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We show how to formulate a lattice gauge theory whose naive continuum limit corresponds to two-
dimensional (Euclidean) quantum gravity including a positive cosmological constant. More precisely the
resultant continuum theory corresponds to gravity in a first-order formalism in which the local frame and
spin connection are treated as independent fields. Recasting this lattice theory as a tensor network allows us
to study the theory at strong coupling without encountering a sign problem. In two dimensions this tensor
network is exactly soluble and we show that the system has a series of critical points that occur for pure
imaginary coupling and are associated with first order phase transitions. We then augment the action with a
Yang-Mills term which allows us to control the lattice spacing and show how to apply the tensor
renormalization group to compute the free energy and look for critical behavior. Finally we perform an
analytic continuation in the gravity coupling in this extended model and show that its critical behavior in a
certain scaling limit depends only on the topology of the underlying lattice. We also show how the lattice
gauge theory can be naturally generalized to generate the Polyakov or Liouville action for two dimensional
quantum gravity.
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I. INTRODUCTION

The challenge of formulating a quantum theory of
general relativity (GR) remains unmet, and many different
approaches have been developed to surmount this chal-
lenge. Perhaps the most popular approach gives up on local
quantum field theory as the appropriate framework and
instead posits that the elementary degrees of freedom are
strings with GR emerging as the leading low energy
effective field theory. This has been an incredibly produc-
tive line of research and has led to a plethora of develop-
ments on both physics and mathematics [1–8]. Other
approaches start from a more conservative standpoint
and take the stance that while quantum gravity is pertur-
batively nonrenormalizable, it may, nevertheless, be pos-
sible to make sense of it in a nonperturbative context. This
is the viewpoint taken by the asymptotic safety program
[9–14] which employs functional renormalization group
methods to search for new fixed points in quantum general
relativity. It is also common to lattice approaches such as
causal and Euclidean dynamical triangulations [15–21].
The latter have revealed some intriguing aspects of
quantum gravity like the emergence of fractal structure

at the Planck scale [16,18]. Loop quantum gravity (LQG)
[22–24] which is based on Ashtekhar’s reformulation of
general relativity [25–27] constitutes yet another avenue of
attack and has led to interesting results like discreteness
of spacetime at the Planck scale and a calculation of the
entropy of Schwarzschild black holes [24,28].
Some other well-known approaches to quantum gravity

are decorated tensor network models [29], spin-foam
models of gravity [30], twistor theory [31–33], causal sets
[34–36], and noncommutative formulations [37–39].
In this paper we focus on another approach to defining

a path integral for gravity based on its reformulation as a
gauge theory, following along the lines described in
[40–42]. Here, we implement this idea in a nonperturbative
setting by discretizing the continuum construction as a
lattice gauge theory [43,44].
Once one has a lattice formulation it is natural to

attempt to explore the theory using the powerful numerical
techniques that have proven so successful in understanding
the low energy dynamics of QCD. Unfortunately, as
we show later, in the case of gravity the lattice theory
typically possesses a sign problem which makes standard
Monte Carlo approaches to simulation difficult. However,
as we show in this paper, the lattice model can be rewritten
as a tensor network and new techniques such as the tensor
renormalization group (TRG), which are insensitive to sign
problems, can then be brought to bear [45–47]. There are
many different implementations of the TRG algorithm
that have been developed but they all have in common
the goal of computing the physical properties of a given
network by a recursive procedure that coarsens the tensor
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network at some scale while attempting to preserve the
long distance physics. The review [48] compares the
differences and strengths of these different algorithms.
Tensor network formulations have had some success in
analyzing many spin and lattice gauge models [49–52] but
this paper constitutes the first attempt to use them to study
quantum gravity.
Implementing any of these TRG schemes is currently

infeasible in full four dimensional quantum gravity since
the memory required increases rapidly with dimension.
Instead, in this paper, we will explore their use in a simpler
toy model—two-dimensional quantum gravity. Two-
dimensional gravity has been well studied using conven-
tional metric-based approaches [53,54] including those
arising from string theory [55–59]. In this paper we try to
make contact with these continuum formulations from the
discrete tensor network representation.
We first show that the very simplest transcription of the

continuum theory possesses a tensor network which can be
computed exactly without employing the TRG. Of course
to make contact with continuum approaches one needs to
take a continuum limit of the lattice theory. Quite generally
this requires that the lattice theory possess a continuous
phase transition where the correlation length of the lattice
fields diverges.1 One powerful way to search for such phase
transitions is to look for zeroes on the partition function in
the plane of complex coupling—so-called Fisher zeroes.
Typically these approach an axis in the thermodynamic
limit with the rate of approach being controlled by a critical
exponent.
We show that in this simplest model there are an infinite

number of zeroes but they all lie on the axis corresponding
to a pure imaginary coupling. Theories with complex
couplings are said to exhibit sign problems and cannot
be studied numerically with Monte Carlo algorithms.
However, TRG algorithms are agnostic to the existence
of sign problems since they do not involve probabilistic
sampling and thus can be used in such cases. We will argue
that any gauge theory formulation of gravity will possess a
sign problem. Thus recasting lattice versions of these
models as tensor networks can be very useful for the
numerical study of such theories at strong coupling.
However, we show that in this simplest model that these

transitions are all first order with a finite correlation length
and hence cannot be used to construct a continuum theory
of quantum gravity.
To try to remedy the situation we have considered

enlarging the set of operators in the lattice action.
Perhaps the simplest such operator which is consistent
with all the exact lattice symmetries is the usual Yang-Mills

term. Such a term is not coordinate invariant but is an
irrelevant operator which should play no role at long
distances. It has the merit however of allowing us to
control the lattice spacing by tuning its coupling β. We
show how to construct a tensor network representation of
this extended theory and use TRG techniques to compute
its free energy and search for phase transitions. Again, a
transition is only found for pure imaginary gravitational
coupling. Furthermore, we are able to recover the results of
the TRG analysis using an exact method based on analytic
continuation and find that the critical exponent character-
izing the behavior of the partition function close to the
transition depends on the topology of the lattice. This
feature is in qualitative agreement with the Polyakov model
of two-dimensional quantum gravity. However, the asso-
ciated critical exponent does not agree with the continuum
theory. We suggest the discrepancy is the result of neglect-
ing another marginally relevant operator in the lattice
action. We give arguments that the inclusion of such an
operator should allow for a precise connection to con-
tinuum formulations of two-dimensional quantum gravity.
Work in this direction is ongoing [60].
This paper is organized as follows. In Sec. II, we review

