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We compute a light front wave function for heavy vector mesons based on long-distance matrix elements
constrained by decay width analyses in the nonrelativistic QCD framework. Our approach provides a
systematic expansion of the wave function in quark velocity. The first relativistic correction included in our
calculation is found to be significant and crucial for a good description of the HERA exclusive J=ψ
production data. When looking at cross section ratios between nuclear and proton targets, the wave function
dependence does not cancel out exactly. In particular the fully nonrelativistic limit is found not to be a
reliable approximation even in this ratio. The important role of the Melosh rotation to express the rest frame
wave function on the light front is illustrated.
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I. INTRODUCTION

At large densities or small Bjorken-x, nonlinear QCD
dynamics is expected to manifest itself in nuclear structure.
To describe the QCD matter in this nonlinear regime, an
effective field theory known as the color glass condensate
has been developed; see e.g., [1,2]. Diffractive scattering
processes at high energies are especially powerful probes of
this region of phase space. The advantage in diffractive,
with respect to inclusive, scattering is that since no color
charge transfer is allowed, even at leading order in
perturbative QCD at least two gluons have to be exchanged
with the target. Consequently, the cross sections approx-
imatively probe the square of the gluon density [3] and can
be expected to be highly sensitive to nonlinear dynamics.
An especially interesting diffractive process is exclusive

vector meson production in collisions of real or virtual
photons with the target, where only one meson with the
same quantum numbers as the photon is produced. In these
processes only vacuum quantum numbers are exchanged
between the target and the diffractive system. Thus the
target can remain intact, and the transverse momentum
transfer can be used to probe the spatial structure of the
target. This momentum transfer is by definition the Fourier
conjugate to the impact parameter. As such, it becomes
possible to study the target structure differentially in the
transverse plane. A particularly important channel is the
production of J=ψ mesons. The charm quark is heavy

enough to enable a weak coupling description of its
elementary interactions. Nevertheless the quark mass is
not large enough to make the process insensitive to
saturation effects. Also experimentally the J=ψ is relatively
easily identifiable and produced with large enough cross
sections to be seen.
Exclusive J=ψ production in electron-proton deep inelas-

tic scattering has been studied in detail at HERA by the H1
and ZEUS experiments [4–9]. Additionally, lighter ρ and ϕ
[10–12] and heavier ϒ states [13,14] have been measured.
Recently, it has also become possible to measure exclusive
vector meson production at the RHIC and at the LHC in
ultraperipheral collisions [15,16] where the impact param-
eter between the two hadrons is large enough such that the
scattering is mediated by quasireal photons; see Refs.
[17–26] for recent measurements. These developments
have also enabled vector meson photoproduction studies
with nuclear targets, which are more sensitive to gluon
saturation. Indeed signatures of strong nuclear effects (e.g.,
saturation, or gluon shadowing) are seen in J=ψ photo-
production (see e.g., Refs. [27–29]). The effects seen in
these exclusive processes are consistent with inclusive
measurements such as particle spectra in proton-nucleus
collisions (see e.g., [30–35]). However, in exclusive scat-
tering the nonlinear effects are larger, since inclusive cross
sections at leading order are only sensitive to the first power
of the gluon density.
One major source of model uncertainties in the theo-

retical description of vector meson production follows from
the nonperturbative vector meson wave function. For the
J=ψ , a natural first approximation is to treat it as a fully
nonrelativistic bound charm-anticharm state, which is the
limit taken in the seminal work in Ref. [3]. The calculation
of Ref. [36] recovers the same nonrelativistic result in the
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dipole picture (see also Ref. [37]). Already early on, it has
been argued that this nonrelativistic approximation obtains
important corrections from the motion of the charm quark
pair in the bound state [38,39]. More recently, much of the
phenomenological literature on J=ψ photoproduction has
used phenomenological light cone wave functions to
describe the meson bound state. This has the advantage
that the light cone wave function is invariant under boosts
in the longitudinal direction and is thus naturally more
suited to high-energy collision phenomena. A disadvantage
of some recent phenomenological parametrizations has
been that they do not fully use the information on the
nonperturbative bound state physics, most importantly
decay widths, of quarkonium states that are usually
analyzed in terms of nonrelativistic wave functions.
In recent literature, the applied different phenomenologi-

cal wave functions result in e.g., J=ψ production cross
sections that differ up to ∼30% from each other
[27,40,41]. This is a large model uncertainty, compared to
the precise data that is already available from HERA and the
LHC and especially given that the Electron Ion Collider
(EIC) [42,43] is in the horizon (and similar plans exist at
CERN [44] and in China [45]). The EIC will perform vast
amounts of precise deep inelastic scattering (DIS) measure-
ments over a wide kinematical range, which calls for robust
theoretical predictions.
To reduce the model uncertainty related to the vector

meson wave function, we propose in this work a new
method to constrain the wave function for heavy mesons
based on input from the nonrelativistic QCD (NRQCD)
matrix elements. These matrix elements capture nonper-
turbative long-distance physics and can be obtained by
computing the vector meson decay widths in different
channels as a systematic expansion in both the coupling
constant αs and the quark velocity v. As we will demon-
strate, these matrix elements can be used to determine the
value and the derivative of the vector meson wave function
at the origin. As such, this approach provides more
constraints than the phenomenological parametrizations
widely used in the literature. In particular, starting from
manifestly rotationally invariant rest frame wave functions,
one by construction obtains consistent parametrizations of
longitudinally and tranversally polarized vector mesons
simultaneously, which is not obvious in many light cone
approaches.
This manuscript is organized as follows. First, in Sec. II

we review how vector meson production is computed in the
dipole picture within the color glass condensate framework
and how the cross section depends on the vector meson
light front wave function. In Sec. III we first present how to
obtain the rest frame wave function in terms of the NRQCD
matrix elements and then show how this is transformed to
the light cone by applying the Melosh rotation [46,47]. We
compare the obtained NRQCD-based wave function to
other widely used wave functions that are reviewed in

Sec. IV. The numerical analysis including vector meson-
photon overlaps and J=ψ production cross sections is
presented in Sec. V.

II. VECTOR MESON PRODUCTION IN THE
DIPOLE PICTURE

A. Exclusive scattering

At high energies exclusive vector meson production in
virtual photon-proton (or nucleus) scattering can be
described in a factorized form. The necessary ingredients
are the virtual photon wave functionΨλ

γ describing the γ� →
qq̄ splitting, the dipole-target scattering amplitude N and
the vector meson wave function ΨV describing the tran-
sition qq̄ → V. The scattering amplitude reads [48] (note
that the correct phase factor coupling the dipole size r to the
transverse momentum transferΔ is determined in Ref. [49])

Aλ ¼ 2i
Z

d2bd2r
dz
4π

e−iðbþð1
2
−zÞrÞ·Δ

×Ψλ�
γ ðr; Q2; zÞΨVðr; zÞNðr;b; xPÞ: ð1Þ

Here Q2 is the photon virtuality, r the transverse size of the
dipole, b the impact parameter and z the fraction of the
photon light cone plus momentum carried by the quark.
The photon polarization is λ, with λ ¼ �1 referring to the
transverse polarization and λ ¼ 0 to the longitudinal one.
In this work will study coherent vector meson V

production. The coherent cross section refers to the
scattering process where the target proton (or nucleus)
remains intact. In this case, the cross section as a function
of squared momentum transfer t ≈ −Δ2 can be written as

dσγ
�p→Vp

dt
¼ R2

gð1þ β2Þ 1

16π
jAT;Lj2: ð2Þ

The dipole amplitude N depends on the longitudinal
momentum fraction xP the target loses in the scattering
process, which reads

xP ¼ M2
V þQ2 − t

W2 þQ2 −m2
N
: ð3Þ

Here MV is the mass of the vector meson V and mN is the
proton mass. The scattering amplitude AT;L is obtained
from Eq. (1) by summing over the quark helicities and, in
the case of transverse (T) polarization, averaging over the
photon polarization states λ ¼ �1.
In Eq. (2) two phenomenological corrections are

included following Ref. [48]. First, β ¼ tanðπδ
2
Þ is the ratio

between the real and imaginary parts of the scattering
amplitude. It can be obtained from an analyticity argument
as
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δ ¼ ∂ lnAT;L

∂ lnð1=xPÞ : ð4Þ

The so-called skewedness correction is included in terms
of the factor Rg, which reads

Rg ¼
22δþ3ffiffiffi

π
p Γðδþ 5=2Þ

Γðδþ 4Þ : ð5Þ

This correction can be derived by considering the vector
meson production in the two-gluon exchange limit, assum-
ing that the two gluons carry very different fractions of the
target longitudinal momentum [50]. In this case, the cross
section can be related to the collinearly factorized parton
distribution functions scaled by the factor Rg. In the dipole
picture applied here, where the two quarks are color rotated
in the target color field and undergo multiple scattering, this
limit is not reached. In this work we include both of the real
part and skewedness corrections widely used in the
previous literature but emphasize that these numerically
large corrections should be used with caution when
predicting absolute normalizations for the cross sections.
In addition to coherent scattering, one can study inco-

herent diffraction where the target breaks up, but there is
still no exchange of color charge between the produced
vector meson and the target remnants. These processes are
recently studied extensively in the literature as they probe,
in addition to saturation effects [41], also the event-by-
event fluctuations of the scattering amplitude resulting from
the target structure fluctuations; see e.g., Refs. [51–54] or
Ref. [55] for a review. As the focus in this work is on the
vector meson wave function which enters in calculations of
both incoherent and coherent cross sections similarly, from
now on we only consider coherent scattering here.

