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The power corrections in the operator product expansion (OPE) of QCD correlators can be viewed
mathematically as an illustration of the transseries concept, which allows us to recover a function from its
asymptotic divergent expansion. Alternatively, starting from the divergent behavior of the perturbative
QCD encoded in the singularities in the Borel plane, a modified expansion can be defined by means of
the conformal mapping of this plane. A comparison of the two approaches concerning their ability to
recover nonperturbative properties of the true correlator was not explored up to now. In the present paper,
we make a first attempt to investigate this problem. We use for illustration the Adler function and
observables expressed as integrals of this function along contours in the complex energy plane. We show
that the expansions based on the conformal mapping of the Borel plane go beyond finite-order
perturbation theory, containing an infinite number of terms when reexpanded in powers of the coupling.
Moreover, the expansion functions exhibit nonperturbative features of the true function, while the
expansions have a tamed behavior at large orders and are expected even to be convergent. Using these
properties, we argue that there are no mathematical reasons for supplementing the expansions based on
the conformal mapping of the Borel plane by additional arbitrary power corrections. Therefore, we make
the conjecture that they provide an alternative to the standard OPE in approximating the QCD correlator.
This conjecture allows to slightly improve the accuracy of the strong coupling extracted from the
hadronic τ decay width. Using the optimal expansions based on conformal mapping and the contour-
improved prescription of renormalization-group resummation, we obtain αsðm2

τ Þ ¼ 0.314� 0.006,
which implies αsðm2

ZÞ ¼ 0.1179� 0.0008.

DOI: 10.1103/PhysRevD.102.054017

I. INTRODUCTION

Perturbation theory is known to lead to divergent series
for many quantities in quantum mechanics and quantum
field theory (QFT). This surprising fact was first noticed in
1952 by Freeman Dyson [1], who argued that the pertur-
bation expansions in QED cannot be convergent since the
expanded functions are singular at the expansion point.
This discovery set a challenge for a radical reformulation of
perturbation theory (PT). To give the divergent series a
precise meaning, Dyson proposed to interpret it as asymp-
totic to the exact function, which changed the entire
philosophy of perturbation theory. Perturbation theory
yields, at least in principle, the values of all the perturbative
coefficients. This can tell us whether the series is con-
vergent or not. But what we want to know is under what
conditions the expanded function can be recovered. If the

series were convergent, the knowledge of all the perturba-
tive coefficients would uniquely determine the function. On
the other hand, there are infinitely many functions having
the same asymptotic expansion.
A divergent power series indicates that the expanded

function is singular at the expansion point. This means
that the Green functions in QFT are expected to be
singular at the origin of the coupling plane. In the case
of QED, the singular behavior was discovered by Dyson
through his original reasoning [1]. For QCD, the existence
of the singularity at zero coupling was demonstrated by
’t Hooft [2], using unitarity, analyticity and renormaliza-
tion group invariance. The divergence can be inferred
alternatively from particular classes of Feynman dia-
grams, which indicate a factorial growth of the expansion
coefficients in both QED [3,4] and QCD [5–7]. Com-
pelling evidence for this behavior is provided also by
lattice calculations [8].
Borel summation is known to be a useful tool for dealing

with divergent series. The large-order properties of the
expansion coefficients of a function are encoded in the
singularities of its Borel transform in the Borel plane. These
singularities (in particular the infrared (IR) renormalons
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produced by the low momenta in the Feynman diagrams)
induce ambiguities in the Laplace-Borel integral by which
the original function is recovered from its Borel transform.
According to the standard view, this indicates that per-
turbation theory is not complete and must be supple-
mented by nonperturbative terms in order to recover the
true function [7,9,10]. In QCD, these terms, exponentially
small in the strong coupling, are identified with the power
corrections in the operator product expansion (OPE) of the
Green functions [11].
In mathematical terms, in the so-called hyperasymptotic

theory, the power corrections can be interpreted as a first
piece of a transseries, i.e., a sequence of truncated series,
each of them exponentially small in the expansion param-
eter of the previous one, which allow to recover the
expanded function from its asymptotic divergent expansion
(see [12–14] and references therein). The hyperasymptotic
approximation has been used in QCD in order to separate
the truncated perturbative series from the nonperturbative
terms in the calculation of several observables [15,16].
On the other hand, a reformulation of perturbative QCD

has been defined recently using the method of conformal
mapping for “series acceleration”, i.e., for enlarging the
domain of convergence of power series and for increasing
their rate of convergence. The conformal mappings have
been applied a long time ago to the scattering amplitudes in
particle physics [17–19], and more recently to the pertur-
bative expansions in QFT [20,21]. In particular, as shown in
[10,22], the spurious power corrections in the QCD
correlators, which are due to the large momenta in the
Feynman integrals and are formally related to the ultra-
violet (UV) renormalons, can be removed by means of a
conformal mapping of the Borel plane. However, the
conformal mapping used in [10,22] does not ensure the
best convergence rate of the corresponding series. As
proved in [23], an optimal conformal mapping can be
defined, which achieves the analytic continuation of the
Borel transform in the whole Borel plane and has the best
asymptotic convergence rate. The properties of the pertur-
bative expansions in QCD improved by means of this
mapping have been investigated in [24,25], and the method
has been further considered in [26–33] (see also the
reviews [34,35]).
As shown in [23], the optimal conformal mapping of

the Borel plane for QCD incorporates information on the
position of the IR and UV renormalons. On the other hand,
the power corrections are introduced in the standard OPE
precisely to take into account the effect of the IR renor-
malons. This implies, as remarked in [35], that the method
of conformal mapping can be viewed as an alternative to the
transseries approach. In the present paper we discuss in
more detail this problem and argue that the method of
conformal mapping provides a systematic representation
which allows to recapture nonperturbative features of the
exact function, without the need for additional power

corrections. We note that the same problem was discussed
recently in the mathematical literature [36–38], where the
possibility of recovering the exact function from the
coefficients of its asymptotic perturbative expansion was
demonstrated in several cases where the exact function
is known.
The outline of the paper is as follows: in the next section

we briefly review the perturbative expansion of the Adler
function for massless quarks and in Sec. III we define a
reformulation of perturbation theory for this function using
the conformal mapping of the Borel plane. Section IV
contains our arguments in favor of the idea that the
perturbative expansions based on the optimal conformal
mapping of the Borel plane represent an alternative to the
transseries. In Sec. V we discuss the perturbative expan-
sions of the moments of the spectral function, using recent
results on their singularities in the Borel plane [33,39]. In
Sec. VI, we consider in particular the contour-improved
(CI) and fixed-order (FO) expansions of the τ hadronic
width and in Sec. VII we present a new determination of the
strong coupling αs from τ hadronic width. Finally, Sec. VIII
contains our conclusions.

