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The three-photon decay rate of J=ψ is studied using two Nf ¼ 2 twisted-mass gauge ensembles with
lattice spacings a ≃ 0.085 and 0.067 fm. Using a new method, only the correlation functions directly
related to the physical decay width are computed with all polarizations of the initial and final states summed
over. The final result can be obtained after a naive extrapolation to the continuum limit. To be specific, the
result for such rare decay is given as BðJ=ψ → 3γÞ ¼ ð2.13� 0.14� 0.29Þ × 10−5, where the first error is
statistical and the second is an estimate of the systematics. We also propose a method to analyze the Dalitz
plot of the corresponding process based on the lattice data which can provide direct information for the
relevant experiments.
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I. INTRODUCTION

The rare decay J=ψ → 3γ, the analogue of ortho-posi-
tronium decaying to 3γ in quantum electrodynamics [1],
can provide a high-precision test for the nonperturbative
quantum chromodynamics (QCD) [2]. Despite decades of
effort, such a rare decay was not observed by experimen-
talists until 2008, when the CLEO Collaboration measured
the branching fraction BðJ=ψ → 3γÞ¼ ð1.2�0.3�0.2Þ×
10−5 for the first time [3]. With the help of much larger J=ψ
samples, the BESIII Collaboration obtained the more
accurate result ð11.3� 1.8� 2.0Þ × 10−6 in 2013 [4].
On the theoretical side, using perturbative methods, the

modern tool for treating the quarkonium physics is non-
relativistic QCD (NRQCD) factorization [5], in which the
decay rate of J=ψ → 3γ is parametrized in terms of the
lowest-order NRQCD J=ψ-to-vacuum matrix element with
relativistic corrections hv2iJ=ψ included [6]. However,
when going to higher orders, both the inconsistency
between theory and experiment and the divergence puzzle
arising in higher-order radiative corrections [7] indicate that
NRQCDmight break down for the prediction of the J=ψ →
3γ decay rate. Generally speaking, the perturbative calcu-
lation for the two-photon decay of charmonia is feasible
because both photons can be viewed as relatively hard
photons carrying roughly half of the charmonium energy.
For the three-photon case, however, there is always a

photon that can be very soft, thus spoiling a normal
perturbative calculation. Therefore, it is fair to say that,
even after three decades, the understanding of the process
J=ψ → 3γ within NRQCD has not improved very much
when compared with the situation in the early 1980s [8–10].
It is then natural to turn to genuine nonperturbative

methods such as lattice QCD. Using lattice QCD, one
usually evaluates the matrix element of relevant interpolat-
ing operators with correct quantum numbers between
hadronic states. Although the photon itself is not an
eigenstate of QCD, regarding the photon as a superposition
of QCD eigenstates and adopting the electromagnetic
current Jμem as the appropriate photon interpolating operator
has been proposed already [11] and widely used in photon
structure functions [12], radiative transitions [13], and two-
photon decays in charmonia [14,15]. In Ref. [16] we
proposed using lattice QCD as such an alternative and
presented the first exploratory computation of the J=ψ →
3γ decay width. In this paper, we present a more detailed
description of this work.
The main difference between our new method and the

conventional lattice computation can be summarized as
follows. In conventional lattice computations of charmonia
decays involving multiple final photons, for example, in
the decay of ηc → γγ, etc., the off-shell hadronic matrix
elements such as Mμν are computed from lattice correla-
tion functions. The same matrix elements are then para-
metrized using relevant form factors. Fitting these lattice
data according to a prescribed functional form, one arrives
at the complete form factors. Finally, the multiphoton decay
width can be obtained by taking all of the final photon
states on shell. In our new method, however, we focus
directly on the physical decay width itself. This means that
we perform the summation over polarizations of the initial
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and final particles first, and the norm square of the on-shell
matrix element is computed on the lattice, which we call the
T function. The total decay width is directly related to the T
function by a final-state phase-space integral. The advantage
of this new method lies in the fact that it completely avoids
the form factor decomposition step of the corresponding
matrix element, which can become extremely complicated
and cumbersome, especially in the case of final states with
three or more photons. Moreover, these decompositions
usually rely on the full Lorentz (Euclidean) invariance
inherited from the continuum, which is violated on a lattice.
Therefore, bypassing this decomposition is beneficial for
hard photons. Another advantage is that in the case of
J=ψ → 3γ the T function itself is in fact directly related to
the Dalitz plot, which is also measured in experiments. In
other words, we can both compute the total decay width and
access the distribution of the partial decay width in the plane
of two kinematic variables. One disadvantage of thismethod
is of course that only the physical on-shell decay width can
be accessed, not the complete form factors, which are also
extremely useful quantities for processes involving virtual
photons. Therefore, the new method and the conventional
method are complementary. One possible verification of the
validity of both methods lies in the process ηc → 2γ. While
this article was being prepared, this new method was also
applied to the two-photon decay of pseudoscalar charmo-
nium [17], where the decay width of ηc → 2γ was obtained
with a result that is consistent with the experimental one
within 2σ.
The rest of this paper is organized as follows. In Sec. II