B. Virtual photon wave function

The virtual photon splitting to a cc̄ dipole is a simple
QED process, and the photon wave function Ψγ can be
computed directly by applying the light cone perturbation
theory (see e.g., [56,57]). Using the diagrammatic rules of
light front perturbation theory and the conventions used in
Refs. [58,59], the wave function can be written as

Ψλ
γ;hh̄

ðkÞ ¼ efe
ffiffiffiffiffiffi
Nc

p
q− − k− − k0−

ūhðkÞ=ελðqÞvh̄ðk0Þ
4

ffiffiffi
π

p
kþk0þqþ

: ð6Þ

Here ef is the fractional charge of the quark (in this work
we consider only charm quarks with ef ¼ 2=3), k, k0 and q
are the quark, antiquark and photon momenta, respectively,
e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4παem
p

and h and h̄ refer to the quark and antiquark
light front helicities [60]. The factor

ffiffiffiffiffiffi
Nc

p
is included to

obtain a squared wave function proportional to the number
of colors Nc. The spinors which are the eigenstates of light
front helicity read, in the Lepage-Brodsky convention,

uhðkÞ ¼
1

21=4
ffiffiffiffiffiffi
pþp ð

ffiffiffi
2

p
pþ þ γ0mþ αT · kÞχ̄h; ð7Þ

vhðkÞ ¼
1

21=4
ffiffiffiffiffiffi
pþp ð

ffiffiffi
2

p
pþ − γ0mþ αT · kÞχ̄−h; ð8Þ

where the four-component helicity spinors read χ̄h¼þ1 ¼
1ffiffi
2

p ð1; 0; 1; 0ÞT and χ̄h¼−1 ¼ 1ffiffi
2

p ð0; 1; 0;−1ÞT , and αT ¼
ðγ0γ1; γ0γ2Þ. We use the light cone variables defined as
p� ¼ 1ffiffi

2
p ðp0 � p3Þ. The spinor normalization convention

is ūhuh̄ ¼ −v̄hvh̄ ¼ 2mδhh̄, where m is the quark mass.
In the light cone gauge, in which εþ ¼ 0, the photon

polarization vectors read

ελ¼0ðqÞ ¼
�
0; 0; 0;

Q
qþ

�
; ð9Þ

ελ¼�1 ¼
�
0; ελT;

q · ελT
qþ

�
; ð10Þ

where

ελ¼�1
T ¼ ð∓ 1;−iÞ=

ffiffiffi
2

p
ð11Þ

and Q2 ¼ −q2.
The wave function can be evaluated by substituting the

polarization vectors and explicit expressions for the spinors
in Eq. (6) and setting the photon transverse momentum q to
zero. It is convenient here to define a wave function in
terms of the momentum fraction z and pull out a factor 4π.
This should be done so that probability is conserved:Z

dkþjΨλ
γ;hh̄

ðkþ;kÞj2 ¼
Z

dz
4π

jΨλ
γ;hh̄

ðz;kÞj2; ð12Þ

so that we can write Ψλ
γ;hh̄

ðz;kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4πqþ

p
Ψλ

γ;hh̄
ðkþ;kÞ. In

momentum space, the wave functions read

Ψλ¼0
γ;hh̄

ðz;kÞ ¼ −efe
ffiffiffiffiffiffi
Nc

p 2Qzð1 − zÞ
ðk2 þ ϵ2Þ δh;−h̄; ð13Þ

Ψλ¼þ1
γ;hh̄

ðz;kÞ ¼ −
efe

ffiffiffiffiffiffiffiffi
2Nc

p

ðk2 þ ϵ2Þ ½ke
iθkðzδhþδh̄−

−ð1 − zÞδh−δh̄þÞ þmδhþδh̄þ�; ð14Þ

Ψλ¼−1
γ;hh̄

ðz;kÞ ¼ −
efe

ffiffiffiffiffiffiffiffi
2Nc

p

ðk2 þ ϵ2Þ ½ke
−iθkðð1 − zÞδhþδh̄−

−zδh−δh̄þÞ þmδh−δh̄−�; ð15Þ

where ϵ2 ¼ Q2zð1 − zÞ þm2 and keiθk ¼ kx þ iky. The
wave function in the mixed transverse coordinate, longi-
tudinal momentum fraction space entering in the vector
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meson production cross section (1) is then obtained by
performing a Fourier transform:

Ψλ
γ;hh̄

ðz; rÞ ¼
Z

d2k
ð2πÞ2 e

ik·rΨλ
γ;hh̄

ðz;kÞ: ð16Þ

The mixed space wave function for the longitudinal
polarization is

Ψλ¼0
γ;hh̄

ðz; rÞ ¼ −efe
ffiffiffiffiffiffi
Nc

p
δh;−h̄2Qzð1 − zÞK0ðϵrÞ

2π
: ð17Þ

Similarly, for the transverse photon with λ ¼ �1 the wave
function reads

Ψλ¼þ1
γ;hh̄

ðz; rÞ ¼ −efe
ffiffiffiffiffiffiffiffi
2Nc

p �
ieiθr

ϵK1ðϵrÞ
2π

ðzδhþδh̄−

−ð1 − zÞδh−δh̄þÞ þm
K0ðϵrÞ
2π

δhþδh̄þ

�
;

Ψλ¼−1
γ;hh̄

ðz; rÞ ¼ −efe
ffiffiffiffiffiffiffiffi
2Nc

p �
ie−iθr

ϵK1ðϵrÞ
2π

ðð1 − zÞδhþδh̄−

−zδh−δh̄þÞ þm
K0ðϵrÞ
2π

δh−δh̄−

�
: ð18Þ

We note that the these wave functions agree with those
derived in Ref. [59] using the same convention, except for
the overall sign in case of transverse polarizations which
does not affect any of our results. On the other hand, when
compared to the widely used wave functions reported in
Ref. [48], the relative sign between the mass term and z
terms in the λ ¼ þ1 case is different.
We emphasize that the quark light cone helicity structure

above does not exactly correspond to the spin structure in
the rest frame of the meson (there is no rest frame for the
spacelike photon). In particular, when transformed to the
meson rest frame, there are both S- and D-wave contribu-
tions in both longitudinally and transversely polarized
photons. The transformation between the light front wave
function expressed in terms of the quark light front
helicities and the rest frame wave function in terms of
the quark spins is discussed in Sec. III B. We will discuss
the decomposition of light cone wave functions, including
the virtual photon one, into the S- and D-wave components
in more detail in Appendix A.

C. Dipole-target scattering

The dipole-target scattering amplitude N in Eq. (1) is a
correlator of Wilson lines, corresponding to the eikonal
propagation of the quarks in the target color field. In
principle, it satisfies perturbative evolution equations
describing the dependence on momentum fraction xP,
the so-called Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner equation (JIMWLK) equation [61–67],
or the BK equation [68,69] that is obtained in the large-Nc

limit. These perturbative evolution equations, combined
with a nonperturbative input obtained by fitting some
experimental data, can in principle be used to evaluate
the dipole amplitude at any (small) xP. This has been a
successful approach when considering structure functions
in DIS or inclusive particle production in hadronic colli-
sions; see e.g., Refs. [31–35,70,71].
In diffractive scattering considered here one explicitly

measures the transverse momentum transfer Δ, which is the
Fourier conjugate to the impact parameter. Consequently,
the dependence on the transverse geometry needs to be
included accurately in the calculation. However, perturba-
tive evolution equations generate long-distance Coulomb
tails that should be regulated by some nonperturbative
physics in order to avoid unphysical growth of the cross
section [72]. There have been attempts to include effective
confinement scale contributions in the BK and JIMWLK
evolutions and use the obtained dipole amplitudes in
phenomenological calculations of e.g., vector meson pro-
duction [73–76] (see also [77]). As the main focus of this
work is in vector meson wave functions, we apply a simpler
approach and use the so called IPsat parametrization to
describe the dipole-proton scattering amplitude.
The IPsat parametrization [78] consists of an eikonalized

Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equation
(DGLAP)-evolved [79–82] gluon distribution, combined
with an impact parameter b dependent transverse density
profile. The advantage of this parametrization is that it
matches perturbative QCD result in the dilute (small dipole
size jrj) limit and respects unitary in the saturation regime.
The dipole amplitude in the IPsat parametrization reads

Nðr;b; xÞ ¼ 1 − exp

�
−

π2

2Nc
r2αsðμ2Þxgðx; μ2ÞTpðbÞ

�
;

ð19Þ

where the proton transverse density profile is assumed to be
Gaussian:

TpðbÞ ¼
1

2πBp
e−b

2=ð2BpÞ ð20Þ

with B ¼ 4 GeV−2. The initial condition for the DGLAP
evolution is obtained by fitting the HERA structure
function data [83–86], and the fit results in an excellent
description of the total reduced cross section and the charm
contribution [87]. The scale choice is μ2 ¼ C=r2 þ μ20, with
the parameters C and μ0, among with the DGLAP initial
condition, are determined in the fit performed in Ref. [87]
(see also [88]).
Following Ref. [78] (see also [87]), the dipole-proton

scattering amplitude can be generalized to coherent scatter-
ing in the dipole-nucleus case as
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NAðr;b; xÞ ¼ 1 − exp

�
−

π2

2Nc
r2αsðμ2Þxgðx; μ2ÞATAðbÞ

�
:

ð21Þ

This estimate is valid in case of large nuclei, assuming that
the dipole size jrj is not very large, which is the case in heavy
vector meson production. Here TAðbÞ is the Woods-Saxon
distribution integrated over the longitudinal coordinate, with
the normalization

R
d2bTAðbÞ ¼ 1. The nuclear radius used

here is RA ¼ ð1.13A1=3 − 0.86A−1=3Þ fm.
In order to calculate vector meson production, it is still

necessary to determine the vector meson wave function. It
cannot be computed perturbatively, and consequently there
are many phenomenological parametrizations used in the
literature. The main goal of this paper is to obtain the meson
wave function in a systematic expansion in quark velocities
given by the NRQCD approach. We will also discuss, for
comparison, some other wave function parametrizations
in Sec. IV.