the first-order formulation of general relativity and discuss
its connection to MacDowell-Mansouri gravity in Sec. III.
We use the ideas developed in these sections to construct
a two-dimensional gauge theoretic version of gravity in
Sec. IV. In Sec. V we discretize the two-dimensional theory
and use the character expansion of the associated class
function to find an analytic expression for the partition
function. Using the closed-form results obtained in the
previous section, we perform a Fisher zero analysis to
determine the order of the phase transition in Sec. VI. In
Sec. VII, we argue that we can add an irrelevant Yang-Mills
operator to the lattice action to control the lattice spacing.
This augmented model is then explored using the TRG.
In Sec. VIII we perform an analytic continuation in the
gravity coupling and are able to show that the critical
exponents characterizing the critical behavior depend only
on the topology of the lattice. We argue in Sec. IX that a
connection to the continuum Polyakov theory of two-
dimensional gravity can be made only after the inclusion
of a new marginal operator and we describe that connection
in some detail. Finally, we conclude our discussion in
Sec. X with possible extensions of the work by writing
down a lattice theory of 4D quantum gravity that parallels
the two-dimensional theory in this paper.

II. REVIEW OF THE PALATINI-CARTAN
FORMULATION OF EINSTEIN GRAVITY

A path integral for Einstein-Hilbert gravity written in
terms of a metric gμν takes the form

Z ¼
Z

DgeiSGðgÞ ð1Þ

1Once the correlation length expressed in lattice units becomes
large—but smaller than the lattice volume—microscopic details
on the scale of the lattice spacing are washed out and the long
distance physics can be captured by a continuum theory.
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where the action SG is given by

SG ¼ 1

l2
P

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ ð2Þ

It is known how to map gauge theories into tensor networks
by following the procedure described in e.g., [49]. This
method, based on character expansion of the group valued
action, will be described in detail in Sec. IV. However, there
is no analogous method known for noncompact spin two
fields such as gμν. Fortunately, gravity can be recast in the
language of Yang-Mills theory by replacing the metric
gμνðxÞ by the so-called frame field eμðxÞ by employing the
relation

gμν ¼ eμaeνbηab ð3Þ

[61,62]. Clearly the metric is invariant under local Lorentz
rotations of the frame field eaμðxÞ → Λa

bðxÞebμðxÞ. In order to
write down derivative terms one must also introduce a
corresponding gauge field corresponding to these local
Lorentz transformations—the spin connection ωμðxÞ trans-
forming as

ωμ
ab → Dμ

acϕcb ¼ ∂μϕ
ab þ ½ωμ;ϕ�ab ð4Þ

where ωμ ¼
P

a<b ω
ab
μ ðxÞTab is summed over the gener-

ators of the Lorentz group. A natural locally Lorentz
invariant action can then be written down in terms of eμ
and the usual Yang-Mills curvature Rμν ¼ ½Dμ; Dν� as

S ¼ 1

l2
P

Z
d4xϵμνρλϵabcd

�
eμaeνbRλρ

cd −
1

l2
eμaeνbeλceρd

�

ð5Þ

Notice that since gμν is not a fundamental field in this
approach, the only tensor available to contract world
indices is the invariant tensor ϵμνρλ which automatically
guarantees that the theory is independent of coordinate
transformations. Rather remarkably this action reduces to
the usual Einstein-Hilbert action provided

detðeμaÞ ≠ 0 ð6Þ

Tμν
a ¼ D½μeν�a ¼ 0 ð7Þ

where the first line guarantees that we can invert the frame
field considered as a 4 × 4 matrix and the second is the
usual vanishing torsion condition required to achieve a
theory that depends only on the metric by supplying an
additional condition that expresses the spin connection in
terms of the frame field. Equation (7) is a classical equation
of motion of the action in Eq. (5). The first term in the
Eq. (5) reduces to the usual Ricci scalar of the metric theory

once one employs the relation eλaeλb ¼ δba, and the result
ϵμνρλ ¼ detðeÞϵabcdeμaeνbeρceλd,

ϵμνρλϵabcdeμaeνbRλρ
cd →

ffiffiffiffiffiffi
−g

p
R; ð8Þ

while the second is clearly the cosmological constant term
detðeÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

detðgÞp
with Λ ¼ 1

2l2 the cosmological constant.
Notice the introduction of an arbitrary length scale l to
keep the frame field dimensionless.
This Cartan-Palatini formulation of gravity offers several

advantages over the conventional metric approach: it is
explicitly independent of any background metric, it
employs the familiar formalism of gauge theories and it
can naturally include fermions using the spin connection.
Its main disadvantage is that it contains two independent
fields—the frame and spin connection. However we will
see in the next section that it is possible to enlarge the gauge
symmetry in such a way that both fields play an equiv-
alent role.

III. CARTAN GRAVITY AS SPONTANEOUSLY
BROKEN de Sitter GRAVITY

While this gauge theoretic form of gravity is clearly an
improvement over the metric based formulation from the
point of view of constructing a tensor network it still
contains a noncompact field eμ in addition to the gauge
field ωμ which prevents a simple application of the method
of character expansion to build the tensor network. Luckily,
there is a way to enlarge the gauge symmetry and treat eμ as
another gauge field. Once we go to the lattice this will allow
the standard character expansion approach to be employed.
The procedure was first described in the continuum in

[40] and requires extending the Lorentz group to the de
Sitter group with eμ playing the role of the additional gauge
fields. As we will see the key physical requirement that
allows this new theory to reduce to Einstein-Hilbert is that
the vacuum state of the theory must correspond to a phase
in which the de Sitter symmetry is spontaneously broken
down to Lorentz symmetry.
For simplicity we will restrict the discussion from this

point to the Euclidean theory in which the SOð4Þ Lorentz
symmetry is embedded in the larger SOð5Þ Euclidean
de Sitter symmetry. The action that is required is