we give the matrix element for the three-photon decay of
J=ψ and propose a new method to calculate the decay
width directly without the decomposition of the relevant
form factor. In Sec. III we give details of the simulations
and present our main results. This section is further divided
into four parts: in Sec. III A the lattice dispersion relation

for J=ψ is checked; in Sec. III B the current renormalization
constant is calculated; in Sec. III C the input momenta of
photons are determined; in Sec. III D numerical results of
the matrix element squared are presented and these results
are eventually converted into the three-photon decay width
of J=ψ . In Sec. IV we introduce the Dalitz analysis for the
lattice simulation. This section is divided into two parts: in
Sec. IVA the intermediate contribution J=ψ → γηc → 3γ is
removed, a naive continuum extrapolation is performed,
and the final results are compared with the Particle Data
Group value; in Sec. IV B the Dalitz plot for J=ψ → 3γ is
predicted, which can be compared with future experiments.
Finally, we conclude in Sec. V.

II. APPROACH TO THE DECAY WIDTH
ON A LATTICE

A. The decay amplitude

The theoretical derivation of the decay amplitude
for three photons is similar to the two-photon case.
For more details, we refer interested readers to
Ref. [17]. We start by expressing the decay matrix element
hγðq1; λ1Þγðq2; λ2Þγðq3; λ3ÞjJ=ψðp; λ0Þi in terms of the
appropriate four-point function using the Lehmann-
Symanzik-Zimmermann reduction formula, integrating
out the photon fields perturbatively, and continuing the
resulting expression to Euclidean space analytically. This
process introduces the photon virtualities Q2

i ¼ jqij2 − ω2
i

due to the discrete lattice momenta qi ¼ 2πni=L, ni ∈ Z3.
To be specific, the energy-momentum conservation for the
physical photon on the lattice cannot be simultaneously
satisfied due to the discreteness of the three-momenta.
Therefore, photons with virtuality are usually introduced in
lattice simulations. For later convenience, we reverse the
operator time ordering of the decay amplitude M and
express it as

Mðtf; t; t0; tiÞ ¼ lim
tf−t→∞

e3
ϵμðq1; λ1Þϵνðq2; λ2Þϵρðq3; λ3Þϵαðp; λ0Þ

ZJ=ψ ðpÞ
2EJ=ψ ðpÞ e

−EJ=ψ ðpÞðtf−tÞ

Z
dt0e−ω2jt0−tj

Z
dtie−ω1jti−tj

×

�
0

����T
�
Oα

J=ψð0; tfÞ
Z

d3zeiq3·zjρðz; tÞ
Z

d3yeiq2·yjνðy; t0Þ
Z

d3xeiq1·xjμðx; tiÞ
�����0

�
: ð1Þ

Here the four polarization vectors ϵμ, ϵν, ϵρ, and ϵα
correspond to the three final photons and the initial J=ψ
particle, with the polarizations labeled as λ1, λ2, λ3,
and λ0, respectively. Here the analytic continuation from
Minkowski to Euclidean space works out as long as the
virtualities of the photons are not too time-like to produce
on-shell vector hadrons. To be specific, Q2

i ¼ jqij2−ω2
i >

−M2
V , where MV is the mass of the lightest vector meson.

The correlation functions appearing in the above equation
can be evaluated in lattice QCD in terms of quark
propagators.

In this exploratory calculation, we have neglected the
disconnected diagrams and only the connected diagram
shown in Fig. 1 are considered. The current coupling to the
first photon is fixed at time slice ti, denoted by jμðx; tiÞ,
while the other two are placed at t0 and t, which are referred
to as jνðy; t0Þ and jρðz; tÞ, respectively. The J=ψ meson is
fixed at tf as a source. The current operators in the above
equation, e.g., jμðxÞ, should contain all flavors of quarks
weighted by their corresponding charges. However, the
light quarks can only enter the question via disconnected
diagrams, which are ignored in this work. For the current
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associated with the charm quark, we utilize the local
composite operator jμðxÞ ¼ ZVc̄ðxÞγμcðxÞ as the current,
and introduce an extra multiplicative renormalization factor
ZV . The integrals in Eq. (1) are also replaced by corre-
sponding trapezoidal summations.

B. The decay width

For simplicity, we denote the matrix element in Eq. (1) as
M ¼ ϵμϵνϵρϵαMμνρα and introduce

T ≡ jMj2 ¼ 1

3

X
μνρσ

jϵμϵνϵρϵαMμνρσj2; ð2Þ

which will be called the T function in the following. The
factor 1=3 denotes the average of three polarizations of J=ψ
in its rest frame. As we will see, the T function represents a
distribution of physical partial decay widths in terms of a
pair of kinematic variables. Each Mμνρα can be computed
on the lattice using the fact that M is independent of the
time t, as long as jtf − tj is large enough.
In conventional lattice computations, for example, in the

decay of ηc → γγ, etc., the hadronic matrix element (such
as Mμνρα) is further decomposed into various form factors
which are functions of the virtualities Q2

i . By fitting the
matrix element at different Q2

i with a particular functional
form one arrives at the complete off-shell form factors, and
finally the physical decay width can be obtained by setting
all virtualities to the on-shell values, namely, Q2

i ¼ 0. In
our case, the form factor decomposition is way too
complicated. The decomposition of 3γ decays of Z and
positronium was worked out using perturbation theory
[18,19]. However, there is no guarantee that these pertur-
bative decompositions will also work in QCD. Therefore,

we will proceed in another way. We perform the summation
over polarizations of the initial and final particles first, and
only the on-shell matrix element will be computed on the
lattice. Due to the Ward identities of the currents, the
summation over polarizations of the photons yields
the Minkowski metric, e.g.,

