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We apply the linear logarithmic relaxation (LLR) method, which generalizes the Wang-Landau
algorithm to quantum systems with continuous degrees of freedom, to the fermionic Hubbard model
with repulsive interactions on the honeycomb lattice. We compute the generalized density of states of the
average Hubbard field and devise two reconstruction schemes to extract physical observables from this
result. By computing the particle density as a function of chemical potential we assess the utility of LLR in
dealing with the sign problem of this model, which arises away from half filling. We show that the relative
advantage over brute-force reweighting grows as the interaction strength is increased and discuss possible
future improvements.
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I. INTRODUCTION

Monte Carlo simulations based on path-integral quanti-
zation are a powerful and widely used tool for the study
of strongly coupled quantum systems. They are applied in
many different areas of physics, ranging from high-energy
physics, where they are employed e.g., to study the phase
diagram and particle spectrum of quantum chromodynam-
ics (QCD), to condensed matter physics, where they are
used to study strongly correlated electron systems. Quite
often, they are the only way to obtain reliable information
from first principles. Unfortunately, their applicability is
restricted to a very special class of systems, namely those
where the path integral exhibits a positive-definite measure
which can be interpreted as a probability density. This
excludes most fermionic systems away from half filling
(unless the complex parts of the measure cancel exactly due
to an antiunitary symmetry) as well as quantum systems
which evolve in real (as opposed to Euclidean) time. This
restriction is known as the sign problem and is a long-
standing problem of numerical physics.
In principle, brute-force reweighting techniques can be

used to extract information about systems with charge
imbalance from simulations of a corresponding system at
charge neutrality. These are plagued by a severe signal-to-
noise ratio problem however, originating from a loss of
overlap between the ensembles at zero and nonzero charge

density when the thermodynamic limit is approached, and
typically fail well below μ=T ≈ 1 except on very small
systems. While a theorem by Troyer and Wiese states
that the sign problem is a nondeterministic polynomial hard
problem in a generic spin-glass system [1] (making the
discovery of a complete universal solution to all sign
problems unlikely), many attempts have been made to
construct specialized solutions for specific systems (typi-
cally by introducing a set of dual variables), or improved
general approaches which outperform reweighting, with
some success. Most notably, in QCD, Taylor expansions of
the partition function with respect to μ=T have now been
pushed to μ=T ≈ 2 or 3 [2].
A promising, quite different, idea to deal both with

ergodicity problems in Monte Carlo simulations of systems
close to a first-order phase transition, and overlap pro-
blems resulting from a nonpositive probability measure,
is to use non-Markovian random walk simulations, which
do not rely on importance sampling with respect to a
positive Gibbs factor. A particularly interesting class of
algorithms use the inverse density of states as a measure for
updating configurations. This measure is positive (semi)
definite by definition, and produces a random walk which
efficiently samples configuration space even in “deprived”
regions with very low probabilistic measure. Prominent
examples are the multicanonical algorithm by Berg and
Neuhaus [3] and the Wang-Landau approach [4], which
both were designed for theories with discrete degrees of
freedom.
The linear logarithmic relaxation (“LLR”) method, first

described in Ref. [5], generalizes this idea to quantum
systems with continuous degrees of freedom. The goal of
LLR is to estimate the slope aðXÞ ¼ d

dX lnðρðXÞÞ, where X
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is some observable and ρðXÞ is the “generalized density of
states” (GDOS). Once aðXÞ is obtained, ρðXÞ can be
reconstructed up to a multiplicative factor by numerical
integration and can be used to compute thermodynamic
observables. A crucial property of LLR is that it features
exponential error suppression: The estimate for aðXÞ, and
by extension of lnðρðXÞÞ, can be obtained with roughly the
same statistical error, independent of the exact value of X,
even if X is from a region of overall low weight.
In recent years, LLR was successfully applied to obtain

ρðEÞ in SU(2) and U(1) [5] as well as SU(3) [6] gauge
theories and was shown to be effective at dealing with
ergodicity issues arising at first-order phase transitions in U
(1) gauge theory [7] and the q ¼ 20 state Potts model [8].
In Ref. [9] LLR was applied to obtain the Polyakov loop
distribution for two-color QCD (which has no sign prob-
lem) with heavy quarks at finite densities. To deal with the
sign problem, one needs to compute the GDOS for the
imaginary part of the Euclidean action ρðSIÞ, or some
related observable. This was achieved using LLR for a Z3

spin model at finite charge density [10] and for QCD in the
heavy-dense limit [11]. To date, LLR has never been
applied to a sign problem of a system with fully dynamical
fermions however.
In this work, we apply LLR to the fermionic Hubbard

model on the honeycomb lattice away from half filling
within a Hybrid Monte Carlo framework. Despite its
simplicity, the Hubbard model, which describes fermionic
quasiparticles with contact interactions, continues to be of
profound interest, as it remains the quintessential example
of an interacting fermion system, and can qualitatively
describe many nonperturbative phenomena such as
dynamical mass-gap generation or superconductivity. On
the honeycomb lattice, this model exhibits a second-order
phase transition in the universality class of the chiral Gross-
Neveu model in 2þ 1 dimensions [12–15]. With its
relativistic dispersion relation for the low-energy excita-
tions in the Dirac-cone region it therefore also provides a
convenient lattice regularization, with minimal doubling, of
relativistic theories for chiral fermions with local four-
fermion interactions such as the Gross-Neveu or Nambu-
Jona-Lasinio models which are of continued interest in
searches for inhomogeneous phases [16] as predicted also
for the QCD phase diagram, mainly from mean-field
studies of the Nambu-Jona-Lasinio model [17]. Extended
versions of the hexagonal Hubbard model, which include
long-range interactions, are also used to realistically
describe the physics of both mono- and bilayer gra-
phene [18,19].
Using LLR, here we compute the GDOS for the average

of a real-valued auxiliary field, which is introduced in
Hybrid Monte Carlo simulations to transmit interelectron
interactions. We demonstrate that this result can be used to
reconstruct the fermion density as a function of chemical
potential. We show that, in its present form, LLR can probe

much further into the finite density regime than standard
reweighting, that the relative advantage of LLR grows as
the interaction strength is increased, and argue that future
improvements might put the van Hove singularity in the
single-particle bands within reach.
This paper is structured as follows: We start in Sec. II

by introducing the basic lattice setup and illustrating the
sign problem away from half filling. Subsequently, we
introduce the generalized density of states of the average
Hubbard field ρðsÞ in Sec. III. In Sec. IV, we discuss the
reconstruction of the particle density n from ρðsÞ. We
describe two different reconstruction schemes, whereby
nðμÞ is obtained from both the canonical and grand-
canonical partition functions. As a benchmark, we apply
both schemes to test data obtained for the noninteracting
tight-binding theory. Full LLR calculations of the interact-
ing theory, including additional numerical details, are
then presented in Sec. V. We summarize and conclude
in Sec. VI.

