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We investigate the advantages of machine learning techniques to recognize the dynamics of topological
objects in quantum field theories. We consider the compact U(1) gauge theory in three spacetime
dimensions as the simplest example of a theory that exhibits confinement and mass gap phenomena
generated by monopoles. We train a neural network with a generated set of monopole configurations to
distinguish between confinement and deconfinement phases, from which it is possible to determine the
deconfinement transition point, and to predict several observables. The model uses a supervised learning
approach and treats the monopole configurations as three-dimensional images (holograms). We show that
the model can determine the transition temperature with accuracy, which depends on the criteria
implemented in the algorithm. More importantly, we train the neural network with configurations from
a single lattice size before making predictions for configurations from other lattice sizes, from which a
reliable estimation of the critical temperatures is obtained.
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I. INTRODUCTION

Compact Abelian gauge model in two spatial dimensions
mimics several exciting nonperturbative features of quan-
tum chromodynamics (QCD), including the linear confine-
ment of electric charges at large distances and mass-gap
generation [1]. This Abelian toy model—often called
compact electrodynamics, or cQED—possesses topologi-
cally stable objects, monopoles, which reveal themselves
as instantons. The instantons also appear in a Euclidean
formulation of QCD [2], thus bringing an additional bridge
between these two theories. In the presence of fermions, the
monopoles catalyze the chiral symmetry breaking in cQED
[3]. The chiral symmetry plays a very important role in the
hadronic physics described by QCD. Finally, both QCD
and cQED experience a finite-temperature transition to a
high-temperature phase that lacks the linear confinement
property.
In addition to its role in particle physics, cQED also

serves as a useful macroscopic model in a broad class of
condensed matter systems [4,5]. It experiences mesoscopic
phenomena like the Casimir effect [6], which mimics

closely its non-Abelian analog [7], and may be explored
with machine learning techniques [8] similar to the ones
discussed in this paper.
Contrary to the theory of strong interactions, the non-

perturbative effects in cQED are well understood. The
confinement and mass gap generation admit an analytical
treatment in a weak coupling regime of zero-temperature
cQED [1], while the phase transition may be characterized
both by analytical and numerical techniques [9–14]. In the
context of Abelian theory, the dynamics of the Abelian
monopoles can explain all these nonperturbative phenomena.
In our paper, we consider the finite-temperature phase

transition in cQED and the associated monopole dynamics
using the machine learning (ML) approach. ML techniques
stand on powerful programming tools that allow a com-
puter to find a way to perform a certain task without being
explicitly preprogrammed in advance (we refer the inter-
ested reader to Refs. [15,16] for physicist reviews). In the
approach we intend to use, a neural network is trained to
compute some target features from a given configuration
by providing a certain number of examples. Then, the
network can be used to predict the target variables for any
configuration both inside and outside the domain of train-
ing. In other words, the neural network learns how to
predict a required feature of a complex system and then
uses the acquired knowledge to make the predictions
independently. Given the impressive versatility of the
approach, ML methods find their implementations in
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studies of the phase structure of various many-body
systems, strongly correlated environments, and field
theories [17–29].
The use of the ML techniques has various motivations.

Evidently, the neural networks offer a clear computational
advantage: while the learning phase of the neural networks
may be slow,1 their predictions are usually coming very
fast. Therefore, ML methods became particularly success-
ful in the investigation of many complex physical systems
that involve a high number of degrees of freedom where the
traditional methods provide slow advance.
ML approaches are also believed to be useful for

uncovering hidden mechanisms of physical phenomena
that otherwise lack a solid theoretical explanation. In the
first stage, the neural network learns the effect in question
in the system with many (infinite in the thermodynamic
limit) degrees of freedom. Then the ML algorithm dem-
onstrates the successful implementation of the learning
phase by recognizing the phenomenon at new (to the
algorithm) configurations of the same system. The suc-
cessful completion of the examination phase implies that a
finite-element neural network has managed to successfully
describe the system with a vast number of degrees of
freedom. Thus, the third stage consists of learning what the
neural network learned during the training stage about
the phenomenon in question by analyzing the weights of
the neurons inside the network. This procedure may give an
insight on the mechanism of the physical effect as it was
learned by the neural network. This third step is outside the
scope of our paper and we will focus on demonstrating that
a neural network can learn to compute the quantities we are
interested in.
Our paper aims to investigate how well the ML tech-

niques may see the deconfining phase transition in a field
theory through the eyes of topological defects. We use the
compact electrodynamics in which the finite-temperature
phase transition is tightly related with the dynamics of the
monopoles. The lattice formulation of cQED allows for a
straightforward identification of monopoles while the
imprint of the phase transition on the monopole dynamics
is well known: the system goes from the monopole gas at
low temperature to a gas of monopole-antimonopole pairs
at high temperature through a phase transition of the
Berezinskii-Kosterlitz-Thouless type [30–32].2
A particular question we address in this paper is whether

the neural network can extrapolate predictions for con-
figurations at different lattice sizes after having been trained
with configurations from a single lattice size. We will see
that it is indeed the case, implying that the neural network
automatically captures the notion of the thermodynamic

limit. While the quantities predicted for individual con-
figuration are not particularly accurate, we find that the
neural network still understands that something happens
to the system; The acquired knowledge allows the
neural network to determine the critical temperature to a
good accuracy.
We provide a basic description of the compact electro-

dynamics on the lattice, the lattice monopoles, and the
relevant observables in Sec. II. The neural network used in
our analysis appears in Sec. III while Sec. IV represents the
results of the application of the machine learning methods
to the monopole configurations. The last section summa-
rizes our conclusions.

II. GAUGE MODEL

The term “compact electrodynamics” describes an
Abelian U(1) gauge model, which admits the existence
of the monopole-like singularities in the gauge field. We
consider a lattice version of this model because the lattice
regularization offers the most natural way to describe the
compact gauge fields. We study the Wick-rotated model in
three Euclidean spacetime dimensions because we are
interested in thermal equilibrium states, which can be
studied numerically in the Euclidean version of the model.

