2 GeVas described in Appendix B. The final
values of ZVD; ZAD, and ZTD used in the analysis are given
in Table IX.

TABLE III. Comparison of fits using five strategies, f4; 2g, f4Nπ; 2g, f4; 3�g, f4Nπ ; 3�g, and f4; 2freeg, for the momentum fraction
hxiu−d on two ensembles a09m310 (highest statistics andMπ ∼ 310 MeV) and a06m135 (physicalMπ ∼ 135 MeV). In the f4; 2freeg fit,
the excited state mass gap, ΔM1, is left as a free parameter that is determined from the fit to the three-point function. The values of τ=a
and tskip used are the same as listed in Table II. We could not find a f4Nπ; 2g fit to the a06m135 data that gave reasonable values.

hxiu−d
Ensemble Fit-type aΔM1 aΔM2 h0jOj0i h1jOj1i

h0jOj0i
h1jOj0i
h0jOj0i

h2jOj0i
h0jOj0i

h2jOj1i
h0jOj0i χ2=dof

a09m310 f4; 2g 0.434(58) 0.0982(26) 4.90(3.34) 0.73(7) 1.31
a09m310 f4Nπ; 2g 0.343(44) 0.0928(35) 1.45(1.81) 0.91(14) 1.12
a09m310 f4; 3�g 0.434(58) 0.697(132) 0.0971(21) 4.50(3.66) 0.83(7) −0.27ð31Þ −4.5ð14Þ 1.25
a09m310 f4Nπ; 3�g 0.343(44) 0.555(69) 0.0933(25) 1.1(2.0) 0.89(10) −0.01ð17Þ 2.3(4.2) 1.20
a09m310 f4; 2freeg 0.358(33) 0.0941(24) 0.78(1.44) 0.76(8) 1.16

a06m135 f4; 2g 0.197(37) 0.0402(56) 2.6(1.5) 1.12(0.31) 0.95
a06m135 f4Nπ; 2g 0.0846(84) � � � � � � � � � � � �
a06m135 f4; 3�g 0.197(37) 0.287(49) 0.0418(40) 3.2(1.9) 0.89(24) 0.44(32) −2ð5Þ 0.87
a06m135 f4Nπ; 3�g 0.0846(84) 0.201(23) 0.038(15) 3.4(2.8) 0.11(1) 1.2(4) −0.3ð2.2Þ 0.90
a06m135 f4; 2freeg 0.241(49) 0.0452(47) 6(6) 0.99(16) 0.99

TABLE IV. Comparison of fits using five strategies, f4; 2g, f4Nπ; 2g, f4; 3�g, f4Nπ ; 3�g, and f4; 2freeg, for the helicity moment
hxiΔu−Δd. The rest is the same as in Table III.

hxiΔu−Δd
Ensemble Fit-type aΔM1 aΔM2 h0jOj0i h1jOj1i

h0jOj0i
h1jOj0i
h0jOj0i

h2jOj0i
h0jOj0i

h2jOj1i
h0jOj0i χ2=dof

a09m310 f4; 2g 0.434(58) 0.115(26) 2.6(2.6) 0.72(5) 1.15
a09m310 f4Nπ; 2g 0.343(44) 0.110(33) 0.33(1.5) 0.85(11) 1.43
a09m310 f4; 3�g 0.434(58) 0.697(132) 0.115(19) 3.46(2.6) 0.63(7) 0.50(20) −3ð12Þ 1.24
a09m310 f4Nπ; 3�g 0.343(44) 0.555(69) 0.113(24) 1.0(2.3) 0.54(15) 0.49(46) 7(10) 1.16
a09m310 f4; 2freeg 0.539(40) 0.118(15) 14(10) 0.83(9) 1.25

