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Color superconductivity in a self-consistent NJL-type model
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In this paper, the NJL-type model is used to investigate the color superconductivity. The four-fermion
interactions of the NJL-type model are Fierz-transformed into two different classes, i.e., the quark-
antiquark and the quark-quark interaction channels, associated with the chiral symmetry breaking and color
superconductivity respectively. We conclude that the weighting factor between quark-antiquark and quark-
quark interaction channels has significance on the phase structure when the mean-field approximation is
employed, and the baryon number density gives a tight constraint on the weighting factor of quark-
antiquark interaction channels. Besides, the susceptibilities show that the color superconducting phase
transition is of the second-order and takes place before the chiral crossover transition as quark number
density increases. In the end, we study the critical temperatures 7. of the color superconductivity and it
agrees with the perturbative result of diquark condensate A =~ 0.57T ..

DOI: 10.1103/PhysRevD.102.054028

I. INTRODUCTION

It is believed that the strong interaction matter exhibits
very rich phase structures at large baryon density, i.e., the
hadronic matter is converted into the quark matter through a
deconfinement phase transition and/or a phase transition
of chiral symmetry restoration. It is known that, due to an
arbitrary weak attraction, Fermi systems at low temperature
will become Cooper instable [1]. Such as electrons in
opposite momentum and spins are paired below the critical
temperature 7., which lower the free energy of electrons.
Inspired by the BCS theory, similar to the attraction
between electrons caused by the phonons, the quarks
can also be attractive to each other by gluons at low
temperature and large baryon density. Thus, analogy to
superconductivity, there exists color superconductivity at
large density, which may be found in the center of compact
stars [2-7]. Due to asymptotic freedom, the running
coupling is weak enough and then the perturbative method
can be applied so that quarks are in the BCS-type super-
conducting state [8—11]. In 1984, D. Bailin and A. Love
employ the perturbative method to study color super-
conductivity, and the magnitude of the superconducting
gap and critical temperature were found around 1 MeV
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[12]. However, at the end of the 1990s, the color super-
conductivity was investigated with effective field theories
and the color superconducting gaps can reach the order
of 100 MeV at quark chemical potential y ~ 500 MeV
[13—18]. Such huge gaps play a critical role in the structure
of compact stars and the QCD phase diagram.

In this paper, the Nambu—Jona-Lasinio (NJL)-type
model is used to discuss the color superconductivity.
The interactions related to the color superconductivity
can be obtained by the Fierz transformation to four-fermion
interactions. In this way, the quark-quark interaction
channels under mean-field approximation turn to diquark
condensate, which can be regarded as the order parameter
of color superconducting phase transition. In the previous
works [15-18], the coupling constant of the quark-quark
interaction channels is 3/4 times that of quark-antiquark
interaction channels, i.e., Gp = (3/4)G, in [5], which can
be obtained through Fierz transformation. This assumes the
original quark-antiquark interaction channels and the Fierz
transformed diquark interaction channels are equally com-
bined. However, since the original Lagrangian and Fierz-
transformed Lagrangian are mathematically identical, one
can in principle take a linear combination of them with
weighting factors @ and 1 — a respectively. It should be
noted here that the “correct” choice of the weighting factor a
can be motivated only by physical reasoning, not by plain
mathematics. Put differently, the Fierz transformation as
such is exact, no matter what interaction channel we choose.

© 2020 American Physical Society
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This is similar to the cases of [19-23], in which the scalar
interaction channel is Fierz-transformed to scalar and vector
interaction channels. As has been pointed out therein, this
procedure brings change to the QCD phase transition
property under the mean-field approximation, revealing
the competition among different interaction channels within
the mean-field approximation. Analogously, we employ the
same method to investigate the color superconductivity by
splitting the four-fermion interaction into two parts. One is
transformed into quark-antiquark interaction channels, and
the other into the form of quark-quark interaction channels.
The proportion of the first part is set to be @ and the later with
1 — a. Note that the quark-antiquark interaction channel is
directly associated with the chiral property of QCD matter. It
gives rise to the chiral condensate, which is the order
parameter of the chiral symmetry. Meanwhile, the quark-
quark interaction channel leads to the diquark condensate,
which serves as the order parameter for superconductivity.
By varying the parameter a, we study its influence on the
phase transitions of QCD matter at high density and explore
more possibilities.