III. LIGHT CONE WAVE FUNCTION FROM
NRQCD

NRQCD is an effective field theory describing QCD in
the limit where quark masses are large, or v ¼ p=m is
small, where p is e.g., quark momentum andm is the quark
mass. In this approach, it becomes possible to factorize
cross sections into universal long-distance matrix elements
and perturbatively calculated process-dependent hard
factors.

A. Vector meson wave function in the rest frame

The J=ψ decay width in the NRQCD approach is written
as an expansion in the quark velocity v [89]. At lowest
order in v, the decay width is only sensitive to the long-
distance matrix element hO1iJ=ψ , which itself is determined
by the value of the (renormalized) wave function at the
origin. At next order, one finds a contribution proportional
to the long-distance matrix element hq⃗2iJ=ψ which is
suppressed by a relative v2. This matrix element is sensitive
to the derivative of the wave function at the origin (see also
Refs. [90,91] for a discussion of the velocity suppressed
contributions to the distribution amplitude).
In this work we follow Ref. [92], where these matrix

elements are determined. There, a subset of higher order (in
v) contributions to the decay width including higher powers
of ∇2 are resummed to all orders following Ref. [93]. As a
result, the J=ψ decay width in the leptonic channel can be
written as

ΓðJ=ψ → e−eþÞ

¼ 8πe2qα2em
3M2

V

�
1 − f

�hq⃗2iJ=ψ
m2

c;NR

�
− 2CF

αs
π

�
2

hO1iJ=ψ ð22Þ

with

fðxÞ ¼ x

3ð1þ xþ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p Þ : ð23Þ

Here, eq ¼ 2=3 is the fractional charge of the charm quark
andMV is the J=ψ mass. At this order in v, the J=ψ is a pure
S-wave state, and its wave function can be factorized into a
spin part and a scalar part. We will discuss the spin and
angular momentum structure in more detail later.
The extraction of the matrix elements that we use [92]

has been done in a calculation that includes both velocity
and αs corrections, such as in (22). Here, on the other hand,
we will be using the light cone wave functions in a leading
order calculation of cross sections, including only velocity
corrections to the wave function. In a strict NRQCD power
counting sense in αs, the αs corrections could be considered
more important. Although steps have been taken to take
them into account in the dipole picture exclusive cross
section calculations [94] (see also recent work in a different
formalism [95]), fully including them in the cross section is
not yet possible at this point since the full photon to heavy
quark pair wave function is not known to one-loop
accuracy. Thus we will leave a computation that includes
also the perturbative αs calculations to future work and
continue with our focus on the velocity corrections to the
wave function here.
Since our cross section calculation does not include pure

αs corrections, taking the wave function to be given by just
the operator hO1iJ=ψ in (22) would lead to an inconsistent
treatment of the αs corrections between the decay width and
the cross section. Even in a more general sense, the αs
contributions that appear as corrections to the decay widths
or cross sections expressed in terms of nonrelativistic wave
functions should, in light cone perturbation theory, be
thought of as perturbative corrections to the light cone wave
function itself [39,94]. This can be understood in the sense
that the degrees of freedom in the nonrelativistic wave
function are constituent quarks as opposed to bare quarks in
the light cone wave function; see the discussion in [39]. To
obtain a consistent picture here, we will absorb the αs
correction to the scalar part of the wave function ϕðrÞ,
which is then transformed to the light cone wave function.
We thus relate the value and derivative at the origin of ϕðrÞ
to the long-distance matrix elements as�

1 − 2CF
αs
π

�
2

hO1iJ=ψ ¼ 2Ncjϕð0Þj2 þOðv4Þ; ð24Þ

hq⃗2iJ=ψ ¼ −
∇2ϕð0Þ
ϕð0Þ þOðv2Þ: ð25Þ

The nonperturbative long-distance matrix elements have
been determined in Ref. [92] by considering simultane-
ously the J=ψ → eþe− and ηc → 2γ decays. As a result of
this analysis, the matrix elements for J=ψ read
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hO1iJ=ψ ¼ 0.440þ0.067
−0.055 GeV3; ð26Þ

hq⃗2iJ=ψ ¼ 0.441þ0.140
−0.140 GeV2: ð27Þ

The analysis in Ref. [92] is done by using the charm quark
mass mc;NR ¼ 1.4 GeV. In general, the charm quark mass
in NRQCD can differ from the charm quark mass used in
the IPsat fits discussed in Sec. II. In our numerical analysis,
we will use the NRQCD value for the charm quark mass in
both the meson and photon wave functions when using the
NRQCD results. Everywhere else in this work we use the
charm mass mc ¼ 1.3528 GeV obtained in the IPsat fit to
the HERA structure function data.
The uncertainties quoted above for the long-distance

matrix elements are not independent, and the correlation
matrix is also provided in Ref. [92]. To implement these
correlated uncertainties, we use a Monte Carlo method and
sample parameter values from the Gaussian distribution
taking into account the full covariance matrix. The uncer-
tainty is then obtained by calculating the one standard
deviation band with respect to the result obtained by using
the best fit values.
To construct the meson wave function, we start from the

meson rest frame where we can use the NRQCD matrix
elements to constrain the wave function as discussed above.
In the rest frame, we require that the quark spins are
coupled into a triplet state and the total spin and angular
momentum to a J ¼ 1 vector state. Thus we can in general
write the spin structure of the wave function in the
following form:

ψλ
ss̄ðr⃗Þ ¼

X
L;mL;mS

hLmL 1mSj1 λi

×

�
1

2
s
1

2
s̄

����1mS

	
YmL
L ðθ;ϕÞψLðrÞ: ð28Þ

Here YmL
L are the spherical harmonics, ψL is the radial wave

function corresponding to the orbital angular momentum L
and hj1mj1j2mj2 jJmJi are Clebsch-Gordan coefficients. In
general, the conservation of spin parity tells us that for
J=ψ the orbital angular momentum can only take values
L ¼ S, D. Since J=ψ should be dominated by the S-wave
contribution, we will from now on consider the case where
only the S-wave component is nonzero. We note that in
principle in the NRQCD approach one finds the D-wave
contribution to the vector meson wave function to be
suppressed by v2 compared to the S wave, and this is of
the same order as the first relativistic correction included in
terms of the wave function derivative above. However, the
D-wave contribution to the decay width is suppressed by an
additional v2 and as such the D-wave contribution is not
constrained by the decay widths at this order. Thus it is most
consistent to set it to zero. In this case the wave function
simplifies to

ψλ
ss̄ðr⃗Þ ¼

�
1

2
s
1

2
s̄

����1 λ
	
ϕðrÞ; ð29Þ

where ϕðrÞ is the scalar part of the wave function and
related to the long-distance matrix elements as shown in
Eqs. (24) and (25). Using the three-dimensional polarization
vectors in Eq. (11) we can also write this as

ψλ
ss̄ðr⃗Þ ¼ Uλ

ss̄ϕðrÞ; ð30Þ

where

Uλ
ss̄ ¼

1ffiffiffi
2

p ξ†s ϵ⃗λ · σ⃗ξ̃s̄ ð31Þ

in the case of transverse polarization and

Uλ¼0
ss̄ ¼ 1ffiffiffi

2
p ξ†sσ3ξ̃s̄ ð32Þ

when the vector meson is longitudinally polarized. Here
ξþ ¼ ð1; 0Þ and ξ− ¼ ð0; 1Þ are the two-component spinors
describing spin-up and spin-down states and ξ̃s̄ ¼ iσ2ξ�s is
the antiquark spinor.
The behavior of the quarkonium wave function at long

distances is determined by nonperturbative physics. This
long-distance physics affects short distances through the
requirement of the normalization of the wave function. The
NRQCD approach broadly speaking consists of parame-
trizing the nonperturbative long-distance physics by
measurable coefficients that serve as coefficients in the
short-distance expansion, which is used to calculate a
physical process happening at short-distance scales. In
practice this amounts to expressing the wave function as a
Taylor expansion around the origin:

ϕðr⃗Þ ¼ Aþ Br⃗2: ð33Þ

The linear term does not appear to ensure that the Laplacian
of the wave function is finite at the origin. The coefficients
can also be written as A ¼ ϕð0Þ and B ¼ 1

6
∇2ϕð0Þ, and

using Eqs. (24) and (25) we get the values

A ¼
�
1 − 2CF

αs
π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2Nc
hO1iJ=ψ

s
¼ 0.213 GeV3=2; ð34Þ

B ¼ −
1

6
Ahq⃗2iJ=ψ ¼ −0.0157 GeV7=2: ð35Þ

The uncertainties in the long-distance matrix elements are
correlated as discussed above, and in our numerical
calculations this correlated uncertainty is propagated to
the coefficients A and B.
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We then want to write our wave function ansatz (33) in
light cone coordinates ðk; zÞ. We do this by first going to
momentum space:

ψλ
ss̄ðk⃗Þ ¼

Z
d3r⃗e−ik⃗·r⃗ψλ

ss̄ðr⃗Þ ¼ Uλ
ss̄ϕðkÞ

¼ Uλ
ss̄ð2πÞ3ðAδ3ðk⃗Þ − B∇2

kδ
3ðk⃗ÞÞ; ð36Þ

where k⃗ ¼ ðk; k3Þ. We then want to change the longitudinal
momentum variable from k3 to the plus momentum fraction
carried by the quark: z. Unfortunately there is no unique
way to do this, due to the different nature of instant form
and light cone quantization. In principle we would want to
define z as the ratio of the quark kþ to the meson
Pþ ¼ MV=

ffiffiffi
2

p
, working in the rest frame of the meson.

