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The ratios among the leading-order (LO) hadronic vacuum polarization (HVP) contributions to the
anomalous magnetic moments of an electron, muon, and τ lepton, aHVP;LOl¼e;μ;τ , are computed using lattice
QCD þ QED simulations. The results include the effects at order Oðα2emÞ as well as the electromagnetic
and strong isospin-breaking corrections at orders Oðα3emÞ and Oðα2emðmu −mdÞÞ, respectively, where
ðmu −mdÞ is the u- and d-quark mass difference. We employ the gauge configurations generated by the
Extended Twisted Mass Collaboration with Nf ¼ 2þ 1þ 1 dynamical quarks at three values of the lattice
spacing (a ≃ 0.062, 0.082, 0.089 fm) with pion masses in the range ≃210–450 MeV. The calculations are
based on the quark-connected contributions to the HVP in the quenched-QED approximation,
which neglects the charges of the sea quarks. The quark-disconnected terms are estimated from
results available in the literature. We show that in the case of the electron-muon ratio the hadronic
uncertainties in the numerator and in the denominator largely cancel out, while in the cases of the electron-τ

and muon-τ ratios such a cancellation does not occur. For the electron-muon ratio we get Re=μ ≡
ðmμ=meÞ2ðaHVP;LOe =aHVP;LOμ Þ ¼ 1.1456ð83Þ with an uncertainty of ≃0.7%. Our result, which represents an
accurate Standard Model (SM) prediction, agrees very well with the estimate obtained using the results of
dispersive analyses of the experimental eþe− → hadrons data. Instead, it differs by ≃2.7 standard
deviations from the value expected from present electron and muon (g − 2) experiments after subtraction of
the current estimates of the QED, electroweak, hadronic light-by-light and higher-order HVP contributions,
namely Re=μ ¼ 0.575ð213Þ. An improvement of the precision of both the experiment and the QED
contribution to the electron (g − 2) by a factor of ≃2 could be sufficient to reach a tension with our SM
value of the ratio Re=μ at a significance level of ≃5 standard deviations.

DOI: 10.1103/PhysRevD.102.054503

I. INTRODUCTION

Since many years a long-standing deviation between
experiment and theory persists for the anomalous magnetic
moment of the muon, aμ ≡ ðgμ − 2Þ=2. The E821 experi-
ment [1,2] at Brookhaven National Lab currently provides
the most accurate measurement of aμ:

aexpμ ¼ 11659209.1ð5.4Þð3.3Þ½6.3� × 10−10; ð1Þ

where the first error is statistical, the second one systematic
and the third error in brackets is the sum in quadrature
corresponding to a final accuracy of 0.54 ppm. An
improvement of the uncertainty by a factor of 4 is in
progress thanks to the experiment E989 at FermiLab [3,4]
(and later to the experiment E34 at Japan Proton
Accelerator Research Complex [5]). First results from
E989 are expected in 2020.
On the theoretical side the present accuracy of the

Standard Model (SM) prediction is at a similar level,
0.53 ppm [2]. According to the most recent determina-
tions of the hadronic contributions to aμ, obtained
using dispersive analyses of the experimentally measured
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eþe− → hadrons data [6,7], the muon anomaly, i.e., the
difference between aexpμ and aSMμ , is given by

aexpμ − aSMμ ¼ 26.0ð6.3Þexpð4.8Þth½7.9� × 10−10 ½6�
¼ 28.0ð6.3Þexpð3.8Þth½7.4� × 10−10 ½7�; ð2Þ

where the first error comes from experiment, the second
one from theory and the third one is the sum in quadrature
corresponding respectively to a final discrepancy of ≃3.3
[6] and ≃3.8 [7] standard deviations. Other estimates
of the hadronic contributions to aμ, based always on the
analysis of eþe− → hadrons data, provide similar discrep-
ancies (see, e.g., Ref. [8]).
A new interesting deviation occurs in the case of the

anomalous magnetic moment of the electron ae, which has
been measured at the very high level of accuracy of
0.24 ppb [9,10]:

aexpe ¼ 11 596 521 807 3½28� × 10−14: ð3Þ

Thanks to a precise recent determination of the fine
structure constant α−1em ¼ 137.035 999 046 ð27Þ from
Ref. [11], the SM prediction for ae corresponds to an
electron anomaly equal to

aexpe − aSMe ¼ −89ð28Þexpð23Þth½36� × 10−14 ½7; 12�; ð4Þ

where the theory error is dominated by the uncertainty on
αem and the final error corresponds to a discrepancy of ≃2.5
standard deviations. Note that the electron anomaly (4) is
opposite in sign with respect to the muon anomaly (2).
On the contrary no direct measurement of the anomalous

magnetic moment of the third charged lepton of the SM,
the τ lepton, is available due to its short lifetime. Only
limits have been set in an indirect way by the DELPHI
Collaboration [13] to be −0.052 < aexpτ < 0.013 at the
95% confidence level. The precision is quite poor even
with respect to the one-loop QED contribution αem=2π ∼
Oð10−3Þ [14]. Nevertheless, the quantity aτ is considered to
be the best candidate for finding physics beyond the SM,
since for a large class of theories the contribution of new
physics to the lepton anomalous magnetic moments is
proportional to the squared lepton mass.1

For the three leptons the SM prediction of their
anomalous magnetic moments is given by the sum of three
contributions

aSMl ¼ aQEDl þ aEWl þ ahadl ðl ¼ e; μ; τÞ; ð5Þ

where aQEDl is the QED term known up to five loops [12],
aEWl represents the electroweak (EW) corrections known up
to two loops [18–20] and ahadl is the hadronic term, which
includes the hadronic vacuum polarization (HVP) and the
light-by-light (LBL) contributions

ahadl ¼ aHVPl þ aLBLl : ð6Þ

Precise determinations of aHVPl come from dispersion
relations and the experimentally measured eþe− → hadrons
data, while aLBLl have been estimated through phenomeno-
logical hadronic models and by dispersive approaches (see
Ref. [21] and therein). Both quantities are nonperturbative
and, therefore, they should be calculated from first princi-
ples, i.e., by means of lattice QCDþ QED simulations.
During the last years a tremendous effort has been put to

obtain accurate determinations of both aHVPμ and aLBLμ by
various lattice collaborations. The present status and the
perspectives of the lattice calculations of both aHVPμ and
aLBLμ have been discussed in a series of workshops of the
Muon ðg − 2Þ Theory Initiative [22], which has produced
the recent White Paper of Ref. [23]. The main outcome is
that for aHVPμ the overall lattice precision is not yet
competitive with respect to the one of the dispersive results,
while recent lattice estimates of the LBL term are consistent
with the phenomenological and dispersive findings within
the current level of precision (see for details Ref. [23]).
Recently the BMW Collaboration [24] claims to have
reached a precision for aHVPμ similar to the one of the
dispersive approaches, although getting a significant dis-
crepancy for the central values (see also Refs. [25,26] for
implications on global fits to EW precision observables).
As far as the electron and the τ lepton are concerned,

only two lattice estimates of the HVP contribution from
Refs. [27,28] exist to date.
The aim of this work is to present a lattice determination

of the ratios of the leading-order (LO) HVP contributions to
the lepton anomalous magnetic moments ae, aμ and aτ,
obtained using the same hadronic input determined by the
lattice QCDþ QED simulations of Refs. [29–31], where
the gauge configurations generated by the Extended
Twisted Mass Collaboration (ETMC) with Nf¼2þ1þ1

dynamical quarks at three values of the lattice spacing
(a ≃ 0.062, 0.082, 0.089 fm) with pion masses in the range
≃210–450 MeV [32,33] were adopted. The lattice frame-
work and details of the simulations are summarized in the
Appendix A.
Our simulations include the effects at order Oðα2emÞ

as well as the electromagnetic (em) and strong
isospin-breaking (IB) corrections at orders Oðα3emÞ and
Oðα2emðmu −mdÞÞ, respectively, where ðmu −mdÞ is the
u- and d-quark mass difference. The calculations are
based on quark-connected contributions to the HVP in
the quenched QED (qQED) approximation, which neglects

1In this respect note that the absolute value of the electron
anomaly (4) is larger by an order of magnitude than the value
≈6.5 × 10−14 expected naively from the muon anomaly (2) and
the lepton-mass scaling m2

e=m2
μ (see, e.g., Refs. [15–17]).
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the charges of the sea quarks. The quark-disconnected
terms can be estimated from results available in the
literature (see Refs. [24,28,34,35]). The ETMC results
for aHVP;LOe , aHVP;LOμ and aHVP;LOτ at the physical point
have been presented already in Refs. [36,37] and exhibit
uncertainties at the level of ≃2%–2.4%.
We stress that the hadronic quantities aHVP;LOl for

l ¼ e, μ, τ share the same hadronic input and differ only
in the leptonic kinematical kernel. We show that among the
various ratios of aHVP;LOl for different leptons the electron-
muon ratio play a special role, since in this case the
hadronic uncertainties in the numerator and in the denom-
inator are strongly correlated and largely cancel out. The
same does not occur in the case of the electron-τ and muon-
τ ratios, where the numerator and the denominator turn out
to be almost uncorrelated.
For the electron-muon ratio we get2