This paper is organized as follows. In Sec. II, the
effective Lagrangian of the NJL-type model is obtained,
and the propagator of the effective Lagrangian with the
parameter « is presented. In Sec. III, The chiral gap
equation as well as the color superconducting gap equation
with the parameter a are given. And the numerical results
are shown in the diagrams. In Sec. IV, the effect of the
temperature is investigated and the critical temperature of
the color superconductivity is remarkable compared to the
chemical potential. In Sec. V, the conclusion is presented.

II. EFFECTIVE LAGRANGIAN

The Lagrangian of two flavor strong interacting matter
from the standard model is

. _ 1
Locp = alir"dy = m)q + 9ay"2aqAl = FiFa'. (1)

where Fj, = 0,A7 — 0,A; + gf“”"A,’jA;’ represents the
gluon field strength tensor, g represents the quark fields
and m is the current quark mass matrix. Under the path
integral, the gluon fields Aj; can be integrated out, and the
effective Lagrangian with only one-gluon exchange four-
fermion interaction are obtained [15]:

L= E](l]/”aﬂ - m)q - g(c_]y”)“aq>2' (2)

In fact the four-fermion interaction terms contain all
possible interaction channels. One can always employ
the Fierz transformation to reveal these underlying inter-
actions. For color superconductivity, the interactions of the
effective Lagrangian is separated and Fierz-transformed
into two ways, F,, = (§0q)* and F,, = (¢0q)?, related
to the chiral phase transition and color superconductivity

respectively. Although 7, {£} and F, {L} are math-
ematically identical, the diquark condensate via the mean-
field approximation are evidently influenced by the ratio
between two ways of Fierz transformation. This is due to
the fact that Fierz transformation and mean-field approxi-
mation are not commutative. In order to evaluate the
contributions from different interaction channels, the pro-
portion a of original Lagrangian transforms into the quark-
antiquark interaction channels, and the rest of original
Lagrangian then turns to quark-quark interaction channels
which is multiplied by (1 —a). Thus, the effective
Lagrangian now becomes [15],

L =g(iy"0, — m)q + aF 3y[—9(ar*2.9)*]

=q
+ (1 - a)}-qq [—g(éy"/laq)z]. (3)

In principle, a should be constrained by experiments rather
than self-consistent mean-field approximation itself. But,
due to the lack of relevant experimental data of strongly
interacting matter, the real weighting factor « is uncertain,
so it is set as a free parameter from zero to one in the
present manuscript. Similarly to color superconductivity,
the diquark condensate have to satisfy the Pauli principle.
We only keep such terms where the operator between two
fermion fields is asymmetric, where the operator in color
space is in color 3 channel [12].

L =qg(iy"d, —m+uy°)q

Mol [ 1,
ta g[(qq)2 -5 (qyoq)z}
N.+1 . _ .
+(1-a) 9(qiystadnq.) (G iystatarg),  (4)

2N,

here, charge conjugations are introduced

q.(x) = Cq" (x),
qc(x) = q" (x)C. (5)

We rewrite the effective Lagrangian:

.. .
L =3aiy" 9, —m +uy°)g + q.(—iy*d, — m — uy°)q,]
N—1 1
+a N 9l(aq)* - 5 (ar°q9)?]
N.+1 . .
+(1-a) 9(qiystadaq.)(qcivstatarg).  (6)

2N,

In order to obtain the thermodynamic properties of the
quark matter, the mean-field approximation is employed:
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L==q(iy"0, - M+ g+ q.(—iy*d, — M — fiy°)q,]

—_

1
2
+5 [Clc( A")ystadaq + qAYsTAAN G, ]
- G.Y<qq> +G(3r°9)*

— H(qiystadnq.)(Gcirstataq). (7)
where G, = aNi,glg, G, :% 7 g, H=(1-a) 1\;]:1 g
and also

M =m—2G(qq). (8)
fi=n=2G,(3/q). 9)
A" = 2H(gystslnq.), (10)
A = =2H(G.r5Taln q)- (11)

It is clear that the parameter @ determines the intensities
of chiral condensate and diquark condensate. With the
decrease of the a, the color superconducting gap increases,
and it means that the quark-quark interaction channels
dominates the quark system. We can define a bispinor field,