A. Compact electrodynamics on the lattice

The compact lattice electrodynamics is described by the
following action:

S½θ� ¼ β
X
P

ð1 − cos θPÞ; ð1Þ

where the sum runs over all elementary plaquettes P≡Px;μν

of the lattice. Each plaquette Px;μν is labeled by the position
x of one of its corners and by two orthogonal vectors μ < ν
that determine the orientation of plaquette in the Euclidean
spacetime (μ, ν ¼ 1, 2, 3).
The plaquette angles in the action (1),

θPx;μν
¼ θx;μ þ θxþμ̂;ν − θxþν̂;μ − θx;ν; ð2Þ

play a role of the lattice field strength of the compact gauge
field θx;μ ∈ ½−π;þπÞ. This dimensionless compact variable
has a vector nature: the field θx;μ is defined at the link
starting at the point x and pointing in the direction μ.
The lattice angle θx;μ ¼ aAμðxÞ is the dimensionless

suitable for numerical simulations. It is related to the
continuum gauge field AμðxÞ via the length of an elemen-
tary lattice link a. In the continuum limit, the lattice spacing
tends to zero, a → 0, and the plaquette variable (2)
approaches its continuum expression,

θPx;μν
¼ a2FμνðxÞ þOða4Þ; ð3Þ

1The slowness of the learning phase is not a necessity. For
example, the neural network of this paper trains in a few minutes.

2Notice that an inclusion of the matter fields may shift the
location and change the type of the finite temperature deconfining
phase transition [33].
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where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor in the
continuous spacetime. The validity of this identification is
constrained by the absence of singular monopole-like
configurations in the gauge fields implying small fluctua-
tions of the photon fields, jθx;μj ≪ 2π.
In the continuum limit (3), the lattice action (1) of

nonsingular gauge fields Aμ becomes the standard Abelian
gauge action S ¼ ð1=4g2ÞF2

μν for the photon fields Aμ. To
this end, we associate the lattice coupling constant β with
the coupling constant g in the continuum via the lattice
spacing a:

β ¼ 1

g2a
: ð4Þ

Since the lattice coupling (4) is the dimensionless quantity,
the continuum gauge coupling g has the dimension ½g� ¼
mass1=2 in three spacetime dimensions. The relation (4) is
valid in the weak-coupling regime which also corresponds
to large values of the lattice coupling β. The weak coupling
provides us with a link between the lattice and continuum
versions of the model.

B. Monopoles, confinement, and mass gap

The monopoles in the lattice model (1) manifest them-
selves in the form of the strong fields θ which correspond
to large values of the gauge plaquettes jθPj ∼ π. In the
continuum limit, such plaquettes lead to singular field-
strength tensor F ∼ θP=a2 → ∞. As a result, the continuum
action includes singular Dirac lines attached to the Abelian
monopoles. A pedagogical introduction to the continuum
formulation of compact QED is given in detail in Ref. [5].
The monopole charge in the lattice formulation is the

gauge-invariant quantity which takes integer values:

ρx ¼
1

2π

X
P∈∂Cx

θ̄P ∈ Z; ð5Þ

where the sum goes over all faces P of an elementary
cube Cx. The density (5) is expressed via the physical
plaquette angle as

θ̄P ¼ θP þ 2πkP ∈ ½−π; πÞ; ð6Þ

where kP ∈ Z is the integer number.
The world trajectory of a magnetic monopole is an

instantaneous since the monopole density is singular in
isolated points (5). Therefore, in two spatial dimensions,
the monopole is an instanton-like topological object. The
monopoles appear due to the compactness of the gauge
group that comes from the invariance of the gauge
action (1) under the discrete transformations of the lattice
gauge-field strength:

θP → θP þ 2πnP; with nP ∈ Z: ð7Þ

Thus, the model (1) describes the dynamics of weak
fields of photons and strong fields of monopoles. The
photons characterize perturbative fluctuations responsible
for a short-distance Coulomb potential between electric
charge probes. The monopoles lead to nonperturbative
effects such as the long-range linear potential,

VðLÞ ¼ σL; ð8Þ

between the oppositely charged probe particles separated
by the distance L. The linear slope of the potential (8) is
given by the tension of a confining string [1]

σ ¼ 4g
ffiffiffi
ϱ

p
π

; ð9Þ

which stretches between the static particle and antiparticle
and bounds them into a chargeless particle-antiparticle pair.
In Eq. (9), the string tension is expressed via the mean
monopole density [1],

ϱ≡ hjρxjigas; ð10Þ

of a dilute monopole gas. The subscript “gas” in the above
equation indicates that only the density of the individual
(isolated) monopoles is taken into account. The monopoles
in rightly bound clusters are ignored in Eq. (10). We will
discuss this issue shortly later.
We especially stress the linear behavior of the non-

perturbative confining potential (8) because in a monopole-
free theory in two spatial dimensions, the potential between
electrically charged particle and antiparticle is also formally
confining: it is logarithmically rising with the distance.
While the logarithmic potential is (weakly) confining, the
logarithmic confinement is a trivial result of the reduced
dimensionality and it does not reflect any nonperturbative
physics.
In addition to the linear confinement, the presence of the

monopole-antimonopole gas generates the mass gap in the
system [1]:

m ¼ 2π
ffiffiffi
ϱ

p
g

; ð11Þ

which damps exponentially all correlations at large dis-
tances. The photon, for example, becomes massive with the
mass given in Eq. (11).
The string tension (9) and the mass gap (11) are derived

for the globally neutral Coulomb gas of individual monop-
oles and antimonopoles. The real gas may contain two types
of constituents: (i) isolated monopoles and antimonopoles
in the Coulomb component, and (ii) magnetically neutral
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monopole-antimonopole pairs as well as their clusters. It is
the density of the former (10) which contributes to the
nonperturbative effects, Eqs. (9) and (11), while the density
of the monopoles in the neutral pair, expectedly [11], does
not contribute to the string tension and to the mass gap.