Re=μ ≡
�
mμ

me

�
2 aHVP;LOe

aHVP;LOμ
¼ 1.1456 ð83Þ; ð7Þ

where the error includes both statistical and systematic
uncertainties and corresponds to a hadronic uncertainty of
≃0.7%, i.e., a factor≈4 better than the individual precisions
of the numerator and the denominator.
Our result (7), which represents an accurate SM pre-

diction, agrees very well with the one corresponding to the
results of the dispersive analyses of eþe− → hadrons data
carried out recently in Ref. [7], namely aHVP;LOe ðeþe−Þ¼
186.08ð0.66Þ×10−14 and aHVP;LOμ ðeþe−Þ¼692.78ð2.42Þ×
10−10 leading to Reþe−

e=μ ¼ 1.1483 ð41Þeð40Þμ½57�, where the
first and second errors are related to the electron and muon
contributions separately, while the third error is their sum in
quadrature, i.e., without taking into account correlations
between the numerator and the denominator.
Let us now introduce the following HVP quantities

āHVP;LOl defined as

āHVP;LOl ≡ aexpl − aQEDl − aEWl − aLBLl − aHVP;HOl ; ð8Þ

where aHVP;HOl denotes the higher-order HVP corrections
due to multiple insertions of leptonic and hadronic loops. In
the case of the electron and the muon, adopting for the
quantities in the rhs of Eq. (8) the same inputs from Ref. [7]
leading to the anomalies (4) and (2), one gets

āHVP;LOe ¼ 97ð28Þexpð23Þth½36� × 10−14; ð9Þ

āHVP;LOμ ¼ 720.8ð6.3Þexpð2.9Þth½6.9� × 10−10; ð10Þ

where the theoretical uncertainties come mainly from the
QED contribution for the electron and from the hadronic
LBL term for the muon.
The results (9) and (10) imply a value for the electron-

muon ratio Re=μ (which for the sake of simplicity will be
referred to as the “exp-QED” value) equal to

Rexp−QED
e=μ ≡

�
mμ

me

�
2 āHVP;LOe

āHVP;LOμ
¼0.575ð213Þeð6Þμ ½213�; ð11Þ

which differs from our lattice result (7) by ≃2.7 standard
deviations corresponding to a tension governed mainly by
the one of the electron anomaly (9). An improvement by a
factor of ≃2 in the precision of both the experiment and the
QED contribution for the electron might be enough to reach
a significance level of ≃5 standard deviations from our SM
value (7) as well as for the electron anomaly itself.
The plan of the paper is as follows.
In Sec. II we briefly summarize the way we calculate

the LO HVP terms aHVP;LOl and present also an explicit
comparison among the kinematical kernels for the three
leptons l ¼ e, μ, τ.
In Sec. III we describe our results obtained using the

same hadronic input shared by all the three leptons, i.e., the
vector correlator VðtÞ, adopting the ETMC gauge ensem-
bles described in Appendix A. We define also the electron-
muon ratio Re=μ and present our calculations of the light-
quark contribution in Sec. III A. By using the “dualþ ππ”
representation of the vector correlator VudðtÞ, developed in
Ref. [30] and described in Appendix B, we correct our data
for finite-volume effects. Then, by adopting three different
strategies we perform the chiral extrapolation to the
physical pion mass and also to the continuum limit. The
remaining contributions to Re=μ are evaluated in Sec. III B.
In Sec. IV we present our determinations of the three

ratios Re=μ, Re=τ and Rμ=τ, extrapolated to the physical pion
mass and to the continuum and infinite-volume limits. We
show that our results for the three ratios agree well with
those corresponding to the recent analyses of eþe− →
hadrons data from Ref. [7] as well as with an estimate of
Re=μ, which we derive from the BMW results of Ref. [28].
Section V collects our conclusions and perspectives.

II. THE LO HVP CONTRIBUTION TO THE
LEPTON al

The LO HVP contribution aHVP;LOl to the lepton anoma-
lous magnetic moment (l ¼ e, μ, τ) is related to the
Euclidean HVP function ΠðQ2Þ by [40–42]

aHVP;LOl ¼ 4α2em

Z
∞

0

dQ2flðQ2Þ½ΠðQ2Þ − Πð0Þ�; ð12Þ

2In Eq. (7) we have introduced the factor ðmμ=meÞ2 so that
the ratio Re=μ differs from unity only due to the curvature and
higher-order Mellin-Barnes moments (and their derivatives) of
the HVP function at vanishing photon virtuality [38]. For the
mass ratio mμ=me we adopt the CODATA value mμ=me ¼
206.7682831 ð47Þ from Ref. [39].
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where Q is the Euclidean four-momentum and the leptonic
kernel flðQ2Þ is given by

flðQ2Þ ¼ 1

m2
l

1

ω

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ω2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ω2
p

− ωffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ω2

p
þ ω

�2

ð13Þ

with ml being the lepton mass and ω≡Q=ml.
The HVP form factor ΠðQ2Þ contains the nonperturba-

tive hadronic effects and it is defined through the HVP
tensor as

ΠμνðQÞ≡
Z

d4xeiQ·xhJμðxÞJνð0Þi

¼ ðδμνQ2 −QμQνÞΠðQ2Þ; ð14Þ
where

JμðxÞ≡
X

f¼u;d;s;c;…

qfψ̄fðxÞγμψfðxÞ ð15Þ

is the em current operator with qf being the electric
charge of the quark with flavor f in units of the electron
charge e, while h� � �i means the average of the T product
of the two em currents over gluon and quark fields. In
Eq. (12) the subtracted HVP function ΠRðQ2Þ≡ ΠðQ2Þ −
Πð0Þ appears in order to guarantee that the em coupling
αem is the experimental one in the Thomson limit
(i.e., Q2 ≪ m2

e).
In this work we adopt the time-momentum representa-

tion of Ref. [43], in which the HVP function ΠRðQ2Þ is
expressed as

ΠRðQ2Þ ¼ ΠðQ2Þ − Πð0Þ

¼ 2

Z
∞

0

dtVðtÞ
�
cosðQtÞ − 1

Q2
þ 1

2
t2
�
; ð16Þ

where VðtÞ is the vector current-current Euclidean corre-
lator defined as

VðtÞ≡ −
1

3

X
i¼1;2;3

Z
dx⃗hJiðx⃗; tÞJið0Þi ð17Þ

and t is the Euclidean time distance. Thus, the LO HVP
contribution aHVP;LOl reads as

aHVP;LOl ¼ 4α2em

Z
∞

0

dtKlðtÞVðtÞ; ð18Þ

where

KlðtÞ≡ 2

Z
∞

0

dQ2flðQ2Þ
�
cosðQtÞ − 1

Q2
þ 1

2
t2
�

¼ t2
Z

1

0

dxð1 − xÞ
�
1 − j20

�
mlt
2

xffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
��

ð19Þ

with j0ðyÞ being the spherical Bessel function j0ðyÞ ¼
sinðyÞ=y and Q2 ≡m2

lx
2=ð1 − xÞ.

The LO HVP contributions aHVP;LOl , given by Eq. (18),
have in common the hadronic input VðtÞ and differ only in
the kernels KlðtÞ, which weigh different temporal regions
differently according to the lepton masses involved. For
purposes of illustration let us use for the hadronic input
VðtÞ its light-quark (connected) component VudðtÞ deter-
mined at the physical point in Ref. [30] (see later Sec. III A
and Appendixes A and B). In Fig. 1 the t dependencies of
the quantities NlKlðtÞVudðtÞ are compared for the three
cases l ¼ fe; μ; τg. The constants Nl are introduced in
order to guarantee the common normalization condition
Nl

R
∞
0 dtKlðtÞVudðtÞ ¼ 1 for all leptons, while the uncer-

tainties on VudðtÞ are not shown.
It can be seen that the time distances relevant for the

integration in the rhs of Eq. (18) are quite similar in the case
of the electron and the muon. Instead, in the case of the τ
lepton the impact of the short and intermediate time
distances up to 1–1.5 fm is enhanced, while the role of
the large time distances is reduced. We expect therefore that
by considering ratios aHVP;LOl =aHVP;LOl0 for different leptons
the correlation between the numerator and the denominator
should be significant mainly in the case of the electron-
muon ratio.