However, a quark inside a bound state described as a
superposition of different k⃗ modes is not exactly on shell,
its energy being affected by the binding potential. Thus we
do not precisely know the k0 required to calculate kþ from
k3. The rest frame wave function also includes values of k3

that are very large, leading to values of kþ that are larger
than MV=

ffiffiffi
2

p
. This is perfectly possible in instant form

quantization with the time variable t. However, in light
cone quantization kþ is a conserved momentum variable
and has to satisfy 0 < kþ < Pþ. The procedure that we
adopt here is (similarly to e.g., [96]) to define the
momentum fraction in practice as z ¼ kþq =ðkþq þ kþq̄ Þ,
where kq and kq̄ are the quark and antiquark momenta,

with kþ calculated assuming k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c;NR þ k⃗2
q

. In other
words, we normalize by the total plus momentum of the
quark-antiquark pair, instead of the meson plus momentum,
and assume an on-shell dispersion relation. This choice has
the advantage that it leads to 0 < z < 1 by construction.
This leads us to the expression for the longitudinal
momentum in the meson rest frame k3 as

k3 ¼ M

�
z −

1

2

�
; ð37Þ

where

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

c;NR

zð1 − zÞ

s
ð38Þ

is the invariant mass of the quark-antiquark pair. We
emphasize that since this choice is not unique, we might
expect corrections or ambiguities proportional to powers of
the difference between the meson mass and the quark-
antiquark pair invariant mass M2

V −M2 to appear. Such
corrections are, however, higher order corrections in the
nonrelativistic limit and also numerically very small for
J=ψ for the values of mc;NR and hq⃗2i used here. We could
also hope that since the invariant mass is a rotationally
invariant quantity, these ambiguities would not lead to
serious violations of rotational invariance (which expresses
itself here as the equality of physical properties such as
decay widths of transverse and longitudinal polarization
states). We will see an example of such a correction
explicitly in Appendix B.
To change the variables in our wave function, one needs

to be careful with the delta functions and their derivatives.
We therefore make the change by requiring that the overlap

Z
d3k⃗
ð2πÞ3 ψ

λ
ss̄ðk⃗Þφðk⃗Þ ¼

Z
d2k
ð2πÞ2

dz
4π

ψλ
ss̄ðk; zÞφðk; zÞ; ð39Þ

where φ is an arbitrary wave function, does not change
under the change of variables. This requirement tells us that
the scalar part ϕðk⃗Þ changes to

ϕðk; zÞ ¼ ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
2
∂z
∂k3

r �
Aδ

�
z −

1

2

�
δ2ðkÞ − B

�
∂z

� ∂z
∂k3 ∂z

� ∂z
∂k3 δ

�
z −

1

2

���
δ2ðkÞ þ δ

�
z −

1

2

�
∇2

kδ
2ðkÞ

��
; ð40Þ

where

∂z
∂k3 ¼

4zð1 − zÞ
M

: ð41Þ

Equation (40) is the scalar part of the NRQCD-based
vector meson wave function in the meson rest frame,
expressed in momentum space. We note that this wave
function is not normalizable due to the presence of the delta
functions. However, as the NRQCD approach can only be
used to constrain the coordinate space wave function and its
derivative at the origin, we are forced to use the expansion

of Eq. (33) which cannot result in a normalizable wave
function. However, for the purposes of this work this is not
a problem, as the vector meson production is sensitive to
the vector meson wave function overlap with the virtual
photon wave function, and the photon wave function is
heavily suppressed at long distances where the expansion
(33) is not reliable.

B. Wave function on the light front

The NRQCD wave function obtained in the previous
section is written in the vector meson rest frame in terms of
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the quark and antiquark spin states s and s̄. In order to
calculate overlaps with the virtual photon wave function
(17) and (18), we need to express it in terms of the light
cone helicities h and h̄. The transformation between these
two bases, usually expressed in terms of the 2-spinors, is
known as the “Melosh rotation” [46,47].
The Dirac spinors that are used to factorize the non-

relativistic wave function into a spin and scalar part are
eigenstates of the spin-z operator in the zero transverse
momentum limit. In terms of the two-component spin
vectors ξ defined above in Eqs. (31) and (32) they read

usðpÞ ¼
1ffiffiffiffi
N

p
� ξs

σ⃗·p⃗
Epþm ξs

�
; ð42Þ

vsðpÞ ¼
1ffiffiffiffi
N

p
� σ⃗·p⃗

Epþm ξ̃s

ξ̃s

�
: ð43Þ

The normalization factor N is determined from the con-
dition ūsus̄ ¼ −v̄svs̄ ¼ 2mδs;s̄.
Both the Dirac spinors in terms of the spin-z component

us and the helicity spinors uh [see Eqs. (7) and (8)] are
solutions to the Dirac equation and as such can be obtained
as linear combinations of each other. This mapping is the
Melosh rotation Rsh. It can be computed from the spinor
inner products (see also Ref. [97]) as

Rshðk; zÞ ¼ 1

2m
ūsðk; zÞuhðk; zÞ; ð44Þ

where kþ ¼ zqþ and qþ is the meson plus momentum and
s and h refer to the spin and light front helicity, respectively.
The helicity spinors uh and vh can also be written in a

similar form as the spinors in the spin basis, Eqs. (42) and
(43), by introducing the two-component helicity spinors χh.
To do this wewrite the helicity spinors (7) and (8) in the form

uhðpÞ ¼
1ffiffiffiffi
N

p
� χh

σ⃗·p⃗
Epþm χh

�
; ð45Þ

vhðpÞ ¼
1ffiffiffiffi
N

p
� σ⃗·p⃗

Epþm χ̃h

χ̃h

�
; ð46Þ

where N is again determined by the normalization require-
ment and χ̃h ¼ iσ2χ�h. Using this form one can check that the
Melosh rotation also connects the two-component spin and
helicity spinors as

Rshðk; zÞ ¼ ξ†sχh: ð47Þ
The coefficients Rsh can also be expressed as a 2 × 2

matrix rotating the 2-spinors

Rðk; zÞ ¼ mc;NR þ zM − iðσ⃗ × n⃗Þ · ðk; k3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmc;NR þ zMÞ2 þ k2

q : ð48Þ

HereM is the invariant mass of the qq̄ system from Eq. (38)
and n ¼ ð0; 0; 1Þ is the unit vector in the longitudinal
direction. In terms of this matrix the 2-spinors ξs and χh are
related by

χ� ¼ Rðk; zÞξ�: ð49Þ
Using Eq. (47) we can now express the NRQCD wave

function in the light front helicity basis. We write

Ψλ
hh̄
ðk; zÞ ¼ Uλ

h;h̄
ϕðk; zÞ; ð50Þ

where the scalar part is given in Eq. (40). The helicity
structure Uλ

hh̄
is obtained by applying the transform (47) in

Eqs. (31) and (32), i.e.,

Uλ
hh̄

¼
X
ss̄

R�shðk; zÞR�s̄ h̄ð−k; 1 − zÞUλ
ss̄: ð51Þ

After the Melosh rotation, we compute the Fourier
transform to obtain the light front wave function in the
mixed transverse coordinate–longitudinal momentum frac-
tion space as

Ψλ
hh̄
ðr; zÞ ¼

Z
d2k
ð2πÞ2 e

ik·rΨλ
hh̄
ðk; zÞ

¼
Z

d2k
ð2πÞ2 e

ik·rUλ
h;h̄
ðk; zÞϕðk; zÞ: ð52Þ

The different helicity components of the final light front
wave function resulting from this procedure are

Ψλ¼0þ− ðr; zÞ ¼ Ψλ¼0
−þ ðr; zÞ ¼ π

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
mc;NR

p
�
Aδðz − 1=2Þ þ B

m2
c;NR

��
5

2
þ r2m2

c;NR

�
δðz − 1=2Þ − 1

4
∂2
zδðz − 1=2Þ

��
;

Ψλ¼1þþ ðr; zÞ ¼ Ψλ¼−1
−− ðr; zÞ ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffi

mc;NR
p

�
Aδðz − 1=2Þ þ B

m2
c;NR

��
7

2
þ r2m2

c;NR

�
δðz − 1=2Þ − 1

4
∂2
zδðz − 1=2Þ

��
;

Ψλ¼1þ− ðr; zÞ ¼ −Ψλ¼1
−þ ðr; zÞ ¼ ðΨλ¼−1

−þ ðr; zÞÞ� ¼ ð−Ψλ¼−1þ− ðr; zÞÞ� ¼ −
2πi

m3=2
c;NR

Bδðz − 1=2Þðr1 þ ir2Þ;