X
λi

ðϵμðqi; λiÞϵ�μ0 ðqi; λiÞ ⇒ −gμμ0 : ð3Þ

The summation over the initial polarization of J=ψ yields
the same result if we use the rest frame of the particle.
Therefore, we have

T ¼ 1

3

X
μνρα

jMμνραj2: ð4Þ

In our actual simulations, we sum over all polarizations
(altogether 192 possibilities) of M.
The decay width of J=ψ → 3γ in J=ψ in its center-of-

mass frame can be expressed as

ΓðJ=ψ → 3γÞ ¼ 1

3!

1

2mJ=ψ

Z
d3q1

ð2πÞ32ω1

d3q2
ð2πÞ32ω2

d3q3
ð2πÞ32ω3

× ð2πÞ4δðp − q1 − q2 − q3ÞjMj2

¼ mJ=ψ

1536π3

Z
1

0

dx
Z

1

1−x
dyT ðx; yÞ; ð5Þ

where x, y are two dimensionless variables in the range
[0, 1], defined as

x≡ 1 −
2q2 · q3
m2

J=ψ

; y≡ 1 −
2q1 · q2
m2

J=ψ

: ð6Þ

It is easily checked that they fall into the right-upper
triangle of the unit square in the xy plane, i.e., satisfying
x ∈ ½0; 1�, y ∈ ½1 − x; 1�. In the continuum, the on-shell
decay patterns are normally parametrized by the so-called
Dalitz plots, which can be obtained from the T function
T ðx; yÞ. Due to the discreteness of the momenta on the
finite lattice, it is impossible to exactly impose the on-shell
condition for all particles, making the on-shell quantity
T ðx; yÞ not directly accessible. Instead, the on-shell con-
ditions for the particles can be realized as follows. We first
put the J=ψ particle and at least one final photon on shell,
keeping the other two photons as close to on shell as
possible by adjusting their three-momenta. We find that this
still introduced some nonvanishing virtualities to the other
photons. With these nonvanishing but small virtualities, the
matrix element can be computed directly on the lattice, the
norm of which we denote as T ðx; y;Q2

1; Q
2
2; Q

2
3Þ. This

differs from the T function only because of the fact that
some of the photons are still not on shell. We then try to
estimate the on-shell quantity, the T function T ðx; yÞ, by
the following fitting formula:

FIG. 1. Connected diagram computed for the process
J=ψ → 3γ. The J=ψ meson is fixed at time slice tf ¼ T=2,
and the other time slices of the three currents jμ, jν, jρ are denoted
as ti,t0, and t, respectively. The “sequential” method has been
used to calculate this four-point function. Specifically, two
sequential sources are placed at time slices ti and t, and the
final contraction is performed at the sink t0.
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T ðx; y;Q2
1; Q

2
2; Q

2
3Þ ¼ T ðx; yÞ þ const ×

X
i

Q2
i ð7Þ

where higher-order terms than
P

i Q
2
i have been drooped.

We expect that such linear behavior is already good
enough, which is also verified later in our paper.
Equations (1), (2), (5), and (7) constitute the central part

of this paper. As pointed out already, different from the
conventional method, we have intentionally avoided the
amplitude parametrization for J=ψ → 3γ, though it might
have a similar structure as Z → 3γ [18] and the positro-
nium-to-3γ decay [19]. Because all of the form factors
introduced in the amplitude parametrizations are scalar
functions of three-photon momenta, permutations of these
momenta then lead to more form factors, rendering the
computation of all of these form factors too costly.

III. SIMULATIONS AND RESULTS

Our lattice calculation is performed using two Nf ¼ 2-
flavor twisted-mass gauge field ensembles generated by
the Extended Twisted Mass Collaboration with lattice
spacings a ≃ 0.067 and 0.085 fm, respectively. The most
important advantage of these configurations is the so-called
automatic OðaÞ improvement for the physical quantities
with a twisted-mass quark action at maximal twist [20]. In
Table I we list all ensembles used in this study together with
other relevant parameters. For more details about these

ensembles, see Refs. [21,22]. We utilized the Osterwalder-
Seiler [23] setup for the valence sector of the charm quark.