II. LATTICE SETUP AND THE
SIGN PROBLEM

We consider the repulsive Hubbard model on the
hexagonal (honeycomb) lattice with fermionic creation
operators ĉ†x ≡ ðĉ†x;↑; ĉ†x;↓Þ for two spin components at site
x, which is defined by the effective Hamiltonian for the
grand-canonical ensemble:

Ĥ ¼ −κ
X
hx;yi

ðĉ†xĉy þ H:c:Þ

þ
X
x

�
msĉ

†
xσ3ĉx þ

U
2
ρ̂2x − μρ̂x

�
: ð1Þ

Here κ is the hopping parameter, which quantifies the
energy cost of fermionic quasiparticles propagating
between nearest-neighbor sites. Its phenomenological
value in the tight-binding description of the electronic
properties of graphene on a substrate is κ ≈ 2.7 eV. In
general, it is typically used to set the energy scale in the
Hubbard model. We work in a natural system of units and
therefore express all dimensionful quantities in terms of κ,
which effectively corresponds to setting κ ≡ 1. The sum
over hx; yi sums all independent pairs of nearest neighbors,
ms is the sublattice-staggered mass term (with alter-
nating sign on the two triangular sublattices) for explicit
sublattice-symmetry breaking with spin-density-wave
order. The chemical potential μ couples to the charge
operator ρ̂x ¼ ĉ†xĉx − 1 and controls the charge-carrier
density. Experimentally this is achieved through chemical
doping [20] or electrolytic gate voltages [21], for example.
The constant U controls the interaction strength, which is
positive in the repulsive Hubbard model. The creation and
annihilation operators satisfy the fermionic anticommuta-
tion relations fĉx; ĉ†yg ¼ δx;y1. Lattice simulations of (1)
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using Hybrid Monte Carlo by now have a long history
[22–37]; we thus summarize only the essential steps here.1

To derive the functional integral representation of the
partition function at inverse temperature β ¼ 1=T, we first
write the exponential in terms of Nt identical factors and
split the Hamiltonian into the free tight-binding part plus
interactions, Ĥ ¼ Ĥ0 þ Ĥint. A symmetric Suzuki-Trotter
decomposition of each of the factors then yields

Z ¼ Trðe−βĤÞ
¼ Trðe−δĤ0e−δĤinte−δĤ0…Þ þOðδ2Þ: ð2Þ

This introduces a finite step size δ ¼ β=Nt in Euclidean
time and a discretization error of Oðδ2Þ.
As we will see shortly, it is convenient to include the

chemical-potential term in the definition of Ĥint here, i.e.,
defining

Ĥint ≡
X
x

�
U
2
ρ̂2x − μρ̂x

�
: ð3Þ

The four-fermion interaction in Ĥint is then converted to
bilinears by Hubbard-Stratonovich transformation,

e−δĤint ≅
Z

Dϕe−
δ
2U

P
x
ϕ2
xe−iδ

P
x
ðϕxþiμÞρ̂x ; ð4Þ

whereby the auxiliary (“Hubbard-Coulomb”) field ϕx;t is
introduced. Finally, the trace over the fermionic operators is
performed by integrating the fermionic coherent states [33],
which yields

Z ¼
Z

Dϕ det ½Mðϕ; μÞM†ðϕ;−μÞ� exp
�
−

δ

2U

X
x;t

ϕ2
x;t

�
:

ð5Þ

Different versions of the fermion matrix MðϕÞ have been
used in the past which are either equivalent or at least yield
the same continuum limit. In this work we use

Mðϕ; μÞðx;tÞ;ðx0;t0Þ ¼ δxx0 expfiδðϕx;t þ iμÞgδtt0
− ðδxx0 − δhxx0 Þδtþ1;t0 ;

hxx0 ¼ δxx0ms − κ
X
n⃗

δx0;xþn⃗; ð6Þ

in which the free tight-binding hopping contributions of the
form e−δh are linearized, in order to be able to work with

sparse matrices, but the diagonal couplings to the Hubbard
field and chemical potential are not.
It is clear that Eq. (5) is sign problem free at half filling,

i.e., for μ ¼ 0, as detðMM†Þ ¼ j det Mj2. This is no longer
true for μ ≠ 0. By writing

Z ¼
Z

Dϕ j det Mðϕ; μÞj2 det Mðϕ; μÞ
det Mðϕ;−μÞ

× exp

�
−

δ

2U

XNt−1

t¼0

X
x;y

ϕ2
x;t

�
; ð7Þ

we can consider the complex ratio of determinants with
unlike-sign chemical potentials as an observable in the
“phase-quenched” theory (defined by the modulus of the
fermion determinant) with partition function Zpq and
obtain

ZðμÞ
ZpqðμÞ

¼
�

det Mðϕ; μÞ
det Mðϕ;−μÞ

�
pq
: ð8Þ

This ratio is unity for μ → 0 and is a measure of the severity
of the sign problem, as it quantifies the effectiveness of
brute-force reweighting.
Figure 1 shows histograms of the phase2 of the ratio

det Mðϕ; μÞ= det Mðϕ;−μÞ for different nonzero values of
μ obtained on a lattice of Ns × Ns unit cells, with two sites

FIG. 1. Histograms of the phase of det Mðϕ; μÞ= det Mðϕ;−μÞ
for Ns ¼ Nt ¼ 6, β ¼ 2.7κ−1, U ¼ κ=2 at different μ. The results
are modeled with Gaussian (for μ ¼ 0.0148κ and 0.0667κ) and
uniform (for μ ¼ 0.2κ) distributions respectively. The inlay
shows the adjusted R2 for a constant fit to data at different μ.
For μ ≳ 0.15κ the numerical data are well described by a uniform
distribution, indicating a hard sign problem. An analogous figure
as indication of a sign problem is obtained for graphene with
long-range interactions [31].