C. Finite-temperature deconfinement

The compact QED resides in the confining phase at zero
temperature. As the temperature of the system raises, two
different effects appear: the overall density of monopoles
and antimonopoles diminishes while the monopoles and
antimonopoles tend to bound into neutral monopole
clusters. Both effects contribute to the reduction of the
density of free monopoles (10), which diminishes the string
tension (9) and the mass gap (11).
At certain critical temperature T ¼ Tc, all monopoles get

bounded so that they exist only in a form of neutral pairs or
clusters above Tc. As a result, the linear confinement and
mass gap generation persist for low temperatures T < Tc,
while for T > Tc the string tension vanishes and the energy
of a pair of static charges behaves logarithmically with their
spatial separation.
In the Wick-rotated theory, the temperature T is

associated with the lattice length in the Euclidean time
direction Lt,

T ¼ 1

Lta
; ð12Þ

where the lattice spacing a is related to the physical gauge
coupling g and lattice gauge coupling β via Eq. (4).
In addition to the linear slope of the confining potential

(8), the confining properties of the system can be charac-
terized by the Polyakov loop,

LxðθÞ ¼ exp

�
i
XLt−1

x3¼0

θx;3

�
; ð13Þ

expressed via the time component (μ ¼ 3) of the vector
gauge field θx;μ ≡ θμðxÞ. The sum in Eq. (13) is taken along
the Euclidean (imaginary) time direction τ≡ x3. The
Polyakov loop Lx is a spatially local operator defined at
a spatial point x ¼ ðx1; x2Þ and independent of the
Euclidean time coordinate x3.
In the thermodynamic limit, the Polyakov loop (13) is an

order parameter of the deconfinement phase transition: the
vacuum expectation value,

hLi ¼ 1

L2
s

�����
XLs−1

x1¼0

XLs−1

x2¼0

Lx1;x2

����
�
; ð14Þ

vanishes in the confinement phase and it takes a non-
zero value in the deconfinement phase. Physically, the

expectation value of Lx is associated with the free energy
Fx of an isolated static electric charge:

e−F=T ¼ hLi; ð15Þ

where T is the temperature of the system. According to
Eqs. (4) and (12), the physical temperature T, expressed in
units of the coupling constant g2,

T
g2

¼ β

Lt
; ð16Þ

is a linear function of the lattice gauge coupling β. In the
low-temperature confinement phase, the order parameter
hLxi is zero, implying that the free energy of a separate
charge (15) is infinite, so that an isolated electric charge
cannot exist. In the high-temperature deconfinement phase,
the order parameter and the associated free energy do not
vanish implying the existence of free electric charges
(deconfinement).
The (de)confining properties of compact U(1) gauge

theory may be contrasted with the features of non-Abelian
(Yang-Mills) gauge theories in 3þ 1 dimensions. Both
these theories possess a similar phase structure consisting
of a linearly confining low-temperature phase and a
deconfined phase at a finite temperature. The deconfining
phase transition of a Yang-Mills theory is associated with a
spontaneous breakdown of a global ZN center symmetry
of the underlying SU(N) gauge group. In the pure SU(N)
gauge theory, the transition is of the second order for two
colors and is of the first order for the number of colors three
or greater.
On the contrary, the phase transition in the compact U(1)

gauge theory in 2þ 1 dimensions is not associated with a
center group as the U(1) symmetry remains unbroken in
both phases. Moreover, the transition has an infinite order
that maintains all local observables analytical as the system
passes the critical temperature. The deconfinement is
associated with binding of (anti)monopoles into magneti-
cally neutral compact pairs and clusters at high temper-
ature: the Coulomb gas of magnetic monopoles becomes
a gas of neutral magnetic dipoles at T ¼ Tc. This type of
critical behavior is known as the Berezinskii-Kosterlitz-
Thouless (BKT) transition [30–32].
The BKT transition is associated with a loss of the

confinement property at high temperature because the weak
fields of the neutral magnetic dipoles cannot lead to a
disorder of the Polyakov loop. At low temperature, the
disorder is driven by the long-range fields of the individual
magnetic monopoles and antimonopoles.
On the practical level, the deconfinement temperature at

a given lattice may be calculated as the position of the peak
of the susceptibility

χL ¼ hL2i − hLi2 ð17Þ
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of the order parameter (13) (as for example, performed in
Ref. [11] and many others). Alternatively, one may deter-
mine the pseudocritical temperature via location of the
maximal slope of the order parameter hLi itself. The critical
temperature is given by the thermodynamic limit of either
of the pseudocritical temperatures calculated at finite
spatial volumes.
Notice that we are always working with finite volume

lattices, therefore it is more suitable to call these quantities
as pseudocritical, while we will use the word “critical” for
shortness.
At the level of the topological defects and associated the

BKT-type restructuring of the monopole ensembles, the
determination of the critical temperature is much less clear.
Although this question may be eventually resolved via a
thorough determination of the neutral monopole clusters
and appropriate correlations [11], the visual difference
between a gas of individual monopoles and antimonopoles
at the low-temperature side of the transition and loosely
bound magnetic dipoles at the high-temperature size of the
transition remains quite obscure.
This paper aims to identify the phase transition temper-

ature using the machine learning techniques concentrated
only on the dynamics of the monopoles. In our approach,
the neural network treats the monopole ensembles as three-
dimensional images (holograms) and tries to identify the
deconfining phase transition as a point where the monopole
gas becomes a magnetic-dipole gas.

D. Details of numerical simulations

Wework with cubic Euclidean lattices Lt × L2
s subjected

to periodic boundary conditions along all three directions.
In our simulations, we take various asymmetric configu-
rations with Lt ¼ 4, 6, 8 and Ls ¼ 16, 32.
The configurations of the gauge field are generated

with the help of a hybrid Monte Carlo algorithm. We
use standard Monte Carlo methods improved by molecular
dynamics algorithms [34] which include a second-order
minimum norm integrator [35]. Long autocorrelation
lengths in Markov chains are eliminated following
Ref. [34]. We apply a self-tuning adaptive algorithm in
order to control the acceptance rate of the hybrid
Monte Carlo in a reasonable range between 0.70 and 0.85.
We generated 1.1 × 106 trajectories for each value of the

coupling constant β. The thermalization has been per-
formed for 105 trajectories (200 configurations), after
which we used 2000 configurations for measurements
separated by 500th trajectories. It is more than enough
for eliminate correlation between configuration.
We calculate numerically the vacuum expectation value

(14) of the Polyakov loop (13) at a dense set of lattice gauge
couplings β and fit the result by the following function:

LfitðβÞ ¼ aþ bβν arctan

�
β − βrawc

δβ

�
; ð18Þ

where a, b, βraw and δβ are the fitting parameters. The
pseudocritical value of the coupling βc is then computed as
the maximum of the best-fit function (18). The quantity δβ
characterizes the width of the pseudocritical deconfining
transition. The best fits are shown in Fig. 1 while the
corresponding best fit parameters along with the corre-
sponding values of βc are shown in Table I.