II. ADLER FUNCTION IN PERTURBATIVE QCD

We consider the reduced Adler function [40]

D̂ðsÞ≡ 4π2DðsÞ − 1; ð1Þ

where DðsÞ ¼ −sdΠðsÞ=ds is the logarithmic derivative of
the invariant amplitude ΠðsÞ of the two-current correlation
tensor. From general principles of field theory, it is known
that D̂ðsÞ is an analytic function of real type (i.e., it satisfies
the Schwarz reflection property D̂ðs�Þ ¼ D̂�ðsÞ) in the
complex s plane cut along the timelike axis for s ≥ 4m2

π.
In QCD perturbation theory, D̂ðsÞ is expressed as an

expansion

D̂ðsÞ ¼
X
n≥1

½aðμ2Þ�n
Xn
k¼1

kcn;kðlnð−s=μ2ÞÞk−1; ð2Þ

in powers of the renormalized strong coupling aðμ2Þ≡
αsðμ2Þ=π, defined in a certain renormalization scheme (RS)
at the renormalization scale μ. Since the series is divergent,
the representation is actually symbolic and has to be given a
meaning.
The coefficients cn;1 in (2) are obtained from the

calculation of Feynman diagrams, while cn;k with k > 1

are expressed in terms of cm;1 with m < n and the
perturbative coefficients βn of the β function, which
governs the variation of the QCD coupling with the scale
μ in each RS:
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−μ
daμ
dμ

≡ βðaμÞ ¼
X
n≥1

βnanþ1
μ : ð3Þ

In MS scheme, the coefficients βn have been calculated to
five loops (see [41] and references therein). The first two
coefficients do not depend on the RS and are expressed in
terms of the number nf of active flavors as:

β1 ¼
11

2
−
1

3
nf; β2 ¼

51

4
−
19

12
nf: ð4Þ

For a large spacelike value s < 0, one can choose in (2)
the scale μ2 ¼ −s, and obtain the renormalization-group
improved expansion

D̂ðsÞ ¼
X
n≥1

cn;1½að−sÞ�n; ð5Þ

where að−sÞ≡ αsð−sÞ=π is the running coupling. The
expansions (2) and (5) are often used also for complex
values of s plane, outside the timelike axis s > 0.
The Adler function was calculated in the MS scheme to

order α4s (see [42] and references therein). For nf ¼ 3, the
leading coefficients cn;1 have the values:

c1;1¼ 1; c2;1¼ 1.640; c3;1¼ 6.371; c4;1¼ 49.076:

ð6Þ

Estimates of the next coefficient c5;1 have been made in
several papers (see [33,43] and references therein). We
shall use in our analysis the range

c5;1 ¼ 277� 51; ð7Þ
derived recently in [43].
At high orders n, the coefficients increase factorially,

more exactly cn;1 ≈ Kbnn!nc, where K, b and c are
constants [7]. Therefore, the series (2) has zero radius of
convergence and can be interpreted only as an asymptotic
expansion to D̂ðsÞ for aðμ2Þ → 0. This indicates the fact
that the Adler function, viewed as a function of the strong
coupling a, is singular at the origin a ¼ 0 of the coupling
plane. Actually, as shown by ’t Hooft [2], the function D̂ is
analytic only in a horn-shaped region in the half-plane
Re a > 0, of zero opening angle near a ¼ 0.
In some cases, the expanded functions can be recovered

from their divergent expansions through Borel summation.
The Borel transform of the Adler function is defined by the
power series

BD̂ðuÞ ¼
X∞
n¼0

bnun; ð8Þ

where the coefficients bn are related to the perturbative
coefficients cn;1 by

bn ¼
cnþ1;1

βn0n!
: ð9Þ

Here we used the standard notation β0 ¼ β1=2.
The large-order increase of the coefficients of the

perturbation series is encoded in the singularities of the
Borel transform in the complex u plane. As shown in Fig. 1,
BD̂ðuÞ has singularities at integer values of u on the
semiaxes u ≥ 2 (IR renormalons and instantons, which
we shall neglect in the present analysis since are situated at
larger u) and u ≤ −1 (UV renormalons). In the large-β0
limit the singularities are poles, but beyond this limit they
are branch points, requiring the introduction of two cuts
along the lines u ≥ 2 and u ≤ −1. Apart from these cuts, it
is assumed that no other singularities are present in the
complex u plane [9].
From the definition (8), it follows that the function D̂ðsÞ

defined by (5) can be recovered formally from the Borel
transform by the Laplace-Borel integral representation

D̂ðsÞ ¼ 1

β0

Z
∞

0

exp

�
−u

β0að−sÞ
�
BD̂ðuÞdu: ð10Þ

Actually, due to the singularities of BD̂ðuÞ for u ≥ 2, the
integral (10) is not defined and requires a regularization. As
shown in [44], the principal value (PV) prescription, where
the integral (10) is defined as the semisum of the integrals
along two lines, slightly above and below the real positive
axis u ≥ 0, is convenient since it preserves to a large extent
the analytic properties of the true function D̂ðsÞ in the
complex s plane, in particular the absence of cuts on the
spacelike axis s < 0 and Schwarz reflection property.
Therefore, we shall adopt this prescription in what follows.
The singularities of BD̂ðuÞ set a limitation on the

convergence region of the power expansion (8): this series
converges only inside the circle juj ¼ 1 shown in Fig. 1,
which passes through the first UV renormalon. As it is
known, the domain of convergence of a power series in the
complex plane can be increased by expanding the function
in powers of another variable, which performs the con-
formal mapping of the original plane (or a part of it) onto a

FIG. 1. Borel plane of the Adler function. The circle indicates
the convergence domain of the series (8).
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disk. In the next section we shall apply this method to the
Adler function.

III. NONPOWER EXPANSIONS
OF THE ADLER FUNCTION

The method of conformal mappings was introduced in
particle physics in [17–19] for improving the convergence
of the expansions of scattering amplitudes in powers of
various kinematical variables. By expanding the amplitude
in powers of the function that maps the original analyticity
domain onto a unit disk, the new series converges in a larger
region, well beyond the convergence domain of the original
expansion, and moreover has an increased asymptotic
convergence rate at points lying inside this domain. The
conformal mappings are known actually in mathematics as
one of the techniques for “series acceleration.”
An important result proved in [17,19] is that the asymp-

totic convergence rate is maximal if the entire holomorphy
domain of the expanded function is mapped onto the unit
disk. We recall that the large-order convergence rate of a
power series at a point in the complex plane is equal to the
quotient r=R, where r is the distance of the point from the
origin and R the convergence radius. The proof given in [17]
consists in comparing the magnitudes of the ratio r=R for a
certain point in different complex planes, corresponding to
different conformal mappings. When the whole analyticity
domain of the function is mapped on a disk, the value of r=R
is minimal [17] (a detailed proof is given in [29,35]). This
defines an “optimal conformal mapping,”which achieves the
best asymptotic convergence.
In QCD, since the correlators are singular at the origin of

the coupling plane [2], the method cannot be used for the
standard perturbative series.1 However, the conditions of
applicability are satisfied by the Borel transforms such as
BD̂ðuÞ, which are holomorphic in a region containing the
origin u ¼ 0 of the Borel complex plane. Thus, the
expansion (8) in powers of the Borel variable u can be
reexpressed as an expansion in powers of a different
variable, which achieves the conformal mapping of the u
plane onto the unit disk.
As shown for the first time in [23], the optimal mapping,

which ensures the convergence of the power series in the
entire doubly cut Borel plane, is given by the function

w̃ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u=2

p ; ð11Þ

whose inverse reads

ũðwÞ ¼ 8w
3 − 2wþ 3w2

¼ 8w
3ðw − ζÞðw − ζ�Þ ; ð12Þ

where ζ ¼ ð ffiffiffi
2

p þ iÞ=ð ffiffiffi
2

p
− iÞ and its complex conjugate

ζ� are the images of u ¼ ∞ on the unit circle in the w plane.
One can check that the function w̃ðuÞ maps the complex

u plane cut along the real axis for u ≥ 2 and u ≤ −1 onto
the interior of the circle jwj ¼ 1 in the complex plane
w≡ w̃ðuÞ, such that the origin u ¼ 0 of the u plane
corresponds to the origin w ¼ 0 of the w plane, and the
upper (lower) edges of the cuts are mapped onto the upper
(lower) semicircles in the w plane (see Fig. 2). By the
mapping (11), all the singularities of the Borel transform,
the UVand IR renormalons, are pushed on the boundary of
the unit disk in the w plane, all at equal distance from the
origin. Consider now the expansion of BD̂ðuÞ in powers of
the variable w:

BD̂ðuÞ ¼
X
n≥0

cnwn; w ¼ w̃ðuÞ; ð13Þ

where the coefficients cn can be obtained from the
coefficients bk, k ≤ n, using Eqs. (8) and (11). By expand-
ing BD̂ðuÞ according to (13) one makes full use of its
holomorphy domain, because the known part of it (the first
Riemann sheet) is mapped onto the convergence disk.
Therefore, the series (13) converges in the whole u complex
plane up to the cuts, i.e., in a much larger domain than the
original series (8). Moreover, according to the results
mentioned above, this expansion has the best asymptotic
convergence rate compared to other expansions, based on
conformal mappings which map a part of the holomorphy
domain onto the unit disk.
By inserting the expansion (13) in the Borel-Laplace

integral (10), we obtain a new perturbative series for the
Adler function, of the form [23–25]:

D̂ðsÞ ¼
X
n≥0

cnWnðað−sÞÞ; ð14Þ

where the functions WnðaÞ are defined as

FIG. 2. The w plane obtained by the conformal mapping (11).
The IR and UV renormalons are mapped on the boundary of the
unit disk.

