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An analysis is presented of elastic P-wave ππ phase shifts and inelasticities up to 2 GeV, aimed at
identifying the corresponding JPC ¼ 1−− excited ρ resonances and focusing on the ρð1250Þ vs ρð1450Þ
controversy. The approach employs an improved parametrization in terms of a manifestly unitary and
analytic three-channel Smatrix with its complex-energy pole positions. The included channels are ππ, ρ2π,
and ρρ, the latter two being effective in the sense that they mimic several experimentally observed decay
modes with nearby thresholds. In an alternative fit, the ρ2π mode is replaced by ωπ, which is also an
experimentally relevant channel. The improvement with respect to prior work amounts to the enforcement
of maximum crossing symmetry through once-subtracted dispersion relations called GKPY equations. A
separate analysis concerns the pion electromagnetic form factor, which again demonstrates the enormous
importance of guaranteeing unitarity and analyticity when dealing with very broad and highly inelastic
resonances. In the case of ρð1250Þ vs ρð1450Þ, the failure to do so is shown to give rise to an error in the
predicted mass of about 170 MeV. A clear picture emerges from these analyses, identifying five vector ρ
states below 2 GeV, viz. ρð770Þ, ρð1250Þ, ρð1450Þ, ρð1600Þ, and ρð1800Þ, with ρð1250Þ being indisputably
the most important excited ρ resonance. The stability of the fits as well as the imposition of unitarity,
analyticity, and approximate crossing symmetry in the analyses lend very strong support to these
assignments. The possibly far-reaching consequences for meson spectroscopy are discussed.
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I. INTRODUCTION

The experimental status of meson resonances with
masses ranging from 1 to 2 GeV is very poor. Many states
expected from the quark model have not been observed so
far, whereas several apparently normal resonances listed in
the Particle Data Group (PDG) tables [1] do not fit in with
mainstream quark models like, for instance, the relativized
meson model by Godfrey and Isgur (GI) [2]. In Ref. [3],
some of the obvious discrepancies were briefly reviewed,
e.g., concerning the many observed f2 states (with
JPC ¼ 2þþ) to be contrasted with the much fewer ones
predicted in the GI model. Another disagreement is the
relatively low mass of the strange vector meson K⋆ð1410Þ,
the first radial excitation of K⋆ð892Þ, which is predicted
almost 200 MeV higher in the GI and similar quark models.
On the other hand, ρ0, the first radial excitation of ρð770Þ, is

listed by the PDG as ρð1450Þ [1], which is difficult to
reconcilewith a lighterK⋆ð1410Þ, as the latter state contains
one strange quark and one light quark instead of two light
quarks. However, under the ρð1450Þ entry in the PDG
meson listings, one finds a large variety of experimental
observations, with a huge mass range of 1208–1624 MeV,
also depending on the particular strong decay mode. As a
matter of fact, there have been many indications of a lighter
ρ0, roughly in the range 1.25–1.3 GeV, which we shall
examine in more detail in the next section.
The importance of more accurately knowing the ρ0 mass,

and of course that of K⋆0, should not be underestimated.
Quark models based on the usual Coulomb-plus-linear
interquark potential, with a running strong coupling con-
stant in the Coulombic part, predict increasing radial
splittings for lighter quarks. Therefore, a ρ0 mass signifi-
cantly lower than the value predicted in the GI and largely
equivalent models would pose a serious challenge to such
approaches. Now, it is true that the precise mass of a broad
resonance like ρ0 depends on the way the corresponding
scattering data are analyzed. In that respect, the usual Breit-
Wigner (BW) parametrizations can be very unreliable,
possibly leading to deviations of the order of 10 MeV
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for ρð770Þ and even more than 100 MeV in the case of ρ0
[4]. The reason is that multi-BW parametrizations typically
do not satisfy unitarity, which becomes a very serious issue
in highly inelastic processes like those in which ρ0 is
observed. Another problem, this time on the theoretical
side, is the usual static approach to mesonic resonances in
most quark models, treating them as manifestly stable
bound states of a quark and an antiquark. Coupled-channel
effects from meson loops, due to both open and closed
meson-meson decay channels, may give rise to sizable
mass shifts, alongside producing a large width. For in-
stance, in the multichannel unitarized quark model of
Ref. [5] a bare ρ0 mass of 1.48 GeV is lowered by about
190 MeVowing to coupled channels, resulting in a physical
ρ0 mass of 1.29 GeV. However, in the latter model, a
completely different confinement interaction is employed,
leaving doubts about the precise size of such unitarization
effects in mainstream quark models. Moreover, also the
ground states as well as the higher radial excitations may
suffer considerable mass shifts [5], so that a refit of all
parameters will have to be carried out when unitarizing any
particular model.
A further important piece of information comes from

recent lattice-QCD calculations. In Ref. [6], masses of light
and strange hadrons were computed in an unquenched
simulation, but with only (anti)quark interpolators included
and so resulting in purely real spectra. Thus, the mass of the
first radial excitation of K⋆ð892Þ was found to be slightly
above 1.6 GeV. On the other hand, in Ref. [7], members of
the same lattice collaboration study P-wave Kπ scattering
in a simulation with both quark-antiquark and meson-
meson interpolators. Here, they employ Lüscher’s [8]
method to extract Kπ phase shifts from discrete energy
levels for different lattice sizes. The resulting phases are
in good agreement with the data, including the K⋆ð892Þ
mass and even its width in an extrapolation to the
physical pion mass. The big surprise is the mass of the
first radial excitation of K⋆ð892Þ, coming out at
ð1.33� 0.02Þ GeV, that is, about 300 MeV lower than
in the former lattice simulation, without meson-meson
interpolators. Admittedly, the latter calculation amounts
to an approximation, as only the Kπ decay channel is
included, thus treating theK⋆0 as a purely elastic resonance.
Nevertheless, the importance of accounting for unitarity
when doing spectroscopy in a quantitatively reliable fash-
ion is unmistakable corroborated.
The present paper aims at clarifying the status of ρ0 and

also the higher vector ρ excitations, by reanalyzing old
data on ππ scattering, viz. elastic phase shifts and inelas-
ticities up to about 2 GeV. The employed model of analysis
is a manifestly unitary three-channel S-matrix para-
metrization, in which the complex pole positions of the
different ρ resonances are explicitly included through
generalized BW-type expressions. Moreover, (approxi-
mate) crossing symmetry is enforced by minimizing in

the fits the difference between the experimental real parts of
amplitudes and the theoretical ones resulting from
dispersion relations. The three included channels are ππ,
as well as the effective channels ρ2π and ρρ, with the latter
ones mimicking 4π final states. For further details, see
Sec. III.
The paper’s organization is as follows. Section II exten-

sively reviews the status of ρð1250Þ vs ρð1450Þ in decades
of literature. Section III describes the done S-matrix
analyses of ππ phase shifts and inelasticities with the
imposed crossing-symmetry constraints. In Sec. IV, an
analysis of the pion electromagnetic form factor further
illustrates the necessity of a unitary and analytic approach
to very broad inelastic resonances. Section V is devoted to a
general discussion of the results and conclusions.