1In particular we omit the discussion of fermionic coherent
states and the partial particle-hole transformation that is applied.
These and other details can be found e.g., in Refs. [25,33,37].

2The modulus also deviates from unity at μ ≠ 0 but need not be
considered here.
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per unit cell, and Ns ¼ Nt ¼ 6, at β ¼ 2.7κ−1 and
U ¼ κ=2, together with fit-model curves. The adjusted
R2 of a constant fit (corresponding to a uniform dis-
tribution) shows a rather rapid crossover and approaches
values close to 1 at μ ≈ 0.15κ. This indicates that the signal
is lost in the noise rather quickly already on small lattices
(signaling a hard sign problem), and for rather high
temperatures and weak interaction strengths. This effect
is enhanced with larger lattice sizes, lower temperatures and
larger couplings. To present a quantitative comparison of
brute-force reweighting and the LLR method for different
system sizes and interaction strengths is one of the main
objectives of this work.

III. GENERALIZED DENSITY OF THE
HUBBARD FIELD

Assume we have a quantum system with action βSðϕÞ.
Defining the density of states ρðEÞ as

ρðEÞ ¼
Z

Dϕ δðSðϕÞ − EÞ; ð9Þ

we can then express the partition function as

Z ¼
Z

dE ρðEÞeβE; ð10Þ

and the vacuum expectation value of an observable OðEÞ
becomes

hOi ¼ 1

Z

Z
dEOðEÞρðEÞeβE: ð11Þ

If ρðEÞ is known, then hOi can be obtained by (numerically
or analytically) integrating Eq. (11). Here we have assumed
that we know how to express O in terms of E, which is in
general not the case however. Moreover, Eq. (9) is ill-
defined if SðϕÞ is not strictly real. To compute different
observables in a generic setting, the concept of the density
of states can thus be generalized to quantities other than the
action.
The basic idea of LLR is to obtain ρðXÞ (where X is

some observable) by carrying out a sequence of “micro-
canonical” Monte Carlo simulations, in which X is forced
to assume a set of different (sufficiently dense) values Xi.
Obtaining the partition function or thermodynamic expect-
ation values then essentially amounts to computing a
Fourier or Laplace transform of ρðXÞ. To alleviate the
sign problem, ρðXÞ must reflect the phase fluctuations
of the path-integral measure. To this end, we consider
ρðs ¼ ΦÞ in this work, where Φ is the spacetime-volume
average of the auxiliary field; see below. First, we apply the
transformation

ϕx;t → ϕx;t − iμ ð12Þ

to Eq. (5), which then leads to

ZðμÞ ¼
Z

Dϕ det ½Mðϕ;μÞM†ðϕ;−μÞ�exp
�
−

δ

2U

X
x;t

ϕ2
x;t

�

¼
Z

Dϕ jdetMðϕ;0Þj2 exp
�
−

δ

2U

X
x;t

ðϕx;t − iμÞ2
�
:

ð13Þ

In this formulation, the complex part of the action has been
shifted completely to the bosonic sector. Equation (13) is
now rewritten as

ZðμÞ ¼
Z

Dϕ j det Mðϕ; 0Þj2

× exp

�
−

δ

2U

X
x;t

ðϕx;t −ΦÞ2 − δV
2U

ðΦ − iμÞ2
�
;

ð14Þ

where we have introduced the average Hubbard field

Φ ¼ 1

V

X
x;t

ϕx;t; V ¼ 2NcNt; ð15Þ

where Nc denotes the number of unit cells with two sites
each. Finally, we introduce

ρðsÞ ¼
Z

Dϕ j det Mðϕ; 0Þj2δðΦ − sÞ

× exp

�
−

δ

2U

X
x;t

ðϕx;t − sÞ2
�
; ð16Þ

and rewrite the partition function as

ZðμÞ ¼
Z

ds ρðsÞ exp
�
−
Nc

UT
ðs − iμÞ2

�
; ð17Þ

where ρðsÞ is the generalized density of states of the
average Hubbard field Φ and will be the target of our LLR
calculation.

IV. RECONSTRUCTINGTHE PARTICLEDENSITY

Assume we have obtained ρðsÞ using some method.
Due to the oscillating contribution of the exponential, it is
clear that Eq. (17) will be hard, if not impossible, to
evaluate numerically. This is exacerbated by the fact that
LLR obtains ρðsÞ only for a discrete and finite set of
points and with finite numerical precision. Our ultimate
goal is to obtain the particle density nðμÞ. We present two
reconstruction schemes which achieve this in the following,
which both operate in the frequency domain and avoid the
instabilities of Eq. (17).
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We note that ρðsÞ has a periodicity of 2π=β ¼ 2πT and
can thus be expanded in Fourier series. For later conven-
ience we will first introduce a dimensionless variable and
density via

x ¼ s
T
; and ρ̄ðxÞ ¼ TρðxTÞ: ð18Þ

If we furthermore introduce an imaginary chemical poten-
tial via

μ ¼ iθT; and ZIðθÞ≡ ZðiθTÞ; ð19Þ

we observe that up to a Gaussian smearing with variance
U=2NcT the generalized density of states is in fact essen-
tially the same as the partition function at imaginary
chemical potential,

ZIðθÞ ¼
Z

dx ρ̄ðxÞ exp
�
−
NcT
U

ðx − θÞ2
�
: ð20Þ

We will obtain ρ̄ðxÞ only at a discrete set of points
xn ¼ 2πn=K, where n ¼ f0;…; K − 1g and ρ̄n ≡ ρ̄ðxnÞ.
We must hence truncate the Fourier series, naturally leading
to a discrete Fourier transform which can be used for
interpolation via

