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In the last years it became possible to measure in HADES the dilepton decays of several baryons. The
baryon dilepton decays provide information about the electromagnetic structure of the baryons in the
timelike region. In the present work, we study the B0 → eþe−B decays, where B0 is a baryon decuplet
member and B is a baryon octet member. Our calculations are based on the covariant spectator quark
model, where the contribution of the quark core is complemented with an SUð3Þ contribution from the pion
cloud. The pion cloud contribution prove to be relevant in the range of study. We present predictions for the
Σ0ð1385Þ → eþe−Λð1116Þ and Σþð1385Þ → eþe−Σþð1193Þ decays, which may be tested at HADES in a
near future. Predictions for the remaining decuplet baryon Dalitz decays are also presented. We conclude
that different orders of magnitudes are expected for the baryon decuplet Dalitz decay widths, according to
the quark content of the baryons. We also conclude that the dependence of the transition form factors on the
square momentum transfer (q2) is important for some transitions.
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I. INTRODUCTION

In the last decades, there was a significant progress in the
study of the electromagnetic structure of the nucleon (N)
and nucleon excitations (N�) [1–3]. Most of the measured
data were obtained through the scattering of electrons on
nucleon targets (e−N → e−N�), which probes the region
where the square four-momentum transfer q2 is negative
(q2 < 0), also known as the spacelike region. In the
electron scattering experiments the analysis of the data is
based on the γ�N → N� transition, where the spacelike
virtual photon is produced by the incoming electron, and
the γ�N → N� transition form factors are extracted from the
experimental cross sections. Experiments based on elec-
tron-nucleon scattering have been performed in facilities
such as Jefferson Lab, MIT-Bates, ELSA, MAMI among
others, to probe the electromagnetic structure of N� states
in the first three resonance regions [1–6].
The electron scattering technique can also be used to

probe the electromagnetic structure of the hyperons (bary-
ons with strange quarks) based on the γ�B → B0 transitions,
where B and B0 are generic hyperons. In practice, however,
the technique is almost exclusively limited to nucleon
targets, since hyperons targets are difficult to produce due
to their short lifetime, except in the limit q2 ¼ 0. In that

limit, there are measurements of magnetic moments of a
few hyperons and some magnetic transition moments
[6–13]. Another limitation of the electron scattering tech-
nique is that it is restricted to the q2 ≤ 0 region.
The timelike region (q2 > 0) can be accessed at HADES

(GSI) through some exclusive reaction channels in proton-
proton (pp) collisions or by pion-induced reactions
[14–28]. In the proton-proton collisions the channel pp →
ppeþe− probes the structure of the intermediate N� states
through the elementary reactions N� → pγ� → peþe−
[14,15,29]. The Δð1232Þ Dalitz decay was recently ana-
lyzed at HADES based on the study of the pp → ppeþe−
channel on pp scattering [15,16]. The results were com-
pared our estimates [30]. The pion-induced reactions, are
particularly important to study N⋆ resonances which decay
into two or more pions [20,21,23–25]. Measurements of the
Nð1520Þ and Nð1535Þ Dalitz decays are in progress at
HADES [20,23,31–34]. In both methods, we access the
region 4m2

e ≤ q2 ≤ ðMB0 −MNÞ2, where me is the electron
mass, and MB0 and MN are the N� and nucleon masses,
respectively. The production of timelike photons is clearly
identified by the detection of eþe− pairs (dileptons)1 in the
final state, due to the conversion γ� → eþe−. Experiments
at HADES complement then the experiments based on
electron-nucleon scattering, in the spacelike region
(q2 ≤ 0) [18,35].
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1Although the term dilepton can be used for muon pairs
(μþμ−), we follow the usual nomenclature and use dilepton to
refer to a electron-positron pair (eþe−).
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Another timelike subregion, not discussed in the present
work, is the region probed by eþe− and pp̄ collisions at
BABAR, BES-III, CLEO, and PANDA/FAIR [36–40],
which access the baryon (B) elastic form factors when
q2 ≥ 4M2