A. Mass spectrum and dispersion relation for J=ψ

The valence charm-quark mass is fixed by the physical
mass of ηc with the corresponding meson operator
ÔηcðzÞ ¼ c̄ðzÞγ5cðzÞ in the physical basis. For the J=ψ

meson, the operator ÔJ=ψ ðzÞ ¼ c̄ðzÞγicðzÞ is used and the
corresponding effective mass plateaus for the two ensem-
bles are shown in the left panel of Fig. 2. The mass
spectrum can be determined from these plateaus and the
statistical errors are estimated using the jackknife method,
with the final results summarized in Table II.
It is also crucial to verify the dispersion relation of J=ψ

since the energy of J=ψ at nonzero three-momenta, namely,
EJ=ψðpÞ, directly enters our main result in Eq. (1).
Furthermore, this verification is necessary since the
dispersion relation is to be utilized to obtain the photon
energies ωi with given virtualities Q2

i and three-momenta
qi. For this purpose, we calculate the J=ψ energies EJ=ψðpÞ
at a series of three-momenta p. It is found that the discrete
dispersion relation

4sinh2
EJ=ψðpÞ

2
¼ 4sinh2

mJ=ψ

2
þ Zlat · 4

X
i

sin2
�
pi
2

�
ð8Þ

fits the energies and momenta well. In the right panel of

Fig. 2, the linear behavior between 4sinh2 EJ=ψ ðpÞ
2

and
4
P

i sin
2ðpi

2
Þ for the two ensembles is illustrated and the

slope constant Zlat is almost 1 for both ensembles,
indicating that the discrete dispersion relation is well
satisfied in our simulation. The small deviations of Zlat
might be caused by lattice artifacts. In what follows, we

TABLE I. Information for the gauge ensembles.

Ensemble β a (fm) V=a4 aμsea mπ (MeV) Nconf

I 3.9 0.085 243 × 48 0.004 315 40
II 4.05 0.067 323 × 64 0.003 300 20

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

aE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

FIG. 2. The mass plateaus (left panel) and discrete dispersion relation (right panel) of J=ψ for Ens.I (red points) and Ens.II (blue
points), respectively. The horizontal line segments in the left panel denote the corresponding intervals from which the energy values
EJ=ψ are extracted.
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therefore calculate the energies of the photons ωi with
virtuality Q2

i and momentum qi using this discrete
dispersion relation (basically, replacing mJ=ψ by iQi).
The value of ZJ=ψðpÞ that appears Eq. (1) can be

extracted from the two-point function

Γð2Þ
ij ðp; tÞ≡

X
x;y

e−ip·ðx−yÞhOiðx; txÞO†
jðy; tyÞiδt;tx−ty

⟶
jt−tf j≫1

p¼0

V · jZJ=ψ j2
EJ=ψ

e−EJ=ψ
T
2 cosh

	
EJ=ψ

�
T
2
− t

�

;

ð9Þ

where we have denoted ZJ=ψ ¼ ZJ=ψð0Þ, EJ=ψ ¼ EJ=ψð0Þ
for simplicity. Note that the meson J=ψ is fixed at time slice
tf ¼ T=2 and a wall source is adopted in our simulations.
All of these numerical results are summarized in Table II.

B. The renormalization factor ZV

To determine the current renormalization factor ZV,
which is needed to renormalize the local current operator
jμðxÞ ¼ c̄γμcðxÞ, we compute the ratio of the two-point
function over a three-point function [13], as given by

ZðμÞ
V ¼ pμ

EðpÞ
1
2

P
kΓ

ð2Þ
ψkψkðp; tsource ¼T=2; tsink ¼ 0ÞP

kΓ
ð3Þ
ψkγ

μψk
ðp; tsource ¼T=2; tsink ¼ 0; tÞ

; ð10Þ

where the factor 1=2 accounts for the equal contribution to
the two-point function of the source at time slice 0 and the
image of the source at time slice T. For decaying particles
in the rest frame, only μ ¼ 0 is needed. For simplicity, this
index μ will be omitted in the following. The plateau

behavior of Zð0Þ
V ðtÞ across different time slices t then yields

the value of the renormalization factor ZV.
As an illustration, this plateau behavior is shown in

Fig. 3 where the data points with errors are from our
simulation and the horizontal bars indicate the intervals
from which the values of ZV are extracted. The final results
of ZV are tabulated in Table II.

C. Input parameters for three-photon decay

To compute the matrix elements in Eq. (1), it is necessary
to determine all of the relevant input parameters. For a
general three-body system, they include the mass, momen-
tum, and energy of every particle. Due to the conservation

of energy and momentum, there are only four independent
parameters left as inputs, for example, the masses and
momenta of any two particles. For a three-photon system
on a lattice, we can choose the momenta qi ¼ 2πni=L and
virtualities Q2

i of any two photons that meet the following
requirements:

1. The corresponding ðx; yÞ variables in Eq. (6) can
cover the kinematic region as much as possible, i.e.,
x ∈ ½0; 1�, y ∈ ½1 − x; 1�.

2. All photon virtualities satisfy Q2
i > −m2

ρ. For the
ensembles in this work, the ρ-meson masses are
mI;II

ρ ¼ 0.903ð88Þ, 1.051(50) GeV [15]. The ρ
masses heavier than the physical ones are due to
the heavier sea-quark masses on the lattice.

3. With the above conditions satisfied, we choose as
few sets of photon momenta as possible.

In the case of two photons on shell, we have selected
four sets of photon three-momenta for Ens.I and
three sets for Ens.II as the inputs. All of the input
parameters utilized in this simulation are summarized in
Table III. It is easy to verify that these parameters meet
the above requirements. Due to the boson exchange
symmetry of the final photons, the physical amplitude
hJ=ψðp; λ0Þjγðq1; λ1Þγðq2; λ2Þγðq3; λ3Þi is invariant under
the photon exchange ðqi; λiÞ ↔ ðqj; λjÞ, so we finally
have a total of 21 and 15 ðx; yÞ points in the xy plane,
respectively, as shown in Fig. 4.