ρ̃k ¼
1

K

XK−1
n¼0

ρ̄ne2πink=K; ρ̄ðxÞ ≈
XK−1
k¼0

ρ̃ke−ikx: ð21Þ

On the other hand, inserting (21) into (17), we obtain

ZðμÞ ≈
Z

dx

�XK−1
k¼0

ρ̃ke−ikx
�

exp

�
−
NcT
U

�
x − i

μ

T

�
2
�
;

¼
ffiffiffiffiffiffiffiffiffi
πU
NcT

s XK−1
k¼0

ρ̃k exp

�
−

U
4NcT

k2 −
μ

T
k

�
; ð22Þ

and the exact result is recovered for K → ∞. In fact, in this
limit, Eq. (22) becomes the fugacity expansion and we can
identify for k ¼ N,

ZcðT;NÞ ¼
ffiffiffiffiffiffiffiffiffi
πU
NcT

s
ρ̃N exp

�
−

U
4NcT

N2

�
ð23Þ

as the corresponding canonical partition function with
particle number N. In the infinite-volume limit Nc → ∞
for fixed N, or equally so for T ≫ U, we may therefore
neglect the exponential factor and essentially identify the
Fourier series coefficients ρ̃k of our generalized DOS with
the canonical partition functions at N ¼ k. At the same
time, it is also evident from Eq. (22) that the generalized
DOS itself then becomes equal, up to a constant factor, to

the partition function at imaginary chemical potential, i.e.,
ρ̃k ∝ ZcðT; kÞ, and ρ̄ðθÞ ∝ ZIðθÞ or ρðsÞ ∝ ZðisÞ.
Moreover, one easily verifies that the truncated coef-

ficients ρ̃k at finite K obtained from the discrete Fourier
transform in (21), then yield pseudocanonical partition
functions, ρ̃k ∝ ZK

c ðT; kÞ, which represent ensembles with
particle number N ¼ kmodK. Likewise, the discrete sam-
pling of ρ̄ðθÞ provides us with an interpolation of ZIðθÞ
which agrees with the exact result for imaginary chemical
potential at the discrete values θn ¼ 2πn=K.
The general relation between ρðsÞ and the partition

function at imaginary chemical potential of course also
follows from Eq. (22), with μ ¼ is (and K → ∞),

ZðisÞ ¼
ffiffiffiffiffiffiffiffiffi
πU
NcT

s X∞
k¼−∞

ρ̃k exp

�
−

U
4NcT

k2
�
e−isk=T

→

ffiffiffiffiffiffiffiffiffiffi
πUT
Nc

s
ρðsÞ; U

NcT
→ 0: ð24Þ

In a finite volume, on the other hand, i.e., at any finite
number Nc of unit cells, the particle numbers N are
restricted to values between �2Nc, with N ¼ 0 at half
filling, corresponding to an average of one of the max-
imally possible two electrons on each of the 2Nc sites. We
then obtain the exact canonical partition functions from
Eq. (23) already for

K ¼ Kmax ¼ 4Nc þ 1;

and with particle-hole symmetry at half filling, one actually
only needs Kmax ¼ 2Nc þ 1.
In principle, the particle number NðμÞ can be directly

obtained from Eq. (22), which is free of oscillating terms,
by taking the derivative with respect to μ,

NðμÞ ¼ T
d
dμ

ln ZðμÞ

¼ −

P4Nc
k¼0 kρ̃k expf− U

4NcT
k2 − μ

T kgP4Nc
k¼0 ρ̃k expf− U

4NcT
k2 − μ

T kg
: ð25Þ

Computing the ρ̃k from ρðsnÞ can be done with high
numerical precision using modern FFT libraries.
Alternatively, we can also compute the chemical poten-

tial from the canonical partition functions, as the free
energy difference of ensembles with subsequent particle
numbers. From Eq. (22) we then obtain

μðN þ 1=2Þ ¼ −Tðln ZcðT;N þ 1Þ − ln ZcðT;NÞÞ

≈ T

	
ln ρ̃N − ln ρ̃Nþ1 þ

U
2NcT

ðN þ 1=2Þ


;

ð26Þ
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and obtain the density in the form of the number of particles
per unit cell, nðμÞ≡ NðμÞ=Nc, by inversion. The exact
calculation would again require Kmax ¼ 2Nc þ 1 Fourier
coefficients. This is then similar in spirit to Refs. [38–40],
which carried out canonical calculations of QCD at finite
charge density, or Ref. [41] which followed essentially
the same strategy for finite isospin density from the
lowest states in multipion correlators. With truncating at
K < Kmax, we strictly speaking obtain canonical ensembles
at particle number N modulo K as discussed above.
The term ∝ U=2NcT in Eq. (26) represents an explicit
finite-volume effect which, as we will discuss below, only
contributes in trivial way and can be dropped.
In tight-binding or mean-field calculations, there is no

such term in the first place, and the generalized DOS can be
calculated analytically. The result is of the form

ln ρðsÞ ¼ 2Nc

Z
dε ρεðεÞ ln

�
cosh2

ε

2T
− sin2

s
2T

�
; ð27Þ

where ε ≥ 0 is the single-particle energy with spectral
density ρεðεÞ for which an analytic expression is known
in the infinite system [42]. In a finite system with periodic
(Born–von Kármán) boundary conditions we use the
dispersion relation ε ¼ εðkÞ instead, and simply sum over
the corresponding discrete set of points kn within the first
Brillouin zone, with energies εn ¼ εðknÞ. The same can be
done to compute the exact density in the finite system with
Nc unit cells which then yields for the number of particles
per unit cell,