II. ρð1250Þ VS ρð1450Þ IN EXPERIMENT
AND MODELS

The first time a ρ0 resonance was included in the PDG
tables dates back to 1974 [9], with the entry in the data-card
listings called ρ0ð1250Þ. Its mass and width were listed as
1256 MeV and 130 MeV, respectively, from Ref. [10]. In
the latter paper, evidence was found of two opposite-parity
spin-1 ωπ resonances at about 1250 MeV in p̄p annihi-
lations at rest. The vector state could correspond to the ρ0

and the pseudovector (JPC ¼ 1þ−) to what is nowadays
called b1ð1235Þ [1]. To our knowledge, though, the earliest
indication of a possible ρ0 goes back to 1970 and was
reported in Ref. [11], also cited in Ref. [9]. In this
experiment, neutral bosons were observed in photoproduc-
tion on protons, including a resonance at about 1240 MeV
with a width of roughly 100 MeV [11]. The authors
tentatively identified this state with the pseudovector “B”
[now b1ð1235Þ] meson. However, not having determined
the JPC quantum numbers, they concluded:

“it is possible that this particle could be an as-yet-
undiscovered vector meson.”

No further vector mesons were found in the energy region
1.3–2.0 GeV with a cross section larger than 5% of that of
ρ0ð770Þ (90% confidence level [11]).
Over the following years several experiments and analy-

ses [12–19] reported a possible ρ0 roughly in the range 1.2–
1.3 GeV. The most affirmative identification was the ωπ0

enhancement observed [18] in photoproduction on protons,
with mass ∼1.25 GeV, width ∼0.3 GeV, and a dominant
vector component. Note that this paper is cited in the PDG
[1] under the ρð1450Þ entry, in spite of the 200-MeV mass
discrepancy. Also referred there [1] is Ref. [17], concerning
the ωπ mode as well.
In 1982 [20] and 1983 [5], 1982 two quark-model

calculations [5,20] reported support for a ρ0 below
1.3 GeV, while also describing its small ππ cross section.
Starting with Ref. [5], this above-mentioned unitarized
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multichannel quark model [5] was applied to vector and
pseudoscalar mesons. The resulting P-wave ππ cross
section reasonably reproduced the ρð770Þ mass, width,
and pole position, while also predicting a ρ0 pole with a real
part of 1.29 GeV, though with a too small width. At this
energy, the ππ cross section revealed a very small enhance-
ment on top of the ρð770Þ tail (see Ref. [5], Fig. 4).
Furthermore, the relativistic quark model of Ref. [20]
predicted a ρ0 at about 1.22 GeV, explaining its small ππ
width as a combined effect of the nodal structure of the
radially excited ρ0 and the Lorentz-contracted wave func-
tions of the outgoing two pions. Also of interest is the
amplitude analysis of the coupled ωπ; ππ system in
Ref. [21], which explained the difficulty to observe a ρ0
in ππ scattering between 1.1 and 1.3 GeVas being due to a
small yet dominant inelastic background in that energy
region.
The ρð1250Þ entry in the PDG was maintained up till

1986 [22]. Things changed in 1987 with a combined
analysis [23] of two-pion and four-pion data from γp
and eþe− processes, resulting in the postulation of two
excited ρ resonances, with the masses 1.465 and 1.7 GeV.
Curiously, no ρ0 below 1.3 GeV was even considered in the
different fits to the data, in spite of its systematic inclusion
in the PDG tables since 1974. As a matter of fact, no
mention at all of such a resonance was made in Ref. [23].
On the other hand, the GI relativized quark model [2]
mentioned above was explicitly cited, for having predicted
the ρ0 at a mass of 1.45 GeV and the corresponding 13D1

state at 1.66 GeV, i.e., values very close to the ones found in
these fits [23]. A key feature in the latter analysis is the
authors’ (unproven) conjecture, in the context of the vector-
meson-dominance model for photoproduction, that the off-
diagonal transitions 13S1 → 23S1 and 13S1 → 13D1 have
cross sections comparable to the transitions 13S1 → 11P1

and 13S1 → 13D3, which correspond to the diffractive
photoproduction of the 1þ− “Bð1250Þ” meson [now called
b1ð1235Þ] and 3−− “g(1690)” [now ρ3ð1690Þ [1]], respec-
tively. The subsequent 1988 PDG edition [24] then
included the new entries ρð1450Þ and ρð1700Þ, while
completely eliminating the ρð1250Þ and oddly accommo-
dating the ρð1250Þ observation of Ref. [18] under ρð1450Þ.
This state of affairs has remained unaltered so far [1].
One of the authors of Ref. [23] published several more

papers on the ρ0 and related issues, which merit some
further attention. The first of these appeared in 1991 [25], in
a reaction to a new observation [26] of a ρ0 below 1.3 GeV,
with a mass 1266 MeVand a width 166 MeV. These vector-
resonance parameters resulted from a partial-wave ampli-
tude analysis of the πþπ− system observed with the LASS
spectrometer at SLAC for the reaction K−p → πþπ−Λ at
11 GeV. In Ref. [25], the authors claimed that

“the interpretation of the LASS state at 1.27 GeV as a
radial excitation of the ρ can in all probability be ruled

out on the basis of its very small electromagnetic
coupling.”