III. THE HADRONIC INPUT VðtÞ
Thanks to recent progress in lattice QCDþ QED

simulations the vector current-current correlator (17) is
nowadays calculated including both strong and em IB
corrections, related to the mass difference ðmd −muÞ

FIG. 1. Comparison of the normalized quantities
NlKlðtÞVudðtÞ for l ¼ fe; μ; τg versus the time distance t. The
three kernels KlðtÞ are given by Eq. (19). The hadronic quantity
VudðtÞ is the light-quark (connected) contribution to the vector
current-current correlator (17), as determined at the physical point
in Ref. [30] (see later Sec. III A and Appendixes A and B). The
constants Nl are introduced in order to guarantee the common
normalization conditionNl

R∞
0 dtKlðtÞVudðtÞ ¼ 1 for all leptons,

while the uncertainties of VudðtÞ are not shown.
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between u and d quarks and to the em interactions among
quarks. Since both ðmd −muÞ=ΛQCD and αem are small
parameters of order Oð1%Þ, an expansion of the path
integral in powers of the two parameters has been devel-
oped in Refs. [44,45]. Thus, the vector correlator VðtÞ can
be split into two contributions

VðtÞ ¼ V isoQCDðtÞ þ δVIBðtÞ; ð20Þ
where VisoQCDðtÞ corresponds to the contribution of
isosymmetric QCD only (i.e., mu ¼ md and αem ¼ 0),
while δVIBðtÞ includes the contributions at first order
Oððmd −muÞ=ΛQCDÞ and OðαemÞ. Terms at higher orders
are subleading and they can be safely neglected even for a
permil-precision calculation of the HVP term aHVP;LOl .
It should be stressed that the separation given in Eq. (20)

requires a prescription (see Sec. II of Ref. [46] for
an exhaustive discussion), which means that both
V isoQCDðtÞ and δVIBðtÞ are prescription dependent. Only
the complete correlator VðtÞ (and correspondingly the HVP
term aHVP;LOl ) is prescription-free. In this work we follow
Refs. [29–31] and adopt the Gasser-Rusetsky-Scimemi
prescription [47], in which the renormalized quark masses
and strong coupling, evaluated in the MS scheme at a
renormalization scale of 2 GeV, are equal in the full QCDþ
QED and isosymmetric QCD theories.
Since all quark flavors contribute to the em current (15),

both V isoQCDðtÞ and δVIBðtÞ can be written as

V isoQCDðtÞ ¼ VudðtÞ þ VsðtÞ þ VcðtÞ þ VdiscðtÞ; ð21Þ
δVIBðtÞ ¼ δVudðtÞ þ δVsðtÞ þ δVcðtÞ þ δVdiscðtÞ; ð22Þ
where the first three terms in the rhs correspond to the
contribution of light, strange and charm quark flavor
separately (quark-connected contractions), while the fourth
term represents the contribution of quark-disconnected
diagrams. We have not included any contribution from
the bottom quark, since it is subleading with respect even to
a permil-precision level.3

Correspondingly, from Eqs. (20)–(22) one has

aHVP;LOl ¼ aHVP;LOl ðisoQCDÞ þ aHVP;LOl ðIBÞ ð23Þ
with

aHVP;LOl ðisoQCDÞ ¼ aHVP;LOl ðudÞ þ aHVP;LOl ðsÞ
þ aHVP;LOl ðcÞ þ aHVP;LOl ðdiscÞ; ð24Þ

aHVP;LOl ðIBÞ ¼ δaHVP;LOl ðudÞ þ δaHVP;LOl ðsÞ
þ δaHVP;LOl ðcÞ þ δaHVP;LOl ðdiscÞ; ð25Þ

where all the terms in aHVP;LOl ðisoQCDÞ are of order
Oðα2emÞ, while those in aHVP;LOl ðIBÞ contain IB contribu-
tions at orders Oðα2emðmd −muÞ=ΛQCDÞ and Oðα3emÞ.
We start by considering the electron-muon ratio Re=μ

given by Eq. (7). Since the (connected) light-quark con-
tribution aHVP;LOl ðudÞ represents almost 90% of the total
LO HVP term aHVP;LOl , we rewrite the ratio Re=μ in the
following form:

Re=μ ≡ Rud
e=μ · R̃e=μ; ð26Þ

where

Rud
e=μ ≡

�
mμ

me

�
2 aHVP;LOe ðudÞ
aHVP;LOμ ðudÞ ð27Þ

and

R̃e=μ ≡
1þP

j¼s;c;IB;disc
aHVP;LOe ðjÞ
aHVP;LOe ðudÞ

1þP
j¼s;c;IB;disc

aHVP;LOμ ðjÞ
aHVP;LOμ ðudÞ

: ð28Þ

In the next two subsections we address separately the
determination of Rud

e=μ and R̃e=μ.

A. Light-quark contribution Rud
e=μ

The results obtained for the ratio Rud
e=μ adopting the Nf ¼

2þ 1þ 1 ETMC gauge ensembles of Appendix A are
shown in Fig. 2 as empty markers versus the simulated pion

FIG. 2. Results for the (connected) light-quark contribution to
the electron-muon ratio, Rud

e=μ, versus the simulated pion massMπ

for the Nf ¼ 2þ 1þ 1 ETMC gauge ensembles of Appendix A.
Empty markers correspond to the data computed at finite lattice
size L, while full markers represent the ratio Rud

e=μðL → ∞Þ
corrected for FVEs according to Eq. (29) evaluated using the
results of Ref. [30]. For each gauge ensemble the pion mass in the
infinite-volume limit is evaluated according to Ref. [30]. Errors
include (in quadrature) both statistical and systematic uncertain-
ties according to the eight branches of the analyses described in
Appendix A.

3In the case of the muon the bottom-quark LO HVP con-
tribution aHVP;LOμ ðbÞ has been found to be equal to 0.271ð37Þ ×
10−10 in Ref. [48] in agreement with the perturbative QCD
estimate 0.29ð1Þ × 10−10 [49].
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massMπ . The errors include (in quadrature) both statistical
and systematic uncertainties according to the bootstrap
samples generated for the input parameters of the quark
mass analysis of Ref. [50]. They are described in
Appendix A and have been used in all our works on the
muon HVP terms [29–31]. In the numerical simulations we
have adopted a local version of the em current (15), which
requires in our lattice setup a multiplicative renormaliza-
tion. The latter one however cancels out exactly in the ratio
Rud
e=μ (as well as also in R̃e=μ).
A few comments are in order.
(i) The precision of the data ranges from ≃0.35% to

≃0.6%, i.e., a reduction by a factor of at least ≃4
with respect to the precision of the individual HVP
terms aHVP;LOμ ðudÞ and aHVP;LOe ðudÞ achieved in
Refs. [30,37]. This is clearly due to a significative
correlation expected between the numerator and the
denominator. Using the individual uncertainties we
estimate the above correlation to be ≃0.98, i.e., very
close to 100%.

(ii) The uncertainties of the data are mainly related to the
statistical errors and to a lesser extent to the scale
setting.4

(iii) Finite-volume effects (FVEs) are clearly visible in
the case of the four gauge ensembles A40.XX (see
Appendix A), which share the same pion mass and
lattice spacing and differ only in the lattice size L.

(iv) The pion mass dependence is significative and the
extrapolation to the physical pion mass requires a
careful treatment, while discretization effects appear
to be subleading.

In order to remove FVEs from the data we follow the
approach of Ref. [30], where an analytic representation of
the temporal dependence of VudðtÞwas developed adopting
the quark-hadron duality [51] at short and intermediate time
distances and the two-pion contribution in a finite box at
large time distances [52–58]. A brief description of the
analytic representation is illustrated in Appendix B. An
accurate reproduction of the lattice data for VudðtÞ was
obtained for all the ETMC ensembles of Appendix A and
the extrapolation to the infinite-volume limit for the
analytic representation of VudðtÞ was achieved at each
simulated pion mass and lattice spacing.
Using the analytic representation, the FVEs on

aHVP;LOμ ðudÞ were estimated in a nonperturbative way
directly on the lattice [30] and shown to differ significantly
from the prediction of chiral perturbation theory (ChPT) at
next-to-leading order (NLO) up to values of MπL ≈ 6 (see
also Refs. [59,60]). Later FVEs on aHVP;LOμ ðudÞ have been

calculated within ChPT at next-to-next-to-leading order
(NNLO) [61]. Still our findings differ from the NNLO
predictions for values of MπL up to ≈5.
The FVEs are subtracted from the data at finite volume

using the following formula:

Rud
e=μðL→∞Þ

¼Rud
e=μðLÞ

aHVP;LOe ðud;L→∞Þ=aHVP;LOe ðud;LÞ
aHVP;LOμ ðud;L→∞Þ=aHVP;LOμ ðud;LÞ ; ð29Þ

where the two separate ratios aHVP;LOe ðud;L → ∞Þ=
aHVP;LOe ðud;LÞ and aHVP;LOμ ðud;L → ∞Þ=aHVP;LOμ ðud;LÞ
are evaluated using the analytic representation of VudðtÞ.
The latter ones are strongly correlated so that the calculated
correction due to FVEs on the ratio Rud

e=μðLÞ does not
exceed ≃1.3% with an uncertainty not larger than ≃0.3%.
The correlations between Rud

e=μðLÞ and the FVE correction,
appearing in the rhs of Eq. (29), are properly taken into
account by means of our bootstrap procedure (see
Appendix A). The data for Rud

e=μðL → ∞Þ are shown in

Fig. 2 as full markers, while the values of both Rud
e=μðLÞ and

Rud
e=μðL → ∞Þ are given explicitly in Table IV at the end of

Appendix A.
The final steps are the extrapolations to the physical pion

mass and to the continuum limit. For evaluating the former
one, which represents the dominant source of the system-
atic uncertainty, we adopt three strategies, which will be
described in what follows.
In Ref. [30] it was shown that for a proper chiral

extrapolation of the ETMC data on aHVP;LOμ ðud;L → ∞Þ
the effects of the chiral logs predicted by SU(3) ChPT at
NLO and NNLO for the HVP form factor Πud

R ðQ2Þ should
be taken into account. We point out that the chiral
extrapolation of Ref. [30] is only inspired by ChPT.
What we borrow from ChPT is the presence of chiral logs,
i.e., of nonanalytic terms in the light-quark mass. These
terms contribute to the pion mass dependence of
aHVP;LOl ðudÞ regardless of the convergence properties of
ChPT. They might be expanded locally as powers of M2

π ,
but in the case of our ETMC simulations, carried out for
pion masses larger than ∼210 MeV, it is unavoidable to use
explicitly the chiral logs; otherwise, any polynomial
expansion would require too many terms to take into
account the effects of the logs from the simulated pion
masses down to the physical pion point. The apparent linear
behavior of the ETMC data shown in Fig. 2 may be a
consequence of the resummed higher orders, which are not
calculable using ChPT.
Therefore, we adopt the following ansatz:

Rud
e=μðL→∞Þ¼

�
m2

μ

m2
e

�
aHVP;LOe ðudÞ
aHVP;LOμ ðudÞ

�ChPT

þA0þA1M2
π

�

× ð1þDa2Þ; ð30Þ

4By switching off the uncertainties of the scale setting in the
bootstrap samples of Appendix A we get that the impact of the
uncertainty on the scale setting does not exceed ∼15% of
the errors of the calculated ratio Rud

e=μ at the lightest simulated
pion masses and reaches ∼40% only at the heaviest ones.
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where the first term in the square brackets corresponds to
the ratio of the SU(3) ChPT predictions at NNLO for the
connected part of the light-quark contribution to aHVP;LOl in
the infinite-volume limit [62–65], while the remaining
terms parameterize the effects of the resummation of the
higher orders, which, we remind, are not calculable within
ChPT and are expected to dominate at the simulated pion
masses (see Fig. 2). The last term (1þDa2) takes into
account possible discretization effects starting at order
Oða2Þ for our lattice setup.
In Eq. (30) A0, A1 and D are free parameters, while the

ChPT terms contain two low-energy constants (LECs), Lr
9

and Cr
93. We do not treat the latter ones as free parameters,

but instead their values are fixed to the results of the
analysis of aHVP;LOμ ðudÞ performed in Ref. [30], namely
Lr
9ðμ¼0.77GeVÞ¼0.00273ð143Þ and Cr

93ðμ¼0.77GeVÞ¼
−0.0136ð20ÞGeV−2. The uncertainties of the two LECs
are properly taken into account through our bootstrap
procedure (see Appendix A), which we remind has been
adopted also in Ref. [30].
The results obtained with the fitting function (30),

corresponding to a value of χ2=DOF ≃ 0.2 for 17 data
with three free parameters, are shown in Fig. 3 by the
shaded area, representing the fitting uncertainty at 1σ level
in the continuum limit. Notice that discretization effects are
almost negligible and overwhelmed by the uncertainties of
the chiral extrapolation. Indeed, the value of the parameter
D in Eq. (30) is found to be compatible with zero.
At the physical pion mass and in the continuum limit the

first strategy yields Rud
e=μ ¼ 1.1543ð54Þ, where the error

includes only the uncertainty induced by the statistical

Monte Carlo errors of the simulations and its propagation in
the fitting procedure. The above result shows that the chiral
logs contained in the fitting function (30) yield a signifi-
cative enhancement of the ratio Rud

e=μ toward the chiral limit.
We observe an effect of a few percent, while the enhance-
ment found in Ref. [30] for aHVP;LOμ ðudÞ due to the chiral
extrapolation and to the continuum limit turned out to be
much larger by almost an order of magnitude.
However, the chiral enhancement of Rud

e=μ occurs in a
region of pion masses not covered directly by the ETMC
data. Therefore, as our second strategy we make use of the
recent ETMC ensemble, labelled cB211.072.64, generated
with Nf ¼ 2þ 1þ 1 dynamical quarks close to the physi-
cal pion mass [Mπ ¼ 139ð1Þ MeV] at a lattice spacing
a ¼ 0.0803ð4Þ fm and at a lattice size L ≃ 5.1 fm. The
lattice setup of the ensemble cB211.072.64 is described in
detail in Ref. [66] and briefly summarized in Appendix A.
The lattice action for cB211.072.64 differs from the one
previously considered by ETMC in Refs. [32,33] by the
addition of a Clover term. Therefore, lattice artifacts may be
different, but the presence of the Clover term turns out to be
beneficial for reducing cutoff effects, in particular IB
effects between the charged and the neutral pions [66].
We stress that discretization effects are expected to have a
quite limited impact on the ratio Rud

e=μ.
According to Sec. II of Ref. [30] and using 200 gauge

configurations and 160 stochastic sources (diagonal in the
spin variable and dense in the color one) per each gauge
configuration, we have calculated the unrenormalized
HVP terms aHVP;LOl ðudÞ for the electron and the muon,
since the relevant renormalization constant (RC) of the
local lattice version adopted for the em current operator
is not yet available. Nevertheless, the electron to muon
ratio does not depend on such RC, so that we get
Rud
e=μðcB211.072.64Þ ¼ 1.1414ð57Þ. After the subtraction

of FVEs estimated through the analytic representation of
VudðtÞ evaluated at the physical pion mass, we get
Rud
e=μðcB211.072.64;L→∞Þ¼1.1550ð58Þ, which is shown

in Fig. 3 as the blue cross and nicely confirms the chiral
enhancement predicted by the fitting formula (30).
As suggested by the smallness of the discretization

effects exhibited by the data in Fig. 3, it is interesting to
use Eq. (30) for fitting the ETMC data obtained at the
unphysical pion masses together with the result of the
new cB211.072.64 ensemble close to the physical pion
point without considering any discretization term, i.e., by
putting D ¼ 0 in Eq. (30). At the physical point, within the
above second strategy, we get Rud

e=μ ¼ 1.1590ð56Þ with

a χ2=DOF ≃ 0.2.
Finally, we adopt a third strategy based on the use of the

analytic representation of the vector correlator VudðtÞ
developed in Ref. [30]. The main features of the repre-
sentation are summarized in Appendix B. The crucial point
is the extrapolation of the four parameters appearing in the

FIG. 3. Values of the ratio Rud
e=μðL → ∞Þ [see Eq. (29)] versus

the simulated pion massMπðL → ∞Þ in the infinite-volume limit
for the Nf ¼ 2þ 1þ 1 ETMC gauge ensembles of Appendix A.
The shaded area corresponds to the results obtained with the
fitting function (30) at 1σ level in the continuum limit. The blue
cross represents the result corresponding to the new ETMC
ensemble cB211.072.64 generated close to the physical pion
mass [66] and corrected for FVEs (see text). The black triangle is
the result obtained with the analytic representation of Ref. [30]
extrapolated to the physical pion mass and to the continuum and
infinite-volume limits (see Appendix B).
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representation (see Appendix B for their definitions) to the
physical pion mass. Correspondingly, we obtain the ana-
lytic representation of the vector correlator VudðtÞ at the
physical point. We observe the following interesting facts.

(i) As shown in Ref. [30], the value of aHVP;LOμ ðudÞ
obtained after the chiral extrapolation of our
analytic representation turned out to be consistent
with the chiral extrapolation of the simulated values
of aHVP;LOμ ðudÞ inspired by ChPT. This finding
is remarkable and represents an evidence of the
reliability of the chiral extrapolation of our
representation.