SM ¼ κ

Z
d4xϵμνλρϵABCDEϕ

EFAB
μν FCD

λρ ð9Þ

with A;B;… ¼ 1…5. The curvature F is the usual SOð5Þ
Yang-Mills term while the scalar field is a new degree of
freedom which transforms in the fundamental representa-
tion of SOð5Þ. We can use the local SOð5Þ transformations
to set four of its five fields equal to zero and write
ϕA ¼ ρðxÞδ5A. This is called working in unitary gauge
and does not change the gauge invariant physical content
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of the theory. We can decompose this action under the
remaining SOð4Þ subgroup that is preserved by this gauge
choice. This subgroup can then be identified with the
Lorentz symmetry and the corresponding gauge field with
the spin connection ωμ. The four gauge fields correspond-
ing to the additional generators of SOð5Þ correspond to the
frame field eμ

Aμ ¼ ωab
μ Tab þ 1

l
eaμT5a ð10Þ

with a; b ¼ 1…4. In a similar way the SOð5Þ curvature
decomposes under the SOð4Þ subgroup as

Fμν ¼
�
Rab
μν −

1

l2
ea½μe

b
ν�

�
Tab þD½μeaν�T

5a ð11Þ

where R is the SOð4Þ curvature as before. Finally, we
assume a nonzero constant expectation value for the radial
scalar field hρðxÞi ¼ ρ0 in the vacuum state. A vacuum
expectation value of this form is only invariant under the
generators corresponding to the Lorentz subgroup and
hence de Sitter symmetry is spontaneously broken
down to Lorentz symmetry. With this additional condition,
it is straightforward to see that the SOð5Þ action given in
Eq. (9) reproduces the action of GR in Eq. (5) pro-
vided κ ¼ ð l

lP
Þ2 ∼ 1

GΛ.
2

There are several advantages to this construction. First,
the classical equations of motion of the SOð5Þ theory
ensure that both Fμν ¼ 0 and Dμϕ ¼ 0. The former implies
that both the Einstein equation and the torsion free
condition are satisfied classically

Rab
μν −

1

l2
ea½μe

b
ν� ¼ 0; ð12Þ

D½μeaν� ¼ 0: ð13Þ

Notice that the vanishing of the covariant derivative of the
scalar is also consistent with the condition for spontaneous
symmetry breaking.
The enlarged gauge symmetry also helps to constrain

counterterms in the theory and requires that the correct
measure for path integration be invariant under the de Sitter
symmetry.3

IV. TWO DIMENSIONS

Having reviewed how this procedure works in four
dimensions we now devote the remainder of this paper
to an exploration of the approach in the case of two
dimensions. There are several studies of gauge theoretic
formulations of gravity in two dimensions [41,64–66] and a
great deal is known about the metric theory through
Liouville theory and matrix models [57,58]. In two
dimensions, the Einstein-Hilbert action is a topological
invariant4 and the Einstein tensor is identically zero. To
obtain a nontrivial analog of the Einstein equation, Jackiw
and Teitelboim proposed a solution, R − 2Λ ¼ 0, where R
is the Ricci scalar and Λ is the cosmological constant.
The proposed Lagrangian of Jackiw-Teitelboim (dilaton)
gravity [67] is,

L ¼ ffiffiffiffiffiffi
−g

p
ϕðR − ΛÞ: ð14Þ

Note the introduction of the scalar field which acts as a
Lagrange multiplier needed to enforce the equation of
motion. It is analogous to the scalar that appeared in the
previous gauge theoretic approach to gravity.
Returning to this latter construction it is easy to see that

the analogous Lagrangian in two dimensions is,

S ¼
Z

d2xϵμνϵabcϕcFab
μν ; a; b ¼ 0; 1; 2 ð15Þ

where F takes its values in SOð3Þ. Exploiting the homo-
morphism SOð3Þ ∼ SUð2Þ this can be rewritten as

S ¼
Z

d2xϵμνTrðϕFμνÞ ð16Þ

where ϕ is now in the adjoint of SUð2Þ. Picking a unitary
gauge again allows us to simplify the action further to

S ¼ κ

Z
d2xϵμνρðxÞTrðσ3FμνÞ ð17Þ

which clearly exhibits the remaining exact SOð2Þ ∼Uð1Þ
Lorentz symmetry corresponding to transformations
Fμν → eiαðxÞσ3Fμνe−iαðxÞσ3 . Again the classical equations
correspond to vanishing torsion and R ¼ 2

l2. Thus we have
shown that a natural candidate for two-dimensional gravity
takes the form of an SUð2Þ gauge theory. It is then natural
to discretize it on a lattice and study it numerically at strong
coupling. We turn to this in the next section.

2An additional topological term—the Euler density is also
produced which we ignore since we are only concerned with
manifolds of fixed Euler character.

3It should be noted that essentially the same construction
works in odd dimensions and generates Witten’s representation
of 3d gravity as a Chern-Simons gauge theory. In that case
however there is no need for an additional scalar to break the
symmetry [63].

4R ffiffiffi
g

p
R ¼ 4πχ with χ the Euler character of the manifold

which counts the number of handles of the manifold and is
independent of g. Topological theories possess only a finite
number of degrees of freedom in contrast to a generic quantum
field theory.
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V. LATTICE MODEL AND TENSOR
NETWORK REPRESENTATION

The theory can be discretized on any lattice and as a
starting point we pick a simple square lattice, placing group
elements UμðxÞ; μ ¼ 1, 2 of SUð2Þ on the link x → xþ μ̂
as in lattice QCD [68]. The lattice action takes the form

S ¼ −
κ

2

X
x

TrðiϕðxÞ½U12ðxÞ −U12ðxÞ†�Þ ð18Þ

where U12ðxÞ is the usual Wilson plaquette operator
corresponding to the product of link fields around a unit
square of the lattice with corner at lattice site x,