Note, however, that Ref. [26] did not make any statement
about this coupling or the associated ρð1270Þ → eþe−
width. Instead, the authors of Ref. [25] carried out a
BW fit including ρð770Þ, a “ρx” with fixed mρx ¼
1.27 GeV and Γρx ¼ 0.17 GeV, a “ρ1” with fixed mρ1 ¼
1.44 GeV and Γρ1 ¼ 0.36 GeV, and a “ρ2” with mass and
width to be adjusted to the data, resulting in mρ2 ¼ ð1.73�
0.02Þ GeV and Γρ2 ¼ ð0.29� 0.07Þ GeV. The problem is
that such a BW description of overlapping resonances
violates S-matrix unitarity [27], which is all the more
serious for extremely broad states, as in the present case.
Moreover, the conclusion [25] that the found ρx → eþe−
width is too small was based on a comparison with GI
model predictions [2], the very same ones that were
claimed to be incompatible with a prior [23] analysis of
ρ0 and ρ00. Another curiosity in Ref. [25] is the following
conclusion: “Thus, there does not seem to be a strong case
for the interpretation of the LASS state as an exotic.” This
contrasts with several later collaborative works [28–31] of
one of the authors of Ref. [25], which advocated the
interpretation of the LASS “ρx” resonance as a cryptoexotic
four-quark state (having nonexotic quantum numbers).
However, such an assignment would require [29] the
existence of a narrow isoscalar partner state “ωx” at about
1.1 GeV, for which there is no experimental evidence. The
very broad h1ð1170Þ [1] is the only isoscalar J ¼ 1
resonance with a nearby mass, and it is easily interpreted
as a normal unflavored 1þ− qq̄ state.
Despite the dominant consensus on ρ0 at 1.45 GeV and

the corresponding 13D1 state at 1.7 GeV, several later
experiments and analyses contradict this picture. The
OBELIX [32] spin-parity analysis of p̄p → 2πþ2π− anni-
hilations at very low momentum resulted in the clear iden-
tification of a ρ0 resonance with mass (1.282� 0.037) GeV
and width (0.236� 0.036) GeV, i.e., values compatible
with those [26] of the LASS Collaboration. More recently,
a combined two-channel S-matrix and generalized BW
analysis of P-wave ππ phase shifts and inelasticities up to
1.9 GeV was carried out [33], satisfying analyticity and
multichannel unitarity. As a result, not only was a ρð1250Þ
firmly established for both methods of analysis, but
evidence of higher ρ excitations was also found, viz. at
roughly 1.6 and 1.9 GeV. Remarkably, a further state at
about 1.45–1.47 GeV could be accommodated as well,
though its inclusion in the fits turned out to be almost
immaterial. A generalization of the mentioned two-channel
S-matrix parametrization to three channels in Ref. [34]
largely confirmed these results, the most significant differ-
ence being the prediction of a higher ρ excitation at about
1.8 GeV instead of 1.9 GeV. Let us finish this discussion of
the literature on ρð1250Þ vs ρð1450Þ by quoting D. V.
Bugg [35]:
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“It is not clear how to assign 1− states to these [Regge]
trajectories. The ρð1450Þ does not seem to fit naturally
as the first radial excitation of the ρð770Þ.”
In the next section, we shall outline in detail our present

method of analysis, which amounts to a further improve-
ment of the analyses performed in Refs. [33] and [34], by
also imposing constraints from crossing symmetry.

III. ρð1250Þ FROM AN ANALYSIS WITH
CROSSING-SYMMETRY CONSTRAINTS

The most recent confirmation of ρð1250Þ, fully sup-
ported by physical and mathematical arguments, resulted
from a dispersive analysis [36] of the amplitudes in three
coupled P-wave decay channels, with a built-in crossing-
symmetry condition in the ππ channel. A more detailed
account of this work appeared in the PhD thesis of one of
the present authors (VN) [37], from which we have selected
the most important results and figures for the present paper
and section.
Besides the ππ channel, for which experimental phase

shifts and inelasticities were available, two additional,
effective channels were included in the analysis, which
should simulate the dominant three- and four-body decays
of the ρ excitations. The problem here is that higher ρ
resonances have many observed decay channels, which
would be unfeasible to account for completely in our S-
matrix approach, as it would lead to a proliferation of
Riemann sheets and complex poles. Therefore, we are
guided by the decay modes in the PDG listings [1],
considerations from channel couplings, and the ππ phase
shifts themselves. Thus, under the PDG ρð1450Þ entry, we
notice the modes a1ð1260Þπ, h1ð1170Þπ, πð1300Þπ, and
ρðππÞS�wave, all included in the 4π decays. Now, a1ð1260Þ,
h1ð1170Þ, and πð1300Þ all decay mostly to ρπ, so that we
have three decay channels of an excited vector ρ state that
do not lie very far apart and all lead to a quasifinal state of
ρππ, with 4π being of course the true final state. And then
there is the ρðππÞS-wave channel, which will naturally be
dominated by the f0ð500Þ (alias σ) resonance, with central
threshold in the same energy ballpark. So we mimic these
decays by including one ρ2π channel, with a threshold at
1055 MeV. Of course, the mentioned four channels have
central thresholds that lie 195–385 MeV [1] higher, but the
involved resonances are extremely broad, so that opening
our effective channel at the ρ2π threshold seems reason-
able. As for the third effective channel to be included in our
analysis, we note that an isovector vector state couples very
strongly to a P-wave ρρ state, which is just a matter of
recoupling coefficients of spin, isospin, and orbital angular
momentum [5]. Indeed, under the PDG [1] ρð1700Þ
entry, we see the ρρ decay mode among the “dominant”
ρππ decays, besides the already considered a1ð1260Þπ,
h1ð1170Þπ, and πð1300Þπ modes. Now, the central PDG
threshold mass of the ρρ channel is 1550 MeV, but also the

ρ is a relatively broad resonance, so that it is reasonable to
open this channel at a somewhat lower energy. Thus, a
value of 1512 MeV was obtained already in Ref. [34], upon
fitting the P-wave ππ phase shifts, which is the threshold
value we keep in the present analysis, too. Note that in
Refs. [34,37], this effective channel was called ρσ, but we
now prefer to call it ρρ. Clearly, the ρf0ð500Þ channel will
also contribute to the ρð1700Þ decays just as to those of
ρð1450Þ, in spite of this mode not being listed under the
ρð1700Þ PDG entry [1]. Nevertheless, the designation ρρ
appears more appropriate for our third effective decay
channel.
These three channels were included in the analyses in