a06m135 f4; 2g 0.197(37) 0.0468(61) 1.07(1.09) 1.07(29) 1.29
a06m135 f4Nπ; 2g 0.0846(84) 0.004(14) −23ð110Þ 28(115) 0.93
a06m135 f4; 3�g 0.197(37) 0.287(49) 0.0517(36) 4.01(1.84) 0.45(21) 1.28(26) −7ð6Þ 1.00
a06m135 f4Nπ; 3�g 0.0846(84) 0.201(23) 0.075(21) 6(3) −1.3ð7Þ 1.6(3) −3.4ð1.5Þ 1.06
a06m135 f4; 2freeg 0.260(67) 0.0535(60) 5(7) 0.98(14) 1.18
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VI. CHIRAL, CONTINUUM, AND INFINITE
VOLUME EXTRAPOLATION

To obtain the final, physical results at Mπ ¼ 135 MeV,
MπL → ∞, and a ¼ 0, we make a simultaneous CCFV fit
keeping only the leading correction term in each variable:

hxiðMπ; a;LÞ ¼ c1 þ c2aþ c3M2
π þ c4

M2
πe−MπLffiffiffiffiffiffiffiffiffiffi
MπL

p : ð22Þ

Note that, since the operators are not OðaÞ improved and
we used the Clover-on-HISQ formulation, we take the
discretization errors to start with a term linear in a. The fits
to the f4; 3�g data from the nine ensembles are shown in
Figs. 1, 2, and 3. The fit parameters are summarized in
Table VI.
The results of the CCFV fits show that the finite volume

correction term, c4, is not constrained. We, therefore, also

present results from a CC fit, i.e., with c4 ¼ 0 in Eq. (22).
Results for c1 from the two fit ansatz overlap, and there is a
small positive slope in both a and M2

π for all three
quantities. The data for both f4; 3�g and f4; 2freeg, given
in Table II, are very similar, but with a systematic shift of
about 0.01–0.02 in all three cases. This difference arises
because ΔM1 for f4; 2freeg is larger (except in a09m310)
and because the convergence with respect to τ is from
above as shown in Figs. 5 and 6; i.e., a largerΔM1 implies a
smaller extrapolation and a larger τ → ∞ value.
For our final results we quote the CC fit values as the

coefficient c4 of the finite-volume corrections in the CCFV
fits is undetermined. The CC results with the two strategies,
f4; 3�g and f4; 2freeg, are summarized in Table VII. For our
best estimates, we take the f4; 3�g results and add a second,
systematic, error that is the difference between these two
strategies and represents the uncertainty in controlling the
excited-state contamination.

FIG. 1. Data for hxiu−d, renormalized in the MS scheme at μ ¼ 2 GeV, for all nine ensembles. The blue band in the left panel shows
the CC fit result evaluated at Mπ ¼ 135 MeV and plotted versus a, while in the right panel it shows the result versus M2

π evaluated
at a ¼ 0.

TABLE V. Comparison of fits using five strategies, f4; 2g, f4Nπ ; 2g, f4; 3�g, f4Nπ; 3�g, and f4; 2freeg, for the transversity moment
hxiδu−δd. The rest is the same as in Table III.

hxiδu−δd
Ensemble Fit-type aΔM1 aΔM2 h0jOj0i h1jOj1i

h0jOj0i
h1jOj0i
h0jOj0i

h2jOj0i
h0jOj0i

h2jOj1i
h0jOj0i χ2=dof

a09m310 f4; 2g 0.434(58) 0.117(36) 2.4(3.1) 0.92(10) 0.84
a09m310 f4Nπ; 2g 0.343(44) 0.109(49) −0.83ð1.9Þ 1.17(19) 1.45
a09m310 f4; 3�g 0.434(58) 0.697(132) 0.118(24) 1.3(3.0) 0.84(8) 0.04(33) 18(15) 0.78
a09m310 f4Nπ; 3�g 0.343(44) 0.555(69) 0.115(27) −0.8ð1.8Þ 0.82(10) 0.28(19) 10(6) 0.77
a09m310 f4; 2freeg 0.486(37) 0.120(19) 8(6) 0.93(10) 0.79