(ii) The first five moments of the polarization function
have been evaluated using the eþe− data into two
pions.5 The corresponding predictions based on our
analytic representation at the physical point were
found to be nicely consistent with the above data
[30]. Also this finding is remarkable and represents a
stringent test for the large time-distance tail of the
vector correlator VudðtÞ, further reassuring about
the reliability of the chiral extrapolation of our
representation.

(iii) Our analytic representation includes not only the
contribution of the isospin-1 π − π spectrum, but
also a dual part which nicely reproduces the vector
correlator at short and intermediate time distances t.
This means that our analytic representation provides
the vector correlator VudðtÞ for all values of t, not
only for the discretized ones. This has the immediate
consequence that the value of aHVP;LOl ðudÞ calcu-
lated by means of our representation at the physical
point does not depend on the absolute scale setting.
This point is further elucidated at the end of
Appendix B.

Thus, besides the statistical uncertainties of the param-
eters appearing in the representation, the only important
source of the systematic error comes from their chiral
extrapolation. For estimating the corresponding systematics
we have tried several fitting functions and we have checked
that it suffices to consider the four different fits in which
(i) the physical value of Mρ=Mπ from PDG [2] is either
included or not, and (ii) either a linear or a quadratic
dependence on mud is used to fit the dual energy Edual. The

results obtained using the above four fitting choices are
averaged according to Eq. (28) of Ref. [50].
Within the third strategywegetRud

e=μ¼1.1600ð44Þð30Þ½53�,
where the first error includes the uncertainties coming
from the errors of the four parameters of the analytic
representation and its propagation in the extrapolation to
the physical point, the second error results from the different
choices of their chiral extrapolation to the physical point, and
the third error is their sum in quadrature. The above result is
shown in Fig. 3 as the black triangle. Though being
completely independent of the chiral enhancement found
both for aHVP;LOμ ðudÞ in Ref. [30] and for the ratio Rud

e=μ, the
result of the third strategy is nicely consistent both with the
prediction of the fitting formula (30) and with the result
corresponding to the ensemble cB211.072.64.
By including in the systematic error the spread among

the results of the three strategies [evaluated according to
Eq. (28) of Ref. [50] ], our final determination of Rud

e=μ is

Rud
e=μ ¼ 1.1578ð52Þstatð39Þsyst ½65�: ð31Þ

B. Evaluation of R̃e=μ

In this section we determine the ratio R̃e=μ, defined in
Eq. (28), corresponding to the LO HVP contributions other
than the (connected) light-quark one.
We make use of a simple procedure based on the values

of aHVP;LOl ðudÞ, aHVP;LOl ðsÞ, aHVP;LOl ðcÞ and aHVP;LOl ðIBÞ
obtained at the physical pion mass and in the continuum
and infinite-volume limits in Refs. [29–31] and shown
for l ¼ e, μ in Tables 1 and 2 of Ref. [37]. In the case
of the disconnected contribution aHVP;LOl ðdiscÞ, following
Refs. [30,37] we adopt the values aHVP;LOe ðdiscÞ ¼
−3.80ð35Þ × 10−14 from Ref. [28] and aHVP;LOμ ðdiscÞ ¼
−12ð4Þ × 10−10 from Refs. [28,34,35].
The values of the ratios aHVP;LOl ðjÞ=aHVP;LOl ðudÞ for j ¼

s; c; IB; disc are collected in Table I for l ¼ e, μ, where
both the statistical and the systematic uncertainties are
separately provided for each quantity. In the case of the
ratio aHVP;LOl ðIBÞ=aHVP;LOl ðudÞ the uncertainty includes
also the estimate of quenching QED made in Ref. [31].
We stress that the attractive features of the ratio
aHVP;LOl ðIBÞ=aHVP;LOl ðudÞ are to be less sensitive to the
uncertainties of the scale setting and to exhibit a reduced

TABLE I. Values of the ratios aHVP;LOl ðjÞ=aHVP;LOl ðudÞ for j ¼ s; c; IB; disc obtained using the electron and muon results of Ref. [37]
(see text). For each entry the first and the second error represent the statistical and the systematic uncertainties, respectively.

Lepton aHVP;LOl ðsÞ
aHVP;LOl ðudÞ

aHVP;LOl ðcÞ
aHVP;LOl ðudÞ

aHVP;LOl ðIBÞ
aHVP;LOl ðudÞ

aHVP;LOl ðdiscÞ
aHVP;LOl ðudÞ

e 0.0791 (34) (36) 0.0205 (10) (8) 0.0111 (28) (51) −0.0223 (15) (14)
μ 0.0844 (30) (32) 0.0234 (7) (7) 0.0113 (23) (40) −0.0191 (47) (43)

5Courtesy of A. Keshavarzi, D. Nomura and T. Teubner.
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chiral dependence, which allows for a controlled, purely
data-driven extrapolation to the physical point [31].
We can now evaluate the ratio R̃e=μ by considering

the four individual contributions corresponding to
j ¼ s; c; IB; disc as 98% correlated between the numerator
and the denominator. The correlation is taken into account
through a bootstrap procedure, which leads to the value

R̃e=μ ¼ 0.9895ð32Þstatð31Þsyst½45�; ð32Þ

where the first error is statistical and the second one
systematic, coming respectively from the separate statis-
tical and systematic errors of the inputs of Table I. The last
error is their sum in quadrature.
New recent estimates of both aHVP;LOμ ðdiscÞ and

aHVP;LOμ ðIBÞ have been obtained in Ref. [24]. The new
determination aHVP;LOμ ðdiscÞ¼−15.4ð9Þ×10−10 is not
inconsistent with the value aHVP;LOμ ðdiscÞ¼−12ð4Þ×10−10

we have adopted, while a significative reduction for
aHVP;LOμ ðIBÞ is found. Such a difference may be due (at
least partially) to the different prescriptions adopted to
separate QCD and QED effects. Nevertheless, even if we
consider the case in which the IB contribution is completely
dropped in the calculation, the value of R̃e=μ does not
change significantly with respect to its uncertainty.

IV. RESULTS

Collecting our findings (31) and (32) our estimate of the
electron-muon ratio Re=μ is given by

Re=μ ¼
�
mμ

me

�
2aHVP;LOe

aHVP;LOμ
¼ 1.1456ð63Þstatð54Þsyst ½83�; ð33Þ

where the final error corresponds to a hadronic uncertainty
of ≃0.7%, i.e., a factor ≈4 better than the individual
precisions of the numerator and the denominator.
Our result (33) agrees very well with the one corre-

sponding to the results aHVP;LOe ðeþe−Þ¼186.08ð0.66Þ×
10−14 and aHVP;LOμ ðeþe−Þ¼ 692.78ð2.42Þ×10−10 obtained
from the dispersive analyses of eþe− → hadrons data
carried out recently in Ref. [7], namely

Reþe−
e=μ ¼ 1.1483 ð41Þeð40Þμ ½57�; ð34Þ

where the first and second errors are related to the electron
and muon contributions separately, while the third error is
their sum in quadrature, i.e., without taking into account
correlations between the numerator and the denominator.
The uncertainty of the dispersive estimate of Reþe−

e=μ could be
certainly reduced once the above correlations are properly
taken into account. For the purpose of the present work the
conservative estimate of the error given in Eq. (34) is
sufficient.

We can apply the procedure described in Sec. III B also
to the individual results aHVP;LOl ðjÞ for j ¼ ud; s; c; IB; disc
obtained by the BMW Collaboration in Ref. [28].
Assuming for the sake of simplicity a 100% correlation
between the individual contributions in the numerator and
in the denominator we get

Re=μ ¼ 1.1381ð72Þ; ð35Þ

which is consistent within the uncertainties with our result
(33) as well as with the dispersive one (34). Note that, as far
as the individual term aHVP;LOμ is concerned, the result of
Ref. [28] exhibits some tension with respect to both the
ETMC result [30,31,36,37] and the dispersive ones [6–8].
Moreover, the significance of such a tension is remarkably
increased by the recent BMW result of Ref. [24].
However, the ratio Re=μ is less sensitive to possible
tensions between the results of various lattice collabora-
tions and/or of dispersive analyses of eþe− → hadrons
data, which may occur for the individual hadronic terms
aHVP;LOe and aHVP;LOμ .
In Fig. 4 our lattice result (33), the dispersive one (34)

and the estimate (35) are compared with the “exp-QED”
value given by Eq. (11) in Sec. I. As anticipated in Sec. I the
exp-QED value differs from our lattice result (33) by ≃2.7
standard deviations. An improvement by a factor of ≃2 in
the precision of both the experiment and the QED con-
tribution for the electron might be enough to reach a
significance level of ≃5 standard deviations from our
value (33).
Before closing this section we provide our results also