Refs. [34,36,37], the methods and results of which we
discuss below. However, when considering ρð1250Þ
decays, special attention should be paid to the ωπ decay
mode observed in several experiments [1]. So in order to
have a more complete analysis, we now also do a fit
replacing the ρ2π channel by ωπ, with the threshold at
922 MeV. The corresponding results we will discuss below,
right after presentation of the methods used in our fits.
The simple phenomenological approach in this descrip-

tion is not based on some model with a phenomenological
potential, but rather on a careful analysis of the S-matrix
poles of certain resonances on different Riemann sheets of
the complex energy plane. Among the free parameters in
the amplitudes, fitted to the experimental data and to
dispersion relations called GKPY equations [38], are the
complex pole positions themselves, making the obtained
results largely model independent. This also allows to avoid
problems from searching for poles by analytically contin-
uing the amplitudes into the complex energy or momentum
plane, as the pole positions are determined directly in
the fits.
The amplitudes are fully unitary and analytical, viz. of

the form,

AklðsÞ ¼
1

2i
Skl − δkl
1 − 4m2

s

; ð1Þ

where s is the effective two-pion mass squared, and the Skl
are S-matrix elements. For example, in the case of the ππ
channel, such an element reads

S11 ¼ η11e2iδ11 ¼ Sres11S
bgr
1 ¼ d�resð−w�Þ

dresðwÞ
Dbgrðk1Þ; ð2Þ

and expressions for other matrix elements are given in
Eq. (6) of Ref. [34]. Phase shifts and inelasticities are
denoted by δ11 and η11. For simplicity, they will be just
called δ and η further on in the text. The S-matrix factors
Sres and Sbgr stand for resonant and background parts,
respectively, while dres are the Jost functions, which contain
all the dynamics of the interacting particles, both in
individual channels and between them. The momenta in
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a given channel are denoted by ki, and the uniformizing
variable w is defined as

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s − s2

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
s − s3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3 − s2

p ; ð3Þ

where s2 and s3 are the thresholds of the second and third
channel, respectively. The variable w transforms the eight-
sheeted Riemann surface into a simpler complex plane.
A resonance pole is given by

ffiffiffiffi
sr

p ¼Er−iΓr=2, with Er the
resonance mass and Γr its full width. So for s ¼ sr, we have

wr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sr − s2

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sr − s3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3 − s2

p ; ð4Þ

and the resonance contributions Sres are defined as

dresðwÞ ¼ w
−M
2

YM
r¼1

ðwþ w�
rÞ; ð5Þ

where M is the number of all poles. The background
function has the form,

Dbgrðk1Þ ¼ exp

�
2ia − 2b

�
k1
m1

�
3

Θðs; s2Þ
�
; ð6Þ

with Θðs; s2Þ the Heaviside function (¼ 1 for s > s2) and
where a and b are real numbers.
In the analysis of Ref. [34], (prior to Ref. [36]), the whole

mathematical formalism described above was presented,
and poles connected to a given resonance yet lying on
different Riemann sheets were grouped into so-called
clusters. These Riemann sheets depend on the number
and type of analyzed channels. In the N-channel case, the S
matrix is defined on a 2N-sheeted Riemann surface.
Riemann sheets are numbered according to the signs of
the imaginary parts of the relative momenta in all channels.
So for three channels, there are eight Riemann sheets on
which the poles can lie, and they are numbered as follows:
Iðþ;þ;þÞ, IIð−;þ;þÞ, IIIð−;−;þÞ, IVðþ;−;þÞ,
Vðþ;−;−Þ, VIð−;−;−Þ, VIIð−;þ;−Þ, and VIIIðþ;þ;−Þ.
Grouping into clusters is achieved by a weak albeit
significant restriction on the freedom of the poles’ move-
ment, always occurring as a result of the coupling between
channels. As a result of the fits to the data for phase shifts
and inelasticities in the ππ channel below 2 GeV (see
Chap. III and Fig. 2 in Ref. [34]), five resonances lying on
various Riemann sheets were thus found, namely ρð770Þ,
ρð1250Þ, ρð1450Þ, ρð1600Þ, and ρð1800Þ.
The same amplitudes were then used in the later

works [36,37]. However, three important changes were
introduced:
(a) the restrictions on the movement of poles as a function

of coupling between channels were removed;

(b) the tested amplitudes (in S, P, D, and F waves) were
subjected to the limitation resulting from fulfilling
crossing symmetry in the ππ channel up to about
1100 MeV;

(c) a threshold expansion with four parameters was used
below about 640 MeV.

Removing the restrictions in point (a) only leads to
significant shifts of pole positions for two of them,
associated with the ρð770Þ cluster. They shift by several
hundred MeVand thus produce very small phase shifts and
inelasticity, typical for a weak background. It can be said
that these become “background poles.” Two other poles of
ρð770Þ and all the others of the higher ρ states shift by only
a few MeV or less. The limitation in point (b) is done by
introducing in χ2total a component χ2CS corresponding to the
mentioned crossing symmetry (CS). The imposition of this
symmetry is controlled by

χ2CS ¼
XN
i

½ReAðinÞðEiÞ − ReAðoutÞðEiÞ�2
ϵ

; ð7Þ

where N ¼ 26 is number of chosen energies (between the
ππ threshold and 1100 MeV) at which χ2CS is calculated,
and ϵ is fixed at 0.01 in order to make the size of χ2CS
comparable to the other contributions to χ2total (i.e., the χ

2
data

parts). Furthermore, ReAðinÞðEÞ is the real part of the
amplitude used to fit the data and the GKPY equations,
while ReAðoutÞðEÞ is the same quantity yet calculated
through the dispersion relations,