U12ðxÞ ¼ U1ðxÞU2ðxþ 1̂ÞU†
1ðxþ 2̂ÞU†

2ðxÞ; ð19Þ

where 1̂ represents a unit vector in the 1-direction etc.
Formally expanding the link fields in powers of the lattice
spacing Uμ ¼ eiAμa ¼ I þ iAμaþ � � � reproduces the con-
tinuum action Eq. (15).
It is convenient to adopt a generalized polar representa-

tion of the adjoint field ϕðxÞ ¼ 1ffiffi
2

p ρðxÞGðxÞσ3GðxÞ†
where GðxÞ is a general position dependent SUð2Þ
matrix. One can then use cyclic invariance of the
trace to rotate the factors of G onto the original link
fields and write the theory in terms of new link fields
U0

μðxÞ ¼ G†ðxÞUμðxÞGðxþ μÞ. This procedure explicitly
effects unitary gauge for the lattice theory. Finally, drop-
ping the prime labels allows us to write the action as

S ¼ −
κffiffiffi
2

p
X
x

ρðxÞReTrðiσ3U12Þ: ð20Þ

So far we have not changed the physical content of the
theory. To target the theory with just a residual Uð1Þ
Lorentz invariance requires, as before, the additional
assumption that ρ picks up a vacuum expectation value
(VEV). This is done by hand by setting ρðxÞ ¼ ffiffiffi

2
p

. Since
the VEVof ϕ lies in the σ3 direction it should be clear that
the original SUð2Þ is now broken to Uð1Þ corresponding to
rotations of the form eiασ3 with σ3 ¼ iσ1σ2 corresponding
to rotations in the 12-plane.
Now, the partition function of the action in Eq. (20) is a

class (group invariant) function and by a fundamental
theorem of group theory can be expanded as a sum over
characters with each character corresponding to the trace of
the element of the group in a particular representation [69].
Ordinary Fourier transformation can be envisaged as the
analog of this procedure for the Uð1Þ group where the
familiar sines and cosines represent all the one dimensional
characters of the Uð1Þ group.
To construct the tensor network we employ a similar

character expansion for the SUð2Þ group and expand the
Boltzmann weight e−S corresponding to each plaquette
term in the action

eκTrðMU12Þ ¼
X∞
j¼0

2ð2jþ 1ÞI2jþ1ðκÞ
κ

χjðMU12Þ ð21Þ

with M ¼ iσ3 ¼ ei
π
2
σ3 a constant SUð2Þ matrix and In a

modified Bessel function is the expansion coefficient. The
sum runs over all irreducible representations of SUð2Þ
labeled by j. Expanding the character χj on products of
Wigner D-matrices yields an expression for the partition
function:

Z ¼
Z Y

l

dUl

Y
p

X
j

2ð2jþ 1ÞI2jþ1ðκÞ
κ

×Dj
abðMÞDj

bcðU1ÞDj
cdðU2ÞDj

deðU†
3ÞDj

eaðU†
4Þ ð22Þ

with U1, U2 etc … denoting the links around a given
plaquette,

Q
l a product over links, and

Q
p a product over

plaquettes. For a two-dimensional torus we can then
integrate out the individual gauge links UμðxÞ using the

result
R
dUDj

abD
�k
cd ¼ 1

2jþ1
δjkδacδbd. Clearly the result of

this integration ensures that only a single representation
survives over the entire lattice and the resulting expression
can be organized as a product over all sites, s,

Z ¼
X
j

YN0

s¼1

�
2I2jþ1ðκÞ
ð2jþ 1Þκ

�
Dj

aaðMÞ: ð23Þ

Using the well-known formula for the character of an
SUð2Þ representation [69]

χj ¼ sin ðð2jþ 1ÞθÞ
sinðθÞ : ð24Þ

with θ ¼ π
2
yields

Z ¼
X
j

fN0

j ð25Þ

where

fj ¼
1

2jþ 1
ð−1Þj 2I2jþ1ðκÞ

κ
; for j integer: ð26Þ

With the partition function written in this form, an obvious
tensor network can be built. Consider the tensor located at
lattice plaquette x,

TðxÞ
ijkl ¼

�
fr if i ¼ j ¼ k ¼ l ¼ 2r

0 otherwise;
ð27Þ

where each index is shared between two adjacent pla-
quettes, of which there are four surrounding a single
plaquette in two-dimensions. This tensor is diagonal, with
the only nonzero entries being those where all four indices
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are identical. By contracting this tensor with itself one
reconstructs the above partition function,

Z ¼
�Y2N0

n¼1

X∞
in¼0

�
Ti1i2i3i4 � � �Ti2N0−3i2N0−2i2N0−1i2N0

¼ Tr

�YN0

x¼1

TðxÞ
�

ð28Þ

with the trace being interpreted as a tensor trace. Since the
tensor is diagonal, the N0 tensors simply reproduce the
N0th power of the fjs, and the 2N0 sums for each link,
simply reduce to a single sum over representations.
Critical points of the system correspond to zeros of Z in

the plane of complex coupling κ. In general phase tran-
sitions occur when these so-called Fisher zeros pinch the
axes in the thermodynamic limit [70,71]. In the next section
we examine this in more detail.

VI. FISHER ZEROS

In this section, we use the representation from Eq. (25),
and with κ allowed to take all values in the complex plane
we search for zeros of the partition function numerically.
In practice we truncate the expansion in representation j

at some jmax. Setting jmax ¼ 2 we show in Fig. 1 lines
where the real and imaginary parts of Z vanish when
N0 ¼ 16.5 Where these curves cross corresponds to zeros
of Z. We observe that rings of zeroes develop centered at
discrete intervals along the imaginary κ axis. If we focus on
the leading ring we can see that the density of zeroes along
the ring increases with N0—see Fig. 2 which shows results

for N0 ¼ 36. Indeed, we observe that the number of zeroes
is precisely N0. Notice that while there are no zeroes on the
imaginary axis the set of zeroes approach the imaginary
axis as N0 increases. This is precisely the behavior required
of a Fisher zero in the thermodynamic limit. The only twist
is that usually the zeroes approach the real axis while here
the zeroes approach the imaginary axis implying that the
system only develops a phase transition when the coupling
κ is pure imaginary. On reflection this actually should not
be surprising; the gravity term resembles a topological term
since it employs an epsilon tensor to contract spacetime
indices. On Wick rotation to Euclidean space such a term
naturally acquires a factor of the square root of minus one.
Notice that such an action with pure imaginary coupling

would be impossible to simulate using Monte Carlo meth-
ods because of a dramatic sign problem highlighting the
advantages of the tensor network approach we adopt here.
Actually the rate at which the zeroes approach the

imaginary axis yields the correlation length exponent ν
associated with the phase transition that arises in the
thermodynamic limit [72],