1The conformal mapping of the coupling plane was never-
theless used in Refs. [20,21], where it was assumed that the
singularity is shifted away from the origin by a certain amount at
each finite perturbative order, and tends to the origin only for an
infinite number of terms.
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WnðaÞ ¼
1

β0
PV

Z
∞

0

e−u=ðβ0aÞðw̃ðuÞÞndu: ð15Þ

We emphasize that the principal value prescription in
the definition of the expansion functions preserves to a
better extent than other prescriptions the analyticity in
the momentum plane and Schwarz reflection property.
Preserving analyticity is important in physical applications,
which require the analytic continuation of perturbative
QCD from the spacelike axis to the timelike axis, where
measurements are available.
The expansion can be further improved by exploiting the

fact that the nature of the leading singularities of BD̂ðuÞ
in the Borel plane is known: near the first branch points
u ¼ −1 and u ¼ 2, BD̂ðuÞ behaves like

BD̂ðuÞ ∼
r1

ð1þ uÞγ1 and BD̂ðuÞ ∼
r2

ð1 − u=2Þγ2 ; ð16Þ

respectively, where the residues r1 and r2 are not known,
but the exponents γ1 and γ2 have been calculated [9,10,40].
We shall use the expressions [40]

γ1 ¼ 2 − 2
β2
β21

; γ2 ¼ 1þ 4
β2
β21

; ð17Þ

involving the first coefficients of the β function given in (4).
For nf ¼ 3, when β1 ¼ 9=2 and β2 ¼ 8, (17) gives

γ1 ¼ 1.21; γ2 ¼ 2.58: ð18Þ

Using (11), it is easy to check that

ð1þ uÞγ1 ∼ ð1þ wÞ2γ1 ; for u ∼ −1

ð1 − u=2Þγ2 ∼ ð1 − wÞ2γ2 ; for u ∼ 2: ð19Þ

It follows that the product BD̂ðuÞð1þ wÞ2γ1ð1 − wÞ2γ2 is
finite at u ¼ −1 and u ¼ 2. Actually, the product has still
singularities (branch points) at u ¼ −1 and u ¼ 2, gen-
erated by the terms of BD̂ðuÞ which are holomorphic at
these points, but they are milder than the original ones (the
singularities are “softened”). It is clear that the optimal
variable for the expansion of the product is still the
conformal mapping (11), which depends only on the
position of the first singularities. Using this remark, we
shall adopt the expansion2

BD̂ðuÞ ¼
1

ð1þ wÞ2γ1ð1 − wÞ2γ2
X
n≥0

c̃nwn; ð20Þ

proposed in [28]. Actually, as emphasized in [28,29], while
the optimal conformal mapping (11) is unique, the factori-
zation of the singular factors is not. The problem was
investigated in detail in [29], where extensive numerical tests
indicated the good properties of the expansion (20), where
the singular factors are simple functions of the variable w. In
the present paper we shall adopt the expansion (20) and
account for other possibilities (for instance, multiplication by
the factors ð1þ uÞγ1ð1 − u=2Þγ2) in the assessment of the
theoretical uncertainty.
By inserting the expansion (20) in the Borel-Laplace

integral (10), we define a new perturbative series for the
Adler function:

D̂ðsÞ ¼
X
n≥0

c̃nW̃nðað−sÞÞ; ð21Þ

where the expansion functions are

W̃nðaÞ ¼
1

β0
PV

Z
∞

0

e−
u

β0aðw̃ðuÞÞn
ð1þ w̃ðuÞÞ2γ1ð1 − w̃ðuÞÞ2γ2 du:

ð22Þ

We note that the expansion functions (15) and (22) are
no longer powers of the coupling, as in the standard
perturbation theory, and exhibit a complicated depend-
ence on a. To emphasize this fact, as in [31], we refer to
the new expansions (14) and (21) as to “nonpower
expansions.”
By construction, when reexpanded in powers of a, the

series (14) and (21) reproduce the known low-order
perturbative coefficients cn;1 of the expansion (5), given
in (6) and (7). On the other hand, as will be argued in the
next section, these expansions go beyond standard pertur-
bation theory, allowing to recapture nonperturbative fea-
tures of the expanded function.

IV. NONPERTURBATIVE FEATURES FROM
PERTURBATION THEORY

A. Properties of the nonpower expansions

We consider first the analyticity properties of the
expansion functions WnðaÞ in the complex a plane (we
recall that a is related to the strong coupling by
a ¼ αsð−sÞ=π). It is known that the analytic properties
of the QCD correlators in the coupling constant plane are
far from trivial. In [2] it was proved that the multiparticle
branch points in the spectral functions at high energies
show their presence, via the renormalization group equa-
tions, in a complicated accumulation of singularities near
the point a ¼ 0. Since the proof uses a nonperturbative
argument (the existence of multiparticle hadronic states), it
is not possible to see this feature in the standard truncated
perturbation theory: indeed, the expansions in powers of
the strong coupling a, truncated at finite orders, are

2The factorization of the dominant IR renormalon in the Borel
plane was used for the first time for the Adler function in [45] and
for other correlators in [46].
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holomorphic at the origin of the complex a plane and
cannot reproduce the singularity of the exact correlator
at this point.
For the nonpower expansion functions WnðaÞ defined

in (15) one expects a more complex structure in the a plane,
even after the regularization of the integral by the PV
prescription. In [25] it was shown that the functionsWnðaÞ
can be represented in the complex a plane as

WnðaÞ ¼
Z

∞

0

e−t½w̃ðtaÞ�ndt ∓ ie−
2
a

Z
∞

0

e−tfnðtaÞdt;

Im a ≷ 0; ð23Þ

where the functions fnðaÞ are defined in Eq. (24) of
Ref. [25]. As further proved in [25], the representation
(23) implies that the functionsWnðaÞ are analytic functions
of real type, i.e., they satisfy the Schwarz reflection
property Wnða�Þ ¼ ðWnðaÞÞ�, in the whole complex a
plane, except for a cut along the real negative axis a < 0
and an essential singularity at a ¼ 0. Therefore, the
expansion (14), even if truncated at a finite order, exhibit
a feature of the full correlator, namely its singularity at the
origin of the a plane.
It is useful to note that the new expansions, when

reexpanded in powers of a, contain an infinite number
of terms, even if the expansions themselves are truncated at
finite orders. Thus, the truncated expansions (14) and (21)
go beyond standard finite-order perturbation theory. This
remark will be useful below.
We can actually investigate in more detail the perturba-

tive expansion of the functions WnðaÞ themselves. Since
these functions have singularities at a ¼ 0, their Taylor
expansions around the origin will be divergent series. We
take first a real and positive, when the functionsWnðaÞ are
well defined and have bounded magnitudes. By applying
Watson’s lemma [47] (see also [48,49]), it was shown in
[25] that WnðaÞ can be expressed as