ReAIðoutÞ
l ðsÞ ¼

X2

I0¼0

CII0
st aI

0
0 þ

X2

I0¼0

X4

l0¼0

× ̶
Z∞

4m2
π

ds0KII0
ll0 ðs; s0ÞImAI0ðinÞ

l0 ðs0Þ: ð8Þ

Here, CII0
st is the crossing matrix between ππ channels with

isospin I and I0, aI00 is the S-wave scattering-length vector
for isospin I0, and KII0

ll0 ðs; s0Þ are the corresponding kernels
for once-subtracted dispersion relations with imposed
crossing symmetry. As demonstrated in Ref. [38], these
dispersion relations produce significantly smaller errors in
the computed amplitudes [actually in their real parts, from
Eq. (8)] than the well-known Roy [39] dispersion relations
with two subtractions. In practice, the integrals in Eq. (8)
are done from the ππ threshold up to about 2 GeV, because
data are lacking at higher energies and so-called driving
terms are used thereabove. These driving terms have the
same structure as the kernel but are not related to the
experimental input amplitudes AI0ðinÞ

l0 ðs0Þ. Their s and t
dependence is given by Regge parametrization.
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The amplitudes in Ref. [34] had a bad threshold
behavior; i.e., they produced incorrect ππ scattering
lengths. Nevertheless, this did not prevent obtaining very
reasonable results for the resonance pole positions of the
different ρs for lying far above the ππ threshold. However,
when carrying out fits to the GKPY equations in
Refs. [36,37], the threshold behavior of the amplitudes
became very important, since the integrals in Eq. (8) start at
threshold and the amplitudes there are the least suppressed
by the dependence of the kernels on s (for explicit formulas
of the kernels, see the Appendix of Ref. [38]).
In order to improve the near-threshold behavior of the

amplitudes [point (c) above] from Ref. [34], the original
amplitude in Eqs. (1)–(6) is replaced by a polynomial
below about 640 MeV (this value resulted from fits to the
data and the GKPYequations). The polynomial is merely a
generalized near-threshold expansion in powers of the pion
momentum k, viz.

ReAðsÞ ¼
ffiffiffi
s

p
4k

sin 2δ

¼ mπk2½aþ bk2 þ ck4 þ dk6 þOðk8Þ�; ð9Þ

where a and b are just scattering length and effective range,
respectively, which can be fixed or fitted to the data and to
the dispersion relations. The parameters c and d are free in
the fits to the data and to the GKPYequations, being used to
smoothly match the phase shifts from the polynomial (i.e.,
their values and first derivatives) to the multichannel ones
determined by Eqs. (1)–(6) at the matching energy of about
640 MeV. This value is still below the pole mass of ρð770Þ,
so the effective-range approximation can be used within
these limits, as opposed to, for example, the Swave and the
low-lying f0ð500Þ, in which case the matching energy must
be well below 500 MeV.
This way the ππP wave is fitted simultaneously to the

dispersion relations and the experimental data. The χ2total is
defined as

χ2total ¼ χ2CS þ χ2Data; ð10Þ

where χ2CS defined in Eq. (7) includes input from all six
important partial waves (JI: S0, S2, P1, D0, D2, and F1)
and χ2Data contains only phase shifts and inelasticities of the
P1 wave (hereafter, just called P wave). Merely, this wave

is adjusted during the fits, and changes to all ReAIðoutÞ
l ðsÞ in

Eq. (8) are caused exclusively by modifications of this
single wave. The free parameters are: mass and width of
all P-wave resonances, i.e., for ρð770Þ (eight parameters),
ρð1250Þ (16 parameters), ρð1450Þ (eight parameters),
ρð1600Þ (eight parameters), and ρð1800Þ (eight parame-
ters), the matching energy, and the effective-range param-
eter a from the background part in Eq. (6) (b is fixed at
−0.85 × 10−4 to avoid violating unitarity in the inelastic-
ities above 1.7 GeV). Thus, the maximum number of free

parameters in the fits is 50. The parameters a and b in the
polynomial defined in Eq. (9) are kept fixed at the values
0.0381 m−3

π and 0.00523 m−5
π , respectively.

To avoid ending up in some local minima instead of the
global one, the fits are performed sequentially with an
increasing number of free parameters, viz. as follows:

(i) First step: only matching energy, background param-
eter a, and ρð770Þ, i.e., ten free parameters;

(ii) Second step: as in the first step, plus ρð1250Þ, i.e., 26
free parameters;

(iii) Third step: as in the second step, plus ρð1450Þ,
i.e., 34 free parameters;

(iv) Fourth step: as in the third step, plus ρð1600Þ, i.e., 42
free parameters;

(v) Fifth step: as in the fourth step, plus ρð1800Þ, i.e., 50
parameters.

Additionally, the fits are at each stage carried out repeatedly
with a different number and values of the added resonance’s
initial parameters. The fitted parameters in each step serve
as starting parameters in the next step. In the first step, also
the matching energy and background parameter a are taken
at different initial values. The total number of employed
parameters (50) and their respective numbers for each
resonance are the smallest ones that lead to good values of
χ2total. Increasing them further no longer gives rise to a
significant improvement in χ2total.
As already mentioned above, a relevant decay mode not

considered in our analysis so far is ωπ, which is included
under both the ρð1450Þ and ρð1700Þ PDG [1] entries, with
the corresponding resonance mass ranges of 1250–
1624 MeV and 1550–1800 MeV, respectively. Our choice
to do the main analysis with an effective ρ2π channel instead
of the ωπ channel was based on the consideration that the
effective one should be more important, as it is believed to
account for several observed decay modes. Redoing our
analysis while replacing the ρ2π channel byωπ just amounts
to changing the threshold value to 922 MeV, down from
1055MeV, whereafter again fits to the experimental data and
the GKPY equations are carried out. As a result, the masses
of all resonances (i.e., the real parts of the poles) change only
slightly: ρð770Þ by þ0.1 MeV, ρð1250Þ by þ9.7 MeV,
ρð1450Þ by þ6.5 MeV, ρð1600Þ by þ2.4 MeV, and
ρð1800Þ by −7.5 MeV.
These small changes again show the stability and

reliability of the obtained results. Moreover, comparing
the quality of the two fits (values of χ2) as presented
in Table I, we see that they are essentially equivalent. The
number of degrees of freedom (n.d.f.) in the fit equals 297,

TABLE I. Values of χ2 for the fits with different second
channel.