D. On-shell T function and decay widths

The conventional sequential method has been adopted to
calculate the four-point functions in Eq. (1). Two sequential
sources are placed close to the J=ψ meson, and the
contraction is performed on the furthest current, as shown
in Fig. 1. After the integration (summation) of time slices ti

TABLE II. Numerical results for the mass, Zlat, ZJ=ψ , and ZV
for J=ψ on Ens.I and Ens.II, respectively.

Ensemble Mass [MeV] Zlat ZJ=ψ ZV

I 3092(3) 1.091(16) 0.5119(45) 0.6347(26)
II 3082(6) 0.965(14) 0.2628(25) 0.6640(27)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

Ens.I
Ens.II

FIG. 3. The current renormalization constant ZðμÞ
V calculated

with Eq. (10) for Ens.I and Ens.II. The horizontal colored lines
denote the corresponding interval from which the values of ZV
are extracted.
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and t0, the matrix element Mμνρα, being a function of time
slice t, can be obtained on the lattice. In Fig. 5, typical
plateau behaviors for the four-point function Mμνρα are
shown in the case of μνρα ¼ 4141. The data points with

errors are the results from the simulation and the errors are
estimated using the jackknife method. Other cases are
similar. The T function can be obtained immediately with a
total 192 matrix elements Mμνρα for each set of photon

TABLE III. The input parameters for the three-photon system, including the photon momenta ni, energies ωi, and virtualities Q2
i

which are determined in the case of two photons on shell. For the remaining off-shell photon, its virtuality satisfies Q2
2 > −m2

ρ.

Ensemble Q2
1 Q2

3
n1 n3 n2 ω1 ω3 ω2 x y Q2

2 (GeV2)

I 0 0 111 −1−1−2 001 0.4680 0.6525 0.2134 0.7017 0.9783 −0.1541
0 0 111 −20 − 1 1–10 0.4680 0.5967 0.2692 0.7017 0.8946 −0.4096
0 0 002 11 − 1 −1−1−1 0.5343 0.4680 0.3316 0.8011 0.7017 −0.6077
0 0 002 11 − 2 −1 − 10 0.5343 0.6525 0.1471 0.8011 0.9783 −0.5690

II 0 0 210 −1 − 11 −10 − 1 0.4257 0.3320 0.2905 0.8123 0.6335 0.0932
0 0 002 10 − 2 −100 0.3810 0.4257 0.2415 0.7269 0.8123 0.1857
0 0 002 11 − 1 −1−1−1 0.3810 0.3320 0.3352 0.7269 0.6335 0.0187

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ens.I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ens.II

FIG. 4. Four sets of photon momenta for Ens.I (left) and three for Ens.II (right) are adopted, leading to 21 points and 15 points in the xy
plane, respectively.
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FIG. 5. The four-point functionMμνρα as a function of t is shown in the case of μνρα ¼ 4141. Four sets of photon momenta for Ens.I
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y ∈ ð1 − x; 1Þ under the condition that all virtualities are small.
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momenta. However, these T functions are still not fully on
shell. All of them still have small virtualitiesQ2

2. We denote
them as T ðx; y; Q2

1; Q
2
2; Q

2
3Þ. To arrive at the true on-shell

T function T ðx; y; 0; 0; 0Þ, we first fix Q2
1 ¼ 0, and then

judiciously choose several values of Q2
3 around the zero

point Q2
3 ¼ 0. For a given set n1, n2, n3, the photon

energies and virtuality Q2
2 are then uniquely determined by

the discrete dispersion relation:

ω̂2
1 ¼ 4

X
i

sin2ðq1i=2Þ; ð11Þ

ω̂2
3 ¼ 4

X
i

sin2ðq3i=2Þ − Q̂2
3; ð12Þ

ω2 ¼ EJ=ψ − ω1 − ω3; ð13Þ
Q̂2

2 ¼ 4
X
i

sin2ðq2i=2Þ − ω̂2
2; ð14Þ

where ω̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sinh2ðωi=2Þ

p
and Q̂2

i ¼ 4sinh2ðQi=2Þ are
the lattice versions of the photon energies and virtualities,
respectively. In such a way, we have obtained several off-
shell T functions with small virtualities for each set of
photon momenta. Finally, the on-shell function T ðx; yÞ can
be extracted by performing a correlated linear fit using
Eq. (7) with the bootstrap method. In Fig. 6, we illustrate
this on-shell fitting procedure for the two ensembles and
they indicate that such an expansion including the linear
term of

P
i Q

2
i is adequate.