for the electron-τ and muon-τ ratios

FIG. 4. Comparison of the electron-muon ratio Re=μ corre-
sponding to the exp-QED estimate given by Eq. (11) (cross) with
our lattice result (33) (red circle), the one given by Eq. (34) (blue
square) derived from the results of the dispersive analyses of
eþe− → hadrons data carried out in Ref. [7] and the estimate (35)
(green diamond) obtained by applying the procedure of Sec. III B
to the BMW results of Ref. [28]. The dashed line corresponds to
the central value of Eq. (33).
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ReðμÞ=τ ≡
�

mτ

meðμÞ

�
2 aHVP;LOeðμÞ
aHVP;LOτ

: ð36Þ

We expect that the above ratios are more sensitive to the
hadronic input VðtÞ, since the kinematical kernel KlðtÞ for
the τ lepton differs significantly from the one of the electron
(muon), as shown in Fig. 1. Indeed the precision of our
lattice data for the (connected) light-quark contributions
Rμ=τðudÞ and Re=τðudÞ turns out to be at the level of ≈3%,

while the individual precisions for aHVP;LOe;μ;τ ðudÞ are at the
level of ≈2% (see Ref. [37]). This result indicates that the
numerator and the denominator in Eq. (36) can be con-
sidered almost uncorrelated.
The dependencies of ReðμÞ=τðudÞ on the simulated pion

mass, on the lattice spacing and on the lattice size are
similar to the one shown in Fig. 2 in the case of Re=μ. The
analyses of the data for both ReðμÞ=τðudÞ and R̃eðμÞ=τ are
similar to the ones described in Secs. III A and III B in the
case of the corresponding electron-muon ratios, respec-
tively. The only difference is that the individual contribu-
tions corresponding to j ¼ ud; s; c; IB; disc should be
considered to be uncorrelated between the numerator
and the denominator. In Table II our final results for the
three ratios Re=μ, Re=τ and Rμ=τ are collected.
Our findings for both Re=τ and Rμ=τ are consistent with

the more precise ones corresponding to the recent results
aHVP;LOe ðeþe−Þ¼ 186.08ð0.66Þ×10−14, aHVP;LOμ ðeþe−Þ¼
692.78ð2.42Þ×10−10 and aHVP;LOτ ðeþe−Þ¼332.81ð1.39Þ×
10−8 obtained from the dispersive analyses [7] of eþe− →
hadrons data, namely

Reþe−
e=τ ¼ 6.760 ð24Þe ð28Þτ ½37�; ð37Þ

Reþe−
μ=τ ¼ 5.887 ð21Þe ð25Þτ ½33�; ð38Þ

where the third error is the sum in quadrature of the first
two, i.e., by considering the numerator and the denominator
as uncorrelated.

V. CONCLUSIONS

In this work we have evaluated the ratios among the
leading-order hadronic vacuum polarization contributions
to the anomalous magnetic moments of electron, muon and
τ lepton, aHVP;LOl¼e;μ;τ , using lattice QCDþ QED simulations.

Our results include the effects at order Oðα2emÞ as well as
the electromagnetic and strong-isospin breaking correc-
tions at ordersOðα3emÞ andOðα2emðmu −mdÞÞ, respectively,
where ðmu −mdÞ is the u- and d-quark mass difference. We
have employed the gauge configurations generated by
ETMC [32,33] with Nf ¼ 2þ 1þ 1 dynamical quarks
at three values of the lattice spacing (a ≃ 0.062, 0.082,
0.089 fm) with pion masses in the range ≃210–450 MeV.
The calculations are based on the quark-connected con-
tributions to the HVP in the quenched-QED approximation,
which neglects the charges of the sea quarks. The quark-
disconnected terms are estimated from results available in
the literature [24,28].
We have shown that in the case of the electron-muon

ratio the hadronic uncertainties in the numerator and in the
denominator largely cancel out, while in the cases of the
electron-τ and muon-τ ratios such a cancellation does not
occur. At the physical pion mass and in the continuum and
infinite-volume limits we have obtained

Re=μ ≡
�
mμ

me

�
2 aHVP;LOe

aHVP;LOμ
¼ 1.1456 ð83Þ; ð39Þ

Re=τ ≡
�
mτ

me

�
2 aHVP;LOe

aHVP;LOτ
¼ 6.69 ð20Þ; ð40Þ

Rμ=τ ≡
�
mτ

mμ

�
2 aHVP;LOμ

aHVP;LOτ
¼ 5.83 ð17Þ ð41Þ

with an uncertainty of ≃0.7% for the electron-muon ratio
and of ≃3% for the electron-τ and muon-τ ratios. Our
results (39)–(41) agree very well with the corresponding
estimates obtained using the recent results [7] of the
dispersive analyses of the experimental eþe− → hadrons
data [see Eqs. (34), (37) and (38)].
We stress that the reduced sensitivity of Re=μ to the

hadronic uncertainties, present both in the numerator and in
the denominator, makes our result (39) an accurate SM
prediction, weakening also possible tensions between the
results of various lattice collaborations and/or of dispersive
analyses of eþe− → hadrons data.
Using the present determinations of the muon [1] and

electron [9,10] (g − 2) experiments [see Eqs. (1) and (3)],
the updated QED calculations from Ref. [12] and the
current estimates of the electroweak, hadronic LBL and
higher-order HVP contributions, the exp-QED value of the
electron-muon ratio Re=μ [see Eq. (11) of Sec. I] is equal to

Rexp−QED
e=μ ¼ 0.575 ð213Þe ð6Þμ ½213�; ð42Þ

which differs from our SM result (39) by ≃2.7 standard
deviations. We stress that such a tension is dominated by
present experimental and QED uncertainties, while the role
of the hadronic uncertainties on Re=μ is quite marginal.

TABLE II. Values of the ratios Re=μ, Re=τ and Rμ=τ determined
in this work at the physical pion mass and in the continuum and
infinite-volume limits. The errors include both statistical and
systematic uncertainties added in quadrature.

Re=μ Re=τ Rμ=τ

1.1456 (83) 6.69 (20) 5.83 (17)
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Thus, an improvement by a factor of ≃2 in the precision of
both the experiment and the QED contribution to the
electron (g − 2) could be enough to reach a tension with
the SM at a significance level of ≃5 standard deviations.
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APPENDIX A: LATTICE FRAMEWORK AND
SIMULATION DETAILS

The gauge ensembles used in this work are those
generated by ETMC with Nf ¼ 2þ 1þ 1 dynamical
quarks [32,33] and used in Ref. [50] to determine the
up, down, strange and charm quark masses. We use the
Iwasaki action [70] for the gluons and the Wilson twisted
mass action [71–73] for the sea quarks. In the valence
sector we adopt a nonunitary setup [74] in which the

strange quark is regularized as an Osterwalder-Seiler
fermion [75], while the up and down quarks have the
same action as the sea. Working at maximal twist such a
setup guarantees an automatic OðaÞ improvement [72,74].
We have performed simulations at three values of the

inverse bare lattice coupling β and at several different lattice
volumes as shown in Table III. We allow a separation of 20
trajectories between each of the Ncfg analyzed configura-
tions. For the earlier investigation of FVEs ETMC had
produced three dedicated ensembles, A40.20, A40.24 and
A40.32, which share the same quark masses and lattice
spacing and differ only in the lattice size L. To improve
such an investigation a further gauge ensemble, A40.40,
has been produced at a larger value of the lattice size L.
At each lattice spacing, different values of the light sea-

quark masses have been considered. The light valence and
sea-quark masses are always taken to be degenerate. The
bare masses of the valence strange and charm quarks (aμs
and aμc) are obtained, at each β, using the physical strange
and charm masses and the mass RCs determined in
Ref. [50]. There the “FLAG” hadronic scheme was adopted
in which the pion and kaon masses in isosymmetric QCD

are equal to Mð0Þ;FLAG
π ¼ 134.98 MeV and Mð0Þ;FLAG

K ¼
494.2 ð4Þ MeV and the lattice scale is fixed by the value

fð0Þ;FLAGπ ¼ 130.41 ð20Þ MeV for the physical pion decay

TABLE III. Values of the valence and sea bare quark masses (in lattice units), of the pion, kaon and D-meson masses
for the Nf ¼ 2þ 1þ 1 ETMC gauge ensembles used in Ref. [50] and for the gauge ensemble, A40.40 added to improve the
investigation of FVEs. A separation of 20 trajectories between each of the Ncfg analyzed configurations. The bare twisted masses μσ
and μδ describe the strange and charm sea doublet as in Ref. [73]. The values of the strange and charm quark bare masses aμs and aμc,
given for each β, correspond to the physical strange and charm quark masses, mphys

s ðMS; 2 GeVÞ ¼ 99.6ð4.3Þ MeV and
mphys

c ðMS; 2 GeVÞ ¼ 1176ð39Þ MeV, and to the mass RCs determined in Ref. [50]. The central values and errors of pion, kaon
and D-meson masses are evaluated using the bootstrap procedure of Ref. [50]. The two valence quarks in the pseudoscalar mesons are
regularized with opposite values of the Wilson r parameter in order to guarantee that discretization effects on the meson masses are of
order Oða2μΛQCDÞ.
Ensemble β V=a4 Ncfg aμsea¼aμud aμσ aμδ aμs aμc Mπ ðMeVÞ MK ðMeVÞ MD ðMeVÞ MπL