Channel χ2total χ2total=n:d:f: χ2Data χ2CS

ρ2π 403.1 1.357 294.1 109.0
ωπ 406.4 1.368 296.0 110.4
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that is, 191 data points þ6 × 26 (26 energies for six partial
waves) minus 50 free parameters. In the fit with the ωπ
channel, the energy dependence of the phase shift and
inelasticity does not undergo any significant qualitative
modification and only small quantitative changes.
The following description focuses on our analysis with

ρ2π as the second channel.
The introduction of the three modifications (a), (b), and

(c) does not cause as significant alterations in the Pwave as
in the Swave treated in Ref. [36], but it brings about several
numerical changes. First of all, it is guaranteed that this new
amplitude is not only unitary and analytic like in Ref. [34],
but it also has the correct threshold behavior and fulfills the
crossing-symmetry condition from the ππ threshold up to
about 1100 MeV. This modified amplitude, when fitted to
the data given in Ref. [36] as well as to the GKPY
equations, results in a set of pole clusters from which
these resonance poles, i.e., the ones having by far the
largest effect on the whole amplitude, are presented in
Table II.
In order to efficiently take into account the influence of

all higher ρ decay channels not included in the dresðwÞ Jost
function in Eq. (5), the simplest possible background is
introduced [see Eq. (6)] and fitted to the data as well as the
GKPYequations. As a result, a constant and small phase of
almost −20° and a smoothly increasing small inelasticity
are obtained.
The results presented in Figs. 1–5 are based on the fits

carried out in Refs. [36,37]. Figure 1 displays the ππ phase
shifts and inelasticities fitted to the also shown experi-
mental data. Inspecting this figure and Table I, we clearly
see that the curves reproduce the data very well, all the way
from the corresponding thresholds up to almost 2 GeV,
especially when considering the small errors of the phase
shifts. Experimental data are from Refs. [40–45] for the
phase shifts and from Refs. [40–43], [45] for inelasticity.
Figure 2 shows the P-wave ππ phase shifts due to the

individual resonances, corresponding to poles (all members
of a cluster for a given resonance) on different Riemann
sheets. Of course, only the full phase shift has the correct
threshold behavior, given by a polynomial with fixed
scattering length and effective range. As one would expect,
ρð770Þ has by far the largest influence on the overall
phase, dominating the contributions of the ρ excitations.

Moreover, the second most important resonance is clearly
ρð1250Þ, whereas the smallest effect is due to ρð1450Þ. The
visible yet rather insignificant kinks in the phase-shift and
inelasticity curves right above 1.5 GeV correspond to the
opening of the sharp effective ρρ threshold. Clearly, they do
not affect the quality of the fits at all. Nevertheless, from a
theoretical point of view, it would be desirable to somehow
smear out this threshold so as to account for the ρ width,
and the same for the ρ2π channel. An empirical way to do
this was formulated in Ref. [46], by allowing for complex
masses in the final state. The resulting violation of S-matrix
unitarity was then corrected by redefining Swith the help of
a factorization valid for an arbitrary complex symmetric
matrix. This may be the subject of future work along the
lines of the present analysis.
To properly assess the contribution of individual reso-

nances to the full amplitude, it is very clarifying to compute
it before and after removing those resonances. Figure 3
displays phase shifts for the full amplitude and that without

TABLE II. Pole positions on various Riemann sheets, forffiffiffiffi
sr

p ¼ Er − iΓr=2, of the unitary amplitude fitted to experimen-
tal data and GKPY equations.

Resonance Riemann Sheet Er, Γr=2 (MeV)

ρð770Þ II 765.2� 0.4, 73.1� 0.3
ρð1250Þ III 1264.1� 33, 146.7� 12
ρð1450Þ III 1424.7� 26, 104.9� 24
ρð1600Þ IV 1595.1� 5, 69.5� 4
ρð1800Þ VI 1779.2� 14, 121.9� 16
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FIG. 1. Phase shifts and inelasticities fitted to data taken
fromRefs. [40–45] for thephase shifts and fromRefs. [40–43], [45]
forinelasticity.
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terms from individual resonances. As the amplitude of
ρð770Þ is strongly dominant, especially below 1 GeV,
changes by removing this resonance are not shown,
because they would be too large. Once again, one can
clearly see how important the role of ρð1250Þ is, in contrast
with most notably ρð1450Þ. Its influence dominates
between 1.0 GeV and 1.5 GeV, being comparable to
that of ρð1600Þ and ρð1800Þ thereabove. The ρð1450Þ
contribution is quite small over the entire tested
energy range.
Figure 4 shows the ππ inelasticity η for the full amplitude

and also the individual resonances. One can see very well
that even below 1.5 GeV (near the ρρ threshold) inelasticity
due to the ρð1250Þ amplitude significantly differs from 1,
and together with a part from that of ρð770Þ almost
completely determines the inelasticity of the full amplitude.
Contributions from ρð1450Þ and ρð1600Þ largely cancel
each other between the ρ2π and ρρ thresholds. Above
roughly 1.5 GeV, ρð1800Þ determines the energy depend-
ence of η almost entirely, interfering with the still large but

already rather unstructured ρð1250Þ part comparable in size
to that of ρð770Þ. The contribution of ρð1450Þ to η is very
small above 1.5 GeV. As expected, it only has a minor
maximum at about 1.4 GeV. The significant drop in the full
inelasticity at about 1.6 GeV is mostly determined by
ρð1600Þ, after the opening of the ρρ channel. The role of
the background in building η is small, showing a slow and
smooth rise.
Just as in the case of the phase shift, the energy

dependence of the inelasticity for the amplitude without
a given resonance, i.e., by omitting all poles associated with
it on the different Riemann sheets, is very informative. In
Fig. 5, we see that removing ρð1250Þ would cause the
largest change [after that caused by ρð770Þ] to the inelas-
ticity curve as compared to the one due to the full
amplitude. Similarly, a significant modification would be
caused by leaving out ρð1600Þ or ρð1800Þ, but only around
1600 MeVor thereabove, respectively. Finally, also here we
observe that without ρð1450Þ there would only be a modest
change to η, over a relatively small energy region below
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FIG. 2. Upper figure: phase shift due to individual resonances,
as well as full phase and background; lower figure: enlarged
fragment from the upper figure.
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FIG. 3. Upper figure: phase shift from full amplitude (solid
line) and the same but without ρð1250Þ and ρð1800Þ; lower
figure: as upper figure but enlarged over a reduced energy interval
and also without ρð1450Þ and ρð1600Þ.
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1.5 GeV, having little effect on the shape of the inelastic-
ity curve.
Considering the relationship between resonances and the