III. NEURAL NETWORK

We are aiming to build a neural network with the purpose
to discriminate monopole configurations in the confining
and deconfining phase, and to determine the phase tran-
sition point. The machine should learn how to distinguish
between the two phases of the theory looking only at the
configurations that encode the positions and charges of
the topological defects. The monopole configurations of the

FIG. 1. The best fits of the expectation value of the Polyakov
loop by the function (18).

TABLE I. The best-fit parameters from fitting of the expectation value from the Polyakov loop (18) as well as the
value of the (pseudo)critical coupling constant βc obtained from Monte Carlo simulations.

Lattice βc βrawc δβ a b ν

4 × 162 1.811(2) 1.801(2) 0.186(4) 0.317(1) 0.153(4) 0.485(22)
6 × 162 1.977(4) 1.960(4) 0.250(6) 0.256(3) 0.127(5) 0.557(42)
8 × 162 2.105(7) 2.078(7) 0.323(6) 0.216(3) 0.110(5) 0.560(49)
4 × 322 1.931(3) 1.924(3) 0.173(5) 0.276(2) 0.144(5) 0.501(36)
6 × 322 2.142(6) 2.131(6) 0.247(5) 0.233(3) 0.135(6) 0.384(50)
8 × 322 2.285(11) 2.270(10) 0.306(8) 0.193(5) 0.113(7) 0.382(80)
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compact gauge theory are produced by the Monte Carlo
algorithm which simulates the physical properties of the
model from first principles. We would like the neural
network to learn the monopole properties, to understand
them, and to make predictions based on the knowledge
acquired during the learning phase.
More specifically, the objective of our work is to train the

neural network at a part of the configurations and to make
predictions using new configurations which were not seen
by the neural network during the training phase. In order to
make the training and prediction phases as independent as
possible, we train the network on the configurations of the
lattice size Lt ¼ 4 and Ls ¼ 16 and make the predictions at
a different set of sizes Lt ¼ 4, 6, 8 and Ls ¼ 16, 32. Then,
from the predicted Polyakov loop L and phase ϕ (to be
defined later), we derive the critical coupling βc of the
phase transition and compare it with the value given by
the first-principle Monte Carlo simulation. In this way the
neural network is trained to see the difference between
the confining and deconfining phases of the compact
electrodynamics.
Traditional neural networks are made of three types of

objects: layers of neurons (also called units or filters
depending on the layer type), connections (which strengths
are called weights), and activation functions. The layers are
usually arranged sequentially, with each pair of adjacent
layers linked by connections. A neuron is a real number
whose value is determined by a linear combination of the
neurons from the previous layer, described by the weights
of the connection (and the type of the layer), to which the
activation function is applied. In the simple case of fully
connected layers, each layer can be represented as a vector
and the connections between two layers by a matrix, such
that each layer is given by the result of the activation
function applied on each component of the vector obtained
from the matrix multiplication of the weights by the
previous layer. The first and last layers correspond respec-
tively to the inputs and outputs (targets).
Training a neural network consists of tuning the weights

until good results are obtained. The simplest approach is
called supervised learning, where a gradient descent is
performed in order to minimize the differences between
the predicted values (last layer) and the expected values.
These differences are measured according to a distance, or
loss function, appropriate for the problem at hand. The
architecture of a neural network is determined by the layers
(types, number of neurons, …), by the choice of activation
functions and by all parameters needed to define the net-
work; it is kept fixed during the training. Moreover, the use
of a gradient descent implies that all quantities appearing in
the expression of the loss must be differentiable.
In general, it is hard to guess directly the best archi-

tecture: for this reason, different architectures are consid-
ered successively in a process known as hyperparameter
tuning, which alternates changing the structure and training

the network. At the end, the performances of all the
different architectures are compared to find the best.
This phase is also used to find the best training parameters
(including the gradient descent algorithm). The reason for
splitting this procedure in two steps is the following:
minimizing a loss function using a gradient descent
requires the parameters to be continuous variables. This
is the case of the connection weights, but not of many other
parameters defining the networks (such as the number of
neurons per layer). Another reason is that it is easy to find
how the weights enter in the expression of the predictions,
such that one can easily take the gradient; this is not the
case of the other parameters which do not appear directly in
the expressions (for example, the number of neurons or the
form of the activation function).

A. Configurations and targets

Technically, the monopole configuration is represented
as a three-color hologram encoded as a 3d tensor of size
ðLt; Ls; LsÞ. The entries of the hologram are þ1, −1, or 0
corresponding to a monopole, antimonopole, or an empty
space, respectively. One may imagine it as a 3d image with
one channel taking three possible values, for example,
black, white and gray. Since we want to work at different
lattice sizes, we need to make sure that the network can take
holograms of arbitrary sizes as input.
The goal is to extract the critical temperature of the phase

transition from the predictions. Therefore, we focus on the
most relevant quantities for this purpose: the absolute value
of the Polyakov loop L (order parameter) defined in (14)
(we omit the symbol h·i) and the phase label:

ϕ ¼
�
0 confined;

1 deconfined:
ð19Þ

For continuous quantities such as the Polyakov loop L,
the prediction can be taken directly to be the neuron value
in the layer with a trivial activation function. A special
activation function is not needed since it would just
changed the value of the weights before. However, the
neural network is trained not to predict the phase label, but
rather the probability pðϕÞ to find ϕ ¼ 1. Indeed, the
gradient descent requires that each activation function is
differentiable: getting a value ϕ ¼ 0 or ϕ ¼ 1 can be
achieved by using the Heaviside step function, which is
not a differentiable function. Instead, the sigmoid function