A40.40 1.90 403 × 80 100 0.0040 0.15 0.19 0.02363 0.27903 317 (12) 576 (22) 2002 (77) 5.7
A30.32 323 × 64 150 0.0030 275 (10) 568 (22) 2012 (77) 3.9
A40.32 100 0.0040 316 (12) 578 (22) 2008 (77) 4.5
A50.32 150 0.0050 350 (13) 586 (22) 2014 (77) 5.0
A40.24 243 × 48 150 0.0040 322 (13) 582 (23) 2017 (77) 3.5
A60.24 150 0.0060 386 (15) 599 (23) 2018 (77) 4.2
A80.24 150 0.0080 442 (17) 618 (14) 2032 (78) 4.8
A100.24 150 0.0100 495 (19) 639 (24) 2044 (78) 5.3
A40.20 203 × 48 150 0.0040 330 (13) 586 (23) 2029 (79) 3.0

B25.32 1.95 323 × 64 150 0.0025 0.135 0.170 0.02094 0.24725 259 (9) 546 (19) 1942 (67) 3.4
B35.32 150 0.0035 302 (10) 555 (19) 1945 (67) 4.0
B55.32 150 0.0055 375 (13) 578 (20) 1957 (68) 5.0
B75.32 80 0.0075 436 (15) 599 (21) 1970 (68) 5.8
B85.24 243 × 48 150 0.0085 468 (16) 613 (21) 1972 (68) 4.6

D15.48 2.10 483 × 96 100 0.0015 0.1200 0.1385 0.01612 0.19037 223 (6) 529 (14) 1929 (49) 3.4
D20.48 100 0.0020 256 (7) 535 (14) 1933 (50) 3.9
D30.48 100 0.0030 312 (8) 550 (14) 1937 (49) 4.7

RATIOS OF THE HADRONIC CONTRIBUTIONS TO THE … PHYS. REV. D 102, 054503 (2020)

054503-11



constant. In the charm sector instead, the Ds-meson mass

Mð0Þ
Ds

was chosen to be equal to its experimental value
MDþ

s
¼ 1969.0 ð1.4Þ MeV [2]. The values of the lattice

spacing are found to be a ¼ 0.0885ð36Þ, 0.0815(30), and
0.0619(18) fm at β ¼ 1.90, 1.95 and 2.10, respectively. In
Ref. [76] it was shown that at the current level of precision
the FLAG hadronic scheme is equivalent to the Gasser-
Rusetsky-Scimemi prescription [47].
In this work, as well as in all our works on the muon

HVP terms [29–31], we made use of the bootstrap samples
generated for the input parameters of the quark mass
analysis of Ref. [50]. There, eight branches of the analysis
were adopted differing in

(i) the continuum extrapolation adopting for the match-
ing of the lattice scale either the Sommer parameter
r0 or the mass of a fictitious P meson made up of two
valence strange(charm)-like quarks;

(ii) the chiral extrapolation performed with fitting func-
tions chosen to be either a polynomial expansion or a
ChPT ansatz in the light-quark mass;

(iii) the choice between methods M1 and M2, which
differ by Oða2Þ effects, used to determine the mass
RC Zm ¼ 1=ZP in the RI0-MOM scheme.

Statistical errors on the meson masses and the various
HVP terms are evaluated using the jackknife pro-
cedure. The uncertainties based on data obtained from
independent ensembles of gauge configurations, like the
errors of the fitting procedures, are evaluated using the
above bootstrap events in order to take properly into

account cross-correlations. The results corresponding to
the eight branches of the analysis are then averaged
according to Eq. (28) of Ref. [50].
The statistical accuracy of the meson correlator is based

on the use of the so-called “one-end” stochastic method
[77], which includes spatial stochastic sources at a single
time slice chosen randomly. In the case of the light-quark
contribution we have used 160 stochastic sources (diagonal
in the spin variable and dense in the color one) per each
gauge configuration, while for the strange (charm) quark
contribution four (one) stochastic sources have been
employed per each gauge configuration.
In Table IV we have collected the results for the

(connected) light-quark contribution to the electron-muon
ratio Rud

e=μ [see Eq. (27)], both at finite volume and in
infinite-volume limit, Rud

e=μðL → ∞Þ, evaluated according
to Eq. (29) using the procedure of Ref. [30] for removing
FVEs on both the pion masses and the lepton HVP terms
(see Sec. III A) for each of the ETMC gauge ensembles of
Table III. We stress that, thanks to our bootstrap samples,
the uncertainties on the pion masses are properly propa-
gated in our fitting procedure of Sec. III A.
For the second strategy adopted in Sec. III A to test the

chiral extrapolation of Rud
e=μ we have used 200 gauge

configurations of the ensemble cB211.072.64 generated
by ETMC with Nf ¼ 2þ 1þ 1 dynamical quarks close to
the physical pion mass [66]. The gauge action is still the
Iwasaki action [70], but the fermionic (twisted-mass)
actions in both light and heavy sectors contain an additional

TABLE IV. Values of the (connected) light-quark contribution to the electron-muon ratio [see Eq. (27)] both at finite volume, Rud
e=μðLÞ,

and in the infinite-volume limit, Rud
e=μðL → ∞Þ, evaluated according to Eq. (29) using the procedure of Ref. [30] for removing FVEs (see

Sec. III A) for each of the ETMC gauge ensembles of Table III. Pion masses both at finite volume and in the infinite-volume limit,
evaluated according to Ref. [30], are given in MeV. All the errors include (in quadrature) both the statistical and the systematic
uncertainties corresponding to the bootstrap samples of Ref. [50].

Ensemble β V=a4 aμsea ¼ aμud MπðLÞ Rud
e=μðLÞ MπðL → ∞Þ Rud

e=μðL → ∞Þ
A40.40 1.90 403 × 80 0.0040 317 (12) 1.1067 (54) 315 (13) 1.1071 (53)
A30.32 323 × 64 0.0030 275 (10) 1.1075 (65) 273 (10) 1.1115 (57)
A40.32 0.0040 316 (12) 1.1056 (57) 315 (13) 1.1074 (51)
A50.32 0.0050 350 (13) 1.0971 (45) 349 (13) 1.1008 (49)
A40.24 243 × 48 0.0040 322 (13) 1.0980 (66) 315 (13) 1.1059 (49)
A60.24 0.0060 386 (15) 1.0898 (51) 381 (15) 1.0970 (51)
A80.24 0.0080 442 (17) 1.0887 (48) 439 (17) 1.0925 (46)
A100.24 0.0100 495 (19) 1.0831 (44) 493 (19) 1.0867 (39)
A40.20 203 × 48 0.0040 330 (13) 1.0886 (61) 315 (13) 1.1031 (51)

B25.32 1.95 323 × 64 0.0025 259 (9) 1.1053 (56) 255 (9) 1.1115 (47)
B35.32 0.0035 302 (10) 1.1029 (51) 300 (10) 1.1046 (50)
B55.32 0.0055 375 (13) 1.0947 (44) 374 (13) 1.0963 (43)
B75.32 0.0075 436 (15) 1.0912 (37) 435 (15) 1.0915 (39)
B85.24 243 × 48 0.0085 468 (16) 1.0870 (38) 464 (16) 1.0877 (40)

D15.48 2.10 483 × 96 0.0015 223 (6) 1.1108 (66) 220 (6) 1.1156 (45)
D20.48 0.0020 256 (7) 1.1067 (68) 254 (7) 1.1143 (50)
D30.48 0.0030 312 (8) 1.1073 (46) 311 (8) 1.1093 (42)
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Clover term with a Sheikoleslami-Wohlert [78] improve-
ment coefficient cSW taken from one-loop tadpole boosted
perturbation theory [79]. The presence of the Clover term
turns out to be beneficial for reducing cutoff effects, in
particular IB effects between the charged and the neutral
pions. The masses of the two degenerate light quarks, of
the strange and charm quarks are tuned to their physical
values. The simulated pion mass turns out to be equal to
Mπ ¼ 139ð1Þ MeV and the lattice spacing is estimated to
be a ¼ 0.0803ð4Þ fm using as input both mesonic and
baryonic quantities. The lattice volume is V¼643×128a4,
so that the product MπL is equal to ≃3.6.