inelasticity, one should refer to Eqs. (2)–(5). According to
unitarity, the Jost functions dres in Eq. (5) are constructed
in such a way that their ratio in the unitary S matrix
[Eqs. (1), (2)] has a modulus equal to one in the whole
elastic region. This is due to the full symmetry between the
poles and the zeros there. In the inelastic region (s > s2),
this symmetry is automatically removed (w is no longer
purely imaginary), and the moduli of numerators and
denominators are not equal anymore. The large number
of complex poles (characteristic of such a multiresonance
analysis in a three-channel approach) needed to describe
the data and to meet the crossing-symmetry condition
naturally leads to various interferences among all these
poles, resulting in a total inelasticity consistent with
unitarity and the conditions imposed on the fits. Of course,
the moduli of the d�resð−w�Þ=dresðwÞ ratios corresponding to

individual resonances (i.e., clusters of corresponding poles)
do not have to fulfill the unitarity condition of being smaller
than 1, as can be seen in Fig. 4. The same is true for the tiny
contribution to the inelasticity due to the background term
defined in Eq. (6). Only mutual interferences among all
resonances (poles) and the background produce the physi-
cal (unitary) result. The sometimes reported unitary inelas-
ticity of a particular resonance corresponds to such a
physical result (full η in Fig. 4) but is limited and calculated
in the energy range selected for a given resonance.

IV. ρð1250Þ FROM AN ANALYSIS OF THE PION
ELECTROMAGNETIC FORM FACTOR

Vector isovector mesons below 2 GeV play a very
important role in, for example, the determination of the
pion electromagnetic (EM) form factor. When analyzing
cross sections of eþe− → πþπ− production, this form
factor FEM;I¼1

π ðsÞ appears explicitly and contains informa-
tion on the dynamics of all these mesons,

σtotðeþe− → πþπ−Þ ¼ πα2ð0Þ
3s

β3πðsÞ

×

����FðEMÞI¼1
π ðsÞ þ Reiϕ

m2
ω

m2
ω − s − imωΓω

����
2

; ð11Þ

where the pion “velocity” βπðsÞ ¼
ffiffiffiffiffiffiffiffiffiffi
s−4m2

π
s

q
, R is the

amplitude for ρ − ω mixing interference, and the phase

ϕ ¼ arctan mρΓρ

m2
ρ−m2

ω
is the P-wave ππ phase shift determined

at s ¼ m2
ω.

An analysis in Ref. [4] compared two different

approaches to determining FðEMÞI¼1
π ðsÞ. The first one

was based on the popular Gounaris-Sakurai (GS) [47]
model constructed by assuming that, for a wide energy
range of the elastic region up to 1 GeV, the P-wave
isovector ππ scattering phase shift satisfies a two-parameter
effective-range formula of the Chew-Mandelstam type, i.e.,

qffiffiffi
s

p cot δ ¼ aþ bqþ q2hðsÞ; ð12Þ

where q is the pion momentum in the CM system and hðsÞ
is a simple logarithmic function of q and s. The pion EM
form factor is then given by

FðEMÞI¼1
π ðsÞ ¼

ffiffiffi
s

p
q3

1

cot δðsÞ − i
: ð13Þ

Using the fact that at δ ¼ π=2, the left-hand side of Eq. (12)
vanishes, and comparing with a Breit-Wigner distribution
formula, the first derivative of the phase shift can be given

by 1=mρΓρ, one can express FðEMÞI¼1
π ðsÞ directly in terms

of the ρð770Þ mass and width.
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The other approach employed in Ref. [4] was based on a
very simple unitary and analytic (UA) formula with two
symmetric poles and zeroes representing a resonance. The
left-hand cut was simulated with one pole (and a symmetric
zero). In this way, it was shown [4] that fits to eþe− →
πþπ− experimental cross sections and to elastic ππ phase
shifts (from GKPYequation) made independently using the
GS model and the UA approach give very different results
for the ρð770Þ resonance parameters, especially its mass.
As one can see in Table III, the mass difference is much
larger than the estimated errors, which are similar in size to
those in the PDG tables [1].
More significant differences were found in Ref. [4] for

the two higher ρ states, in fits to cross sections up to pion
momentum squared s ¼ 9 GeV2. The authors of this
analysis pointed out that a generalization of the GS model
above the inelastic threshold done in many experimen-
tal works

“is without any deeper physical background, as the
original G.-S. model for the ρ0 meson contribution was
constructed from the P-wave isoscalar ππ scattering
phase shift given by the generalized effective- range
formula of the Chew-Mandelstam type, which is evi-
dently valid only in the elastic region”.

Nevertheless, to check the quantitative differences between
the GS model and the UA approach above 1 GeV, the
authors did as in some experimental analyses; i.e., they
carried out fits to the data with three ρ states, viz. ρð770Þ,
ρð1450Þ, and ρð1700Þ using the GS model. Then, they

compared the results to those obtained from their enhanced
unitary and analytic amplitude with poles as degrees of
freedom. The results are presented in Table IV and
compared to those from the PDG [1]. It is worth noting
that the number of free parameters in the UA analysis is
smaller (11) than in the GS model (14). And despite the fact
that the values of χ2 per degree of freedom are 1.84 (UA)
and 0.98 (GS), the results of the UA analysis are much
more realistic. In particular, we should draw attention to the
171 MeV lower ρð1450Þmass found in the UA approach as
compared to the GS model, which difference is much larger
than the reported errors in Table IV.
Similarly, significant differences can be found in the

literature for the mass of the very same resonance, which
can often be easily explained by comparing their values
found in, e.g., BW and simple “pole” approaches. In a BW
amplitude, the mass of a resonance is determined by the
energy MBW at which the phase shift passes 90°
(MBW ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2BW þm2

p
for two interacting equal-mass

particles). The unitary “pole” amplitude (like the UA
one used above and in Ref. [4]) has, for one single
resonance, two symmetric poles (and corresponding zeros)
at kr ¼ �a − ib. Then, the phase shift is given by
δ ¼ arctan 2bk