1 ([ qlx) )
Y(x) =— ( 12
W=7 0w 1)
So, in the momentum space,
L=9S"¥ 4V, (13)

where V is the interaction potential,

V= _GS<ZIQ>2 + G1;<qyOLI>2
— H{Giystadnqc)(GciysTadnq)., (14)

and the inverse of the propagator matrix is

Aystady
T ) (15)
y—py —-M

Following the Pauli principle, the diquark condensate
demands the operator between two fermion fields in the
diquark condensate to be asymmetric in Dirac, flavor, and
color space altogether. Hence we have diquark condensate
?#3 where the Latin indices represent the flavors
and the Greek indices signify the colors. The number “3”
indicates the choice of direction in color space. For
simplicity, we choose the blue as the preferred direction,
and the diquark condensate tells us that the color symmetry
is broken from SU(3) to SU(2). Thus, the asymmetric
operators are 7, = 7, 44 = 4,. The propagator is

P <ﬂ+ﬁ7°—M
(=A%)ystadn

A x¢g; €

(F7 +M,)[(pF +M,)(p; — M,) — A?]

S, = P
[P — @3 ][p§ — @]
(#y +M,)
S = et py (16)
lp5 — Ex][pg — EZ]
where E2 =p*+ M2, 0} = (E, £ i)* + A> = E1 + A%,

and P, and P, are the projectors on the red/green and the
blue sector in color space, respectively.
III. THERMODYNAMIC PROPERTIES

In the finite temperature field theory, the thermo-
dynamic potential [24-26] of quark matter is given by
the propagator,

Z/ d3p Ly { $- l(iwn,p)] -V

(17)

The self-consistent solutions of these condensate correspond
to the stationary points of the thermodynamic potential,

0Q 6  0Q
60 O OA
We define the condensate o = (Gq), n = (gq) and 6=

(G.v5T2d2q) =—(GysT2A2q,.). These lead to gap equations

[15],
o d3p M(Ep - ﬁ) w_
o, =—4 / 1) { 2E 0 tanh <ﬁ>

ME, +7) o (%)} , (19)

2E, 0,
&p [ M E_ M E,
=—4 tanh( — | + =——tanh ;
o / (27)° [zE <2T>+2E . <2T)]

(20)
o= [ a0 [P on ()
+(ﬂ;;)fp)tanh<;);:)], (21)

et [ () Lan(5)].
5= —8/537"))3 [%mh(?—‘)

where the first two equations are the chiral condensate of
red/green and blue quarks, and the form of the chiral
condensate of the blue quarks is the same as the general
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NJL-type models. The next two equations express the
particle number densities of red/green and blue quarks.
The last equation manifests the diquark condensate of the
quark matter, which influences the chiral condensate and
particle number densities. The effective quark mass is
determined by

M =m—2G(0, + 0, + 0), (24)
ﬂ:/"_ZGv<nr+ng+nb)’ (25)
A = —2Hs, (26)

where the current quark mass is set as m = 5.5 MeV. The
parameters G, G,, and H are

N2 -1 1 N2-1
Gs =a N% gv Gl/‘ - Ea N% g’ (27)
N.+1
H=(1- < . 28
(-0 =5—9 (28)

The bare quark mass m, the coupling constant g, and
the cutoff A are set to fit the pion mass, pion decay constant,
and the quark condensate. Here, we choose the set of
parameters from Ref. [27], where m = 5.5 MeV,
g =5.074 x 107 MeV~2, and the three-momentum cutoff
A = 631 MeV for regularization of ultraviolet divergences.