κzeroðN0Þ ¼ κcð∞Þ þ AN
− 1
2ν

0 : ð29Þ

Figure 3 shows a plot of Imκ for the zero closest to the
axis as a function ofL ¼ ffiffiffiffiffiffi

N0

p
together with a fit to the form

given in Eq. (29). The fitted exponent is ν ¼ 0.2495
and κcð∞Þ ¼ 3.51833.
Let us now try to understand this structure using analytical

arguments. In the limit N0 → ∞ the partition function
formally truncates to just the leading term jmax ¼ 0. The
free energy is then

f ¼ 1

N0

lnZ ¼ ln
I1ðκÞ
κ

: ð30Þ

FIG. 1. Zeros of the partition function in the complex κ plane
with jmax ¼ 2, for N0 ¼ 16.

FIG. 2. Zeros of the partition function in the complex κ plane
with jmax ¼ 2, for N0 ¼ 36.

5Since the successive terms in the expansion drop rapidly with
j the truncation to jmax ¼ 2 is actually quite good and we have
checked that including higher order terms does not change the
conclusions.
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This clearly possesses no zeroes on the real κ line. However,
taking κ → iκ takes I1ðκÞ → J1ðκÞ and it appears that the
free energy possesses a series of logarithmic singularities
along the imaginary axis corresponding to the zeroes of the
first Bessel function. Furthermore

∂f
∂κ ¼

�Z
det e

	
¼ 1

J1ðκÞ
ðJ0ðκÞ − J2ðκÞÞ −

1

κ
ð31Þ

where we have neglected the Riemann term as it is a
topological invariant and does not scale with N0. Clearly
at points where J1 ¼ 0 the mean area measured in units of
the lattice spacing diverges.
However while the theory truncates to the leading term

J1ðκÞ for generic values of κ in the large N0 limit this
procedure fails precisely in regions close to the zeroes of
J1. If the second term J3 is kept in the analysis it is easy to
see that

Z ¼
�
2

κ
J1ðκÞ

�
N0

; for





 3J1J3





 > 1 ð32Þ

Z ¼
�
2

3κ
J3ðκÞ

�
N0

; for





 3J1J3





 < 1: ð33Þ

Since the zeroes of J3 never coincide with those of J1
there will always be windows in κ around each zero of J1
where the free energy changes from behaving like J1 to J3
and an exact zero is avoided. The upper and lower limits
of this window can be found by solving the equation
j J1
3J3

j ¼ 1. Since the Bessel functions are analytic this
interval becomes a curve in the complex plane correspond-
ing to the rings observed in the Fisher zero analysis. The
occurrence of N0 zeroes then corresponds to the solutions
of ð3J1ðz − z0Þ=J3ðz − z0ÞÞN0 ¼ 1 with z0 a zero of J1.
Close to z0 this can be approximated by a linear function of
z − z0 which is then proportional to an Nth

0 root of unity. It
is interesting to note that from this expression we obtain a
critical coupling constant κc ¼ 3.51832 where the phase

transition occurs. This matches exactly from the finite
size scaling analysis described in the first part of this
section.
It should be clear that while the free energy is continuous

at this boundary in the large N0 limit its derivative will not
be—the jump in the slope being ∂

∂κ lnðJ3ðκÞ=J1ðκÞÞ. Thus
one expects a series of finite jumps in the value of hdet ei as
a function of (imaginary) coupling κ. The existence of such
first-order phase transitions hence preclude the existence of
a continuum limit in this lattice theory. This conclusion
remains even for larger jmax. Inclusion of the higher order
Bessels does not change the contour plots of the zeros of
the partition function significantly near the first zero of J1.
The largest terms in the expansion near the first zero of J1
arise from J3 and all others are exponentially suppressed as
N0 → ∞. It is possible that some higher Bessels Jm and Jn
with m; n > 3 will dominate near some zero of J1 further
from the origin so that the window of convergence will be
controlled by ðnJmðκÞÞ=ðmJnðκÞÞ. However the essential
conclusion of a discontinuous first derivative of the free
energy there will continue to hold.
The overall conclusion is that the lattice model based on

the classical two-dimensional gravitational action pos-
sesses only first order phase transitions. The absence of
a diverging correlation length ensures that the lattice model
does not possess a continuum limit. Hence, although we
started with a naive discretization of a continuum action the
result of including quantum fluctuations has led to a theory
in which it is not possible to take the continuum limit. In the
continuum the inability to remove a UV cutoff is a sign of
nonrenormalizability of the theory. Often this is a signal
that we have left out of our bare action important operators
whose couplings must be tuned to remove the cutoff—here
taking the lattice spacing to zero or equivalently the
correlation length in lattice units to infinity.
The question that then arises is whether it is possible to

augment the action by additional terms to generate a
continuous phase transition and hence the possibility of
a continuum limit. In the continuum there are no additional
relevant or marginal operators that preserve both the gauge
symmetry and coordinate invariance.6 However, on the
lattice coordinate invariance is lost and additional operators
can appear. Perhaps the simplest of these is a Yang-Mills
term TrðF12F12Þ. Such a Yang-Mills term, while naively
unimportant in the infrared limit that determines the
continuum theory, can play a role in the ultraviolet by
allowing one to control the lattice spacing. This is a feature
that is missing in the original lattice model where no
obvious coupling sets the lattice spacing. We investigate
this new action in the next section.

FIG. 3. Correlation length exponent (ν) calculation from the
zeros of the contour plots in the ℜ½κ� → 0 limit.