a06m135 f4; 2g 0.197(37) 0.0385(97) 0.69(1.75) 2.00(81) 1.70
a06m135 f4Nπ; 2g 0.0846(84) � � � � � � � � � � � �
a06m135 f4; 3�g 0.197(37) 0.287(49) 0.0500(44) 3.6(2.2) 0.61(35) 1.30(43) −1ð6Þ 1.32
a06m135 f4Nπ; 3�g 0.0846(84) 0.201(23) 0.082(30) 6(3) −1.3ð8Þ 1.5(3) −1.8ð1.7Þ 1.34
a06m135 f4; 2freeg 0.306(81) 0.0545(62) 17(26) 1.29(14) 1.31
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FIG. 3. Data for hxiδu−δd, renormalized in the MS scheme at μ ¼ 2 GeV, for all nine ensembles plotted as a function of a (left panel)
and M2

π (right panel). The rest is the same as in Fig. 1.

TABLE VI. Results for the fit parameters in the CCFVansatz given in Eq. (22) and used for the chiral, continuum, and finite volume
(CCFV) extrapolation of the f4; 3�g data. The CC and CCFV fit-types correspond to fits with c4 ¼ 0 or c4 ≠ 0.

Fit-type Observable c1 c2 c3 c4 χ2=dof

CC hxiu−d 0.170(14) 0.09(14) 0.19(11) 0.74
CC hxiΔu−Δd 0.209(16) 0.15(16) 0.24(13) 0.56
CC hxiδu−δd 0.201(20) 0.26(20) 0.35(16) 0.88

CCFV hxiu−d 0.167(16) 0.12(16) 0.24(17) −9ð23Þ 0.85
CCFV hxiΔu−Δd 0.206(16) 0.18(17) 0.32(19) −15ð25Þ 0.59
CCFV hxiδu−δd 0.202(21) 0.25(20) 0.34(24) 3(31) 1.06

FIG. 2. Data for hxiΔu−Δd, renormalized in the MS scheme at μ ¼ 2 GeV, for all nine ensembles plotted as a function of a (left panel)
and M2

π (right panel). The rest is the same as in Fig. 1.

TABLE VII. Results for the threemoments from the twostrategiesf4; 3�g andf4; 2freeg. For ourbest estimates,we take thef4; 3�gvalues
and assign a second, systematic, error that is the difference between the two results. The results are in the MS scheme at scale 2 GeV.

Observable f4; 3�g f4; 2freeg Best estimate

hxiMS
u−d

0.173(14) 0.180(14) 0.173(14)(07)

hxiMS
Δu−Δd

0.213(15) 0.235(15) 0.213(15)(22)

hxiMS
δu−δd

0.208(19) 0.236(18) 0.208(19)(24)
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A comparison of these results with other lattice QCD
calculations on ensembles with dynamical fermions is
presented in the top half of Table VIII and shown in
Fig. 4. Our results agree with those from the Mainz
group [20] that have also been obtained using data on a
comparable number of ensembles, but all with
Mπ > 200 MeV, which are used to perform a chiral
and continuum extrapolation. The one difference is the
slope c3 of the chiral correction. For our clover-on-
HISQ formulation, we find a small positive value while
the Mainz data show a small negative value [20]. Our
results are also consistent within 1σ with the ETMC 20
[32] and ETMC 19 [33] values that are from a single
physical mass ensemble. The central value from χQCD
[34], using partially quenched analysis, is smaller but
consistent within 1σ. Results for the momentum
fraction and the helicity moment from RQCD 18 [35]
are taken from their Set A with the difference between
Set A and B values quoted as a second systematic
uncertainty. Their result for the transversity moment is
from a single 150 MeV ensemble. These values are
larger, especially for the helicity and transversity
moment. Other earlier lattice results show a spread;
however, in each of these calculations, the systematics
listed in the last column of Table VIII have not been
addressed or controlled and could, therefore, account for
the differences.
Estimates from phenomenological global fits, most of

which have also been reviewed in Ref. [6], are summarized
in the bottom of Table VIII and shown in Fig. 4. We find
that results for the momentum fraction from global fits are,

in most cases, 1 − 2σ smaller and have much smaller errors.
Results for the helicity moment are consistent and the size
of the errors comparable. Lattice estimates of the trans-
versity moment are a prediction.