The effective quark mass with different o’s at zero
temperature and finite chemical potential are exhibited in
Fig. 1. Changing the a moves the curves. Here we let the
range from 0.4 to 0.5. When a is bigger than 0.5, the curves
are not evidently influenced by the @, and when the « is
smaller than 0.4, the chiral transition starts to take place at
1 < 300 MeV, which is unphysical (See the discussion as

T T T T T T T T
350 [ -
- A YR
300
250
< 200 -
[0}
2
S 150
100 -
50 |-
0 L 1 " 1 L 1 L 1 s
100 200 300 400 500 600
1 (MeV)
FIG. 1. The effective quark mass as a function of the chemical

potential at zero temperature. The effective quark mass start to fall
atu = 268,292,311, 324, 333, 337 MeV with increase of @ from
0.4 to 0.5.

the particle number density below). For these reasons, we
set the range of « to be [0.4, 0.5]. As is shown in Fig. 2,
large intensities of diquark condensate not only enlarge the
maximum value of the gap but also makes the diquark
condensates show up at smaller a chemical potential.
Physically, the particle number density should show up
at y =~ 313 MeV, which is model-independent [28], where
the nucleon is formed. But when the « is small enough, the
color superconducting gaps show up at u <313 MeV,
hence unrealistic. Meanwhile, when «a is too large, the
diquark condensates are too small to observe. It is apparent
that the stronger intensities of the diquark condensate make
the declining parts of the effective quark mass take place at
smaller chemical potentials. Besides, the thermodynamic
potentials are also reduced by the diquark condensate due
to % = E% + A?. For an analogy to the BCS theory, it
means that the diquark condensate which has SU(2) color
symmetry are related to a new state. Therefore, we take
color superconducting gaps A, corresponding to the
diquark condensate, as the order parameter of the color
superconducting phase transition. From Eq. (23), the color
superconducting gaps as the function of the chemical
potential grow rapidly at the beginning and keep relatively
steady with the increase of chemical potentials.

The quark-quark interaction channels in the Lagrangian
indicate the red/green quarks behave quite differently with
the blue quarks, because of the dynamical breaking of color
symmetry from SU(3) to SU(2). To see how quarks with
different colors act, the particle number densities are
essential. In Figs. 3 and 4, the particle number density
of the red/green quarks and blue quarks are presented
respectively. It shows that the smaller @ which indicates
larger diquark condensate lower the energy per quark,
which makes the particles much easier to excite from the

300 ‘ . - . - ;
—a=040
[| ——a=042
250 | —— =044

200

150

A (MeV)

100

50

0 " n n L
200 300 400 500 600
p (MeV)

FIG. 2. The color superconducting gaps as a function of the
chemical potential at zero temperature are exhibited. The values
of these gaps appear at 4 = 268, 292, 311, 324, 333, 337 MeV
with a ranging from 0.4 to 0.5. The maximum values of these
gaps are 245, 216, 219, 170, 150, 132 MeV with different a’s.
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FIG. 3. The particle number density of red/green quarks as a

function of the chemical potential.

vacuum. As a result, the particle number densities will
appear at very small chemical potentials. In addition, the
influence of the diquark condensate on red/green quarks is
much more evident than that on blue quark at medium
chemical potential values. At higher chemical potentials,
the influence of the a on quarks become insignificant
for 4 > 600 MeV. This is due to the use of the three
momentum cutoff A = 631 MeV in this paper, which
specifies the scope of adaptation of the effective theory of
this paper.

The total densities of all three colors of quarks allow us
to fit the experimental data of the nuclear saturation density,
no = 0.16 fm™3. The baryon number density of quark
matter is defined:

1
npg :g(nr—f—ng—'—nh)’ (29)
b7 T T T T 7
03k o =040
o =042
a=044
— o =046
:g 0.2 o =048
Ta o =0.50
c
0.1+
00 n 1 n 1 " 1 " 1 L 1 n 1 L 1 n 1 1
100 150 200 250 300 350 400 450 500 550 600

p (MeV)

FIG.4. The particle number density of blue quarks as a function
of the chemical potential.

12 T T T T T T T T T
——a=0.40
10F | ——a=042
— =044
o8l |—— =046
——a =048
—~ | |——a=050
£ 98 |—a=1.00
=
o
c
0.4
0.2}
00 L 1 L 1 n 1 A L L n " 1 "
100 150 200 250 300 350 400 450 500 550 600
1 (MeV)
FIG. 5. The baryon number density of quark matter as a

function of the chemical potential. Here are two dashed lines
which represent the region between 2n, and 4ny.