Ψλ¼1
−− ðr; zÞ ¼ Ψλ¼−1þþ ðr; zÞ ¼ Ψλ¼0þþ ðr; zÞ ¼ Ψλ¼0

−− ðr; zÞ ¼ 0: ð53Þ
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The first relativistic correction to the wave function,
proportional to B or the wave function derivative, mixes the
helicity and spin states. In particular, in the case of
transverse polarization the h; h̄ ¼ � ∓ terms are non-
vanishing when the relativistic correction is included.
These terms also bring a nonzero contribution to photon-
vector meson overlaps. In general, we expect that if higher
order corrections in v were included in the wave function
parametrization, we would also find other components to
be nonvanishing.
The Melosh rotation is crucial here, as it generates

helicity structures that are not visible in the spin basis.
This is in contrast to some early attempts to transform the
wave functions obtained by solving the potential models to
the light front as done e.g., in Ref. [78]. The role of the
Melosh rotation in the context of vector meson light front
wave functions and exclusive scattering was first empha-
sized in Ref. [47]. More recently it was applied to J=ψ
production in the dipole picture in Ref. [98], and in [99]
different quark-antiquark potentials were studied in this
context. In the case of excited states such as ψð2SÞ the role
of the Melosh rotation is expected to be even more
significant [100].
Let us in passing briefly compare our approach to the one

in the recent work of Krelina, Nemchik, and Pasechnik in
Ref. [98]. In our approach, we take the NRQCD wave
function which only includes the S-wave contribution (D-
wave part is suppressed by v2). The quark spin dependence
is now trivial, as the total angular momentum must be
provided by the quark spins which gives us the structure of
Eq. (30). In Ref. [98], the authors assume, unlike we do
here, that the spin structure of the vector meson wave
function in the rest frame has the same form as the light
cone helicity structure of the photon light cone wave
function, Eqs. (17) and (18). This structure is then
supplemented by a wave function obtained from the
potential model, and a Melosh rotation to the light front
is applied at the end. Such a procedure leads to a large D-
wave contribution in the wave function, which we do not
have. We discuss the structure of the wave functions in
terms of S and D waves in more detail in Appendix A.
To determine the role of the relativistic corrections in the

vector meson wave function, we will also study for
comparison the fully nonrelativistic wave function where
our starting point for the scalar part is

ϕðr⃗Þ ¼ A0: ð54Þ

Following the previous procedure, the final result for the
light cone wave function can be read from Eq. (53) with the
substitutions A ¼ A0 and B ¼ 0. One notices that this can
now be written as

Ψλ
J=ψ ;hh̄

ðr; zÞ ¼ π
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
mc;NR

p Uλ
hh̄
A0δ

�
z −

1

2

�
: ð55Þ

In this extreme nonrelativistic limit ðk ¼ 0; z ¼ 1=2Þ the
Melosh rotation simply corresponds to an identity matrix so
that the spin and helicity bases are interchangeable here.
The normalization A0 is obtained from the van Royen–
Weisskopf equation for the leptonic width [101], which is
also obtained from Eq. (22) by neglecting the relativistic
correction proportional to hq2iJ=ψ=m2

c;NR, and the higher
order QCD correction ∼αs (note that parametrically
αs ∼ v):

ΓðJ=ψ → e−eþÞ ¼ 16πe2fαem
M2

J=ψ

jϕð0Þj2: ð56Þ

By using the experimental value for leptonic width [102],
we can calculate the coefficient A0 to be

A0 ¼ ϕð0Þ ¼ 0.211 GeV3=2: ð57Þ

C. Overlap with photon

Using the obtained J=ψ wave function on the light front,
Eq. (53), we can directly compute overlaps with the virtual
photon, Eqs. (17) and (18). In these overlaps, we also
include the phase factor exp ðiðz − 1

2
Þr · ΔÞ present in the

vector meson production amplitude in Eq. (1). We also
assume that the dipole amplitude does not depend on the
orientation θr of r as is the case in the IPsat parametrization
and integrate over θr. The overlaps summed over the quark
helicities read

r
X
hh̄

Z
2π

0

dθr

Z
1

0

dz
4π

ðΨL
J=ψÞ�ΨL

γ eiðz−1=2Þr·Δ ¼ reefQ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

2mc;NR

s �
AK0ðrϵ̄Þ

þ B
m2

c;NR

�
9

2
K0ðrϵ̄Þ þm2

c;NRr
2K0ðrϵ̄Þ−

Q2r
4ϵ̄

K1ðrϵ̄Þ þ
1

4
Δ2r2K0ðrϵ̄Þ

��
ð58Þ

and
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r
X
hh̄

Z
2π

0

dθr

Z
1

0

dz
4π

ðΨT
J=ψ Þ�ΨT

γ eiðz−1=2Þr·Δ ¼ reef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ncmc;NR

2

r �
AK0ðrϵ̄Þ

þ B
m2

c;NR

�
7

2
K0ðrϵ̄Þ þm2

c;NRr
2K0ðrϵ̄Þ −

r
2ϵ̄

ðQ2 þ 2m2
c;NRÞK1ðrϵ̄Þ þ

1

4
Δ2r2K0ðrϵ̄Þ

��
; ð59Þ

where ϵ̄2 ¼ Q2=4þm2
c;NR, Δ ¼ jΔj, and r ¼ jrj. In the

case of transverse polarization, the result is identical in
cases with λ ¼ þ1 and λ ¼ −1. We will study these
overlaps numerically in Sec. VA. We note that thanks to
the delta function structure in z in our wave function (53),
many phenomenological applications become numerically
more straightforward as the z integral can be performed
analytically.

IV. PHENOMENOLOGICAL WAVE FUNCTIONS

To provide a quantitative point of comparison for the
effect of the relativistic corrections, we want to compare the
light cone wave functions obtained in Sec. III to other
parametrizations used in the literature. For this purpose, let
us now discuss two specific alternative approaches used for
phenomenological applications in the literature.

A. Boosted Gaussian

A commonly used phenomenological approach to con-
struct the vector meson wave function is to assume that it
has the same polarization and helicity structure as the
virtual photon. This can be done by replacing the scalar part
of the photon wave functions (17) and (18) by an unknown
function as [48]

efezð1 − zÞK0ðϵrÞ
2π

→ ϕT;Lðr; zÞ; ð60Þ

with the explicit factor Q in the longitudinal wave function
replaced by the meson mass as 2Q → MV . The scalar
function ϕðr; zÞ is then parametrized, and the parameters
can be determined by requiring that the resulting wave
function is normalized to unity and reproduces the exper-
imental leptonic decay width. As we will discuss in more
detail in Appendix B, this procedure does not correspond to
the most general possible helicity structure. Nevertheless,
our result at this order in the nonrelativistic expansion can
in fact also be written in terms of the “scalar part of light
cone wave functions.” However, at higher orders in v
different a different structure could appear.
In the boosted Gaussian parametrization, the qq̄ invariant

mass distribution is assumed to be Gaussian, with the width
of the distribution R and the normalization factors NT;L

being free parameters. In mixed space, the parametrization
reads

ϕT;Lðr; zÞ ¼ N T;Lzð1 − zÞ

× exp

�
−

m2
cR2

8zð1 − zÞ −
2zð1 − zÞr2

R2
þm2

cR2

2

�
:

ð61Þ

In thisworkweuse theparameters constrained inRef. [87] by
using the same charm quark mass mc ¼ 1.3528 GeV as is
used when fitting the IPsat dipole amplitude to the HERA
data. The parameters are determined by requiring that the
longitudinal polarization can be used to reproduce the
experimental decay width. The obtained parameters
are R ¼ 1.507 GeV−1, NT ¼ 0.589 and NL ¼ 0.586 with
MV ¼ 3.097 GeV.
The specific functional form and helicity structure of the

boosted Gaussian parametrization imply that in the vector
meson rest frame there are both S- and D-wave contribu-
tions. This is demonstrated explicitly in Appendix A by
performing a Melosh rotation from the light front back to
the J=ψ rest frame. This feature is hard to describe in
potential model calculations, and our NRQCD-based wave
function in particular has only the S-wave component in the
rest frame. The D-wave contribution in the boosted
Gaussian wave function is, however, quite small.

B. Basis light-front quantization (BLFQ)

The second wave function we study here for comparisons
is based on explicit calculations on the light front. In this
approach, one constructs a light front Hamiltonian Heff ,
which consists of a one-gluon exchange interaction and a
nonperturbative confining potential inspired by light-front
holography. The formalism is developed in Refs. [103–109].
The quarkonium states are obtained by solving the

eigenvalue problem

Heff jψJPC
mJ

i ¼ M2
V jψJPC

mJ
i: ð62Þ

As a solution, one obtains the invariant mass M2
V spectrum

and the light front wave functions in momentum space

ψJPC
mJ

ðk; z; h; h̄Þ ¼ hk; z; h; h̄jψJPC
mJ

i: ð63Þ

Here J, P, C and mJ are the total angular momentum,
parity, C parity and the magnetic quantum number of the
state, respectively. The free parameters, value of the
coupling constant, strength of the confining potential,
quark mass and the effective gluon mass, can be
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constrained by the charmonium and bottomonium mass
spectra [110,111]. In this work, we use the most up-to-date
parametrizations from Ref. [111].
The obtained BLFQ wave functions have been applied in

studies of the J=ψ production in the dipole picture at HERA
[112] and in the context of exclusive J=ψ production in
ultraperipheral heavy ion collisions at the LHC in Ref. [113].
Following the prescription used in Refs. [112,113], we
consider the fitted quark mass mBLFQ

c ¼ 1.603 GeV in
the “BLFQ wave function” to be an effective mass of the
quarks in the confining potential, including some nonper-
turbative contributions. Consequently, when calculating the
overlaps we use, as in [112,113], mc ¼ 1.3528 GeV for the
charm mass in the photon wave function, as constrained by
the charm structure function data in the IPsat fit [87].

V. VECTOR MESON PRODUCTION

A. Photon overlap

The exclusive vector meson production cross section
depends on the overlap between the cc̄ component of the
virtual photon wave function with the vector meson wave

function; see Eq. (1). In Fig. 1 these overlaps for Δ ¼ 0 are
shown as a function of the transverse size r ¼ jrj of the
intermediate dipole, using four vectormesonwave functions:

1. NRQCD expansion, which is constructed by para-
metrizing the wave function and its derivative at the
origin based on NRQCD matrix elements including
corrections ∼v2 and performing the Melosh rotation
to the light front. This is our result from Sec. III.