nðμÞ ¼ 1

Nc

X
n

�
tanh

εn þ μ

2T
− tanh

εn − μ

2T

�
: ð28Þ

We have carried out a set of benchmark calculations in
which we compared the canonical and grand-canonical
reconstruction schemes. Thereby, a discrete set of values
ln ¼ ln ρðsnÞ for sn ¼ 2πTn=K, N ¼ f0;…K − 1g was
produced as mock data from the tight-binding calculation,
which can efficiently be done with arbitrary numerical
precision. High-precision calculations are especially impor-
tant in the reconstruction of the density because we need
with high precision the discrete Fourier transform of fρn ¼
elng rather than that of flng. The number density nðμÞ was
subsequently computed from the FFT result fρ̃kg, using
both the fugacity expansion via (25) and the canonical
approach (26). We have then compared both results with
the exact calculation of the density based on the tight-
binding formula (28). This was done for different setups,
whereby the production of fln ¼ ln ρðsnÞg was done with
different levels of floating point precision. The application
of the reconstruction scheme was done with a 1024 digit
accuracy in each case to avoid additional errors. We find
that both methods yield comparable results, with the
canonical procedure having a very slight advantage for a

given precision of ln ρðsÞ. We thus choose to use this
procedure exclusively in the following sections to process
our LLR results.
Figure 2 shows an example calculation of nðμÞ for

two different temperatures on a lattice with Nc ¼ 36 unit
cells, where ln ρðsÞ was produced for U ¼ 0 with 1024
digit accuracy and processed using (26). This illustrates that
our method can in principle cover the entire width of the
valence band, from the empty valence band at half filling
up to saturation when it is completely filled. The van Hove
singularity will emerge at μ ¼ κ in the infinite-volume
limit which can here be anticipated already by the rapid
increase in the number density at the lower temperature
around μ ¼ κ.
In practice, the leading source of errors is of course the

precision with which the Fourier coefficients ρ̃k can be
obtained, which in turn is highly sensitive to statistical
errors of ln ρðsÞ in our LLR calculations. In order to get to
saturation, with a completely filled lattice, we would
obviously need the maximum number Kmax ¼ 2Nc þ 1
of coefficients. So the double challenge here will be to
compute as many of them as accurately as possible.

V. LLR RESULTS

A. The algorithm

The goal of LLR is to calculate derivatives of ln ρðsÞ
at a sufficiently dense set of supporting points with
high precision and to reconstruct ρðsÞ by integration. We
divide the domain of support of ρðsÞ into K intervals
of size δs. At the center of each of these intervals, the
slope ak ¼ d

ds ln ρðsÞjs¼sk can be calculated from a
stochastic nonlinear equation [5]. A key element of this

FIG. 2. The number of particles nðμÞ per unit cell on a lattice
with Nc ¼ 36 unit cells for two different temperatures at U ¼ 0
from the tight-binding calculation (solid lines) and from the
canonical reconstruction procedure based on (26) using input
data of 1024 digit accuracy (discrete points).
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equation is the restricted and reweighted expectation
value3

⟪WðΦÞðaÞ⟫k ¼
1

ZLLR

Z
Dϕθ½sk;δs�ðΦÞj detMðϕÞj2

×WðΦÞe−βSðϕÞe−aΦ: ð29Þ

Here ZLLR is a normalization constant, Φ was introduced
in Eq. (15), a is an external parameter and θ½sk;δs� is a
window function which restricts Φ to an interval of size
δs around sk.
With the choice WðΦÞ ¼ Φ − sk, the coefficients ak are

solutions of

⟪WðΦÞðakÞ⟫k ¼ 0: ð30Þ

This equation can be solved through Robbins-Monro
iteration [43]: The sequence

aðnþ1Þ
k ¼ aðnÞk þ αn

δ2s
⟪WðΦÞðaðnÞk Þ⟫k ð31Þ

converges to the correct result for any choice of αn that
fulfills

X∞
n¼0

αn ¼ ∞;
X∞
n¼0

α2n < ∞: ð32Þ

This is true, even if ⟪WðΦÞð·Þ⟫k is approximated by an
estimator, as we do in Monte Carlo calculations. Moreover,
if the iteration is terminated at some finite number N and

repeated many times, the final values aðNÞ
k are Gaussian

distributed around the true value ak and can be processed
by a standard bootstrap analysis.
The window function can be chosen in different ways.

The straightforward choice is a step function, but for
Hybrid Monte Carlo (HMC) a Gaussian window function
is more appropriate, as its derivative can be taken, which
implies that its effect can be reproduced by a molecular-
dynamics force term. In this work, we choose

⟪Φ − s⟫ðaÞ

¼ 1

ZLLR

Z
Dϕ det MðϕÞ det M†ðϕÞðΦ − sÞ

× exp

�
−

δ

2U

X
x;t

ðϕx;t − sÞ2 − 1

2δ2s
ðs −ΦÞ2 − aΦ

�
;

ð33Þ

where

ZLLRðaÞ

¼
Z

Dϕ det MðϕÞ detM†ðϕÞ exp
�
−

δ

2U

X
x;t

ðϕx;t − sÞ2

−
1

2δ2s
ðs −ΦÞ2 − aΦ

�
: ð34Þ

The full procedure is then summarized as follows:
(1) For a given sk, initialize ak with some random value

að0Þk not too far from zero.
(2) Initialize Hubbard field (e.g., with a value which

minimizes the window function).
(3) With fixed ak, thermalize Hubbard field with HMC

trajectories according to Eq. (34), i.e., ZLLRðakÞ.
(4) With additional HMC trajectories, compute an

estimate of ⟪Φ − s⟫ðakÞ.
(5) Update ak using Eq. (31).
(6) Continue from step 3.

In practice, we start with several repetitions of steps 3–6
with fixed α ¼ 1 and switch to under-relaxed interations
with αnþ1 ¼ αn=ð1þ nÞ after some time. Also, the whole
procedure is terminated after some finite iteration number
N and repeated several times for each fixed sk, to produce a

sample of final aðNÞ
k values.

Figure 3 shows one example of a stochastic Robbins-
Monro iteration taken from our actual production runs,
where the procedure described above is applied for a fixed
set of external parameters. We choose Ns¼Nt¼6, β ¼
2.7κ−1,ms ¼ 0.185κ,U ¼ 1.0κ, s ¼ 1.33κ for illustration.4

FIG. 3. Illustration of stochastic Robbins-Monro iteration. A set
of 20 starting values að0Þk are generated and are each updated
according to Eq. (31). Under-relaxation is switched on at n ¼ 15.
The procedure is terminated at n ¼ 105 to obtain the final values
used for bootstrapping.