APPENDIX B: THE DUAL+ππ
REPRESENTATION OF THE VECTOR

CORRELATOR VudðtÞ
Following Ref. [30] the analytic representation,

VdualþππðtÞ, of the (connected) light-quark contribution
VudðtÞ is given by the sum of two terms

VdualþππðtÞ≡ VdualðtÞ þ VππðtÞ; ðB1Þ

where VππðtÞ represents the two-pion contribution in a
finite box, while VdualðtÞ is the “dual” representation of the
tower of the contributions coming from the excited states
above the two-pion ones. Therefore, VππðtÞ is expected to
dominate at large time distances t, while the contribution of
VdualðtÞ is crucial at low and intermediate time distances, as
firstly observed in Ref. [29].
The correlator VdualðtÞ is defined as

VdualðtÞ≡ 1

24π2
Rdual

Z
∞

sdual

ds
ffiffiffi
s

p
e−

ffiffi
s

p
tRpQCDðsÞ; ðB2Þ

where sdual is an effective threshold à la SVZ, above which
the hadronic spectral density is dual to the perturbative
QCD (pQCD) prediction RpQCDðsÞ of the eþe− cross
section into hadrons, while Rdual is a multiplicative factor
introduced mainly to take into account discretization
effects. According to the traditional QCD sum rule frame-
work [51] the value of

ffiffiffiffiffiffiffiffiffi
sdual

p
is expected to be above the

ground-state mass of the relevant channel by an amount of
the order of ΛQCD. Therefore, following Ref. [30] we
assume that sdual ¼ ðMρ þ EdualÞ2 with Mρ being the mass
of the ρ-meson vector resonance and Edual a parameter of
order ΛQCD.
Since the effective threshold sdual is well above the light-

quark threshold 4m2
ud, the pQCD density RpQCDðsÞ is

dominated by its leading term of order Oðα0sÞ in the
relevant range of the integration over s in the rhs of
Eq. (B2). Higher-order corrections (as well as condensates
and the slight dependence on the light-quark mass mud)
should play a subleading role and they can be taken into
account by the effective parameter Rdual in Eq. (B2).

The dual correlator VdualðtÞ can be explicitly written
as [30]

VdualðtÞ ¼
5

18π2
Rdual

t3
e−ðMρþEdualÞt

�
1þ ðMρ þ EdualÞt

þ 1

2
ðMρ þ EdualÞ2t2

�
; ðB3Þ

where Rdual, Edual and Mρ are free parameters to be
determined by fitting the lattice data for the light-quark
vector correlator VudðtÞ. Note that the ρ-meson mass Mρ

will appear also in the two-pion contribution VππðtÞ.
As is well known after Refs. [52–55], the energy levels

ωn of two pions in a finite box of volume L3 are given by

ωn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ k2n

q
; ðB4Þ

where the discretized values kn should satisfy the Lüscher
condition, which for the case at hand (two pions in a P
wave with total isospin 1) reads as

δ11ðknÞ þ ϕ

�
knL
2π

�
¼ nπ; ðB5Þ

with δ11 being the (infinite-volume) scattering phase shift
and ϕðzÞ a known kinematical function given by

tanϕðzÞ ¼ −
2π2zP

m⃗∈Z3ðjm⃗j2 − z2Þ−1 : ðB6Þ

The two-pion contribution VππðtÞ can be written
as [56–58]

VππðtÞ ¼
X
n

νnjAnj2e−ωnt; ðB7Þ

where νn is the number of vectors z⃗ ∈ Z3 with norm
jz⃗j2 ¼ n and the squared amplitudes jAnj2 are related to the
timelike pion form factor FπðωÞ ¼ jFπðωnÞjeiδ11ðknÞ by

νnjAnj2 ¼
2k5n
3πω2

n
jFπðωnÞj2

�
knδ011ðknÞ þ

knL
2π

ϕ0
�
knL
2π

��
−1
:

ðB8Þ
Following Ref. [30] we adopt the Gounaris-Sakurai (GS)
parameterization [80], which is based on the dominance
of the ρ-meson resonance in the amplitude of the pion-pion
P-wave elastic scattering (with total isospin 1), namely

FðGSÞ
π ðωÞ ¼ M2

ρ − Aππð0Þ
M2

ρ − ω2 − AππðωÞ
; ðB9Þ

where the (twice-subtracted [80]) pion-pion amplitude
AππðωÞ is given by

RATIOS OF THE HADRONIC CONTRIBUTIONS TO THE … PHYS. REV. D 102, 054503 (2020)

054503-13



AππðωÞ¼ hðMρÞþðω2−M2
ρÞ
h0ðMρÞ
2Mρ

−hðωÞþ iωΓρππðωÞ

ðB10Þ

with

ΓρππðωÞ ¼
g2ρππ
6π

k3

ω2
; ðB11Þ

hðωÞ ¼ g2ρππ
6π

k3

ω

2

π
log

�
ωþ 2k
2Mπ

�
; ðB12Þ

h0ðωÞ ¼ g2ρππ
6π

k2

πω

�
1þ

�
1þ 2M2

π

ω2

�
ω

k
log

�
ωþ 2k
2Mπ

��
;

ðB13Þ

Aππð0Þ ¼ hðMρÞ −
Mρ

2
h0ðMρÞ þ

g2ρππ
6π

M2
π

π
; ðB14Þ

and k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=4 −M2

π

p
. By analytic continuation the

GS form factor at ω ¼ 0 is normalized to unity, i.e.,

FðGSÞ
π ðω ¼ 0Þ ¼ 1. The scattering phase shift δ11ðkÞ, i.e.,

the phase of the pion form factor according to the Watson
theorem, is given by

cotδ11ðkÞ

¼M2
ρ−ω2−hðMρÞ− ðω2−M2

ρÞh0ðMρÞ=ð2MρÞþhðωÞ
ωΓρππðωÞ

:

ðB15Þ

The GS form factor (B9) contains two parameters: the
resonance mass Mρ and its strong coupling with two pions
gρππ . Together with Rdual and Edual, appearing in the dual
contribution (B3), they have been determined in Ref. [30]
by fitting the lattice data for the light-quark correlator
VudðtÞ for each of the ETMC ensembles of Appendix A.
More precisely, for each lattice spacing and volume the

following dimensionless parameters, Rdual, Edual=Mπ ,
Mρ=Mπ and gρππ , are determined by fitting the data for
VudðtÞ in lattice units and the knowledge of the value of the
lattice spacing is not required. In this way all four
parameters of the analytic representation (B1) were deter-
mined as a function of the light-quark mass mud, lattice
spacing a and lattice size L together with their statisticalþ
fitting uncertainties. As shown in Ref. [30] the above
dependencies, in particular the one related to the

light-quark mass mud, are much less problematic for the
parameters of the representation (B1) with respect to the
quantity aHVP;LOμ ðudÞ itself. Moreover, the infinite-volume
limit was performed at each simulated light-quark mass
mud and lattice spacing a, obtaining in this way a proper
evaluation of FVEs. The four parameters were extrapolated
to the physical pion mass and to the continuum and infinite-
volume limits, namely Rphys

dual , ðEdual=MπÞphys, ðMρ=MπÞphys
and gphysρππ . These values do not depend on the absolute scale
setting but only on the relative ones. Correspondingly, the
analytic representation of the vector correlator was obtained
at the physical point, Vphys

dualþππðtÞ.
We want to highlight an important feature of the

representation Vphys
dualþππðtÞ, related to the fact that it is

determined for all values of the time distance t, not only for
the discretized ones. This has the immediate consequence
that the value of aHVP;LOl ðudÞ calculated by means of
Vphys
dualþππðtÞ does not depend on the absolute scale setting.

As well known (see, e.g., Ref. [23]), this may represent an
important source of uncertainty in the evaluation of
aHVP;LOl ðudÞ using the discretized lattice data for the vector
correlator. The main observation is that the analytic
representation VdualþππðtÞ can be written as

VdualþππðtÞ ¼ M3
πṼ

�
τπ;Rdual;

Edual

Mπ
;
Mρ

Mπ
; gρππ

�
; ðB16Þ

where τπ ≡Mπt is the “pion time” and the function Ṽ
depends only on dimensionless quantities, whose values do
not require the knowledge of the absolute scale setting.
Using Eqs. (18) and (19) one gets at the physical point

aHVP;LOl ðudÞ¼ 4α2em

Z
∞

0

dτπK̃lðτπÞṼ

×

�
τπ;R

phys
dual ;

�
Edual

Mπ

�
phys

;

�
Mρ

Mπ

�
phys

;gphysρππ

�

ðB17Þ

with

K̃lðτπÞ ¼ τ2π

Z
1

0

dxð1 − xÞ
�
1 − j20

�
ml

Mphys
π

τπ
2

xffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
��

:

ðB18Þ

As described in Appendix A, in our hadronic scheme we

adopt the value Mphys
π ¼ Mð0Þ;FLAG

π ¼ 134.98 MeV.
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