B, where MB is the baryon mass [7,41].
HADES provides a unique opportunity to explore the

electromagnetic structure of baryons based on the B0 → γ�B
transitions, where B0 and B are generic baryons, through
the dilepton decays (B0 → eþe−B) [14,15,18,20,23–25].
Different from the traditional electron-nucleon scattering,
at HADES one can probe the electromagnetic structure of the
hyperons in the kinematic region 4m2

e ≤ q2 ≤ ðMB0 −MBÞ2,
where MB0 , MB are the baryon masses [25,35,42].
Measurements of strangeness production are possible due
to the large acceptance and excellent particle identification,
including dileptons in the final state [17]. In progress are
feasibility studies on the Σð1385Þ, Λð1404Þ and Λð1520Þ
Dalitz decays by the HADES collaboration [42–44]. Those
studies suggest that those decays can be measured at GSI
in the next few years and subsequently also at FAIR
[18,20,42,45,46].
From the theoretical side there are not many models

available for baryon electromagnetic transitions in the
timelike region [19,26–28,45,47–51]. An important con-
straint on those models is that the transition between the
spacelike region and the timelike region (interval between
q2 ¼ 0 and q2 ¼ 4m2

e) must be smooth [18,23,35]. There
are a few theoretical issues, which need to be discussed:
What happens in the transition between the spacelike
region (q2 ≤ 0), and the timelike region (q2 > 0) where
relevant imaginary components appear on the transition
form factors above the two-pion threshold (q2 > 4m2

π) for
isovector transitions, and above the three-pion threshold
(q2 > 9m2

π) for isoscalar transitions (mπ is the pion mass).
How important are the physical poles associated with the
meson resonances. How significant is the q2 dependence of
the form factors, and how are form factors modified near
the pseudothreshold q2 ¼ ðMB0 −MBÞ2 [15,29,52–55].
In the spacelike region, including the limit Q2 ¼ 0, there

are calculations based on nonrelativistic and relativistic
quark models [47,56–60], Dyson-Schwinger equations
[61,62], lattice QCD simulations [63], QCD sum rules
[64,65], Skyrme and soliton models [66–68], chiral per-
turbation theory and large Nc limit [46,69–71].
From the analysis of the spacelike data, one can conclude

that models based strictly on the quark degrees of freedom
are insufficient to explain the measured transition form
factors. The effects associated with the meson cloud
dressing of the bare cores are crucial to describe the data
in the region 0 ≥ q2 > −2 GeV2, as demonstrated already
for the Δð1332Þ [1–4,72–74]. Our model for the Δð1232Þ
Dalitz decay [30], which describe the HADES data [15],
corroborates also the importance of the of pion cloud for the
γ�N → Δð1232Þ transition in the timelike region, as in the
spacelike region. There is therefore a great interest in

studying the roles of the valence quark and meson cloud
effects in the timelike region [3,30–32,75].
Motivated by the experiments planned for HADES, in

the present work we focus on the B0 → γ�B transitions,
where B0 is a baryon decuplet member and B is a baryon
octet member (decuplet baryon decays). We restrict for now
our study to baryon systems that best fit an SUð3Þ quark
model classification (baryon octet and baryon decuplet).
Our calculations are based on the covariant spectator quark
model [3,76,77] developed previously for the γ�B → B0
transitions in the spacelike region [13].
The covariant spectator quark model provides an alter-

native to valence quark models which do not take into
account meson cloud excitations of the bare cores, and
simplified vector meson dominance (VMD) models
[19,49–51], which do not take into account the underlying
quark substructure of the baryons. The formalism has been
used in the study of the electromagnetic and the axial
structure of the nucleon, several nucleon excitations, and
hyperons [7–11,30–32,72–86].
The covariant spectator quark model of the γ�B → B0

transition [13] is extended in the present work to the
timelike region. Within the formalism, the octet baryon to
decuplet baryon electromagnetic transitions are dominated
by the magnetic transition form factor [3,76,77], which can
be decomposed into valence quark and meson cloud
contributions [12,13]. The meson cloud contribution is
calculated from a microscopic pion-baryon model, cali-
brated by the γ�N → Δð1232Þ transition, and extended to
the octet baryon to decuplet baryon electromagnetic tran-
sitions [12,13,30].
We use our formalism to estimate the baryon decuplet