σðxÞ ¼ 1

1þ e−x
ð20Þ

is differentiable and produces an output between 0 and 1
which is interpreted as a probability. Moreover, this choice
offers some flexibility: for example, one can tune the
probability cutoff to favor one label (to counterbalance
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a bias) or to spot uncertainty on the classification (at the
phase transition).
It is straightforward to add several outputs to a neural

network. This step generically improves the performance of
the network by enforcing the stability and generalization:
indeed, adding additional layers forces the layers at the
beginning of the network to look for more universal
features. We added several secondary variables that could
be leveraged by the neural network (even if this helped only
marginally in our case): the real and imaginary parts of the
Polyakov loop, the temporal Ut, spatial Us and average U
plaquettes, the temperature β and the monopole density ρ.

B. Structure

We can now describe the internal structure of the
network (Fig. 2). Most ingredients are standard and we
refer the reader to the literature [15,36–38] for more details.
Since the input is a 3d image, the first two layers are 3d

convolutional layers with 128 and 256 filters of size (2,4,4)
in order to account for the translational symmetry of the
lattice. The effect of convolutions is to give the holograms
as many channels as the number of filters. The first layer is

followed by a 3d max pooling3 with size (2,4,4); this
procedure reduces the image size which makes the training
faster (information is preserved in the channels generated
by the convolution). The second layer is followed by a
global max pooling, which keeps only the maximal value of
the image for each channel. This is necessary in order to
pass the data to fully connected dense layers: while
convolutional layers can take holograms of arbitrary sizes
as input, this is not the case of the dense layers. Ultimately,
this ensures that the network can be fed with holograms of
any size (i.e., the monopole configurations can live on
different lattices). After the global pooling operation comes
a dense layer with 256 units and leaky ReLu activation
(slope α ¼ 0.1). At this stage, the network branches in five
directions, one for each group of variables we want to
compute: pðϕÞ, ðL;ReL; ImLÞ, ðU;Us;UtÞ, ρ, β. Each
branch contains a dense layer with 128 units and ReLu

1.5

2.0

1.6

1.7

1.8

1.9

2.1

2.5

2.2

2.3

2.35

2.4

1.51.5

2.0

1.6

1.7

1.8

1.9

2.12.1

2.22.2

2.52.5

2.3

2.352.35

2.42.4

FIG. 2. Neural network model and the typical examples of the monopole configurations as the function of the increasing temperature
β or, according to Eq. (16), rising temperature T.

3This procedure can be understood as a coarse graining
operation, where a block of (2,4,4) neurons is replaced by a
single neuron whose value is the maximal one of the block. Other
pooling operations (such as averaging) are possible and give
similar results.
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activation, which is followed by the final dense layers
which output the predictions (thus, these layers have 1 or 3
units depending, no activation except a sigmoid for the
probability prediction). The idea behind this structure is to
share the layers until some point to encourage learning
more general (and hopefully robust) features, while the
final layers can specialize in computing its output. Since
early layers can tend to forget or learn useless information
for deep networks, we added an auxiliary output of L
before the branching: the corresponding loss is added with
a smaller weight of 0.3 (since the network is expected to be
less accurate in the early layers, we should penalize it less).
When computing all possible quantities, the network has
roughly 1.3M parameters.
Standard techniques have been used to improve further

the convergence (both in terms of speed and performance).
Batch normalization (with momentum 0.9) has been added
after the convolutional layers. Dropout layers have been
added after the last convolutional layer (keep probability
0.25) and after the last dense layer of each branch (keep
probability 0.5): this randomly deactivates some links
during the training, forcing the network to not rely on
specific neurons, but to find more generic properties and to
achieve some redundancy.
The different outputs have different scales: this can

disturb the network as targets with higher absolute values
would contribute more to the loss, implying that the
network will put more weight on getting them correctly
while ignoring the other targets. For this reason, it is useful
to standardize all targets by subtracting the mean and diving
by the standard deviation. Note that the mean and standard
deviation are computed from the training set only. A second
motivation is the intuition that this could make the network
less sensitive to changes in the lattice size.

C. Training

The loss of the network measures its performances by
comparing the predicted values to the real ones (the latter are
computed by Monte Carlo). The loss is given by the sum of
the mean squared errors of continuous variables plus the
cross-entropy for the phase (binary) classification. During
the training phase, a weight regularization loss is added: it is
proportional to the L2-norm of the weight of the neural
network. This procedure helps us to reduce the numbers of
parameters, reducing the risk of overfitting and improving
generalization. The neural network is then trained by
performing a gradient descent in order to minimize the loss.
Hence, the network learns to reproduce the expected values
as outputs while having as small weights as possible. In
order to put more incentive in getting the correct absolute
Polyakov loop L and the phase probability pðϕÞ, we can
weight the different terms of the loss function to penalize less
for incorrect values of the secondary variables. However, this
did not give results sensibly different, so we took a weight of
1.0 for all quantities.

One should be careful when comparing losses: (1) during
training, the losses include the L2-term, which is removed
when evaluating the model after training; (2) the losses are
proportional to the number of parameters of the model, and
thus it depends on the precise structure of the network.
The network is trained with early stopping: we monitor

the performance on a validation dataset (not used for
training) and we stop training when the performance does
not improve anymore, rolling back to the best network.
This is another form of regularization since the network has
less time to adapt to the training dataset. The maximum
number of epochs is set to 75. We used a batch size of 256
and the Adam optimization method [36]. The training set is
randomly shuffled before each epoch.
The neural network output for the phase can be inter-

preted as a probability: and it is necessary to define how to
extract the phase from it. We use the following decision
function:

ϕ ¼
�
0; pðϕÞ < pc;

1; pðϕÞ ≥ pc;
ð21Þ

where pc is the probability threshold. The standard choice
would be pc ¼ 0.5, but pc must be interpreted as a
hyperparameter, on the same footing as the other hyper-
parameters of the network. In particular, it can be used to
fight the bias towards the size 4 × 162 and we have found
that the value pc ¼ 0.85 leads to good values of the critical
temperature. Changing pc amounts to find a compromise
between precision and recall (see Table III which will also
be described in the analysis below).
The training is done for the lattice 4 × 162 with two

datasets:
(i) 2000 configurations for each lattice coupling in the

range β ∈ ½1.5; 3� with the step Δβ ¼ 0.05 (i.e., 31
values in total)

(ii) 100 configurations for each β ∈ ½0.1; 2.2� with the
step Δβ ¼ 0.1 (22 values).