3The double-bracket notation is customary in the LLR liter-
ature and should be understood as defined by Eq. (29). It is not
implied here that an expectation value is taken twice.

4Note that the phenomenological value of the hopping para-
meter in the tight-binding model for graphene typically is
κ ≈ 2.7 eV, so this would correspond to a temperature of
T ≈ 1 eV in graphene.
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For each set of parameters considered in this work, we first
obtain such a sample of ak values. We then obtain ln ρðskÞ,
and by extension ρðskÞ, ρ̃k and nðμÞ together with error

bars, by feeding bootstrap averages of the final aðNÞ
k into

ln ρðskÞ ¼
Xk−1
i¼0

aiδs þ
1

2
akδs; ð35Þ

computing the Fourier transform of ρðskÞ and applying the
canonical reconstruction scheme described in Sec. IV.

B. Nt dependence

We begin by studying the effect of the time discretization
δ. To this end, we carry out LLR calculations at Ns ¼ 6,
β ¼ 2.7κ−1, U ¼ 1.0κ, ms ¼ 0.185κ for different values of
Nt. Figure 4 shows the results for aðsÞ, ln ρðskÞ and ln ρ̃k,
while the final results for nðμÞ are shown in Fig. 5. The
latter figure includes two subfigures, whereby the linear
(∼U) contribution to Eq. (26) is included or neglected
respectively. Figure 5 also shows a corresponding calcu-
lation of nðμÞ in the noninteracting tight-binding theory. All
error bars were obtained through bootstrap analysis.
Our first observation is that the dependence on Nt is very

mild for our choice of parameters. It is practically invisible
in aðsÞ and nðμÞ. A very small difference between different
Nt can be seen in ln ρðskÞ and ln ρ̃k, which is of a similar
magnitude as the statistical uncertainty however. On the
other hand, our results clearly demonstrate exponential
error suppression, whereby the relative error of ln ρðsÞ is

FIG. 4. LLR result: Nt dependence of aðsÞ, ln ρðsÞ, ln ρ̃k for
Ns ¼ 6, β ¼ 2.7κ−1, U ¼ 1.0κ, ms ¼ 0.185κ. Individual boot-
strap averages are shown for ln ρ̃k to illustrate loss of signal for
the higher modes.

FIG. 5. LLR result: Nt dependence of nðμÞ for Ns ¼ 6,
β ¼ 2.7κ−1, U ¼ 1.0κ, ms ¼ 0.185κ. Top figure includes the
linear (∼U) term in Eq. (26), bottom figure does not. Error bars
computed by bootstrapping. Solid line shows the noninteracting
tight-binding theory.
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roughly the same across several orders of magnitude. We
find that ln ρ̃k is extremely sensitive to this small error
however, to a degree that only the first few Fourier modes
ln ρ̃k can be computed accurately. This can be traced back
to the fact that ρðsÞ enters into the Fourier transform and not
ln ρðsÞ. It is also reflected in our computation of nðμÞ,
which exhibits a loss of signal at μ ≈ 0.5κ, indicating the
onset of a hard sign problem.
We note that forU ¼ 1.0κ which is well inside the weak-

coupling phase of the model, and the temperature consid-
ered here, nðμÞ basically fully agrees with the infinite-
volume limit in the noninteracting theory when the linear
term in Eq. (26) is dropped. We take this as an indication
that this extra term represents the dominant finite-volume
effect at finite U which however is a rather trivial one to
correct. Further confirmation of this is provided by a
comparison between results from Ns ¼ 6 and Ns ¼ 12
lattices, which also reveals a faster convergence to the
thermodynamic limit without this term. We thus drop this
term for all results presented in the following. We expect
that deviations from the noninteracting limit will become
visible at stronger couplings, of course. This is investigated
further, and ultimately confirmed, below.

C. ms dependence

We now turn to studying the dependence on the explicit
sublattice and spin-staggered mass term ms. Given that
such a term already opens an explicit gap in the energy
spectrum, we carry out this study at the comparatively weak
coupling strength of U ¼ 0.1κ. We find that, again, the
number density nðμÞ coincides with the noninteracting
theory and shows no significant dependence on ms. The
linear term in Eq. (26) has a negligible effect here, due
to the small value of U. Figure 6 shows the results for
aðsÞ and ln ρðsÞ with Ns ¼ Nt ¼ 6, β ¼ 2.7κ−1 and three
different choices of ms. We refrain from showing any
additional figures for ln ρ̃k and nðμÞ, as these fully agree
(within statistical errors) with the results shown in the
lowest panels of Figs. 4 and 5.
An interesting observation here is that ms has a quite

strong effect on both aðsÞ and ln ρðsÞ, which turns out not
to carry over to nðμÞ at all. The underlying reason is that
this dependence is only present in regions where ρðsÞ is
strongly suppressed. It is only visible due to the logarithmic
scale, and thus has no significant effect on the computation
of the Fourier modes.