where np represents the baryon number density of quark
matter. It is usually believed that the phase transition from
hadrons to the deconfined quarks undergoes several regions
[29]. For ng < 2ny, the dominating interactions are through
a few exchanges of quarks and mesons, and the hadron
degree of freedom is reliable at low densities. For
2ny < ng < (4-7)ngy, the many-quark exchanges occur
and the hadron system is gradually percolated to the quark
matter. For ng > (4-7)ny, the description of the quark
degree of freedom is valid and quarks are no longer
confined in hadrons. The 2n, and 4n, are plotted as the
two horizontal dotted lines in Fig. 5. Neglecting the diquark
condensate which corresponds to the line of a =1, the
chemical potential ranges between 400 MeV < u <
500 MeV for the region 2n, < ng < 4n,. After we take
the diquark condensate into consideration, the baryon
densities ng ~ 2n, is in the range between 300 MeV and
350 MeV. Finally, for the most stable atomic nucleus, °Fe,
the baryon number density should appear at 4 ~ 313 MeV.
Therefore, the parameter « is constrained to be over 0.44.

To study the order of chiral phase transition, we look into
the chiral susceptibilities [21,30,31],

0o,
Z" - amr ’ (30)
861,
S 1
Xb amb ’ (3 )

where m, and m, represent the current quark mass of
red/green and blue quarks respectively. The chiral suscep-
tibility provides many useful information, as shown in
Figs. 6 and 7. First, the curves of chiral susceptibility show
that the chiral transition takes the form of a crossover.
Although in some studies [15,32,33] the transition is a first
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| | ——0a =040

0.5 |
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0.1 F

0.0 L 1 n 1 n 1 " 1
250 300 350 400 450
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FIG. 6. The chiral susceptibility of chiral condensate of red/
green quarks.

order phase transition, it is found that when the vector
interaction is strong enough, the first order phase transition
turns to the crossover [15,21]. Second, the position of peak
shifts toward smaller chemical potential as the parameter
decreases. Meanwhile, the maximum value of peaks of
chiral susceptibilities of red or green quarks are promi-
nently influenced by a. This is because the gap equations
Eq. (19) and Eq. (21) show that red or green quarks are
directly affected by diquark condensates A, while that of
blue quarks from Eq. (20) and Eq. (22) are only indirectly
connected. Interestingly, by comparing Fig. 5 and Fig. 6,
one finds the chiral crossover transition point lies near
the area when baryon number densities reach 2n,, where
hadron system starts to percolate to the quark matter.
Finally, we remark that for smaller s, there exists a
plateaus before the peak of the chiral susceptibility in
Fig. 6 and Fig. 7, which is connected with an underlying

0.5

0.4

. 03 u
5
= 02| i
0.1 -
Oo 1 1 " 1 n 1 " 1
250 300 350 400 450
1 (MeV)

FIG. 7. The chiral susceptibility of chiral condensate of blue
quarks.

phase transition of color symmetry breaking, as will be
addressed below.

To study the color superconducting phase transition, the
interactions between the external field and quark matter are
included,

| R— _
EF[CIC}’STMA’Q + qystadaq.), (32)

where F represents an external field related to the color
superconductivity, which is the conjugate variable of
diquark condensate. We define the susceptibility of color
superconductivity:

. O(Gcrstataq)
o= Jim =L (33
The susceptibilities of color superconductivity are shown
in Fig. 8. These susceptibilities are numerically extremely
sharp, and are actually diverging at the transition point, so
the color superconducting phase transition is of the second-
order. These peaks are at y, = 267, 292, 310, 323, 332,
336 MeV, which agrees with results in Refs. [13,14],
corresponding to the starting point of plateaus of chiral
phase transition at . = 268, 292, 312, 324, 334, 338 MeV
in Fig. 6 and Fig. 7. Therefore, the plateaus of chiral
susceptibilities indeed indicate the color superconducting
phase transition. In conclusion, we find that the cold dense
matter will undergo color superconducting phase transi-
tions first and then transit to the state with chiral symmetry
partially restored as the density increases.