We stress that there is a single training phase for the
complete training set including configurations at all beta:
since samples are randomly shuffled before each epoch,
batches contain different combinations of configurations at
different beta. Validation is performed for the same lattice
with a third dataset: 200 configurations for each β ∈
½1.5; 2.5� with Δβ ¼ 0.05 (21 values). The predictions are
evaluated for all lattices 6 × 322, 8 × 322, 4 × 322, 6 × 322,
8 × 322, using for each a dataset having 200 configurations
for each β ∈ ½1.5; 2.5� with Δβ ¼ 0.05 (like the validation
set). Results for the validation set are also given.

IV. RESULTS: NEURAL NETWORK LEARNS
MONOPOLES AND CONFINEMENT

The aim of this section it to describe the results of how
the neural network may learn the dynamics of monopoles
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and predict the various observables as well as the position
of the deconfinement transition.
Primarily, we are interested in the order parameters of the

(de)confinement phase transition. There are two such
parameters: the Polyakov loop L which comes from the
field theory and the phase label ϕ which is a ML analog of
the order parameter. Alternatively, we may also consider
the susceptibility Polyakov loop χL given in Eq. (17) at the
field-theoretical side and the probability pðϕÞ at the side of
the neural network. We provide the predictions of the
neural network for the critical temperature βc, the monop-
ole density ρ, and, for completeness, the mean plaquette U.

A. General observations

To start with we notice that the training stage takes circa
6 minutes (on a GPU Nvidia GeForce RTX2080 Ti), while
all predictions are obtained in a few seconds.
Convergence to the best model is achieved after a dozen

of epochs as it is illustrated in Fig. 3. In practice, we find
that the performance is quite stable under changes of
parameters (for example, the choice of optimizer, the use
of the scaling or not using it, the choice of layer sizes, etc.).
Interestingly, we find that the validation and training

losses reported on the training curve (loss evolution during
the training, Fig. 3) and on the learning curve (loss
evolution by changing the ratio of training/validation data,
Fig. 4) are residing on top of each other. Such agreement
between the two curves is rather uncommon,4 especially
at the early stage of training. This property indicates the
absence of overfitting and underfitting, implying that the

neural network architecture is very well adapted for the
task. The reason for such a nice agreement comes from an
efficient regularization, as it can be seen by comparing with
the same network without regularization (no L2 term and
no dropout, with the result shown in the insets of Figs. 3
and 4, respectively). The flattening of the learning curve
(Fig. 4) for high ratio indicates that adding more training
data is unlikely to improve the performances.
The comparison between the Monte Carlo and ML

distributions of the phase label ϕ, the mean values of
the Polyakov loop L, the monopole density ρ and the
average plaquette U are given in Fig. 5. We also give the
same comparison for the predicted value of the coupling
constant β: the neural network reads a configuration of the
magnetic monopoles and predicts the value of the coupling
constant β that should correspond to this particular con-
figuration.5 The corresponding errors are given in Fig. 6.
For continuous quantities, the prediction accuracy is
summarized in Table II in the form of the root mean square
error (RMSE). For the phase label ϕ ¼ 0, 1, we character-
ize the performance metric in Table III in terms of the
quantities,

accuracy ¼ TPþ TN
All

; ð22aÞ

precision ¼ TP
TPþ FP

; ð22bÞ

recall ¼ TP
TPþ FN

; ð22cÞ

FIG. 3. Training curve (evolution of losses for the training and
validation sets with time). The inset: the training curve without
regularization.

FIG. 4. Learning curve (evolution of losses for the training and
validation sets of different sizes). The inset: the learning curve
without regularization.

4Figure 4 represents a type of an ideal curve predicted by the
theory for an optimally regularized network. In practice, it almost
never happens to encounter such a curve.

5Note that despite we challenge the neural network to compute
β, we always use the real β when studying the temperature
dependence of the predicted quantities.
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where “All” corresponds to the total number of cases,
of which “TP” means the number of true positive, “TN”
is true negative, “FP” is false positive, “FN” is false
negative.
To better visualize the results, the joint predictions of L

and ϕ in terms of the temperature are plotted in Fig. 7.
Finally, the mean values hLiβ and hρiβ in terms of the
temperature are given in Fig. 8. Hereafter, we will use the
notation Oβ to stress the dependence of an operator O on
the coupling constant β.
We observe from the different plots and from the

performance measure that the different quantities are quite
well learned by the neural network from the monopole
configurations. The predictions for pðϕÞ and L turned out
to be well correlated: there is some critical value of L for
which the network predicts ϕ ¼ 0 for all configurations
below, and ϕ ¼ 1 above. Moreover, the network predic-
tions have less variance than the real values.
We can then use the network to predict the different

quantities at the other lattice sizes with Lt ¼ 4, 6, 8 and
Ls ¼ 16, 32. The mean values hLiβ and hρiβ in terms of
β are given in Fig. 8. Two examples of comparison of
the values of L and ϕ in terms of the temperature are
given in Fig. 9. Notice that the actual value of the mean
of the Polyakov loop is not important for the determi-
nation of the critical point: it is the maximum slope
which is valid. Therefore the split of the original data
(MC) and the predicted values (ML) does not play a
crucial role.
Finally, examples of the distribution of the phase

prediction with pc ¼ 0.5 are given in Fig. 10.
While the monopole density prediction remains quite

good, the errors in L and ϕ increase with the size of the
lattice. The network makes predictions conservative
towards the 4 × 162 lattice. The mean value hLiβ is
predicted to be linear on a larger and larger range of
temperature, which prevents using the slope of the curve as
a good indicator of the phase transition. For this reason, we
will consider various ways to assess the temperature in the
next section.