2. Delta, which is the fully nonrelativistic limit
[Eq. (55)] of the above wave function, without
any information about the wave function derivative.

3. Boosted Gaussian, the phenomenological paramet-
rization discussed in Sec. IVA.

4. BLFQ wave function based on basis light-front
quantization, discussed in Sec. IV B.

In Fig. 2 we show the same overlaps plotted as ratios to the
fully nonrelativistic limit, i.e., theDelta parametrization. For
the NRQCD expansion-based wave function, we also show
themodel uncertainty related to theNRQCDmatrix elements
that control thevalue of thewave function and its derivative at
the origin. The uncertainty band is in this case computed as
discussed in Sec. III.

FIG. 1. Forward (Δ ¼ 0) virtual photon-J=ψ wave function overlaps computed using the different vector meson wave functions as a
function of the dipole size r at different photon virtualities.
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The effect of the first relativistic correction can be
determined by comparing theDelta andNRQCD expansion
wave functions. At large dipoles the negative velocity
suppressed ∼r2 contribution suppresses the vector meson
wave function1 compared to the fully nonrelativistic form.
This is especially visible at small Q2. At larger photon
virtualities, the exponential suppression in the photon wave
function becomes dominant before the relativistic −r2
correction becomes numerically important. Thus, while
the effect of the relativistic correction is dramatic in the
ratio in Fig. 2, at large Q2 it is insignificant for the actual
overlap, as is seen in Fig. 1.
For small dipoles the wave functions are most strictly

constrained by the quarkonium decay widths. The NRQCD
parametrization does not, however, reduce exactly to the
fully nonrelativistic Delta parametrization in the small r

FIG. 2. Ratios of the forward (Δ ¼ 0) virtual photon-J=ψ wave function overlaps computed using the different vector meson wave
functions to the fully nonrelativistic Delta parametrization as a function of the dipole size r at different photon virtualities.

FIG. 3. Total J=ψ production cross section as a function of
virtuality computed using different vector meson wave functions
compared with H1 [4] and ZEUS [8] data.

1The wave function would change sign at r0 ¼ 0.73 fm. As
there should be no node in the J=ψ wave function, we set the
wave function to zero at r > r0. We have checked that this cutoff
has a negligible effect on our numerical results.
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limit. This can be traced back to the fact that the gradient
correction also affects the decay width, as seen in Eq. (22)
[and from the fact that the constants A in (34) and A0 in (57)
are different]. A part of the three-dimensional gradient
correction becomes a correction to the functional form in z
even at r ¼ 0. This leads to the overlaps at small r being
slightly different, even though the same decay width data
are used to obtain the parameters of the rest frame wave
functions.
Both the boosted Gaussian and BLFQ wave functions

are even more suppressed at large dipole sizes than the
NRQCD parametrization. This is most clearly seen on the
ratio plot, Fig. 2. This is a straightforward consequence of
the fact that in these parametrizations the wave function
normalization imposes an additional suppression at large r.
For the boosted Gaussian parametrization this additional
suppression happens at such a large r that the overlap is
already very small and thus has a negligible effect on the
overall overlap in Fig. 1. The boosted Gaussian para-
metrization is very close to our NRQCD also for small
dipoles. The BLFQ parametrization yields a somewhat
larger wave function overlap at small r than our NRQCD
one or the boosted Gaussian.2

The suppression with respect to the nonrelativistic limit
is larger for the longitudinal polarization state than for the
transverse one. This can be understood as follows. The
longitudinal virtual photon wave function depends on the
quark momentum fraction as ∼zð1 − zÞ [see Eq. (17)] and
as such is peaked at z ¼ 1=2. The z structure of the fully
nonrelativistic wave function is δðz − 1=2Þ, and when the
first relativistic corrections are included, the z ¼ 1=2 region
still dominates the overlap. On the other hand, the trans-
verse photon wave function is not peaked at z ¼ 1=2; see
Eq. (18). Thus, the suppression from the ∂2

zδðz − 1=2Þ term
in the relativistic correction is smaller for the transverse
polarization.

B. J=ψ production

The total exclusive DIS J=ψ production cross section for
a proton target at W ¼ 90 GeV is shown in Fig. 3,
compared with the H1 [4] and ZEUS [8] data. The overall
normalization of the cross section has a relatively large
theoretical uncertainty. We note that the two corrections
discussed in Sec. II, the real part and especially the
skewedness correction are numerically significant, up to
∼50% (see e.g., Ref. [40]). As discussed in Sec. II,
especially the skewedness correction is not very robust
and its applicability in the dipole picture used here is not

clear. In addition to the possibly problematic skewedness
corrections, the fact that our NRQCD-based wave functions
are not normalized affects the absolute normalization of the
vector meson production cross sections. Thus our focus
here is rather on the relative effects of different meson wave
functions and the dependence on Q2.
The vector meson cross section is dominated by dipole

sizes of the order of 1=ðQ2 þM2
VÞ as can be seen3 from

Fig. 1. Consequently, it is more instructive to look at the
dependence of the J=ψ cross section on Q2 than the overall
normalization. From Fig. 3 one sees that the fully non-
relativistic wave function results in a too steep Q2 depend-
ence compared to the HERA data. The first relativistic
correction slows down the Q2 evolution close to the
photoproduction region and leads to a better agreement
with the experimental data. This is a consequence of the
basic behavior of the relativistic correction as a ∼ − r2

modification that suppresses the vector meson wave func-
tion strongly at large dipoles. Thus the reduction from the
relativistic correction is larger for smaller Q2. At large Q2

the exponential suppression from the photon wave function
starts to dominate at smaller dipole sizes, and the relativistic
−r2 correction becomes negligible. However, the relativ-
istic contribution to the momentum fraction z structure is
present at all Q2 and suppresses the longitudinal cross
section more than the transverse one.
A similar trend in the Q2 dependence is also visible with

both the boosted Gaussian and BLFQ wave functions. For
the boosted Gaussian case, the agreement with HERA data
has been established numerous times in the previous
literature, e.g., in Ref. [48]. The Q2 dependence of the
cross section is slightly weaker when the BLFQ wave
function is used, but the difference is comparable to the
experimental uncertainties. We note that in Ref. [112] the
BLFQ wave function is found to result in a cross section
underestimating the HERA data in the photoproduction
region. In this work, compared to the setup used in
Ref. [112], we use an updated BLFQ parametrization from
Ref. [111] which was shown in Ref. [113] to result in a
good description of the J=ψ production in ultraperipheral
proton-proton collisions at the LHC, which in practice
probe vector meson photoproduction [15,16].
To cancel normalization uncertainties, we next study

cross section ratios. In Fig. 4 the longitudinal-to-transverse
ratio of the J=ψ production cross section is shown as a
function of the photon virtuality. The results are compared
with the H1 and ZEUS data from Refs. [4,8]. The first
relativistic correction reduces the longitudinal cross section
more than the transverse one. As discussed above, this is
due to the fact that a part of the correction shifts the meson
wave function away from the δðz − 1=2Þ, which is the

2The parameters in the BLFQ wave function are constrained
by the charmonium mass spectrum and not the decay widths that
probe the wave function at r ¼ 0. Consequently the BLFQ wave
function is not required to result in exactly the same decay width
as the other wave functions, which explains the difference at
small r.

3Note, however, that as the dipole amplitude scales as N ∼ r2
at small r, the dominant dipole size scale for the cross section is
larger than the maximum of the overlap peaks in Fig. 1.
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structure preferred by longitudinal photons but not by
transverse photons. This shows up as a decrease in the
longitudinal to transverse ratio as a function of Q2. The
effect is even stronger with the boosted Gaussian and
BLFQ wave functions.
Finally, we study vector meson production in the future

Electron Ion Collider. As the diffractive cross section at
leading order in perturbative QCD is approximatively
proportional to the squared gluon density, exclusive vector
meson production is a promising observable to look for
saturation effects at the future Electron Ion Collider (see
e.g., [114]).
To quantify the nonlinear effects, we compute the

nuclear suppression factor

σγ
�A→J=ψA

cA4=3σγ
�p→J=ψp : ð64Þ

The denominator corresponds to the so-called impulse
approximation, which is used to transform the photon-
proton cross section to the photon-nucleus case in the
absence of nuclear effects, but taking into account the
different form factors (transverse density profiles Fourier
transformed to the momentum space). The A4=3 scaling can
be understood to originate from the fact that the coherent
cross section at t ¼ 0 scales as ∼A2, and the width of the
coherent spectra (location of the first diffractive minimum)
is proportional to 1=R2

A ∼ A−2=3. The numerical factor c
depends on the proton and nuclear form factors and is
found to be very close to c ¼ 1

2
in Ref. [87]. In the absence

of nonlinear effects (or shadowing effects in the gluon
distribution), with dipole amplitudes (19) and (21) that
depend linearly on r2xgðx; μ2Þ, this ratio is exactly 1.