Dalitz decay widths in terms of the square invariant mass of
the dilepton pair q2, and the square invariant energy W2 of
the γ�B system [14,29]. We present, in particular, predic-
tions for the Σ0ð1385Þ → eþe−Λð1116Þ and Σþð1385Þ →
eþe−Σþð1193Þ decays, which may be tested by future
HADES experiments [18,42]. As for the remaining decays,
we estimate that the magnitudes of the Ξ0ð1530Þ →
eþe−Ξ0ð1318Þ and Σþð1385Þ → eþe−Σþð1193Þ decay
widths are comparable to the magnitude of the Δð1232Þ →
eþe−N decay width, as suggested by SUð3Þ and U-spin
estimates [13,59]. We present also calculations for the
radiative decay widths in terms of the invariant mass W,
and compare our estimates with the available data. We
conclude also that our estimate of the Σ−ð1385Þ →
γΣ−ð1193Þ width, unknown at the moment, is close to
the present experimental limit, and may therefore be
measured in a near future.
This article is organized as follows: In the next section,

we review the formalism associated with the radiative and
Dalitz decays of 3=2þ baryons into 1=2þ baryons. The
covariant spectator quark model is discussed in Sec. III,
where we present also numerical results for the transition
form factors. Our results for the radiative and Dalitz decays
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of the decuplet baryons B0 are presented and discussed in
Sec. IV. The outlook and conclusions are presented
in Sec. V.

II. DALITZ DECAY OF DECUPLET BARYONS

A baryon B0 can decay in different channels, including
meson-baryon states, (multi-meson)-baryon states, the radi-
ative decay (γB) and the dilepton decay (eþe−B). In the
present section, we focus on the radiative (B0 → γB) and
dilepton (B0 → eþe−B) decays. The formalism described
below is a generalization of the formalism for theΔð1232Þ →
γN and Δð1232Þ → eþe−N decays [29,30,87,88].
We assume that B0 is a member of the baryon decuplet

(state 3
2
þ) and that B a is a member of the baryon octet (state

1
2
þ). Both baryons have positive parity. As before, MB0 and
MB represent the mass of B0 and B, respectively.
The Dalitz decay of the baryon B0 is determined by the

function Γγ�Bðq;WÞ, where W is the energy of the reso-

nance B0, q ¼
ffiffiffiffiffi
q2

p
and q2 is the virtual photon (γ�) square

four-momentum. The baryon B0 Dalitz decay is the
consequence of the decay of the timelike virtual photon
into a pair of electrons (γ� → eþe−).
The function Γγ�Bðq;WÞ can be written [29,30,75,87] as

Γγ�Bðq;WÞ ¼ α

16

ðW þMBÞ2
W3M2

B

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
y−jGTðq2;WÞj2;

ð2:1Þ

where α ≃ 1=137 is the fine-structure constant, and

y� ¼ ðW �MBÞ2 − q2: ð2:2Þ

The function jGTðq2;WÞj depends on the Jones-Scadron
form factors: GM (magnetic dipole), GE (electric quadru-
pole) and GC (Coulomb quadrupole) [89,90], and takes the
form

jGTðq2;WÞj2

¼jGMðq2;WÞj2 þ 3jGEðq2;WÞj2 þ q2

2W jGCðq2;WÞj2:
ð2:3Þ

The functions ΓγBðWÞ and Γeþe−BðWÞwhich quantify the
radiative and Dalitz decays, respectively, are calculated
with the assistance of the function Γγ�Bðq;WÞ, as dis-
cussed below.
The photon decay width is defined by the limit q2 ¼ 0

[29,88]