(a)

(c) (d)

(f)(e)

(b)

FIG. 6. Comparison of absolute errors on the predicted
distributions.

TABLE II. RMSE for the different continuous quantities.

L ρ β U

RMSE 0.0893 0.00408 0.187 0.0166

TABLE III. Performance of the phase classification quantified
in terms of accuracy, precision and recall (IVA).

ϕ pc ¼ 0.5 pc ¼ 0.85

Accuracy 94.6% 92.6%
Precision 95.1% 98.6%
Recall 96.8% 90.1%

(a)

(c) (d)

(f)(e)

(b)

FIG. 5. Comparison of the MC and ML distributions of various
quantities.
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B. Estimation of the critical temperature

In this subsection, we evaluate the critical coupling βc
and the associated critical temperature (16) from the
quantities predicted by the neural networks. One may
determine βc as a value of the coupling constant for which
the slope of the Polyakov loop hLiβ takes it maximum.
However, we pointed out in the previous section that the
neural network does not see a sharp transition in terms of

the Polyakov loop L. On the other hand, the phase can
provide a good estimation of the phase transition.
Indeed, we find that the neural networks have more and

more difficulties for predicting the phase with certainty
as one gets closer to the phase transition. To see this fact,

(a) (b) (c)

FIG. 7. The Polyakov loop L in terms of β for each configuration for Lt ¼ 4 and Ls ¼ 16, with the phase ϕ (red: p ¼ 0, confined;
blue: p ¼ 1, deconfined).

(a) (b)

(c) (d)

(e) (f)

FIG. 8. The monopole density hρi and the Polyakov loop hLi in
terms of β. The filled symbols show the actual quantities
calculated with the help of the Monte Carlo (MC) technique
and the open symbols are the predictions based on the machine
learning (ML) of the monopole configurations.

(a) (b)

(c) (d)

FIG. 9. Examples of the distribution of the mean Polyakov loop
L in terms of the coupling constant β for each configuration, with
the phase ϕ (red: p ¼ 0, confined; blue: p ¼ 1, deconfined),
using pc ¼ 0.5.

(a) (b)

FIG. 10. Examples of ϕ in terms of β for each configuration,
with the phase ϕ (red: p ¼ 0, confined; blue: p ¼ 1, deconfined),
using pc ¼ 0.5.
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we notice a substantial deviation of the values of pðϕÞ away
from 0 and 1 as well as a greater value of the variance. This
observation is in agreement with the ideas of Ref. [20]
where it was found that the neural network should be more
“confused” for predicting the phase close to the phase
transition.
We consider five different methods to determine the

critical coupling constant βc:
(1) Maximum slope of the Polyakov loop hLiβ:

βc ¼ argmaxβ∂βhLiβ: ð23Þ

(2) Maximum uncertainty for the probability (the net-
work predicts with equal chance the configuration to
be in one phase or in the other):

hpðϕÞiβjβc ¼ 0.5: ð24Þ

(3) Maximum variance of the probability:

βc ¼ argmaxβVarβðpðϕÞÞ: ð25Þ

(4) Maximum uncertainty for the phase:

hϕiβjβ¼βc
¼ 0.5: ð26Þ

(5) Maximum variance of the phase:

βc ¼ argmaxβVarβðϕÞ: ð27Þ

The difference between the methods (2) and (3) with (4)
and (5) is that the former use the probability pðϕÞ ∈ ½0; 1�
(independent of pc) while the latter use the phase label
ϕ ¼ 0, 1 (which depends on pc). For each case, we also
computed the temperature by first interpolating and then
computing βc, but this did not improve the results.
The results for the critical coupling βc and the relative

errors in its determination jβML
c − βMC

c j=βMC
c are given in

Tables IV and V, respectively. The tables indicate the mean
values and standard deviations obtained by training n ¼ 10
different models. The mean averages and the variances of
the distribution pðϕÞ are given in Figs. 11(a) and 11(b).
Various methods provide slightly different predictions

for the critical coupling constant βc which generally lie
within a few percent (10% in the worst case) from the actual
position of the transition.
In Fig. 13 we show the critical coupling βc of the

deconfinement phase transition obtained with the help
of the Monte Carlo estimation at the original gauge-
field configurations. We compare these numbers with the
prediction of the neural network (ML) using the monopole
configurations only. For illustration, we use the estimation
based on the maximal uncertainty (“the network’s

TABLE IV. Predictions of the critical coupling βc given by the neural network using different methods and
quantities (mean values and standard deviation by averaging over ten neural networks). The first three rows do not
depend on the choice of the probability threshold pc of the decision function (21).

4 × 162 4 × 322 6 × 162 6 × 322 8 × 162 8 × 322

L slope 1.85(1) 2.02(5) 1.90(1) 2.12(4) 1.96(7) 2.06(12)
hpðϕÞi 1.85(1) 1.99(2) 1.91(2) 2.06(3) 1.94(2) 2.10(3)
VarpðϕÞ 1.83(3) 1.96(3) 1.88(3) 2.04(2) 1.91(3) 2.07(2)

hϕi (pc ¼ 0.5) 1.84(2) 1.98(2) 1.90(2) 2.05(3) 1.94(2) 2.08(3)
Varϕ (pc ¼ 0.5) 1.81(2) 1.95(2) 1.89(2) 2.02(2) 1.90(2) 2.06(3)

hϕi (pc ¼ 0.85) 1.91(2) 2.08(3) 2.00(2) 2.17(3) 2.05(2) 2.21(5)
Varϕ (pc ¼ 0.85) 1.90(2) 2.06(3) 1.98(3) 2.14(3) 2.02(3) 2.18(5)

MC 1.81 1.93 1.98 2.14 2.10 2.29

TABLE V. Relative errors of the ML prediction, jβML
c − βMC

c j=βMC
c , using different methods (mean values and

standard deviation by averaging over ten neural networks). The first three rows do not depend on pc.