The obtained nuclear suppression factor is shown in
Fig. 5 in the Q2 range accessible at the Electron Ion
Collider. We emphasize that all the nuclear modifications in
this figure are calculated with exactly the same dipole cross
sections, corresponding to the same nuclear shadowing (as
measured e.g., by the nuclear suppression in FL or F2).
Thus the difference between the curves results purely from
vector meson wave function effects. When using the
NRQCD wave function with the relativistic correction,
the boosted Gaussian wave function or the BLFQ wave
function, the obtained nuclear suppression factors are
practically identical. Even though large mass of the vector
meson renders the scale in the process large, a moderate
suppression ∼0.75 is found at small and moderate Q2. In
the smallQ2 region the uncertainty obtained by varying the
NRQCD matrix elements is large.
The fully nonrelativistic wave function results in a much

stronger suppression at small Q2. This can be understood,
as it was already seen in Fig. 1 that this wave function gives
more weight on larger dipoles compared to the other
studied wave functions. As the larger dipoles are more
sensitive to nonlinear effects, a larger nuclear suppression
in this case is anticipated. The first relativistic correction
∼ − r2 suppresses the overlap at large dipole sizes and
consequently the nuclear suppression. At higher Q2 the
photon wave function again cuts out the large dipole part of
the overlap in all cases, and as such the results obtained by
applying the fully nonrelativistic wave function do not
differ from other wave functions any more. At asymptoti-
cally large Q2 only small dipoles contribute and the dipole
amplitudes can be linearized. Consequently, the suppres-
sion factor approaches unity at large Q2 independently of
the applied wave function.
The fact that the fully nonrelativistic wave function

results in a very different nuclear suppression demonstrates

FIG. 5. Nuclear suppression factor for total coherent J=ψ
production as a function of Q2 computed using the different
vector meson wave functions.

FIG. 4. Longitudinal J=ψ production cross section divided by
the transverse cross section as a function of photon virtuality.
Results obtained with different wave functions are compared with
the H1 [4] and ZEUS [8] data.
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that the dependence on the meson wave function does not
completely cancel in the nucleus-to-proton cross section
ratios. Consequently, a realistic (and relativistic) descrip-
tion of the vector meson wave function is necessary for
interpreting the measured nuclear suppression factors. This
indicates that there is a large theoretical uncertainty in using
the fully nonrelativistic formula of Ryskin [3], not only for
extracting absolute gluon distributions, but even for
extracting nuclear modifications to the dipole cross section
(or the gluon density) from cross section ratios.

VI. CONCLUSIONS

In this work we proposed a new parametrization for the
heavy vector meson wave function based on NRQCD long-
distance matrix elements. These matrix elements can be
used to simultaneously constrain both the value and the
derivative of the vector meson wave function at the origin
using quarkonium decay data. This approach provides a
systematic method to compute the vector meson wave
function as an expansion in the strong coupling constant αs
and the quark velocity v.
Compared to many phenomenological approaches used

in the literature, our approach uses two independent
constraints (the wave function value and its derivative).
The obtained wave function is rotationally symmetric in the
rest frame and contains only the S-wave component.
Consequently, we simultaneously obtain a consistent para-
metrization for both polarization states. This is unlike in
some widely used phenomenological parametrizations
where the virtual photon like helicity structure is assumed
on the light front. Relating light cone wave functions to rest
frame ones also provides a consistent way to discuss the
effect of a potentialD-wave contribution to the meson wave
function. We do not see indications, neither theoretically
nor phenomenologically, that a significant D-wave con-
tribution would be required or favored for the J=ψ .
The first relativistic correction to the wave function,

controlled by the wave function derivative at the origin, is
found to have a sizable effect on the cross section. The
negative ∼ − r2 relativistic contribution in terms of the
transverse size r suppresses the obtained wave function at
larger dipole sizes. The momentum fraction part of the
correction partially compensates for this effect for the
transverse photon by shifting the wave function away from
the fully nonrelativistic configuration where both quarks
carry the same fraction of the longitudinal momentum, a
configuration which is not preferred by the transverse
photon.
A disadvantage in our approach is that it is not possible

to obtain a wave function which is normalized to unity. In
the NRQCD framework the value of the wave function at
long distances is parametrized by a nonperturbative matrix
element, whose effect is felt in the value of the wave
function near the origin. This can lead to an overestimation
of the cross section at Q2 ¼ 0, where one is most sensitive

to the long-distance behavior of the wave function. In
practice, however, we obtain cross sections that are quite
similar to what is given by e.g., the boosted Gaussian
parametrization. The wave function overlap with the
photon is also smaller than with the BLFQ approach.
Thus the lack of normalization in the wave function does
not seem to be an important effect for J=ψ. The situation
would be different for lighter vector mesons.
The structure of the wave function can be probed by

studying cross sections (and cross section ratios) at differ-
ent photon virtualities where the dipole sizes contributing
to the cross section vary. The first relativistic correction is
found to weaken the Q2 dependence of the total J=ψ
production cross section and the longitudinal-to-transverse
ratio. These effects are broadly similar to predictions
obtained by the boosted Gaussian parametrization or by
the BLFQ wave function that is based on an explicit
calculation on the light front including confinement effects.
When comparing vector meson production off protons to

heavy nuclei, we find that the wave function does not
completely cancel in the nuclear suppression factor, which
compares the γ�A cross section to the γ�p in the impulse
approximation. This demonstrates that a realistic vector
meson wave function is necessary to properly interpret the
nuclear suppression results, and in particular a fully non-
relativistic approach cannot be reliably used to extract the
nonlinear effects on the nuclear structure.
In addition to the corrections in velocity, it would be

important to include perturbative corrections in the strong
coupling αs in the calculation of exclusive vector meson
production. Indeed some recent advances [94,115] are
gradually making it possible to do so in the dipole picture.
However, a study of the phenomenological implications of
these αs corrections remains to be done. In terms of
understanding current and future experimental collider
data, it would also be important to explore whether this
approach can be extended to excited states such as
the ψðnSÞ.
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APPENDIX A: ORBITAL DECOMPOSITION

In Sec. III we highlighted how it is crucial to properly
transform the NRQCD-based vector meson wave function
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to the light front by performing the Melosh rotation. In
particular, we demonstrated that this rotation gives rise to
the helicity structures absent in the rest frame spin structure
(e.g., nonzero Ψλ¼�1

h¼�1;h̄¼∓1
).

In this section, we illustrate the role of the Melosh
rotation by considering both the J=ψ and virtual photon (in
the case of charm quarks) wave functions and determining
the contributions from the S- andD-wave components. The
NRQCD-based wave function obtained in Sec. III contains
only the S-wave structure. For the J=ψ wave function, we
study here the commonly used boosted Gaussian para-
metrization (see Sec. IVA).
The S and D waves are properly defined in the rest

frame. Consequently, we take the vector meson or the
virtual photon wave functions on the light front written in
momentum space and perform the Melosh rotation to
transform them to the meson rest frame. In the rest frame
we then remove either the S- or D-wave contribution and
transform the final wave function back to the light front and
Fourier transform to transverse coordinate space.
The boosted Gaussian parametrization of the J=ψ wave

function is decomposed to S andD components in Fig. 6. In
principle the angular momentum structure of the para-
metrization could turn out to correspond to a large D-wave
component in the rest frame. Indeed it is mostly constrained
by the choice of having helicity structure on the light front
exactly the same as that of the photon, which has a large
D-wave component as we will see. However, in practice the

S-wave-only result is a good approximation of the full
result. This is due to the small quark velocities contributing
to the wave function, as in the momentum space the
boosted Gaussian wave function is exponentially sup-

pressed at large invariant mass M2 ¼ k2þm2
c

zð1−zÞ . Thus, large
transverse momentum jkj or large longitudinal momentum
(z → 0 or z → 1) contributions are heavily suppressed and
do not generate a significant D-wave component.
A similar discussion can be carried out for the BLFQ

wave function described in Sec. IVA. As shown in [116], in
the rest frame, the squared J=ψ BLFQ wave function is
dominated by the S-wave component, the D wave con-
tributing only a small fraction of the order of 0.1%…4%
(depending on the polarization). In heavier mesons, this
contribution is even smaller. This is comparable to the
boosted Gaussian case discussed above.
Overall, based on neither the boosted Gaussian nor the

BLFQ parametrizations, we do not see any confirmation for
the result of Ref. [98], where the D-wave part of the J=ψ
wave function was found to result in tens of percent
contribution on the vector meson production cross section.
Part of this discrepancy might be merely a question of
terminology. In our discussion here, we have insisted that
the terms S wave and D wave refer to the angular
momentum components of the three-dimensional wave
function in the meson rest frame. Thus the mere presence,
in the light cone wave function, of terms proportional to
transverse momenta originating from the Melosh rotation
cannot be taken as an indication of a D-wave component in
the meson.
Let us now move to the case of a virtual photon. Since a

spacelike virtual photon does not have a rest frame and is
not a bound state, it is not customarily thought of in terms
of an S-D-wave decomposition. Now, however, we have an
explicit light cone wave function for the photon just like for
the meson, and we can use the same procedure to determine
its S- andD-wave components in the meson rest frame. The
resulting squared light front wave functions summed over
quark helicities are shown in Fig. 7. The full photon wave
function, written in Eqs. (17) and (18), is denoted by SþD,
as it can be written as a sum of these two components.
When compared to the full result, the squaredD-wave-only
contribution is found to be strongly suppressed. There is
also a contribution originating from the overlap between
the S- andD-wave contributions. This term would vanish if
we integrated over all the angles. Here, we only integrate
over the azimuthal direction of r. Integration over the
momentum fraction z corresponds to the evaluation of the
coordinate space wave function at x3 ¼ 0, and conse-
quently one angular integral is not performed and the
overlap does not vanish. The relative importance of differ-
ent contributions is found to be approximatively indepen-
dent of Q2.
The S −D overlap contribution is numerically signifi-

cant, which is reflected by the large difference between the

FIG. 6. Vector meson wave function from the boosted Gaussian
parametrization decomposed into S- and D-wave components in
the J=ψ rest frame as a function of the quark-antiquark transverse
separation. The left panel shows the longitudinal polarization and
the right panel transverse polarization.
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full result and the S-wave-only contribution. This suggests
that even though the D-wave contribution is suppressed by
the quark velocity, the charm quark mass is not large
enough to render this contribution negligible. This is due to
the fact that the photon wave function in the momentum
space behaves as ∼1=k2, where k is the quark transverse
momentum, and this powerlike tail brings numerically large
contributions from relatively large momenta. Additionally,
the integration over the longitudinal momentum fraction z
includes high momentum contributions, as the photon wave
function has a support over a large range of z.
The contribution from the S −D overlap changes sign at

large transverse separations in case of the longitudinal
polarization. There is no node in the radial part of the wave
function, but the spherical harmonic function describing the
angular part of theD-wave component changes sign, which
explains the sign flip. In the S −D overlap mostly the
helicity-þ− and −þ components of the D-wave contribute
by coupling to the S wave. On the other hand, in the D-
wave squared wave function, one sums all helicity com-
ponents. As the D-wave component itself is a relativistic
correction, none of the helicity structures dominates unlike
in the S-wave part. Moreover, only theþ− and −þ helicity
components change sign at large distances, and as the þþ
and −− components do not vanish in this region, no node
appears in the squared D wave result. In the case of
transverse polarization with λ ¼ �1, the helicity compo-
nent �� in the D wave also changes the sign at large
distances, but this effect is not easily visible in Fig. 7 as the
other helicity components that do not change sign
dominate.