6Remember that in this formulation the metric is emergent and
generated by the frame fields and so coordinate invariant terms
must be built using only the epsilon tensor.
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VII. ADDING A YANG-MILLS TERM AND
A TRG ANALYSIS

In this section we will study the structure of the gravity
model in the presence of an additional Yang-Mills term. By
tuning β larger, this pushes the plaquette group elements to
be close to the identity, effectively reducing the lattice
spacing. The lattice action takes the form

S ¼ −κ
X
x

Tr½MUx;12� − β
X
x

Tr½Ux;12�; ð34Þ

where as before M ¼ iσ3 ¼ eiσ3
π
2 From our earlier Fisher

zero analysis we expect any critical points to occur for pure
imaginary values of κ. The two terms can be combined by a
renormalization of β and κ. We can define an SUð2Þ matrix
M̃ ¼ ð1β þ iσ3κÞ=μ with μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ κ2

p
. With this matrix

we can rewrite the action exactly as

S ¼ −μ
X
x

Tr½M̃Ux;12�: ð35Þ

With the action written in this form we can follow the same
steps as before for the character expansion with the
replacement of κ from Sec. V by μ, and M with M̃. This
gives a nontrivial angle for the rotation matrix, and the
character χjðM̃Þ. The angle θ is now θ ¼ arccos β=μ.
The tensor for this action can be written in a similar way

to before with

fjðμÞ ¼
2I2jþ1ðμÞ
μð2jþ 1Þ χ

jðM̃Þ ð36Þ

and

TðxÞ
ijklðμÞ ¼

�
frðμÞ if i ¼ j ¼ k ¼ l ¼ r

0 otherwise:
ð37Þ

This tensor is very convenient because it is very diagonal,
with the only nonzero tensor elements being if all four
tensor indices are identical. Here each index is again
thought of as being associated with one of the four links
bounding a plaquette, so that contracting between tensors is
thought of as gluing together plaquettes and summing over
the representations those two plaquettes can have.
We will analytically continue κ → iκ in the tensor based

on what was observed before in the absence of the Yang-
Mills term, and then perform the tensor contractions. Of
course, one cannot contract the T tensor with itself
indefinitely because of the exponential cost in computing
resources. To cope with that we use the higher-order tensor
renormalization group (HOTRG) [51] and make trunca-
tions during contraction.
To better understand the model we consider a shifted

version of the free energy, f ¼ lnðZ̃Þ where we have
removed a regular part of the partition function

corresponding to j ¼ 0 which does not affect the singular
behavior close to a phase transition. We have also looked at
the κ-derivative of the free energy which is proportional to
the mean area since F12 ¼ R12 − detðeÞ

�Z
detðeÞ

	
¼ −

∂ ln Z̃
∂κ : ð38Þ

The continuum limit is when the lattice volume is taken
large while the physical volume is held fixed corresponding
to keeping β=N2 ¼ 1=b2 with b a constant, and N2 the
number of plaquettes. We found a value of b ¼ 10 was a
good value to keep stability in the size of the numbers and
still see movement toward the continuum. We also tried
scaling κ in such a way to obtain critical behavior. We find
that scaling κ ¼ k

ffiffiffi
β

p
, with k a constant shows a transition

in k. The free energy density can be seen in Fig. 4. From
this figure, there appears to be a transition around k ≃ 1.75.
The average action can be seen in Fig. 5 and shows that the
average area diverges for k ≃ 1.75. In the next section, we

FIG. 4. The normalized free energy density as a function of k.
Here we kept a jmax ¼ 10, and a bond dimension of 40. L is the
linear size of the lattice.

FIG. 5. The quantity hR detðeÞi as a function of the parameter k.
There is an abrupt change around k ≃ 1.75 which steepens as the
volume is increased. Here jmax ¼ 10, and a bond dimension of 41
states was kept. The linear length of the lattice is L.
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use analytic methods to study this transition in more detail
and show how the critical behavior depends on the top-
ology of the lattice.

VIII. ANALYTIC CONTINUATION AND
TOPOLOGY DEPENDENCE

In the previous section we demonstrated how to write a
tensor network for the lattice gravity action supplemented
by a Yang-Mills term. We showed how the two terms, the
Yang-Mills and gravity terms, could be combined into a
single term, then allowing for a character expansion in the
SUð2Þ characters. We found evidence of a first-order
transition in the derivative of the free energy, and here
we give an analytical calculation which agrees with the
numerical evidence. Furthermore, we are able to show
the relevant critical exponent governing the behavior of the
partition function at this critical point is determined only by
the Euler characteristic of the underlying lattice. This
feature is shared with continuum treatments of two-dimen-
sional quantum gravity.
We start our analysis with a square lattice with torus

topology, then consider a lattice drawn on the surface of a
cube with spherical topology and consider the general case
at the end, constructing a general tensor network formu-
lation for an arbitrary random triangulation.

A. Square lattice with torus topology

Taking the action from section VII we combine the two
terms. The resulting action is, again,

S ¼ −μ
X
x

ReTr½M̃U12ðxÞ�: ð39Þ

Performing a character expansion as before and a sub-
sequent link integration yields

Z ¼
X
j

�
2I2jþ1ðμÞ

μ

�
N2ð2jþ 1ÞN2−N1

Y
sites i

χjðeiθσ3Þ ð40Þ

where, as before, the character χj of an SUð2Þ representa-
tion is given by

χj ¼ sin ðð2jþ 1ÞθÞ
sinðθÞ : ð41Þ

In the continuum it is convenient to describe the theory in
terms of a dimensionless coupling b ¼ gL where L is the
linear size of the system and g the (dimensionful) two-
dimensional Yang-Mills coupling. In the lattice theory this
implies the continuum limit is approached by sending the
number of sites along a side of the lattice L → ∞ and the
lattice coupling g → 0 while holding b ¼ Lffiffi

β
p ¼ gL fixed.