IV. CRITICAL TEMPERATURE

We have shown that diquark condensate makes quark
matter a more stable state at zero temperature. Next, we
consider the case at finite temperature. In BCS theory,
the superconductivity is observed after the samples are

100 e 4

a=0.40
a=042
8o a=044|
a=0.46
60 |-
)
A0t
20
0
1 n 1 n 1 " 1 n 1 L 1 L
260 280 300 320 340 360 380
i (MeV)
FIG. 8. The color superconducting susceptibility.
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140 | -
10f = = = = = = = = = - -

100

S‘ 80  |= T=69MeV
% | |—— T=60MeVv
S oL [T T=40mev
< —— T=20MeV
40 -
20 -
0 L 1
200 300 400 500 600

i (MeV)

FIG. 9. The color superconducting gaps as a function of the
chemical potential with a = 0.50, and the grey dash line
represents the perturbative maximum color superconducting
gap at zero temperature, corresponding to the critical temperature
T, = 69 MeV.

cooled down to a certain critical temperature. One naturally
wonders about the case in the color superconductor.
Therefore we employ Eq. (17) at finite temperature. The
color superconducting gaps at different temperatures are
shown in Figs. 9-11 with three cases of the parameter
a = 0.5, 0.46 and 0.42 respectively, which agree with the
perturbative result A ~0.57T. [34,35], where T, is the
critical temperature and A is the color superconducting
gap at zero temperature (the grey dash lines plotted in
Figs. 9-11). As the temperature goes up, the color super-
conducting gaps decreases. The maximum temperature
labeled in the diagrams are the critical temperatures of

200 |

—_— T=112MeV
—— T =100 MeV
—— T=80MeV
[ |=—— T=60Mev

< — T =40 MeV
% —T =20 MZV
3
< 100 -
O " 1 n
200 300 400 500 600
p (MeV)
FIG. 11. The color superconducting gaps as a function of the

chemical potential with a =0.42, and the grey dash line
represents the perturbative maximum color superconducting
gap at zero temperature, corresponding to the critical temperature
T, =112 MeV.

color superconductivity. When the temperatures exceed the
critical point, the color superconducting gaps vanishes.

V. SUMMARY AND CONCLUSION

In this paper, we discuss the chiral transition and color
superconducting transition of cold dense matter at high
density. The self-consistent NJL-type model is employed,
and the Lagrangian is Fierz-transformed into two different
channels, with a weighing factor a characterizing the
partition. The chiral condensate and diquark condensate
are obtained, corresponding to chiral transition and color
superconducting transition. As an analogy to the super-
conductivity, the color superconducting gap decreases
thermodynamic potential and leads to the color supercon-
ducting state. By introducing an external field, the suscep-
tibility of color superconducting is employed. The
superconducting transition turns out to be of second-order,
and we find the chiral phase transition happens after color
superconducting transition as the system gets denser. In the
end, we study the color superconductor at finite temperature
and find the critical temperatures of the color superconductor

may reach around 88 MeV (corresponding to a = 0.46).

y T T T T T T
180 |- E
wf
140 |
120
< 100 |-
2 —— T=88MeV
1 80 |—— T=80Mev
—— T=60MeV
60 | T=40Mev
—— T=30MeV
40
20
O 1 1
200 300 400 500 600

i (MeV)

FIG. 10. The color superconducting gaps as a function of the
chemical potential with o = 0.46, and the grey dash line
represents the perturbative maximum color superconducting
gap at zero temperature, corresponding to the critical temperature
T. = 88 MeV.

Finally, we remark on the role of parameter a. The «a is
set to measure quark-quark interaction channels and quark-
antiquark interaction channels. With the decrease of the a,
diquark condensate associated with quark-quark interaction
channels are stronger, and therefore easier to form color
superconductivity. The original Lagrangian is not influ-
enced by a, but the mean-field approximation brings a
difference. Hence, a can only be determined by experi-
ments. At present, we have shown that the @ should be no
less than 0.44, which leads to nonvanishing baryon number
density that emerges at p.~ 313 MeV. More accurate
constraints require observations and evidence from
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condense QCD matter such as compact stars. For example,
the x-ray and pulsar observations provide the measure-
ments of the radius and the mass of compact stars
respectively. Besides, the tidal deformability is constrained
from the gravitational wave observation as well. These
astronomical observations restrict the equation of state of
quark matter to be neither too stiff nor too soft, which in
turn constrain the range of weighting factor a. It should be
noted that compact stars are expected to have electric and
color charge neutrality. Thus these neutral conditions

should be taken into consideration to satisfy the astro-
nomical observations for further research.
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