VII. CONCLUSIONS

In this paper, we have presented results for the isovector
quark momentum fraction, hxiMS

u−d, helicity moment,

hxiMS
Δu−Δd, and transversity moment, hxiMS

δu−δd, from a high
statistics lattice QCD calculation. Attention has been paid
to the systematic uncertainty associated with excited-state
contamination. We have carried out the full analysis with
different estimates of the mass gaps of possible excited
states, and we use the difference in results between the two
strategies that give stable fits on all ensembles as an
additional systematic uncertainty to account for possible
residual excited-state contamination.
The behavior versus Mπ , the lattice spacing a, and

finite volume parameter MπL have been investigated
using a simultaneous fit that includes the leading
correction in all three variables as given in Eq. (22). The
nine data points cover the range 0.057 < a < 0.15 fm,
135 < Mπ < 320 MeV, and 3.7 < MπL < 5.5. Over this

range, all three moments, hxiMS
u−d, hxiMS

Δu−Δd, and hxiMS
δu−δd, do

not show a large dependence on a orMπ orMπL. As shown
in Table VI, possible dependence on the lattice size,
characterized by MπL, is not resolved by the data; i.e.,
the coefficient c4 is unconstrained. We, therefore, take for
our final results those obtained from just the chiral-
continuum fit.
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FIG. 4. A comparison of results from lattice QCD calculations with dynamical fermions and global fits (below the black line)
summarized in Table VIII. The left panel compares results for the momentum fraction, the middle for the helicity moment, and the right
for the transversity moment. The PNDME 20 result is also shown as the blue band to facilitate comparison.
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The small increase with a and M2
π , evident in Figs. 1–3,

is well fit by the leading correction terms that are linear in
these variables. Also, for all three observables, the chirally
extrapolated value is consistent with the data from the two
physical mass ensembles. In short, the observed small
dependence in all three variables, and having two data
points at Mπ ∼ 135 MeV to anchor the chiral fit, allows a
controlled extrapolation to the physical point, Mπ ¼
135 MeV and a ¼ 0.
Our final results, given in Table VII, are compared

with other lattice calculations and phenomenological global
fit estimates in Table VIII and shown in Fig. 4. Estimates of
all three quantities are in good agreement with those from
the Mainz Collaboration [20], also obtained using a chiral-
continuum extrapolation, from the ETMC Collaboration
[32,33] that are from a single physical mass ensemble, and

from the χQCD Collaboration [34]. On the other hand,
most global fit estimates for the momentum fraction are
about 10% smaller and have much smaller errors, while
those for the helicity moment are consistent within 1σ.
Lattice estimates for the transversity moment are a pre-
diction. The overall consistency of results suggests that
lattice QCD calculations of these isovector moments are
now mature and future calculations will steadily reduce the
statistical and systematic uncertainties in them.
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TABLE VIII. Our lattice QCD results are compared with other lattice calculations with Nf flavors of dynamical fermions in rows 2–
12, and with results from phenomenological global fits in the remainder of the table. In both cases, the results are arranged in reverse
chronological order. All results are in the MS scheme at scale 2 GeV. For a discussion and comparison of lattice and global fit results up
to 2017 see Ref. [6]; and for a more recent comparison of hxiu−d see Ref. [41]. The JAM17† estimate for hxiΔu−Δd is obtained from [6],
where, as part of the review, an analysis was carried out using the data in [37]. The following abbreviations are used in the remarks
column for various sources of systematic uncertainties in lattice calculations—DIS: discretization effects; CE: chiral extrapolation; FV:
finite volume effects; NR: nonperturbative renormalization; ES: excited state contaminations. A prefix “N-” means that the systematic
uncertainty was not adequately controlled or not estimated.