WnðaÞ ¼
XN
k¼n

ξðnÞk k!ak þMnðN þ 1Þ!aNþ1 þOðe−X
aÞ;

ð24Þ

where N is a positive integer, Mn is independent of N, X is

an arbitrary positive parameter less than 1 and ξðnÞk are
defined by the Taylor expansions

ðw̃ðuÞÞn ¼
X∞
k¼n

ξðnÞk uk; n ≥ 1: ð25Þ

The expression (24) implies that

RðnÞ
N ≡WnðaÞ−

XN
k¼n

ξðnÞk k!ak¼oðaNÞ; a→0þ ð26Þ

which is the definition of an asymptotic expansion [48], so
we can write using a standard notation

WnðaÞ ∼
X∞
k¼n

ξðnÞk k!ak; a → 0þ:

We recall that, while the convergence of a series can be
established or disproved only from the knowledge of its
coefficients, for an asymptotic expansion one needs to
know both the function and the coefficients. On the other
hand, while a convergent series has a unique sum, the
coefficients of an asymptotic series do not determine the
function uniquely. More information, like for instance
analyticity in a region of the complex plane near a ¼ 0,
is necessary in general to ensure uniqueness.
As shown in [25], the representation (24) is independent

of the prescription adopted for the Borel-Laplace integral.
We note that the first term of each WnðaÞ is proportional
to n!an with a positive coefficient, thereby retaining a
fundamental property of perturbation theory. But the series
(24) are divergent: indeed, since the expansions (25) have
the convergence radii equal to 1, there are for any R > 1

infinitely many k such that jξðnÞk j > R−k [48]. Actually, the
divergence of the series (24) is not surprising, in view of
the singularities of the functionsWnðaÞ at the origin of the
a plane.
For illustration, we give below the expansions of the

first functions WnðaÞ defined in (15) for n ≥ 1 (note
that W0ðaÞ ¼ a):

W1ðaÞ ∼ 0.844a2 − 0.949a3 þ 5.206a4 − 27.932a5 þ 249.61a6 − 2535.85a7 þ 32810.9a8 − 485719a9 þ…

W2ðaÞ ∼ 1.424a3 − 4.805a4 þ 40.546a5 − 334.502a6 þ 3864.71a7 − 50084.5a8 þ 777892a9 þ…

W3ðaÞ ∼ 3.604a4 − 24.327a5 þ 290.789a6 − 3367.59a7 þ 49042.7a8 − 785848a9 þ… ð27Þ

The higher powers of a become quickly more and more important in (27), for instance, the 12th-order coefficients are
3.9 × 1012, −5.9 × 1012 and 6.6 × 1012, respectively, the coefficients exhibiting a factorial growth.
The expansion functions eWnðaÞ defined in (22) have similar properties: they are singular at the origin of the a plane

and their expansions in powers of a are divergent (in particular, the coefficient of the first term is identical to that of (24),

i.e., ξðnÞn n!). The expansions of the first functions eWnðaÞ have the form:
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eW0ðaÞ ∼ aþ 2.312a2 þ 8.140a3 þ 31.088a4 þ 213.55a5 þ 980.805a6 þ 13677.8a7 þ 30900.7a8 þ 1.95 × 106a9 þ…

eW1ðaÞ ∼ 0.844a2 þ 2.952a3 þ 19.227a4 þ 78.770a5 þ 956.331a6 þ 2677.55a7 þ 104194a8 − 308869a9 þ…

eW2ðaÞ ∼ 1.424a3 þ 5.069a4 þ 65.649a5 þ 185.647a6 þ 5748.59a7 − 7196.39a8 þ 1.04 × 106a9 þ…

eW3ðaÞ ∼ 3.604a4 þ 9.001a5 þ 302.958a6 − 63.591a7 þ 44720.9a8 − 305830a9 þ… ð28Þ

We conclude that, unlike the expansion functions an of
the standard perturbation theory, which are holomorphic at
a ¼ 0, the nonpower expansion functions WnðaÞ andeWnðaÞ are singular at a ¼ 0 and admit divergent expan-
sions in powers of a, resembling from this point of view the
expanded function D̂ itself.
On the other hand, as proved in [24], the new expansions

(14) and (21) have a tamed behavior at high orders and,
under certain conditions, they may even converge in a
domain of the s plane. Crucial for the proof is the large-
order behavior of the functions WnðaÞ at large n, inves-
tigated in [24,25] by the technique of saddle points.
Omitting the details given in [24], we quote the asymptotic
behavior of WnðaÞ for n → ∞:

WnðaÞ ≈ n
1
4e−2

3=4ðn=aÞ1=2

×
h
ζne−2

3=4iðn=aÞ1=2 þ ðζ�Þne23=4iðn=aÞ1=2
i
; ð29Þ

where ζ was defined below (12). The estimate (29) is valid
in the complex a plane, for a ¼ jajeiψ with ψ restricted by

jψ j < π=6: ð30Þ

The convergence of the expansion (14) depends on the
ratio ���� cnWnðaÞ

cn−1Wn−1ðaÞ
����: ð31Þ

As shown in [24,25], if the coefficients cn satisfy the
condition

jcnj < Ceϵn
1=2 ð32Þ

with C > 0 for any ϵ > 0, the expansion (14) converges for
a complex in the domain

Re½ð1� iÞa−1=2� > 0; ð33Þ

which is equivalent to jψ j ≤ π=2 − δ, for any δ > 0. Since
the condition (30) is more restrictive, it follows that, if the
condition (32) is satisfied, the series (14) converges in the
sector defined by (30).
The validity of the condition (32) in QCD cannot be

proved formally. Instead, the convergence of the series
based on the conformal mapping of the Borel plane was
confirmed numerically in realistic models of the Adler
function inspired from real QCD. These models, proposed
for the first time in [40], parametrize the Borel transform
BD̂ðuÞ as a sum of IR and UV renormalon contributions and
a regular part, which satisfy renormalization-group invari-
ance and reproduce the known low-order coefficients of the
expansion (5). As shown in [28,29,32], the improved
expansions provide a much better approximation that the
standard PT, up to high orders.
For illustration, we consider here the perturbative cal-

culation of the Adler function on the spacelike axis, using
the “reference model” proposed in [40] and an alternative
model, proposed in [29], with a smaller residue of the
first IR renormalon (these models are summarized in
Appendix A of [33]). The exact value of the Adler function
is obtained by inserting the Borel transform described by
each model3 in the PV-regulated Borel-Laplace integral
(10). On the other hand, from the perturbative coefficients
of these models, calculated exactly to any order, one can
obtain the standard perturbation expansion (5) and con-
struct also the improved ones, given in Eqs. (14) and (21).

TABLE I. Adler function D̂ð−m2
τ Þ predicted by the “reference

model” (see text) for αsðm2
τ Þ ¼ 0.32, calculated with the per-

turbative standard expansion (5) and the nonpower expansions
(14) and (21), for various truncation orders N. Exact value:
D̂ð−m2

τ Þ ¼ 0.137706.