D. U dependence

Having validated our numerical procedure at weak
coupling, we now turn to a more detailed study of the
dependence on the interaction strength U. This represents
the central part of this work to which the bulk of our
computing resources were dedicated. We thereby computed
aðsÞ, ln ρðsÞ, ln ρ̃k and nðμÞ again with β ¼ 2.7κ−1,

ms ¼ 0.185κ for several different choices of U. To have
control over finite-volume and time-discretization effects
we have studied two different lattice sizes, Ns ¼ Nt ¼ 6
and Ns ¼ Nt ¼ 12, respectively.
Figure 7 shows the U dependence of aðsÞ, ln ρðsÞ and

ln ρ̃k for Ns ¼ Nt ¼ 6, β ¼ 2.7κ−1, ms ¼ 0.185κ. For
ln ρðsÞ we include the tight-binding result to illustrate
the approach to the noninteracting limit. The first obser-
vation is that aðsÞ gets suppressed when U is increased,
which ultimately makes simulations more expensive at
strong coupling. On the other hand, we clearly see a devia-
tion from the noninteracting limit in the Fourier modes
ln ρ̃k for the strongest interaction strength U ¼ 2.0κ. To
underscore that this deviation is absent for all weaker
interactions, we show a separate plot in Fig. 8 which
directly compares ln ρ̃k for U ≤ 1.0κ to the tight-binding
theory. Our Ns ¼ Nt ¼ 6 results for nðμÞ are shown in
Fig. 9. They clearly show a corresponding drop of the
number density at fixed μ for the strongest coupling.
Ns ¼ 12 results are shown in Fig. 10 for aðsÞ, ln ρðsÞ

and ln ρ̃k and Fig. 11 for nðμÞ. These confirm the
qualitative changes at U ¼ 2.0κ. Furthermore, a direct

FIG. 6. LLR result: ms dependence of aðsÞ and ln ρðsÞ for
Ns ¼ Nt ¼ 6, β ¼ 2.7κ−1, U ¼ 0.1κ.
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comparison withNs ¼ 6 suggests that finite-volume effects
on nðμÞ are rather mild.
We point out here that the sign problem sets in at much

smaller μ for the larger system (as expected). While we are
able to reliably compute nðμÞ up to μ ≈ 0.35κ for Ns ¼ 6
withU ¼ 1.0κ, we only reach μ ≈ 0.1κ forNs ¼ 12. On the
other hand, in both cases LLR drastically outperforms

brute-force reweighting: With comparable numerical
resources we obtain a signal for the determinant ratio (8)
up to μ ≈ 0.14κ on Ns ¼ 6 and μ ≈ 0.075κ on Ns ¼ 12
using the brute-force method. While the relative advantage
of LLR becomes smaller on the larger lattice, we can reach
much larger values of μ for U ¼ 2.0κ (μ ≈ 0.5κ on Ns ¼ 6
and μ ≈ 0.2κ on Ns ¼ 12). In contrast, the μ range of
reweighting is drastically diminished at stronger coupling
(cf. Fig. 13 in Sec. VI). It is this last feature which
ultimately makes LLR in its present form a promising
method and deserving of further attention.

E. Compressed sensing

Lastly, we report on our attempts to improve our results
by using fit functions for ln ρðsÞ, a procedure referred to as
compressed sensing in the LLR literature. The basic idea is
to, instead of processing the raw data for ln ρðsÞ pointwise

FIG. 7. LLR result: U dependence of aðsÞ, ln ρðsÞ, ln ρ̃k for
Ns ¼ Nt ¼ 6, β ¼ 2.7κ−1, ms ¼ 0.185κ. Individual bootstrap
averages are shown for ln ρ̃k. Result for noninteracting tight-
binding theory is included for ln ρðsÞ.

FIG. 8. LLR result: ln ρ̃k for Ns ¼ Nt ¼ 6, β ¼ 2.7κ−1, ms ¼
0.185κ and different U compared with noninteracting tight-
binding theory.

FIG. 9. LLR result: U dependence of nðμÞ for Ns ¼ Nt ¼ 6,
β ¼ 2.7κ−1,ms ¼ 0.185κ. Error bars computed by bootstrapping.
Solid line shows the noninteracting tight-binding theory.
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at the supporting points sk, fit the entire dataset with a series
expansion in some complete set of functions, and use the
model curve to compute observables instead. The hope is
that an appropriate set of functions, which reflects the true
(but a priori unknown) physics of the theory, will both
suppress noise in the numerical data for ln ρðsÞ and
effectively generate an interpolation to a much denser
set of supporting points. This in turn should allow for

FIG. 10. LLR result: U dependence of aðsÞ, ln ρðsÞ, ln ρ̃k for
Ns ¼ Nt ¼ 12, β ¼ 2.7κ−1, ms ¼ 0.185κ. Individual bootstrap
averages are shown for ln ρ̃k.

FIG. 11. LLR result: U dependence of nðμÞ for Ns ¼ Nt ¼ 12,
β ¼ 2.7κ−1,ms ¼ 0.185κ. Error bars computed by bootstrapping.
Solid line shows the noninteracting tight-binding theory.

FIG. 12. LLR result: μ dependence of particle density for
Ns ¼ Nt ¼ 6, β ¼ 2.7κ−1, ms ¼ 0.185κ and different U [results
include the linear ∼U term in Eq. (26)]. Dashed lines were
obtained directly from ln ρ̃k, while dots employed compressed
sensing: ln ρðsÞ was fit with a Fourier series (top figure) and
Chebyshev polynomials (bottom figure) respectively. Solid line
shows noninteracting tight-binding theory.
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the computation of ln ρ̃k at larger k and hence the number
density at larger μ.
Figure 12 shows two such attempts, where ln ρðsÞwas fit

with a Fourier series and a series of Chebyshev polyno-
mials of the first kind respectively. The fit function was
subsequently evaluated at a much denser set of points than
the original sk and used to compute ln ρ̃k and subsequently
nðμÞ. In each case, higher-order terms were added to the
expansion until the final result stabilized. We do not obtain
any error bars. Results from the direct calculation are
included for comparison and represented by dashed lines.
We find that these attempts do not improve the calcu-

lation of nðμÞ significantly. At best, one or two additional
points (at higher densities) can be computed before the
results scatter in an uncontrolled fashion. The Fourier series
thereby seems to work only slightly better than the
Chebyshev polynomials. We take this as an indication that
additional qualitative information about the system, which
places additional constraints on the choice of functions to
use, is a necessary requirement for compressed sensing to
be effective here.