Collaboration Ref. hxiu−d hxiΔu−Δd hxiδu−δd Remarks

PNDME 20
(this work)

0.173(14)(07) 0.213(15)(22) 0.208(19)(24) Nf ¼ 2þ 1þ 1 clover-on-HISQ

ETMC 20 [32] 0.171(18) Nf ¼ 2þ 1þ 1 twisted mass N-DIS, N-FV

ETMC 19 [33] 0.178(16) 0.193(18) 0.204(23) Nf ¼ 2þ 1þ 1 twisted mass N-DIS, N-FV

Mainz 19 [20] 0.180ð25Þstat 0.221ð25Þstat 0.212ð32Þstat Nf ¼ 2þ 1 clover
ðþ14;−6Þsys ðþ10;−0Þsys ðþ16;−10Þsys

χQCD 18 [34] 0.151(28)(29) Nf ¼ 2þ 1 overlap on domain wall

RQCD 18 [35] 0.195(07)(15) 0.271(14)(16) 0.266(08)(04) Nf ¼ 2 clover

ETMC 17 [38] 0.194(9)(11) Nf ¼ 2 twisted mass N-DIS, N-FV

ETMC 15 [39] 0.208(24) 0.229(30) 0.306(29) Nf ¼ 2 twisted mass N-DIS, N-FV

RQCD 14 [25] 0.217(9) Nf ¼ 2 clover N-DIS, N-CE, N-FV

LHPC 14 [40] 0.140(21) Nf ¼ 2þ 1 clover N-DIS (a ∼ 0.12 fm)

RBC/UKQCD 10 [41] 0.124–0.237 0.146–0.279 Nf ¼ 2þ 1 domain wall N-DIS, N-CE, N-ES

LHPC 10 [42] 0.1758(20) 0.1972(55) Nf ¼ 2þ 1 domain wall-on-asqtad
N-DIS, N-CE, N-NR, N-ES

CT18 [36] 0.156(7)

JAM17† [6,37] 0.241(26)

NNPDF3.1 [43] 0.152(3)
ABMP2016 [44] 0.167(4)
CJ15 [45] 0.152(2)
HERAPDF2.0 [46] 0.188(3)
CT14 [47] 0.158(4)
MMHT2014 [48] 0.151(4)
NNPDFpol1.1 [49] 0.195(14)
DSSV08 [50,51] 0.203(9)
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FIG. 5. Data and fits for a06m135 (top row), a06m310W (second row), a09m130 (third row), and a09m220 (last row). In each row,
the three panels show the ratio C3pt

O ðτ; tÞ=C2ptðτÞ scaled according to Eq. (17)–(19) to give hxiu−d (left), hxiΔu−Δd (middle), and hxiδu−δd
(right). For each τ, the line in the same color as the data points is the result of the f4; 3�g fit (see Sec. V) used to obtain the ground
state matrix element. The ensemble ID, the final result hxi (also shown by the blue band and summarized in Table II), the values of τ, and
χ2=dof of the fit are also given in the legends. The interval of the y axis is selected to be the same for all the panels to facilitate
comparison.
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FIG. 6. Data and fits for a09m310 (top row), a12m220 (second row), a12m220L (third row), a12m310 (fourth row), and a15m310
(bottom row) ensembles. The rest is the same as in Fig. 5.
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APPENDIX A: PLOTS OF THE RATIO
C3pt
O ðτ; tÞ=C2ptðτÞ

In this Appendix, we show in Figs. 5 and 6, plots of the
unrenormalized isovector momentum fraction, hxiu−d, the
helicity moment, hxiΔu−Δd, and the transversity moment,

hxiδu−δd, for the nine ensembles. The data show the ratio
C3pt
O ðτ; tÞ=C2ptðτÞmultiplied by the appropriate factor given

in Eqs. (17)–(19) to get hxi. The lines with the same color
as the data are the result of the fit to C3pt

O ðτ; tÞ using
Eq. (21). In all cases, to extract the ground state matrix
element, the fits to C2ptðτÞ and C3pt

O ðτ; tÞ are done within a
single jackknife loop.