N Eq. (5) Eq. (14) Eq. (21)

10 0.155429 0.142247 0.137763
11 0.149068 0.139757 0.137733
12 0.191213 0.137235 0.137700
13 0.114491 0.135647 0.137712
14 0.417809 0.135401 0.137729
15 −0.442007 0.136258 0.137724
16 2.80676 0.137549 0.137715
17 −8.76330 0.138553 0.137714
18 37.9988 0.138851 0.137716
19 −154.7999 0.138470 0.137714
20 700.409 0.137788 0.137711
21 −3248.105 0.137259 0.137709
22 15993.08 0.137139 0.137709
23 −81886.8 0.137384 0.137709
24 439277.8 0.137744 0.137707
25 −2.45 × 106 0.137973 0.137706

3Note that in the conventions used in this paper the expression
of BD̂ðuÞ given in Appendix A of [33] must be multiplied by π.
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In Table I we present the predictions of these expan-
sions truncated at the finite order N for the Adler function
D̂ðsÞ given by the “reference model” mentioned above.
We take the point s ¼ −m2

τ on the spacelike axis, far
from the hadronic thresholds, where perturbative QCD
can be applied. The calculations have been done with
αsðm2

τÞ ¼ 0.32. Since we are interested in the high-order
behavior of the expansions, we show the results for N
larger than 10.
One can see that, while the standard expansion (5) wildly

diverges, the improved expansions converge to the exact
value D̂ð−m2

τÞ ¼ 0.137706 predicted by the model. This
pattern is preserved to higher orders: for instance, for
N ¼ 40, the standard expansion predicts 2.39 × 1019, while
the improved expansions give 0.137727 and 0.137706,
respectively (the expansion (21) reproduces actually the
exact value to 7 digits). Moreover, the results show that
the explicit factorization of the first singularities of the
Borel transform improves the approximation both at low
and high orders.
In Table II we present similar results for the alternative

model given in Appendix A of [33], for which the exact
value is D̂ð−m2

τÞ ¼ 0.139136. The good convergence pat-
tern of the nonpower expansions is illustrated in the last two
columns, in contrast to the divergence of the standard PT
shown in the first column. The same features are preserved at
higher orders: for instance, for N ¼ 40 the results are
2.39 × 1019, 0.139142 and 0.139019, respectively.
The good convergence properties of the new expansions,

discussed above, will play an important role in the
interpretation of these expansions as an alternative to the
standard OPE for recapturing nonperturbative features of
the expanded function.

B. Nonpower expansions versus standard OPE

From the above discussion, it follows that the expansions
(14) and (21) exhibit crucial nonperturbative features of the
expanded function and allow to recover this function from
its perturbative coefficients. It is of interest to look in
parallel at the properties of the standard OPE, which, as
mentioned already, is an example of the transseries concept
applied to QCD.
We recall that in the frame of OPE, largely used in QCD

phenomenology since its proposal in Ref. [11], the repre-
sentation of the Adler function

D̂ðsÞ ∼
XN
n¼1

cn;1½að−sÞ�n þ
XK
k¼1

dk
ð−sÞk ð34Þ

contains, besides the truncated perturbative expansion, a
series of “power corrections,” with coefficients dk involv-
ing both perturbative factors depending logarithmically on
s and nonperturbative condensates.
Despite its great popularity, one must keep in mind that

OPE expansion, when generalized to include power
corrections, is an assumption. As it is known, the validity
of the OPE is only proven rigorously within perturbation
theory, and is postulated in the nonperturbative frame-
work. This fact is emphasized in many places (see for
instance [15,50]).
For the present discussion, the crucial remark is that

1=ð−sÞk can be written approximately as exp½−k=
ðβ0að−sÞÞ�, where að−sÞ is the expansion parameter of
the first series in (34), calculated by solving the renorm-
alization group equation (3). Therefore, the power correc-
tions in the OPE can be identified with the nonanalytic
terms, exponentially small in the expansion parameter of a
divergent series, which must be added to it in order to
recover the expanded function. On the other hand, as
discussed below (23), the expansion functions WnðaÞ
(and eWnðaÞ, actually) exhibit too singularities near the
origin of the complex a plane. Thus, both OPE and the
nonpower expansions based on the conformal mapping of
the Borel plane incorporate a nonperturbative feature of
the exact Adler function, although neither can reproduce
exactly the complicated singularity structure of this func-
tion near a ¼ 0, found in [2].
The Borel plane provides another argument for the

similarity of the two approaches. As discussed in the
mathematical literature [12,13], in the so-called hyper-
asymptotic approach the transseries account for the singu-
larities in the Borel plane, which the ordinary asymptotic
expansion fails to deal with. Indeed, the action of taking the
Laplace-Borel transform (10) over an infinite range,
beyond the finite radius of convergence of the expansion
(8) of the Borel transform, generates the divergent asymp-
totic expansion of the Adler function [the first series in
(34)]. In order to overcome this, the hyperasymptotics

TABLE II. The same as in Table I for the alternative model (see
text). Exact value: D̂ð−m2

τ Þ ¼ 0.139136.

N Eq. (5) Eq. (14) Eq. (21)

10 0.146532 0.140557 0.140773
11 0.135890 0.140106 0.141022
12 0.171622 0.139288 0.140710
13 0.084619 0.138610 0.139955
14 0.370536 0.138501 0.139723
15 −0.521082 0.138830 0.139711
16 2.667712 0.139219 0.139499
17 −9.02819 0.139463 0.139326
18 37.47991 0.139534 0.139312
19 −155.9579 0.139429 0.139297
20 698.025 0.139205 0.139239
21 −3254.873 0.139011 0.139206
22 15981.426 0.138967 0.139205
23 −81944.79 0.139050 0.139197
24 439264.5 0.139159 0.139176
25 −2.45 × 106 0.139225 0.139165
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approach includes additional terms (the second series in
(34)), which is equivalent in a certain sense to an analytic
continuation of the Borel transform to the neighborhood of
the distant singularities [13]. This allows the function to
“resurge,” or to be asymptotically remodelled. On the other
hand, the expansions (13) and (20), based on conformal
mapping of the Borel plane, converge in the whole u plane
up to the cuts, achieving in a manifest way the analytic
continuation outside the circle of convergence of the
series (8).
Therefore, the transseries approach and the method of

conformal mapping represent alternative ways to effec-
tively perform the analytic continuation in the Borel plane,
in order to recover the expanded function when its
asymptotic perturbative expansion diverges. This can be
seen from the fact that nonperturbative features similar to
those introduced explicitly in the standard OPE are con-
tained in an implicit way in the expansions (14) or (21). We
can make therefore the conjecture that the nonpower
expansions provide by themselves a consistent way of
recapturing the exact function, without the need of addi-
tional power corrections, being an alternative to the
standard OPE. Below we present two additional arguments
in favor of this conjecture.
First, we emphasize that we do not assume that the

nonperturbative condensates are zero. We recall however
that these terms have been defined within OPE. Moreover,
as discussed in recent analyses [15,16,50], the nonper-
turbative terms depend on the perturbative part, in
particular on the truncation order of the perturbation
series. But the new expansions defined here, even if
truncated at finite orders, contain an infinite number of
terms when reexpanded in powers of a. So, if one may
think to supplement them by additional power corrections,
their interpretation in terms of condensates will be
hard to give.
More importantly, the new expansions, which are

obtained by a systematic mathematical method, are shown
to converge under some conditions (whose validity is
expected to hold in QCD), and the convergence is checked
numerically on models inspired from QCD. There are no
reasons for adding to a convergent series arbitrary terms
(in the transseries approach, such terms are necessary for
recapturing a function from its divergent asymptotic
expansion). In conclusion, there are no mathematical
arguments for supplementing the nonpower expansions
by additional, arbitrary power corrections.
The conjecture formulated above implies in particular

that the difference between the predictions of the non-
power expansions and the pure perturbative part of OPE
[the first series in (34)] should be of the order of
magnitude of the power corrections. Below we make a
rough numerical test of this expectation, using for
illustration the Adler function D̂ðsÞ at the spacelike point
s ¼ −m2

τ .