To obtain the final decay width with Eq. (5), we utilize a
cubic spline function to interpolate these on-shell T ðx; yÞ
points in the xy plane. The surfaces of these resulting
interpolating functions T intðx; yÞ are illustrated in Fig. 7,
together with the original data points shown in red. After
integrating the T function surface over the physical region,
we finally arrive at the decay width of J=ψ → 3γ,

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

2.5

3

3.5

4

4.5

10-5 Ens.I

q
1
=[1,1,1],q

3
=[-1,-1,-2]

q
1
=[1,1,1],q

3
=[-2,0,-1]

q
1
=[0,0,2],q

3
=[1,1,-1]

q
1
=[0,0,2],q

3
=[1,1,-2]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
10-5 Ens.II

q
1
=[2,1,0],q

3
=[-1,-1,1]

q
1
=[0,0,2],q

3
=[1,0,-2]

q
1
=[0,0,2],q

3
=[1,1,-1]

FIG. 6. On-shell T function for four sets of momenta for Ens.I and three sets of momenta for Ens.II are obtained by fitting Eq. (7).

2
10

4

0.2
0.4

6

Ens.I

0.5

10-5

0.6

8

0.8

10

01

0

0
1

0.2
0.8

0.4
0.6

0.6

0.5

0.4
0.8 0.2

1 0

10-4

Ens.II

1

1.5

FIG. 7. The interpolated T function T intðx; yÞ for Ens.I (left) and Ens.II (right) is shown. The red points with error bars are numerical
results and the smooth surfaces are obtained from cubic spline interpolation. The physical region is limited to x ∈ ½0; 1�, y ∈ ½1 − x; 1�.

THREE PHOTON DECAY OF J=ψ FROM LATTICE QCD PHYS. REV. D 102, 054506 (2020)

054506-7



Γ̂IðJ=ψ → 3γÞ ¼ 1.530ð15Þ eV;
Γ̂IIðJ=ψ → 3γÞ ¼ 1.715ð47Þ eV: ð15Þ

Here the errors are purely statistical, arising from the
current renormalization factor and the on-shell fitting
process as suggested in Eq. (7).
Nevertheless, the above results are still incomplete and two

key aspects have been ignored, which are outlined below:
1. First, we have computed the connected diagram as

shown in Fig. 1. This diagram, in principle, can also
include the physical process J=ψ → γηc → γγγ as
well. Therefore, in order to make a comparison with
the experiments, such contributions have to be
removed from our lattice data.

2. Second, due to the discreteness of the momenta on
the finite lattice, the number of photon momenta
utilized in the lattice simulation is very limited,
making it impossible to have enough ðx; yÞ points
that cover the entire physical region, i.e., x ∈ ½0; 1�,
y ∈ ½1 − x; 1�. For the photon momenta in this work,
none of them are located in the region x ∈ ½0; 0.3�,
y ∈ ½1 − x; 1� and x ∈ ½1 − y; 1�, y ∈ ½0; 0.3�, lead-
ing to uncertainties for the interpolation results.

In the following, we will introduce the Dalitz method to
analyze these difficulties.

IV. DALITZ ANALYSIS

Both experimentalists and theorists are interested in the
decay widths for three-body decays. Most of the time,
however, the total decay width itself is not directly meas-
urable in experiments. Instead, the Dalitz plot, which is a
distribution of the decay width in the plane of two kinematic
variables, is obtained in the experiments. In the case of three-
photon decay of J=ψ , this is taken to be the largest and
smallest two-photon invariant mass values, denoted as
MðγγÞlg and MðγγÞsm, respectively, among three combina-
tions for the final photons. We will call them the Dalitz
variables in the following. These two Dalitz variables are in
fact directly related to the kinematic variables ðx; yÞ that we
introduced above. To be more specific, we have

MðγγÞlg =sm
mJ=ψ

¼ max

min

n ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
;

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ y − 1

p o
; ð16Þ

where the upper/lower line on the right corresponds to the
case ofMðγγÞlg=MðγγÞsm, respectively. Thus, theDalitz plot
for the three-body decay is directly related to the on-shell T
function T ðx; yÞ that we aim to compute on the lattice.
Being first-hand data obtained in the experiments, Dalitz

plots play a key role for a three-body final state. As is well
known, bands that appear in the Dalitz plot indicate that
there is an intermediate two-body state. Thus, nonuniformity
in the Dalitz plot can offer immediate information on the
cross section jMj2.

A. Removing the γηc contribution

For this purpose, we project the T ðx; yÞ onto the xy plane
and then convert it into a Dalitz plot directly. Figure 8 is the
realization of this idea and also a central result of this paper.
It is seen that the relation between the Dalitz variables and
the pair ðx; yÞ as indicated in Eq. (16) maps the upper right
triangular region of the unit square in the ðx; yÞ plane onto a
corresponding region in the ðMðγγÞsm;MðγγÞlgÞ plane in the
Dalitz plot. The shape of the region in the Dalitz variables is
not regular, but this is exactly what is measured in experi-
ments; see, e.g., Fig. 1(d) in Ref. [4].
As we have obtained the interpolating functions

T intðx; yÞ illustrated in Fig. 7, we illustrate the mapping
from the ðx; yÞ plane to the Dalitz variables plot as
suggested in Eq. (16). This is shown in Fig. 8. The contour
plots of the interpolated function T intðx; yÞ are shown in the
left panels, while the corresponding ones in Dalitz variables
are shown in the right panels.
For the two questions concerning the results of Eq. (15),

we have the following comments:
(i) It is easily verified that the γηc part corresponds to

the corners of the triangle in the ðx; yÞ plane. In the
corresponding experiments, these are also the re-
gions where the major background comes in. To
remove these contributions, we need to make def-
inite cuts, as the experimentalists did; see, e.g.,
Refs. [3,4]. For example, we cut these contributions
by the condition MðγγÞlg < 2.9 GeV, which are
related to the region x ∈ ½0; 0.1�, y ∈ ½1 − x; 1�
and x ∈ ½0.9; 1�, y ∈ ½1 − x; 0.1� on the left, resulting
in a deduction of 0.031 eV for Ens.I and 0.034 eV
for Ens.II in the final results for ΓðJ=ψ → 3γÞ that
are shown in Eq. (17) below.