a2þb2−k2, and it is clear that the value δ ¼ 90°

is attained for k ≠ kBW (i.e., 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

p
≠ MBW). This

difference gets larger according as b increases. For ρð770Þ,
the difference between MBW and “pole” mass Mr defined
by the real part of 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r þm2

p
is about 8 MeV, which

explains the discrepancy seen in Table III and found in
many other theoretical and experimental analyses [1]. For
ρð1450Þ, this discrepancy is several dozen MeV, which is
less than the differences seen in Table IV. However, above
1 GeV, one is dealing with a few very broad and highly
inelastic ρ resonances, and a simple reasoning like for
ρð770Þ is completely insufficient, requiring us to also
account for other phenomena typical of resonance inter-
ference. It is worth noting here that by making fits using the
BWand “pole” approaches and comparingMBW andMr for
ρð770Þ, one can additionally request that the decay width
be the same in both approaches. Then, the difference
between these masses is about 5 MeV.
A very good example of such an analysis, which is both

qualitative and quantitative in explaining the phase-shift
behavior around 1250 MeV and the determination of the
pole position in the amplitude, is Ref. [21]. In this work
entitled “Why is the ρ0ð1250Þ not Observed in the ππ
Scattering ?”, an M-matrix parametrization of the ππ and
ωπ partial amplitudes is analyzed and compared with the
parametrization as a sum of the inelastic resonance term
and the background amplitude. A most important qualita-
tive conclusion is that even a small inelastic background
around 1300 MeV can completely hide a ρð1250Þ in the
ππ channel, leading to a nonresonant behavior there of the
ππ phase shifts. The quantitative results of this analysis

TABLE III. Mass and width of ρð770Þ as calculated in the GS
model and the UA approach [4] (see text).

GS UA

Mρð770Þ 774.1� 0.1 MeV 763� 0.5 MeV
Γρð770Þ 140.2� 0.1 MeV 143.9� 0.8 MeV

TABLE IV. Comparison of parameters for three ρ states in the
fits done in Ref. [4] above the inelastic threshold up to pion
momentum squared s ¼ 9 GeV2. For a better comparison, the
values from the PDG tables [1] are also given.

Parameter PDG (MeV) GS (MeV) UA (MeV)

mρð770Þ 775.26� 0.25 774.81� 0.01 763.88� 0.04
mρð1450Þ 1465.00� 25.00 1497.70� 1.07 1326.35� 3.46
mρð1700Þ 1720.00� 20.00 1848.40� 0.09 1770.54� 5.49
Γρð770Þ 147.80� 0.90 149.22� 0.01 144.28� 0.01
Γρð1450Þ 400.00� 60.00 442.15� 0.54 324.13� 12.01
Γρð1700Þ 250.00� 100.00 322.48� 0.69 268.98� 11.40
χ2 pdf 0.98 1.84

14 parameters 11 parameters
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confirm this conclusion: in order to describe the exper-
imental data very well, a background of only a few degrees
around 1300 MeV is sufficient, the real part of the pole then
comes out at about 1220 MeV, the width is roughly
320 MeV, and Γππ=Γωπ ≈ 0.15, the latter ratio being in
reasonable agreement with the available experimental
data [1].

V. CONCLUSIONS

The results of our combined analyses unmistakable
demonstrate the necessity to include a ρ0 resonance at
about 1.26 GeV. The stability of the fitted pole posi-
tions as well as the manifest fulfillment of multichannel
unitarity and optimized crossing symmetry in our
approach lend strong support to the reliability of our
excited ρ states, including the ones at about 1.42 GeV,
1.60 GeV, and 1.78 GeV. Straightforward spectroscopic
arguments then impose the following quark-model assign-
ments: ρð1250Þ=23S1, ρð1450Þ=13D1, ρð1600Þ=33S1, and
ρð1800Þ=23D1. Confirmation of these four states, which
were already found in a previous analysis [34], poses
serious problems to mainstream quark models, unless at
least ρð1250Þ is interpreted as a cryptoexotic tetraquark
state, for which there is no experimental or theoretical
support (also see the discussion of “ωx” above). A ρ0 at
1.25 GeV is very hard to reconcile with the GI [2] model
and similar ones, based on a Coulomb-plus-linear confining
potential with a running strong coupling constant αsðq2Þ.
The only way out would be to consider the GI ρð1450Þ a
“bare” quark-antiquark bound state that upon unitarization
turns into the physical ρð1250Þ resonance, similarly as in
the unitarized quark model of Ref. [5]. However, the latter
model also predicts mass shifts for all other states,
especially the ground state ρð770Þ, besides employing a
completely different confinement mechanism. Therefore,
the complete spectrum including unitarization effects
would have to be computed again in the GI and similar
models, after refitting the parameters. But even more

seriously, it is practically inconceivable that the 33S1 state
in the GI model at 2.0 GeV could be lowered by
unitarization to 1.6 GeV. The problem is that the radial
splitting between the first and second excitation for mesons
with light quarks in the GI model is larger than 500 MeV
[2]. This gives rise to huge discrepancies with the observed
spectra [1] not only for vector states, but also for tensors
like the f2 [3,34], as already mentioned in Sec. I. Therefore,
one must either present very convincing arguments why
some of the resonances identified in the present and
previous [33,34] analyses should be interpeted as cryp-
toexotic states or consider the possibility that the Coulomb-
plus-linear confining potential with a running coupling
constant is inadequate, at least in the way it is usually
implemented in quark models.
Regardless of these considerations, we believe to have

made a convincing case for ρð1250Þ, which should finally
be rehabilitated in the PDG tables with a separate entry.
Further experimental analyses that do respect multichannel
S-matrix unitarity would be most welcome, of course,
besides realistic model and lattice calculations accounting
for unitarization effects.
The problem with new experimental data is that they will

most likely result from production processes and not elastic
scattering, making their direct inclusion in an analysis as
described in the present paper problematic. A possible way
out would be applying the formalism for relating produc-
tion and scattering amplitudes as outlined in Ref. [48] to
our multichannel S-matrix approach. Also, this will be a
topic of future research.
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