APPENDIX B: RENORMALIZATION

In this Appendix, we describe the calculation of the
renormalization factors, ZVD;AD;TD, for the three one-
derivative operators. These are determined nonperturba-
tively on the lattice in the RI0-MOM scheme [53,54] as a
function of the lattice scale p2 ¼ pμpμ, and then converted
to the MS scheme using 3-loop perturbative factors
calculated in the continuum in Ref. [55]. For data at each
p, we perform horizontal matching by choosing the MS
scale μ ¼ jpj. These numbers are then run in the continuum

FIG. 7. Nonperturbative renormalization factors for hxiu−d, (ZVD), hxiΔu−Δd, (ZAD), and hxiδu−δd, (ZTD), at the four lattice spacings in
the MS scheme at μ ¼ 2 GeV. The shaded bands mark the region in

ffiffiffiffiffi
p2

p
that is averaged and the error in the estimate.
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MS scheme from scale μ to 2 GeV using three-loop
anomalous dimensions [55]. Note that the decomposition
of the three operators into irreducible representations given
in Refs. [19,20] shows that they can only mix with higher
dimensional operators. Such OðaÞ effects would also be
taken into account in our CCFV fits, and removed by the
continuum extrapolation.
We calculate ZVD;AD;TD for one value of Mπ at each a.

Based on our experience with local operators [13], where
we found insignificant dependence of results on Mπ, we
assume that these results, within the conservative error
estimates we assign, give the mass-independent renormali-
zation factors at each a. Evidence that the dependence on
M2

π is tiny for these 1-link operators also comes from
explicit calculations in Refs. [20,32], albeit with different
lattice actions. In each case, the dependence onM2

π is found
to be much smaller than 1%. The dominant uncertainty
comes from the dependence on p2, which is discussed next.
In Fig. 7, we show the behavior of the renormalization

factors ZVD;AD;TD in the MS scheme at μ ¼ 2 GeV for the
four ensembles as a function of jpj—the scale of the
RI0-MOM scheme on the lattice. In Fig. 8 we compare ZVD,

used to renormalize hxiu−d, calculated on four ensembles,
one at each lattice spacing.
For all three operators, the data do not show a window in

jpj where the results are independent of jpj. The variation
in the data is due to a combination of the breaking of full
rotational invariance on the lattice and other p2 dependent
artifacts. This is the dominant uncertainty and many
methods have been proposed to control it; see for example
Refs. [13,20,32]. In Ref. [13], we explored three methods
that gave consistent results, and of these we have selected
the strategy labeled “Method B” there as it is the most
straightforward. In this approach, we take an average over
the data points in an interval of 2 GeV2 about p2 ¼ Λ=a,
where the scale Λ ¼ 3 GeV is chosen to be large enough to
avoid nonperturbative effects and at which perturbation
theory is expected to be reasonably well behaved. Also, this
choice satisfies both pa → 0 and Λ=p → 0 in the con-
tinuum limit as desired. The window over which the data
are averaged and the error (half the height of the band) are
shown by shaded bands in Figs. 7 and 8. Noting the large
variation with p2, we take twice this error, i.e., full height of
the band, for a very conservative error estimate for all
three Z0s.
These final estimates of ZVD, ZAD, and ZTD used to

renormalize the momentum fraction, the helicity moment,
and the transversity moment, respectively, are given in
Table IX.
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