4 × 162 4 × 322 6 × 162 6 × 322 8 × 162 8 × 322

L slope 2.21(1)% 4.67(237)% 4.04(1)% 1.64(176)% 6.66(350)% 10.05(524)%
hpðϕÞi 2.49(83)% 3.11(104)% 3.28(115)% 3.74(140)% 7.62(95)% 8.52(118)%
VarpðϕÞ 1.38(83)% 1.82(166)% 5.05(168)% 4.91(107)% 8.81(152)% 9.61(107)%

hϕi (pc ¼ 0.5) 1.88(66)% 2.59(127)% 3.79(76)% 4.21(148)% 7.62(95)% 9.39(109)%
Varϕ (pc ¼ 0.5) 0.72(50)% 1.35(78)% 4.55(101)% 5.61(114)% 9.28(71)% 10.26(117)%

hϕi (pc ¼ 0.85) 5.52(110)% 7.77(172)% 1.31(76)% 1.54(110)% 2.38(106)% 3.58(199)%
Varϕ (pc ¼ 0.85) 4.97(123)% 6.48(139)% 1.52(72)% 1.12(84)% 3.57(160)% 4.58(196)%
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confusion”) of the phase label ϕ with the threshold
ϕc ¼ 0.85. The other criteria listed in Table IV give
similar predictions but with globally lower accuracy
according to Table V.
While we notice that the results are quite close to each

other, the biggest mismatch comes from the lattices with the
smallest temporal extension Lt ¼ 4. At larger sizes Lt ¼ 6
and Lt ¼ 8, which are closer to thermodynamic limit, the
agreement between the real (MC) and the predicted (ML)
values is much closer.We suggest that this mismatch appears
because the network cannot distinguish between isolated
monopoles and antimonopoles at one side and monopole-
antimonopole pairs bound via the periodic boundary at the
other side. This effect naturally overestimates the density of
the unbound monopoles and gives an overestimated pre-
diction of the deconfining coupling (temperature) β, as it is
seen in Fig. 13. This unwanted effect disappears closer to the
thermodynamic limit at larger temporal extensions Lt.
Finishing this section, we would like to comment on the

errors of our approach. We see that the pc-independent and
pc ¼ 0.5 methods give results with similar errors. The
latter grow with the size of the lattice.

There exist different possibilities for mitigating the errors
due to the extrapolation at higher lattice sizes. A first
possibility is to change the probability threshold pc in the
decision function (21). We found that a probability thresh-
old pc ¼ 0.85 gives much better results. The reason for this
improvement is that the neural network is conservative
towards the results for Lt ¼ 4 and Ls ¼ 16 where βc is
lower. Increasing pc pushes the transition further as it
moves more configurations in the confined phase.
However, it could be necessary to increase further the
values when extending at even larger lattices. Another
possibility would be to find a function pc ¼ pcðLt; LsÞ by
considering the results on few lattices (this method is
interesting when one wants to make predictions for a
number of lattices much higher than the one used for
training: in that case, it is fine to “lose” some lattices for
training without reducing much the predictive power).
Another possibility to reduce the errors is to find a

pattern in the errors made in the predictions of βc. In fact,

(a)

(b)

FIG. 11. (a) Mean hpðϕÞi and (b) variance VarpðϕÞ of the
distribution pðϕÞ for different lattice geometries.

FIG. 12. Relative errors in terms of Lt and Ls for βc computed
from hpðϕÞi.

FIG. 13. The critical coupling constant βc of compact electro-
dynamics at various lattices L2

s × Lt. The full symbols: the
Monte Carlo results obtained from the original gauge-field
configurations. The open symbols: the prediction of the neural
network based on monopole configurations only.
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one finds that the relative error grows linearly with Lt
(Fig. 12). This observation could in principle be used to
correct the predictions if one knows the correct result for
few lattices.
In both cases, a proper analysis would require to extend

the learning process to different lattice sizes that can be
understood as a form of boosting (a ML technique to
correct iteratively a result). This analysis goes beyond the
scope of the present paper which focuses on what can be
learned by training a neural network on a single lattice size.

V. CONCLUSIONS

We applied the machine learning techniques to inves-
tigate the phase transition produced by the dynamics of
topological defects. We used the compact U(1) gauge
theory in three spacetime dimensions, which exhibits the
deconfining phase transition associated with the binding
of the Abelian monopoles at a critical temperature. The
system goes from the monopole gas at low temperature
to a gas of monopole-antimonopole pairs at high temper-
ature through an infinite-order phase transition of the
Berezinskii-Kosterlitz-Thouless type.
The neural network uses the supervised learning tech-

nique to acquire knowledge about monopole configurations
generated by the standard Monte Carlo technique. The
network processes the monopole configurations as holo-
grams (three-dimensional images) and studies how to
associate these monopole holograms with the vacuum
expectation value of the Polyakov loop (the order parameter
of the transition) at relatively small lattices.
After completion of the training stage, the neural net-

work uses the monopole configurations at larger-volume
lattices to distinguish confinement and deconfinement
phases, determine the deconfinement transition point,
and predict monopole densities as well as the expectation
values of the Polyakov loop.
We show that the model can determine the transition

temperature with reasonably good accuracy, which depends

on the criteria implemented in the algorithm. In agreement
with Ref. [20], we found that the best criterion for locating
the phase transition corresponds to the degree of the
confusion experienced by the neural network engaged with
the task to determine the transition point. The maximum
confusion appears in the close vicinity of the transition,
seen via the enhanced variance of the probability of finding
a definite phase.
Expectedly, the neural network is successful in the

prediction of the mean monopole density. While the
predicted Polyakov loop differs from the behavior of
the original order parameter, the critical inflection points
of both quantities are close to each other.
We conclude that the neural network can see the position

of the deconfining phase transition—using the maximum
confusion as reliable criterion—sensing the transition via the
holograms of magnetic monopoles. The neural network
correctly addresses the thermodynamic bulk properties being
able to extrapolate its predictions to lattices with different
volumes.
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