ΓγBðWÞ ¼ Γγ�Bð0;WÞ: ð2:4Þ

The Dalitz decay width Γeþe−BðWÞ is determined by
integrating

Γ0
eþe−Bðq;WÞ≡ dΓeþe−B

dq
ðq;WÞ; ð2:5Þ

according to

Γeþe−BðWÞ ¼
Z

W−MB

2me

Γ0
eþe−Bðq;WÞdq: ð2:6Þ

In the previous equation the interval of integration 4m2
e ≤

q2 ≤ ðW −MBÞ2 is the consequence of the threshold of the
dilepton production and the maximum value of the photon
square four-momentum allowed by the B0 → γ�B decay:
q2 ¼ ðW −MBÞ2. This is the value of q2 obtained when the
photon three-momentum vanishes jqj ¼ 0 [52–54,75]. The
function Γ0

eþe−Bðq;WÞ can be evaluated using [15,29,30,88]

Γ0
eþe−Bðq;WÞ ¼ 2α

3πq
Γγ�Bðq;WÞ: ð2:7Þ

The relations (2.4), (2.6) and (2.7) demonstrate that the
decay widths ΓγBðWÞ and Γeþe−BðWÞ are determined, once
one has a model for the effective form factor jGTðq2;WÞj.
Note, however, that the model should be defined for
arbitrary values of W (invariant energy of the γ�B system),
since the measurements are performed for values of W
which may differ from the decuplet baryon mass (MB0 ). Our
model for jGTðq2;WÞj is described in the next section.
The baryon B0 radiative decay (B0 → γB) measured in

the experiments, correspond to the result from Eq. (2.1) in
the limits W ¼ MB0 and q2 ¼ 0:

ΓγB ≡ Γγ�Bð0;MB0 Þ: ð2:8Þ

III. COVARIANT SPECTATOR QUARK MODEL

In the present section, we describe the formalism
associated with the covariant spectator quark model
[3,76,77]. The covariant spectator quark model was derived
from the covariant spectator theory [76,91]. In this frame-
work a baryon is described as a three-constituent quark
system, where a quark is free to interact with the electro-
magnetic fields. Integrating over the internal degrees of
freedom of the noninteracting quark-pair, one reduces the
three-quark system to a quark-diquark system where the
spectator quark-pair is represented by an on-mass-shell
diquark with an effective mass mD [76–78]. The effective
quark-diquark wave function is free of singularities and
include the quark confinement implicitly [1,3,76,91]. The
wave functions of the baryons are built according to the
spin-flavor-radial symmetries with the radial wave func-
tions determined phenomenologically by the experimental
data, or lattice QCD data for some ground state systems
[3,74,76,77].
In the electromagnetic interaction with the quarks, we

take into account the structure associated with gluon and
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quark-antiquark dressing of the quarks. This structure is
parametrized in terms of constituent quark electromagnetic
form factors [76,77].
The covariant spectator quark model was already applied

to the study of the electromagnetic structure of several
baryons in the spacelike region [9,11,72,73,78–85], in the
timelike region [7,30–32,75], to the structure of baryons in
the nuclear medium [10], and to the lattice QCD regime
[74,77,86]. We discuss next the formalism associated with
the octet and decuplet baryons.

A. Formalism

In the covariant spectator quark model the baryon wave
functions ΨBðP; kÞ depend on the baryon (P) and diquark
(k) momenta, as well as the flavor and spin projection
indices. Spin projection indices in the wave functions are
suppressed for simplicity.
The wave functions of the octet baryon and the decuplet

are constructed conveniently by the symmetrized states of
the diquark (12), and the off-mass-shell quark (3) [76–78].
The octet baryon B wave functions can be expressed, in

the S-wave approximation as [10,12]

ΨBðP; kÞ ¼
1ffiffiffi
2

p ½ϕ0
SjMAi þ ϕ1

SjMSi�ψBðP; kÞ; ð3:1Þ

where ϕ0;1
S are the spin-0 and spin-1 diquark components of

the wave functions, jMAi and jMSi are the mixed anti-
symmetric and mixed symmetric flavor states, and
ψBðP; kÞ is the radial wave function. The explicit expres-
sions for ϕ0;1

S are presented in Refs. [10,12]. The octet
baryon flavor wave functions, are presented in Table I.
The decuplet baryon B0 wave functions, in the S-wave

approximation takes the form [77]