By inserting the known coefficients cn;1 given in (6) and
the central estimate of c5;1 from (7) in the standard PT
expansion (5), we obtain for αsðm2

τÞ ¼ 0.32 the value
D̂PTð−m2

τÞ ¼ 0.1339. On the other hand, for the same
input the first five coefficients c̃n in (20) are:

c̃0 ¼ 1; c̃1 ¼ −0.80; c̃2 ¼ 0.41;

c̃3 ¼ 8.66; c̃4 ¼ 1.75� 4.19; ð35Þ

where the uncertainty of c̃4 is due to the uncertainty of c5;1
quoted in (7). Then the expansion (21) predicts for the same
coupling the central value D̂ð−m2

τÞ ¼ 0.1384, larger by
0.0045 than the standard PT value.
For the power corrections, the analyses made in [40,51]

show that the dominant contribution is given by the gluon
condensate. Using as in [40] the standard historical value
haG2i ¼ 0.012 GeV4, we estimate the contribution of the
power corrections to D̂ð−m2

τÞ as 0.006� 0.006, where a
conservative error of 100% was added. This interval is
consistent with the difference of about 0.005 between the
standard and the nonpower perturbative expansions, which
roughly confirms the conjecture made above. We note
that a more reasonable comparison in the spirit of the work
done in Refs. [15,16] would require the truncation of the
standard perturbative series at the minimal term, when the
definition of the nonperturbaive terms is more rigorous.
However, for the Adler function the minimal term is
expected to occur at a higher order n, which is not yet
reached by Feynman-graph calculations. Therefore, a more
rigorous estimate is not possible at the present status of
knowledge of the Adler function.
In Sec. VII we shall exploit the consequences of the

formalism proposed in this paper for the evaluation of the
strong coupling constant αs from hadronic τ decay. Before
this, we shall investigate in more detail the method of
conformal mapping for observables represented by inte-
grals of the Adler function along a contour in the complex
s plane.

V. MOMENTS OF THE SPECTRAL FUNCTION

The moments of the spectral function ImΠðsÞ are defined
as weighted integrals of this quantity along the physical
region 4m2

π ≤ s ≤ m2
τ of the hadronic decays of the τ

lepton. They are accessed through experiment and play
an important role in the extraction of the QCD parameters,
in particular the strong coupling αs, from hadronic τ
decays. More generally, the moments are defined as [52]

Mwi
ðs0Þ ¼

2

π

Z
s0

0

wiðs=s0ÞImΠðsþ iϵÞds; ð36Þ

where 0 < s0 ≤ m2
τ and wiðxÞ are arbitrary nonnegative

weights. We are interested in the pure perturbative
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contribution to Mwi
, denoted as δð0Þwi , obtained by sub-

tracting from (36) the tree values δtreewi
ðs0Þ.

If the weights wiðsÞ are holomorphic functions in the
disk jsj ≤ s0, taking into account the analytic properties of
ΠðsÞ and applying Cauchy theorem one can write equiv-
alently (36) as an integral along a contour in the complex s
plane, chosen for convenience to be the circle jsj ¼ s0.
After an integration by parts, the perturbative contribution

δð0Þwi can be written as

δð0Þwi ðs0Þ ¼
1

2πi

I
jsj¼s0

ds
s
Wiðs=s0ÞD̂ðsÞ; ð37Þ

where the weights WiðxÞ are defined as

WiðxÞ ¼ 2

Z
1

x
dzwiðzÞ; ð38Þ

and D̂ is the reduced Adler function (1).
Perturbative QCD is not directly applicable for the

evaluation of the observables (36), since it cannot describe
the hadronic thresholds in the spectral function on the
timelike axis. However, the equivalent expression (37)
involves the values of the Adler function in the complex
plane, where perturbation theory makes sense (especially if
the region near the timelike axis is suppressed by a suitable
choice of the weight Wi). We can insert therefore in (37)
the perturbative expansions, either (2) or (5), of the Adler
function.
The first alternative is known as fixed-order (FO)

perturbation theory and leads to an expansion of the form

δð0Þwi;FO
ðs0Þ ¼

X
n≥1

dn½aðs0Þ�n ð39Þ

where the coefficients dn are obtained by integrating the
s-dependent coefficients of (2) along the circle, and aðs0Þ is
the coupling at the scale μ2 ¼ s0. In the second alternative,
known as contour-improved (CI) perturbation theory, the

expansion of δð0Þwi ðs0Þ reads

δð0Þwi;CI
ðs0Þ ¼

X
n≥1

cn;1
1

2πi

I
jsj¼s0

ds
s
Wiðs=s0Þ½að−sÞ�n; ð40Þ

where the running coupling að−sÞ is computed by inte-
grating the Eq. (3) iteratively along the circle, starting from
a given aðs0Þ.
The comparison between the standard FO and CI

perturbative QCD expansions of the moments has been
investigated in [39,52], where substantial differences
between the twoways of renormalization-group summation
have been noticed. Here we are interested in the method
of conformal mapping of the Borel plane, which can be

applied to improve the expansions of the quantities δð0Þwi

much like that of the Adler function itself. This problem has
been investigated in [28,29,31].
For the CI version of summation, the application of the

conformal mapping is straightforward: one has simply to
insert in (37) the improved expansions (14) or (21) of D̂ðsÞ.
For the FO version, one must follow the steps applied in
Sec. II to the Adler function, using now as starting point the
expansion (39). We define first the Borel transform

Bδwi
ðuÞ ¼

X∞
n¼0

b0nun; ð41Þ

where b0n are related to the coefficients dn by

b0n ¼
dnþ1

βn0n!
: ð42Þ

Then δð0Þwi;FO
is recovered from its Borel transform by the

Laplace-Borel integral

δð0Þwi;FO
¼ 1

β0
PV

Z
∞

0

exp

�
−u

β0aðs0Þ
�
Bδwi

ðuÞdu; ð43Þ

where we adopted the principal value anticipating the
presence of singularities of the Borel transform Bδwi

ðuÞ
on the integration axis.
The analytic properties of the Borel transform Bδwi

ðuÞ
defined in (41) in the complex u plane have been inves-
tigated some time ago in [53] and more recently in
[33,39,40]. Inserting the Laplace-Borel representation (10)
into the integral (37) and permuting the integrals we obtain

δð0Þwi;FO
¼ 1

β0

Z
∞

0

duBD̂ðuÞ
1

2π

Z
2π

0

dϕWiðs=s0Þe
−u

β0að−sÞ; ð44Þ

where s ¼ s0 expðiðϕ − πÞÞ.
The integral upon ϕ can be performed exactly in the one-

loop (large-β0) approximation, when (3) implies

1

β0að−sÞ
¼ 1

β0aðs0Þ
þ ln

�
−s
s0

�
;

the last term being equal to iðϕ − πÞ. Then, the comparison
of (44) with (43) leads to

Bδwi
ðuÞ ¼

�
1

2π

Z
2π

0

dϕWiðeiϕÞe−iuðϕ−πÞ
�
BD̂ðuÞ: ð45Þ

The integral can be calculated exactly for polynomial
weights. In particular, for wiðxÞ ¼ xn, one has [39]

Bδxn ðuÞ ¼
2

1þ n − u
sin πu
πu

BD̂ðuÞ: ð46Þ
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From this relation it follows that the singularities of BD̂ðuÞ
at integer values of u are partly compensated by the zeros of
sin πu, except for u ¼ nþ 1. Thus, for a fixed n, Bδxn ðuÞ
inherits from BD̂ðuÞ the branch point at u ¼ nþ 1, while
the other branch points are weakened by simple zeros. The
argument can be extended in a straightforward way to more
general polynomial weights.
The relation (45) is valid in the one-loop (or large-β0)

approximation for the coupling. As proved in [39], the
connection between the Borel transforms remains the same
also in the exact case of the full renormalization-group
equation (3) in a special RS, known as C-scheme, defined
in [54] and investigated further in [32,33,39]. For other
RS’s, in particular MS, a relation of the type (46) cannot be
proved. As discussed in [33], the exact nature of the first
singularities of the moments cannot be established exactly,
although the large-β0 approximation may offer a hint.
Therefore, if one wants to write for the moments improved
expansions of the form (21), with expansion functions (22),
a conjecture about the nature of the first singularities is
necessary. In the next section we shall discuss this problem
in more detail for a particular moment of physical interest.