(ii) For the physical region where no original ðx; yÞ
points are covered, we regard this contribution to the
width as a systematic error. Apart from the γηc
region, the parts for this type of systematic errors are
limited to the regions x ∈ ½0.1; 0.3�, y ∈ ½1 − x; 1�
and x ∈ ½1 − y; 1�, y ∈ ½0.1; 0.3�, resulting in a con-
tribution of 0.243 eV for Ens.I and 0.274 eV for
Ens.II in the final results shown in Eq. (17) below.

(iii) No obvious bands are found on the vertical region,
especially for the rangeMðγγÞsmðGeVÞ∈ ½0.1;0.16�;
½0.5;0.6�; ½0.9;1� ðGeVÞ, which correspond to the
dominant sources γπ0, γη, γη0 in experiments
[3,4]. This is understandable because such contri-
butions are excluded in the connected diagram of
J=ψ decay in Fig. 1.

Finally, we obtain the complete decay width as

ΓIðJ=ψ → 3γÞ ¼ 1.499ð15Þð243Þ eV;
ΓIIðJ=ψ → 3γÞ ¼ 1.681ð47Þð274Þ eV; ð17Þ

where the second errors are our estimates for the system-
atics, which are correlated in the two cases. The systematic
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errors mainly come from the cubic spline interpolation
process, which are obtained by estimating the integrating
the results of T intðx; yÞ in the xy plane without the original
data points, in particular, in the regions x ∈ ½0.1; 0.3�, y ∈
½1 − x; 1� and x ∈ ½1 − y; 1�, y ∈ ½0.1; 0.3� for both ensem-
bles. Note that the sizes of these two systematic errors for
the two ensembles are comparable, indicating that the
errors purely due to finite lattice spacing effects are not
dominant at present and the major part in this systematic
effect arises from the lack of data in the missing part of the
phase space.
Since we only have two lattice spacing values, both with

large systematic errors, we cannot make the continuum
extrapolation in a controlled fashion. However, the two
values at two lattice spacings indicate that this is likely
within our current estimate for the systematic errors and a

naive continuum extrapolation is still possible. For the
study of charmonium with Nf ¼ 2 configurations, one can
assume Oða2Þ errors for the lattice results for the decay
widths obtained above. This allows us to connect the two
results at different lattice spacings and obtain the corre-
sponding result in the continuum limit. We call this the
naive continuum extrapolation. Admittedly, this is not a
well-controlled continuum extrapolation. For that purpose,
one needs results for at least three or more different lattice
spacings, and with more well-controlled systematic errors.
The situation of the continuum extrapolation is illus-

trated in Fig. 9. In this naive extrapolation, one needs to
treat the statistical and systematic errors differently. The
statistical errors for the two ensembles are independent of
each other, while the systematic errors (as we have pointed
out previously) are highly correlated. They mainly come
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from the missing part of the phase space and this has little
dependence on the lattice spacing. As Eq. (17) indicates,
the comparable sizes of the two systematic errors also
implies that the major part of this systematic error is highly
correlated. Assuming this is the case, we decide to take the
larger of the two systematic errors and apply it to the final
continuum result. Another choice would be to add the
statistical and systematic errors for each ensemble in
quadrature individually and then perform the linear
extrapolation. However, we believe this procedure greatly
overestimates the final systematic effects. After such a
naive extrapolation, the decay width for J=ψ → 3γ is found
to be

ΓðJ=ψ → 3γÞ ¼ 1.98ð13Þð27Þ eV: ð18Þ

Here the first error is statistical and the second is the
estimate of the systematic error, which comes from our lack
of knowledge for T ðx; yÞ in the regions with small x and y.
Such a systematic error is inevitable for our current setup,
because it is difficult to cover all points ðx; yÞ in the
physical regions. Fortunately, another scheme that we are
working on will completely overcome this obstacle.
We emphasize that this result is rather preliminary due to

the limited number of lattice spacings and large systematic
errors. Still, our final result for the decay width of J=ψ →
3γ is encouraging. This the first lattice result for such a rare

decay. Except for the systematic error due to the inter-
polation method, there are also other sources of systematic
errors: finite-volume effects, a pion mass that is still far
from physical value, and the contribution of disconnected
diagrams. However, we think that the interpolation error is
by far the most relevant error at present. Future lattice
studies should aim to improve on this by utilizing more
photon momenta and improved analytical methods.
If the uncertainty of the J=ψ total width is ignored,

the branching fraction is given by BðJ=ψ→3γÞ¼
ð2.13�0.14�0.29Þ×10−5, which is comparable with the
experimental result BexpðJ=ψ → 3γÞ ¼ ð1.16� 0.22Þ×
10−5 [24].