VI. CONCLUSION AND OUTLOOK

In this work, we applied the linear logarithmic relaxation
method to the repulsive fermionic Hubbard model on the
honeycomb lattice, in order to assess its utility for alleviat-
ing the hard sign problem of an unbalanced dynamical
fermion system. A central problem thereby is the proper
choice of a target observable, which adequately reflects the
complex part of the action and yields a generalized density
of states which is suitable for further processing. We used
the average value Φ of the auxiliary (Hubbard) field to this
end, which appeared as the natural choice, as it allows for
the shifting of the complex part of the fermion determinant

into the bosonic sector and provides a simple integral
expression [Eq. (17)] for obtaining the partition function
and hence the particle density. To deal with an oscillating
contribution to this integral, we chose to work in the
frequency domain and devised two methods to extract the
particle density from the Fourier modes of the GDOS of Φ
which essentially yields the partition function at imaginary
chemical potential. Due to a slightly better performance in
benchmark calculations, of these we chose a method based
on the canonical ensembles to further process our LLR
results.
We carried out LLR calculations for a fixed temperature

of β ¼ 2.7κ−1, two different lattice sizes (63 and 123) and
different interaction strengths in the weak and intermediate
coupling regime, and obtained the particle density as a
function of chemical potential. We thereby observed sig-
nificant deviations from the noninteracting theory for the
largest interaction strength considered, U=κ ¼ 2.0, signal-
ing strong correlations which might eventually lead to
spontaneous mass-gap formation which is known to occur
at around U=κ ≈ 3.8 [12,34] in the infinite-volume limit.
We found that using LLR in its present form, on the

smaller 63 lattice we were able to probe at least twice as far
into the finite-density regime as with brute-force reweight-
ing. While the relative advantage of LLR is smaller on the
123 lattice, we found that LLR performs much better when
the interaction strength is increased. Figure 13 shows a
quantitative comparison of the effective μ ranges for the
different parameter sets considered in this work.
Attempts to reach into higher-density regions were made

using different forms of compressed sensing, i.e., by fitting
ln ρðsÞwith Fourier series and Chebyshev polynomials and
using the model curves for interpolation. While this allows
us to reach slightly higher densities, we suspect that this
procedure introduces an uncontrolled systematic error, as
the physics at higher densities is strongly sensitive to the
high-frequency modes of ρðsÞ, which such interpolations
cannot account for.
The results presented here should be taken as a proof of

principle. There are several different directions for future
improvements. First and foremost, the computational
resources spent for the final calculations (i.e., the sum of
all results shown in Figs. 9 and 11) were around two
months of runtime on a total of 18 GTX 980 Ti GPUs,
which leaves much space for larger-scale projects. We
estimate that, using the most modern hardware and libraries
for sparse linear algebra, the precision for ln ρðsÞ can be
increased by at least an order of magnitude. More advanced
techniques for compressed sensing could also be applied,
such as Gaussian and telegraphic approximations or an
advanced moments approach, which were proposed in
Ref. [44]. Quite possibly, introducing a complex instead
of a real auxiliary field has advantages, and in fact, it
was shown that an optimal mixing factor between real
and imaginary Hubbard fields exists, for which the sign

FIG. 13. Comparison of effective μ range of brute-force
reweighting and LLR (results shown for 63 and 123 lattices at
β ¼ 2.7κ−1). For each value of U the phase distribution of
det M̃ðϕ; μÞ= det M̃ðϕ;−μÞ was measured at different μ until
the signal was lost. A roughly equal amount of computer time
was spent for corresponding LLR calculations.

KÖRNER, LANGFELD, SMITH, and VON SMEKAL PHYS. REV. D 102, 054502 (2020)

054502-12



problem is the mildest [45]. LLR might also be more
effective with a discrete Hubbard field, which is used in
Blankenbecler-Scalapino-Sugar QuantumMonte Carlo cal-
culations [46,47]. In addition, an alternative time discre-
tization with a symmetry of time reversal times sublattice
exchange, which was proposed already in Ref. [22] and
recently used in a grand-canonical HMC simulation [48],
was shown to have strongly suppressed discretization effects
in Ref. [30] and might positively impact the performance of
LLR as well. And finally, there has been much recent
progress regarding the Lefschetz thimble method [45,49,50],
and constructing a hybrid approach, which combines the
advantages of both methods, might be feasible. Specifically,
one could attempt to apply the Lefschetz thimble decom-
position directly to Eq. (17), in order to avoid the use of
reconstruction schemes altogether and obtain a cleaner
signal for nðμÞ.
Taken together, we find it not unreasonable to expect that

future developments might put the van Hove singularity
(VHS) of the single-particle spectrum within reach, which
is of great interest in the context of superconducting phases.
A crucial point thereby is the apparent stability of the LLR
technique against increases of the coupling strength U.
Experiments on charge-doped graphene systems have
revealed a strong bandwidth renormalization (narrowing
of the width of the π bands) due to interactions [20], which
suggests that the VHS can be probed at smaller μ for larger
U. Furthermore, a HMC study of graphene at finite spin
density revealed that the electronic Lifshitz transition at the
VHS can become a true thermodynamic phase transition in
the presence of interactions, with a critical temperature
which increases with the coupling strength [31]. A study of
an analogous transition at finite charge-carrier density thus
might be feasible at large U, in particular as the sign
problem becomes milder at higher temperatures.

There are many possibilities to linearize the quartic
fermionic interaction using auxiliary fields. The choice
in this paper is inspired by the observation that an explicit
analytic continuation [i.e., Eq. (12)] was sufficient to split
off the complex part of the fermion determinant. The
formulation is elegant: The calculation of one (real) density
of states, ρðsÞ, is sufficient to relay the calculation of the
partition function to one integration for each given value of
the chemical potential. Note, however, that the use of a
Hubbard field ϕ with a compact domain of support implies
that the domain of the density of states is also compact. The
calculation of such an “intensive” density of states to
sufficient precision is difficult [44] and the most successful
LLR calculations for theories with a sign problem are based
upon noncompact densities [10]. The use of a noncompact
formulation is left to future work.
Lastly, we should mention that extending our work to

the QCD sign problem remains an open conceptual
challenge. The system considered here was special since
we succeeded to remove the complex part the fermion
determinant by a simple analytic continuation. For gauge
theories no such simple transformation exists, and meas-
uring a proper extensive phase is much more involved. It
may well be that this step is the most computationally
demanding and contains the central computational com-
plexity of the QCD sign problem.
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