VI. τ HADRONIC WIDTH

The ratio Rτ of the total τ hadronic branching fraction
to the electron branching fraction is expressed in the
SM as [40]

Rτ ¼ 3SEWðjVudj2 þ jVusj2Þð1þ δð0Þ þ…Þ; ð47Þ

where SEW is an electroweak factor, Vud and Vus are CKM
matrix elements, and δð0Þ is a perturbative QCD correction.
As shown in [51,55,56], this quantity can be written as a
weighted integral of the Adler function along a contour in
the complex s plane, taken for convenience to be the circle
jsj ¼ m2

τ . In our normalization, this relation is [40]:

δð0Þ ¼ 1

2πi

I
jsj¼m2

τ

ds
s
WτðsÞD̂ðsÞ; ð48Þ

where

WτðsÞ ¼
�
1 −

s
m2

τ

�
3
�
1þ s

m2
τ

�
: ð49Þ

Perturbative expansions of δð0Þ improved by the optimal
conformal mapping of the Borel plane have been proposed
and investigated in [28,29,31], in both CI and FO renorm-

alization-group resummations. The improved δð0ÞCI expan-
sion is obtained in a straightforward from (48) and (21) as

δð0ÞCI ¼ 1

2πi

X
n≥0

c̃n

I
jsj¼m2

τ

ds
s
WτðsÞ eWnðað−sÞÞ; ð50Þ

with eWnðaÞ defined in (22) and að−sÞ calculated by
solving the renormalization-group equation (3) iteratively
along the circle starting from a given aðm2

τÞ.
The standard FO expansion of δð0Þ writes as

δð0ÞFO ¼
X
n≥1

dn½aðm2
τÞ�n; ð51Þ

where the coefficients dn are obtained by integrating the
s-dependent coefficients of (2) along the circle. In order to
obtain the improved expansion, we start from the Borel
transform BδðuÞ associated to the series (51), defined by the
relations (41) and (42), and expand it in powers of the
variable w. In the previous works [28,29,31], the factori-
zation of the first singularities in this expansion was done
assuming that the nature of these singularities of BδðuÞ and
BD̂ðuÞ is the same. By inserting in (43) the expansion

BδðuÞ ¼
1

ð1þ wÞ2γ1ð1 − wÞ2γ2
X
n≥0

δ̃nwn; ð52Þ

the improved FO expansion of δð0Þ considered in [28,29,31]
had the form

δð0ÞFO ¼
X
n≥0

δ̃n eWnðaðm2
τÞÞ; ð53Þ

with eWnðaÞ defined in (22). However, the relation

BδðuÞ ¼
12

ð1 − uÞð3 − uÞð4 − uÞ
sinðπuÞ
πu

BD̂ðuÞ; ð54Þ

established in [40,53] in the large-β0 approximation and
shown in [39] to hold in general QCD in the C-scheme,
suggests that the singularities of BδðuÞ at u ¼ −1 and
u ¼ 2 might be milder than those of BD̂ðuÞ. In the extreme
case, making the conjecture that these singularities are
weakened by simple zeros as in (54), we write

BδðuÞ ¼
1

ð1þ wÞ2ðγ1−1Þð1 − wÞ2ðγ2−1Þ
X
n≥0

δ̃0nwn: ð55Þ

By inserting this expansion into the Laplace-Borel integral
(43), we obtain the alternative expansion

δð0ÞFO ¼
X
n≥0

δ̃0n eW 0
nðaðm2

τÞÞ; ð56Þ

where
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W̃ 0
nðaÞ ¼

1

β0
PV

Z
∞

0

e−
u

β0aðw̃ðuÞÞn
ð1þ w̃ðuÞÞ2ðγ1−1Þð1− w̃ðuÞÞ2ðγ2−1Þ du:

ð57Þ

The good convergence of the expansions of δð0Þ
improved by the conformal mapping of the Borel plane
has been demonstrated numerically in [28,29,31] on
realistic models of the Adler function. The numerical
studies have shown also that the CI expansion (50) gives
better results than the FO expansion (53), based on the
assumption that the nature of the first singularities of BδðuÞ
and BD̂ðuÞ coincide. But, as discussed above, although the
exact nature of the singularities is not known, there are hints
that the singularities factorized in the expansion (53) are
stronger than needed. In order to illustrate the dependence
on the factorization, it is instructive to investigate also the
extreme FO expansion (56), where the nature of the first
branch points is modified as in the large-β0 approximation.
For a numerical test, we consider the “reference model”

proposed in [40], which gives for αsðm2
τÞ ¼ 0.34 the exact

value δð0Þexact ¼ 0.2371, and show in Fig. 3 the difference
between the predictions of the perturbative expansions
truncated at order n and the exact value. We present the
results obtained with the CI expansion (50) and the FO
expansions (53) and (56). The results for the first two
expansions have been reported already in Fig. 2 of [28].
Figure 3 shows that all the expansions improved by the

conformal mapping of the Borel plane have a tamed
behavior at large orders, remarked already in the previous
works [28,29,31]. By contrast, the standard expansions
exhibit wild oscillations at large orders (see for instance
Fig. 1 of [28]). The figure shows also that the improved CI
expansion (50) converges to the exact value of δð0Þ, while
the FO expansions exhibit oscillations around the exact
value up to high orders. The FO expansion (56) leads to a
slightly better approximation compared to the FO expan-
sion (53), but the improvement is rather modest.
As discussed in [28,29], the better approximation pro-

vided by the improved CI expansion is explained by the

fact that it simultaneously implements renormalization-
group invariance and accelerates the convergence of the
perturbative series by exploiting the known large-order
behavior of the expanded function. By contrast, the
improved FO expansions treat only one facet of the
problem: they accelerate the convergence of the perturba-
tive series (51), but do not cure the poorly convergent
expansion (2) of the Adler function in the complex plane,
especially near the timelike region.4 The more solid
theoretical basis and the good convergence properties
proved numerically make the nonpower CI expansion
(50) the best option for calculating the τ hadronic width
in perturbative QCD.

VII. STRONG COUPLING FROM
τ HADRONIC WIDTH

The expansions improved by the conformal mapping
of the Borel plane have been used for the extraction of
the strong coupling αsðm2

τÞ from the τ hadronic width in
[28,29]. In this work we present an update of this
determination. The main new ingredient is the conjecture,
formulated and discussed in this paper, that the nonpower
expansions recover nonperturbative features of the
expanded function, making unnecessary the addition of
the power corrections.
As experimental input, we use the difference, quoted

in [57], page 25, between the phenomenological value of
δð0Þ and the PC contribution to it, estimated in [40] to be
−7.1 × 10−3. After adding back this term we obtain the
phenomenological value

δð0Þphen ¼ 0.1966� 0.0040exp: ð58Þ

On the theoretical side, we use the expansion (50) truncated
at n ¼ 5, with the coefficients c̃n given in (35) and the
expansion functions eWnðaÞ defined in (22). As we men-
tioned above, while the optimal conformal mapping (11) is
unique, the factorization of the first singularities is not.
Therefore, in the assessment of the theoretical uncertainty
we accounted also for other possibilities of factorization.
The running coupling að−sÞ was calculated by solving

the renormalization-group equation (3) iteratively along
the circle, starting from s ¼ −m2

τ . For completeness, we
investigated also other scales by setting in (2) more
generally μ2 ¼ −ξs with ξ ¼ 1� 0.63 [58,59] and apply-
ing to the resulting series the steps leading to the improved
expansion. The theoretical expression depends implicitly
on the value of αsðm2

τÞ, which was found numerically from
the phenomenological input as0 2 4 6 8 10 12 14 16 18

Perturbative order n

-0.08
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FIG. 3. Difference between the approximate and the exact
values of δð0Þ as a function of the perturbative order n for the
reference model proposed in [40].