This limit corresponds to taking β ¼ N2

b2 . In the model

discussed here one also needs to decide how to scale the
coupling κ. One simple choice is to hold it fixed. In this
case the Yang-Mills term dominates in the continuum limit.
This is the situation explored in [73]. In this limit θ → 0,
χj ¼ ð2jþ 1Þ, Z only depends on β and the Euler character
χ ¼ N2 − N1 þ N0 and the model exhibits no phase
transitions at finite coupling. However a more interesting

limit consists of scaling κ → k
ffiffiffiffi
N2

p
b , with k a constant. In this

case θ ≃ kbffiffiffiffi
N2

p . Using the small θ expansion of χ

χj ∼ ð2jþ 1Þ
�
1 −

2

3
θ2jðjþ 1Þ þOðθ4Þ

�
: ð42Þ

we find

χj ≃ ð2jþ 1Þ
�
1 −

2

3
jðjþ 1Þ k

2b2

N2

�
: ð43Þ

To construct the (singular part of the) partition function we
will also normalize each modified Bessel function by
dividing it by I1ðμÞ=μ and make use of the asymptotic
formula

I2jþ1ðxÞ
I1ðxÞ

¼ e−
2
xjðjþ1Þ; x → ∞: ð44Þ

The final expression for the partition function as N2 → ∞
is then

Z ¼
X
j

½e−2b2
N2

jðjþ1Þ�N2

�
1 −

2k2b2

3
jðjþ 1Þ 1

N0

�
N0

ð2jþ 1Þχ

ð45Þ

¼
X
j

ð2jþ 1Þχe−2b2jðjþ1Þð1þ1
3
k2Þ: ð46Þ

Now consider once continuing κ to imaginary values.
This corresponds to the choice for the coupling made in
Sec. VII. In this case the expression for Z indicates a two
phase structure for the system with Z finite for k < kc and
divergent for k > kc where kc ¼

ffiffiffi
3

p
≈ 1.73. Furthermore,

for k < kc the sum can be approximated by an integral
yielding a singular behavior as k → kc

Z ∼ ðk − kcÞ−1
2
ðχþ1Þ ð47Þ

We thus see that the partition function has a topological
character with a critical exponent depending only on the
Euler number.7 Of course the calculation that we have just

7It is also interesting to notice that the form of the parti-
tion function resembles a random surface model

P
A e

ðk−kcÞA if
we identify the quantized area A ¼ jðjþ 1Þ in a manner similar
to loop quantum gravity.
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described was performed on a torus where χ ¼ 0. However,
once might suspect that a similar result holds on more
general topologies since they can always be constructed
from a square lattice using a finite number of defects. We
show this explicitly in the next section by repeating the
analysis for the surface of a cube.

B. Square lattice with spherical topology

Here we consider a lattice corresponding to the surface of
a large cube. This is a two-dimensional surface with the
topology of a sphere. The single plaquette action is the
same as in Sec. VIII A; however, we must be sure to orient
the surface consistently with a right-hand rule, for instance.
Figure 6 gives an example of small cube lattice which has
the same general orientation we consider in this case.
Using Fig. 6 as a guide, there are some vertices in this

convention which have two M matrices associated with
them which are multiplied and traced over. There are also
some with no M matrices associated with them; these
are traces of Kronecker deltas. And as in the torus case,
there are some vertices with a single M associated with
them. For a cube of edge-length, L, there are Lþ 1 vertices
on each of the 12 edges. We find the total volume of
the surface in terms of the number of vertices to be
N0 ¼ 6L2 þ 2. The number of vertices along two edges
which share a vertex is 2Lþ 1. Based on Fig. 6, we see that
there are two connected edges which contain vertices that

have products of two M matrices. The two vertices at the
ends of these edges however only have a single M
associated with them. In addition, there are two connected
edges whose vertices possess no M matrices around them.
With this information we can write down the partition
function for this system,

Z ¼
X
j

�
2I2jþ1ðμÞ

μ

�
N2ð2jþ 1ÞN2−N1

× χjðeiθσ3Þ6L2−4Lþ2χjðeiθσ32Þ2L−1ð2jþ 1Þ2Lþ1: ð48Þ

From this we can see that taking the same limiting behavior
as before for κ and β, we find a factor at leading order
which is just ð2jþ 1ÞN0 . In addition, it turns out that the
transition value of kc is unchanged on this topology
(although the exponent certainly changes) which can be
seen from the next leading order contributions and we
arrive back at Eq. (46)

C. Arbitrary triangulation

It is possible to write down a lattice action which can be
put on a triangulation of any orientable closed surface and
generalizes the torus and sphere constructions. The smallest
Wilson loops are now defined on elementary triangles
where the single triangle action has the form

s△ ¼ −μReTr½M1
3U1M

1
3U2M

1
3U3�: ð49Þ

Notice that we associate the factorM
1
3 with each vertex of a

triangle. This amounts to the replacement θ → 1
3
θ. The total

action is just the sum of the single triangle actions for every
triangle,

S ¼
X

triangles

s△: ð50Þ

Performing the character expansion as before and doing the
group integration link by link we obtain the normalized
partition function,

Z̃ ¼
X
j

�
I2jþ1ðβÞ
I1ðβÞ

�
N2ð2jþ 1ÞN2−N1× ð51Þ

Y
sites i

χjðeiθσ3qi3 Þ; ð52Þ

where qi is the number of triangles around vertex i. Clearly
the leading term in the expansion of the character term is
independent of qi and returns the same topological factor
ð2jþ 1ÞN0 . The next to leading contribution is given by

Y
sites;i

�
1 −

2b2k2

9N0

jðjþ 1Þq2i
�

ð53Þ

FIG. 6. A figure of a 1 × 1 cube (L ¼ 1) with the orientation in
mind for this article. The same vertices are indicated with
identical markers and colors, and the location of the M matrix
insertions are shown as well as the black inserts in the lower left-
hand of the plaquette.
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This can be exponentiated to

e−
2k2b2

9
jðjþ1Þhq2i ð54Þ

where hq2i is the average squared coordination number
of the triangulation. Thus the main effect of reformulating
the model on an arbitrary graph is to shift the critical
coupling kc. This argument confirms the existence of a
phase transition in the gravity model with topology
dependent critical exponents.