APPENDIX B: PHOTONLIKE
PARAMETRIZATIONS OF LIGHT CONE WAVE

FUNCTIONS

As discussed in Sec. IV, an often used approach to
parametrize vector meson wave functions is to start from
the helicity structure of the virtual photon light cone wave
functions (17) and (18). One then replaces the Bessel
function K0 in the photon wave functions (17) and (18) by
an unknown function as [48]

efezð1 − zÞK0ðϵrÞ
2π

→ ϕT;Lðr; zÞ; ðB1Þ

with the explicit factor Q in the longitudinal wave function
replaced by the meson mass as 2Q → MV . This leads, with
our sign conventions, to the wave function being written as

ψλ¼0
hh̄

ðr; zÞ ¼
ffiffiffiffiffiffi
Nc

p
δh;−h̄

×

�
MV þ m2

c −∇2
r

MVzð1 − zÞ
�
ϕLðr; zÞ; ðB2Þ

ψλ¼�1
hh̄

ðr;zÞ¼
ffiffiffiffiffiffiffiffi
2Nc

p 1

zð1−zÞðmcδh;�δh̄;�

∓ ie�iθrðzδh;�δh̄;∓−ð1−zÞδh;∓δh̄;�Þ∂rÞϕTðr;zÞ:
ðB3Þ

The scalar functions ϕT;Lðr; zÞ are then parametrized,
and the parameters can be determined by requiring that the
resulting wave function is normalized to unity and repro-
duces the experimental leptonic decay width. In terms of
Lorentz-invariant form factors this means that the meson is
assumed to have a nonzero Dirac form factor but a
vanishing Pauli form factor, since this is the structure
dictated by the gauge-boson-fermion vertex at leading order
perturbation theory. The procedure therefore does not
generate the most general possible helicity structure.
This photonlike parametrization approach starts from a

spacelike photon, where the photon momentum breaks
rotational symmetry that is manifested here as a symmetry
between longitudinal and transverse meson polarization
states. The common approach is to separately parametrize
the longitudinal and transverse functions ϕT;Lðr; zÞ. The
helicity structure obtained by generalization from the
photon wave function is of course consistent with rotational
symmetry, since the decay of a timelike virtual photon is
rotationally symmetric. Thus one could derive a constraint
relating ϕLðr; zÞ and ϕTðr; zÞ by requiring the meson rest
framewave functions to be the same. To our knowledge this
approach has not, however, been used in the literature.
Using separate parametrizations for ϕT;Lðr; zÞ should be
contrasted with the approach in this paper. Here, we
maintain rotational invariance in the meson rest frame,
in particular starting from the same decay constants

FIG. 7. Virtual photon wave function integrated over the
longitudinal momentum fraction z decomposed to S- and D-
wave components as a function of the quark-antiquark transverse
separation.
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calculated from the rest frame wave functions. Our pro-
cedure for going from the rest frame to the light cone wave
function therefore simultaneously determines the wave
function for both longitudinal and transverse polarization
states.
One can take the parametrization (B2) and (B3) in

momentum space, perform the inverse Melosh rotation
and separate the S- and D-wave components to get a rest
frame three-dimensional wave function. Assuming that the
Fourier transforms of the scalar functions are rotationally
invariant, i.e., ϕT;Lðk; zÞ depend only on k ¼ jk⃗j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM=2Þ2 −m2

c

p
, the result of this exercise in momentum

space is

ψλ¼0
S ¼ ϕLðkÞ

�
MV þ 4E2

MV

�

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
�
1

3
k2 þ ðEþmÞ2

�
;

ðB4Þ

ψλ¼þ1;−1
S ¼ ϕTðkÞ · 4E

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
�
1

3
k2 þ ðEþmÞ2

�
;

ðB5Þ

ψλ¼0
D ¼ ϕLðkÞ

�
MV þ 4E2

MV

�

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
4

3
ffiffiffi
2

p k2; ðB6Þ

ψλ¼þ1;−1
D ¼ ϕTðkÞ · 4E

×
ffiffiffiffiffiffiffiffiffi
Ncπ

p 2

ðEþmcÞð2EÞ3=2
4

3
ffiffiffi
2

p k2: ðB7Þ

These expressions are written in terms of the energy of the

quark in the meson rest frame E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

c

q
¼ M=2, and

k ¼ jk⃗j. Let us point out a few aspects of these expressions.
Firstly, as discussed above, in the photonlike parametrization
there is always a D-wave component in the meson wave
function. It is, as expected, explicitly a relativistic correction,
i.e., proportional to the squared 3-momentum of the quark.
Secondly, the rest framewave functions of the transverse and
longitudinal polarizations are not the same but differ by a
factor ðMV þ 4E2

MV
Þ=ð4EÞ ≈ 1þOððM −MVÞ2Þ, whereM is

the invariant mass of the quark pair andMV the mass of the
meson. As discussed earlier in Sec. III, the coordinate
transformation from k3 to z inevitably introduces ambiguities
that are proportional to this difference, so this should not
come as a surprise. In an NRQCD power counting, this

difference is of the order of the binding energy of the meson,
which is higher order than we are considering here.
In spite of this discussion, the wave function that we

obtained in Sec. IV can in fact be written in a photonlike
form in terms of scalar parts of light cone wave functions.
In the notation of [48] these read

ϕLðr;zÞ¼
πffiffiffiffiffiffi

Nc
p ð2mc;NRÞ3=2

4MVmc;NR

4m2
c;NRþM2

V

·

�
Aδðz−1=2Þ

þ B
m2

c;NR

��
34m2

c;NRþ5
2
M2

V

4m2
c;NRþM2

V
þm2

c;NRr
2

�
δðz−1=2Þ

−
1

4
∂2
zδðz−1=2Þ

��
; ðB8Þ

ϕTðr; zÞ ¼
πffiffiffiffiffiffi

Nc
p ð2mc;NRÞ3=2

�
Aδðz − 1=2Þ

þ B
m2

c;NR

��
11

2
þm2

c;NRr
2

�
δðz − 1=2Þ

−
1

4
∂2
zδðz − 1=2Þ

��
: ðB9Þ

We emphasize that we do not expect that writing down such
a parameterization in terms of two scalar parts of a light
cone wave function having the helicity structure of a photon
would be possible at higher orders in the nonrelativistic
expansion.
As a side remark, we discussed above that the photonlike

structure generically implies a nonzero D-wave compo-
nent; see Eqs. (B6) and (B7). On the other hand, our
NRQCD-based wave function by construction has no D
component. However, the D-wave component resulting
from inserting the scalar parts (B8) and (B9) into the
formulas for the D-wave contribution, Eqs. (B6) and (B7),
behaves as ∼k2∇2

k⃗
δð3Þðk⃗Þ. Such a function actually yields

zero when convoluted with any test function fðk⃗Þ, since the
angular integral picks out the l ¼ 2 component of f, which
must vanish at k ¼ 0. Thus the D-wave contribution
corresponding to (B8) and (B9) is in fact zero in a
distribution sense.
It is interesting to note that, when one calculates from

these expressions the decay constants for the different
polarization states using the light cone perturbation theory
expressions (26) and (27) in Ref. [48], one obtains

fL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Nc

mc;NR

s
ef

�
Aþ 5

2

B
m2

c;NR

�
; ðB10Þ

T. LAPPI, H. MÄNTYSAARI, and J. PENTTALA PHYS. REV. D 102, 054020 (2020)

054020-18



fT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Nc

mc;NR

s
ef

2mc;NR

MV

�
A −

1

2

B
m2

c;NR

�
: ðB11Þ

The results are not exactly equal. However, as discussed
above, if one approximates the meson mass by the quark
pair invariant mass, as we did in transforming to the
momentum fraction z, they do reduce to the same result.
This can be seen explicitly by replacing MV in (B11) by

hMi ≈ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

c;NR þ hq2i
q

and using Eq. (35) to write, at

lowest nontrivial order in the quark velocity, 2mc;NR=MV ≈

1þ 3B=ðm2
c;NRAÞ (note that B < 0). In this approximation

Eqs. (B10) and (B11) also give back the same decay width
expression that we are using to determine the rest frame
wave function. We reiterate that a difference such as this
can be expected in our procedure. We are constructing our
wave functions by requiring the decay widths calculated
from the rest frame wave functions to have the correct value
and to be the same for the different polarization states. The
coordinate transformation to light cone wave functions
does not conserve these properties exactly, but only up to a
given order in the nonrelativistic expansion.
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