4This fact is clearly illustrated in Figs. 14 and 15 of [28] and in
Figs. 2–5 of [29], where the values of the Adler function in the
complex s plane, along the contour jsj ¼ m2

τ , are shown.
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αsðm2
τÞ¼0.314�0.004exp�0.003c5;1

þ0.002
−0.001ðscaleÞ; ð59Þ

where we indicated the separate sources of error. By
combining these errors in quadrature and adding a
conservative error of 0.001 to account for other ways of
softening the first singularities, we obtain

αsðm2
τÞ ¼ 0.314� 0.006: ð60Þ

Compared to the previous determination 0.320� 0.020
quoted in [29], the difference is due mainly to the
conjecture made now on the PC contribution, which leads
to the shift by 0.006 of the central value and a slight
reduction of the error. We note also that a different value
c5;1 ¼ 283� 283 was used in [29], instead of the more
precise estimate (7) obtained in [33,43]. Moreover, in the
calculation of að−sÞ along the circle we now used the β
function to five-loop, derived recently in [41].
Using the standard packages [60] for running the

coupling and adding an error of 0.0003 due to evolution,
we find

αsðm2
ZÞ ¼ 0.1179� 0.0008; ð61Þ

which practically coincides with the world average
αsðm2

ZÞ ¼ 0.1179� 0.0010 quoted in the latest version
of PDG [61].

VIII. DISCUSSION AND CONCLUSIONS

In perturbative QCD, the expansions truncated at finite
orders depend on the renormalization scheme and scale,
violating the renormalization-group invariance of the full
theory. Also, the perturbation series are expected to be
divergent, with coefficients growing factorially at large
orders, being at most asymptotic expansions to the exact
functions. These two properties are related: for instance,
contrary to naïve expectations, the inclusion of additional
terms in the expansion of the τ hadronic width did not reduce
the dependence on the renormalization-group prescription.
The treatment of the divergent expansions in perturbative

QCD can be related formally to the mathematical concept
of hyperasymptotics, which amounts to a sequence of
truncated “transseries,” each exponentially small in the
expansion parameter of the previous one, which allow the
exact function to “resurge.” In QCD, the first additional
series is associated to the power corrections in the standard
OPE, which supplement the truncated perturbation series
and recover some of the nonperturbative features of the
exact function.
In the present work, we discussed a reformulation of QCD

perturbation theory as an expansion in terms of a set of
nonpower functions of the strong coupling. These functions
are defined through the analytic continuation in the Borel
plane, achieved by the optimal conformal mapping of
this plane. The new expansions have been defined and

investigated in [23–25], and extensive numerical studies and
applications have been performed in the subsequent works
[28–31]. In this paper, we reviewed the theoretical properties
of these expansions and argued that they can be viewed as an
alternative to the transseries for recapturing nonperturbative
features of the exact QCD correlators.
For the Adler function, the new expansion is given in

(14) in terms of the expansion functions (15). An improved
version, which exploits also the known nature of the first
singularities in the Borel plane is given in (21) and (22).
As discussed in Sec. IVA, the expansion functions have
properties similar to the expanded correlator: they are
singular at the origin of the coupling plane and their
perturbative expansions in powers of αs are divergent
series. The new expansion incorporates therefore non-
perturbative features, much like the power corrections in
the OPE representation (34): both contain terms of the form
expð−c=αsÞ, singular at αs ¼ 0. Moreover, while the
standard perturbation series is divergent, the new expan-
sions have a tamed behavior at large orders and may even
converge in some conditions.
Using these properties and theoretical arguments based

on the Borel plane, we formulated the conjecture that the
method of conformal mapping can be an alternative to the
transeries approach for dealing with the divergent expan-
sions in QCD. This means that the new expansions (14)
or (21) are able to recover nontrivial nonperturbative
features of the QCD correlators, without the need of
additional, arbitrary power corrections.
Two further arguments can be invoked in support of this

assumption, as discussed in Sec. IV B. First, when reex-
panded in powers of the coupling, the new expansions,
even truncated at finite orders, contain a infinite number of
terms. By contrast, the standard OPE contains a truncated
perturbation expansion and, as discussed in recent analyses
[15,16,50], the nonperturbative terms depend on the trun-
cation order of this expansion. So, if one may think to add
arbitrary power corrections to the new expansions, their
interpretation in terms of condensates will be hard to give.
The second argument is based on the fact that the new

expansion is shown to converge under some conditions
(not proved, but expected to be valid in QCD), and the
convergence is checked numerically on models inspired
from QCD. Since there are no reasons for adding new terms
to a convergent series, we conclude that there are no
mathematical arguments for supplementing the nonpower
expansions by other, arbitrary power corrections.
We note that similar conclusions have been obtained

recently in several mathematical works [36–38], where the
possibility of resurgence from pure perturbation theory,
without additional transseries, was demonstrated numeri-
cally in specific cases where the exact function is known.
In QCD, as discussed above, both OPE and the present

expansions (14) or (21) account for power corrections, i.e.
for singularities of the form expð−c=αsÞ at the origin of
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the coupling plane. Therefore, they do not reproduce the
complicated singularity structure at this point of the exact
correlator, proved in [2]. The existence of additional,
“duality-violating” contributions has been recently advo-
cated [62–66] in order to better approach the physical
correlator. These terms, which decrease exponentially on
the Euclidian axis and exhibit an oscillating behavior
when analytically continued to the timelike axis, are not
easy to parametrize and obscure the determination of the
nonperturbative condensates in the standard OPE. Since
the duality-violating contributions go beyond the power
corrections, they are expected to show up also in addition
to the new expansions discussed in this paper. A phe-
nomenological investigation of this problem is beyond
the scope of this paper and will be considered in a
future work.
Actually, since neither OPE nor the new expansions

discussed in this paper are able to describe the hadronic
resonances and the unitarity thresholds present in the
spectral functions of correlators, they can be confronted
to experiment only for “smeared” observables, as remarked
a long time ago in [67]. Alternatively, integrated observ-
ables like the moments of the spectral function have been
much used in phenomenological studies, because they can
be expressed as weighted integrals of the Adler function
along a contour in the complex plane. We discussed in
Sec. V the improved expansions based on conformal
mapping for the moments, in both CI and FO versions
of renormalization-group summation. We also reviewed
recent results on the singularities of the FO expansions of
the moments in the Borel plane, which show that in the MS
scheme the nature of the first singularities is not known
exactly, although the large-β0 approximation may provide
a hint.
In Sec. VI, we discussed in particular the improved

expansions based on conformal mapping for the τ hadronic

width.5 As seen from Fig. 3, these expansions have a tamed
behavior at large orders for both CI and FO resummations.
The figure shows also that the CI expansion (50) approx-
imates the exact value more precisely than the FO expan-
sions (53) and (56), defined with two extreme assumptions
about the nature of the first renormalons. The better
convergence is due to the fact that the CI expansion
implements simultaneously the renormalization-group
improvement and the acceleration of the perturbative series,
while the FO expansions accelerate the convergence of the
perturbative series, but do not cure the poorly convergent
expansion (2) near the timelike region. The conclusion is
that the CI expansion (50) has a more solid theoretical basis
and is the best option for physical applications.
Finally, as an illustration of our approach, we presented in

Sec. VII an updated determination of the strong coupling
from τ hadronic width. The reformulation of perturbative
QCD by the conformal mapping of the Borel plane and the
conjecture about the PC contribution made in this work lead
to a reduction of the central value of αsðm2

τÞ and a slightly
smaller uncertainty. The precision is further improved by
using recent estimates of the six-loop perturbative coefficient
of the Adler function. Our prediction is given in (60) and
implies for αsðm2

ZÞ the value (61), practically identical to the
present world average quoted in [61].
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