B. Dalitz plot for J=ψ → 3γ

As we have clarified above, the Dalitz plot is usually the
first observable obtained for three-body decays in experi-
ments. Therefore, it is instructive to present the Dalitz plot
directly, which offers a more detailed comparison of the
lattice and experimental results. We therefore define a
normalized T function distribution T̃ ðx; yÞ as

T̃ ðx; yÞ ¼ T intðx; yÞR
1
0 dx

R
1
1−x dyT

intðx; yÞ ; ð19Þ

which can be viewed as a probability density in the
ðx; yÞ plane. The corresponding Dalitz plot can also be
generated by drawing random samples using this proba-
bility distribution.
Taking results from Ens.I as an example, in Fig. 10 we

illustrate the distribution of data points drawing from the
probability distribution T̃ ðx; yÞ defined in Eq. (19) with
N ¼ 383 and N ¼ 3314 random samples. On the left, we
show the distribution in ðx; yÞ variables, and on the right we
show the corresponding Dalitz plots. Note that the number
N ¼ 383 is almost the same as the number of J=ψ events
observed in BESIII, whose Dalitz plot resembles that in the
BESIII experiment qualitatively. The number N ¼ 3314 is
only an example of higher statistics, and the Dalitz plot in
this case is our prediction for future experiments. Thus, we
expect that BESIII would be able to observe the features
with higher statistics in Fig. 10 in the future with the 1.39 ×
109 J=ψ events already collected.
The importance of the Dalitz plot approach is twofold,

which we briefly outline below:
1. First, it is a rather tricky process for experimentalists

to extract the physical decay width of J=ψ → 3γ,
due to the lack of knowledge for such a matrix
element. It is estimated that the maximum systematic
uncertainty in experiments comes from the signal
model used to estimate the detection efficiency,
which accounts for more than 80% [4]. Therefore,
the Dalitz distribution we have obtained on the
lattice can act as a direct comparison with the
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FIG. 9. A naive continuum extrapolation for the three-photon
decay widths ΓI and ΓII under two different spacings a ≃ 0.085
and 0.067 fm, respectively. The blue points with error bars and
corresponding shaded region contain only the statistical errors.
The red solid triangle points contain both the statistical and
systematic errors added in quadrature for each ensemble. Assum-
ing that the majority of the systematics are highly correlated, we
take the larger of the systematic errors from the two ensembles
and add it in quadrature with the final statistical error in the
continuum limit. This is shown as the magenta open square with
the combined error at a ¼ 0. The relevant points have been
shifted a bit horizontally to avoid overlapping.
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experiments. Carrying out the benchmark Dalitz
calculations for the three-photon decay will enable
experiments to implement a model-independence
test for estimating the detection efficiency and,
more importantly, allow both theorists and exper-
imentalists to better understand the three-body
decay process.

2. Second, with further improvements of our computing
strategy, the on-shell T ðx; yÞ in the continuum limit
a → 0 could be obtained on the lattice. Then,
a parametric analytical expression for the T function
could be set up, which could be used as the theoretical
input for the matrix element of J=ψ → 3γ. Therefore,
a large number of systematic uncertainties in experi-
ments could be avoided by adapting this expression to
carry out their Monte Carlo simulation on the Dalitz
plot. For more experimental details, we refer inter-
ested readers to Refs. [3,4].

V. CONCLUSIONS

To summarize, in this paper a new method has been
proposed to compute hadronic decay processes with
multiphoton final states. The main focus was on the
process J=ψ → 3γ, which has never been computed on
the lattice before. By summing over final- and initial-
state polarizations, we directly obtained the distribution
of the partial decay width in the corresponding Dalitz
plot, which can be compared directly with experiments.
We obtained the branching fraction BðJ=ψ→3γÞ¼
ð2.13�0.14�0.29Þ×10−5. The result is comparable with
the two existing experimental values from CLEOc and
BESIII.
One tempting advantage of this new method lies in the

fact that, instead of parametrizing the relevant matrix
element with form factors, we evaluate the squared
matrix element which is directly related to the physical
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FIG. 10. The left panels are the samplings with the normalized T function given in Eq. (19), with N ¼ 383 (top) and N ¼ 3314
(bottom) samples, respectively. The right panels are the corresponding Dalitz plots. The black dashed lines on the left separate the
physical region x ∈ ½0; 1�, y ∈ ½1 − x; 1� and nonphysical region x ∈ ½0; 1�, y ∈ ½0; 1 − x�.
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decay width. Furthermore, we could also obtain the
distribution of the partial decay width in terms of
two kinematic variables, which is directly related to
the Dalitz plot in the experiments. For the decay
J=ψ → 3γ, we also presented the Dalitz plot structure
with more statistics, which could be verified by the
BESIII Collaboration in the future.
In principle, we could also keep the information of the

initial polarization of the J=ψ particle. One could also
contemplate generalizing it to other hadronic decays with
three particles in the final state. As a side remark, this
method has been applied to processes like ηc → γγ [17]
and a first lattice result that is consistent with the
experiments within 2σ has been obtained.
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