IX. THE CONNECTION TO LIOUVILLE/
POLYAKOV GRAVITY

The addition of the Yang-Mills term was motivated by
the use of a lattice formulation in which explicit coordinate
invariance is lost. While we have seen that this operator
plays a role in generating a phase transition in the model it
does not lead to a continuum limit in agreement with
Liouville gravity [1]. But the list of gauge invariant
operators that are allowed in the lattice theory contains
additional possibilities. One of the most obvious is a kinetic
term for the scalar field

R
TrðDϕÞ2. Indeed, since this

operator is marginally relevant in the renormalization group
sense it may indeed be important in the long distance
effective theory. Of course the existence of this operator
necessarily implies that we are allowing for local fluctua-
tions in the scalar field and so the complete lattice action
becomes

S ¼
X
x

κReTrðϕU12Þ þ TrðDμϕÞ2 − βReTrU12 ð55Þ

where the covariant difference operator appearing in this
kinetic term is given by

DμϕðxÞ ¼ UμðxÞϕðxþ μ̂ÞU†
μðxÞ − ϕðxÞ ð56Þ

Notice we have used the freedom to rescale ϕ to set the
coefficient of the derivative term to unity. It is instructive to
again examine this lattice action in unitary gauge where the
action takes the form

S ¼
X
x

κffiffiffi
2

p ρReTrðiσ3U12Þ þ ρð−□cÞρ − βReTrU12

ð57Þ

where the Laplacian operator acts on the field ρ as

□cρðxÞ ¼
X
μ

VμðxÞρðxþ μÞ þ Vμðx − μÞρðx − μÞ − 2ρðxÞ

ð58Þ

and

VμðxÞ ¼
1

2
Trðσ3UμðxÞσ3U†

μðxÞÞ: ð59Þ

Setting UμðxÞ ¼ ei
P

3

i¼1
Ai
μðxÞσi we find for small Ai

μ

(β → ∞)

VμðxÞ ¼ 1 − ðAa
μÞ2 þ… ð60Þ

where the index i≡ a now runs only over the first two
components of the field since A3

μ remains massless in this
gauge. Thus, in unitary gauge, the naive continuum limit of
this new action reads

S ¼
Z

d2x

�
κ

ffiffiffi
2

p
ρF3

12 þ ρð−□̄þm2Þρþ 1

g2
TrðF12F12Þ

�

ð61Þ

with □̄ the usual free Laplacian in flat space, m2 ¼
2
P

μ ðAa
μÞ2 and g2 the dimensionful gauge coupling in

two dimensions. Holding the dimensionless parameter b ¼
gL fixed as the size L → ∞ drives g and hence the
magnitude of the gauge fields to zero. In this limit then
m2 → 0 and F3

12 →
b
L R

3
12. If we simultaneously scale κ ¼

k L
b as before and use the relation

R
R12 ¼

R ffiffiffi
g

p
R the naive

continuum limit of the scalar field dependent part of the
lattice action is

S ¼
Z

d2xk
ffiffiffi
g

p
Rρþ ρð−□̄Þρ: ð62Þ

This takes the form of the celebrated Liouville action
of two-dimensional quantum gravity if we identify the
field ρ with the conformal mode and then use the result
□̄ ¼ ffiffiffi

g
p

□. Of course we expect that the action is only
conformal for a particular value of k determined by the
conformal anomaly. This should translate into the statement
that the lattice model should possess a phase transition at a
critical value of kc. Monte Carlo and TRG studies are
currently underway to verify this conjecture [60]. Notice
that while the connection between the lattice gauge theory
and Liouville gravity has been made in unitary gauge the
correspondence will also hold in the original model
containing the full scalar field ϕ. Indeed the effective
action for the gauge fields having integrated out the scalar
field ϕ takes the nonlocal Polyakov form

1

4k2

Z
d2xd2yF12ðxÞ□−1ðx − yÞF12ðyÞ: ð63Þ

X. CONCLUSIONS

In this paper we have shown how to construct a lattice
gauge theory whose naive continuum limit yields a path
integral for Cartan-Palatini gravity. In two dimensions we

TENSOR NETWORK FORMULATION OF TWO-DIMENSIONAL … PHYS. REV. D 102, 054510 (2020)

054510-11



show using character expansions that the lattice model can
be rewritten in terms of a discrete set of dual variables and
recast as a tensor network. With gravity rewritten in this
language it is possible to compute observables using tensor
renormalization group techniques. This is useful since we
have shown that typical critical points in these gauge
theoretic approaches to gravity are to be found only for
values of the gravitational coupling where the Euclidean
action develops a sign problem eliminating the possibility
of using Monte Carlo simulation.
In two dimensions additional tricks based on analytic

continuation allow one to bypass the TRG techniques and
find exact solutions in certain cases. Ultimately this is likely
tied to the topological nature of two dimensional gauge
theories. Indeed, we find critical exponents that depend
only on the topology of the underlying lattice. However
these exact methods will fail in higher dimensions and TRG
methods will then be critical. For example, in four
dimensions, the discrete analog of Eq. (17) is given by [43]

S ¼ κ
X
x

ϵμνρλTrðγ5½UP
μν −UP†

μν �½UP
ρλ −UP†

ρλ �Þ ð64Þ

where the link fields are now valued in Spinð5Þ and unitary
gauge has again been employed. The character expansion
method can still be used and the gauge fields integrated out

leading to a theory written in discrete dual variables
corresponding to Clebsch-Gordon coefficients of Spinð5Þ.
In principle this dual theory can be realized as a tensor
network and solved using TRG techniques. Of course to
realize this possibility will require substantial improve-
ments in current TRG algorithms which currently cannot
reach four dimensions because of memory limitations but
there is no problem of principle and we hope to report on
such work in the near future.
More subtle is the question of how to change the sign

of the cosmological constant. Even in two-dimensional
Euclidean space an attempt to study anti–de Sitter space
would necessitate replacing the compact group SUð2Þ by
its non compact cousin SUð1; 1Þ. The latter possesses
unitary representations labeled by a continuous index in
addition to a discrete series of representations which are
analogs of those in SUð2Þ. This renders the character
expansion and subsequent Haar integration a much more
subtle enterprise.
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