ΨB0 ðP; kÞ ¼ −ψB0 ðP; kÞjB0iεαPðλÞuαðPÞ; ð3:2Þ

where uαðPÞ is the Rarita-Schwinger vector spin, ψB0 ðP; kÞ
is the radial wave function, εαPðλÞ is the polarization state
of the spin-1 diquark (polarization λ), and jB0i is the
flavor wave function, displayed in Table II. For a more
detailed description of the polarization states εαPðλÞ check
Refs. [72,73,76].
The radial wave functions ψBðP; kÞ can be parametrized

in terms of the variable

χB ¼ ðMB −mBÞ2 − ðP − kÞ2
MBmD

: ð3:3Þ

The representation of ψBðP; kÞ in terms of the single
variable χB is possible because the baryon B and the
diquark are both on-mass-shell [76].
The γ�B → B0 transition current in relativistic impulse

approximation takes the form [76–78]

Jμ ¼ 3
X
Γ

Z
k
Ψ̄B0 ðPþ; kÞjμqΨBðP−; kÞ; ð3:4Þ

where Pþ (P−) is the final (initial) baryon momentum, k is
the diquark momentum (on-mass-shell), and jμqðq2Þ is the
quark current operator, depending on momentum transfer
q ¼ Pþ − P− [3,72,76]. The integration symbol represents
the covariant integration in k, and the sum is over the
diquark polarization states, including the scalar and vector
components. The factor 3 takes into account the sum in the
quarks based on the wave function symmetries.
The quark current jμq, where q ¼ u, d, s, includes the

electromagnetic structure of the constituent quark (gluon
and quark-antiquark dressing effects) [76,77]. The quark
current operator is represented in the form [77]

jμqðqÞ ¼ j1γμ þ j2
iσμνqν
2MN

; ð3:5Þ

TABLE I. Mixed antisymmetric jMAi and mixed symmetric jMSi flavor states for the octet baryons [9,12].

B jMAi jMSi
p 1ffiffi

2
p ðud − duÞu 1ffiffi

6
p ½ðudþ duÞu − 2uud�

n 1ffiffi
2

p ðud − duÞd − 1ffiffi
6

p ½ðudþ duÞd − 2ddu�

Λ0 1ffiffiffiffi
12

p ½sðdu − udÞ − ðdsu − usdÞ − 2ðdu − duÞs� 1
2
½ðdsu − usdÞ þ sðdu − udÞ�

Σþ 1ffiffi
2

p ðus − suÞu 1ffiffi
6

p ½ðusþ suÞu − 2uus�
Σ0 1

2
½ðdsuþ usdÞ − sðudþ duÞ� 1ffiffiffiffi

12
p ½sðduþ udÞ þ ðdsuþ usdÞ − 2ðudþ duÞs�

Σ− 1ffiffi
2

p ðds − sdÞd 1ffiffi
6

p ½ðsdþ dsÞd − 2dds�

Ξ0 1ffiffi
2

p ðus − suÞs − 1ffiffi
6

p ½ðudþ duÞs − 2ssu�
Ξ− 1ffiffi

2
p ðds − sdÞs − 1ffiffi

6
p ½ðdsþ sdÞs − 2ssd�
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where ji (i ¼ 1, 2) are the Dirac and Pauli flavor operators,
acting on the third quark component of the wave function,
and MN is the nucleon mass, as before.
The components of the quark current ji (i ¼ 1, 2) can be

decomposed as the sum of operators

jiðQ2Þ¼1

6
fiþðQ2Þλ0þ

1

2
fi−ðQ2Þλ3þ

1

6
fi0ðQ2Þλs; ð3:6Þ

where

λ0 ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λs ¼

0
B@

0 0 0

0 0 0

0 0 −2

1
CA; ð3:7Þ

are the flavor operators. These operators act on the quark
wave function in flavor space, q ¼ ð u d s ÞT .
The functions fiþ, fi− (i ¼ 1, 2) represent the quark

isoscalar and isovector form factors, respectively, based
on the combinations of the quarks u and d. The functions
fi0 (i ¼ 1, 2) represent the structure associated with the
strange quark.
The explicit form for the quark form factors is included

in Appendix A. For the present discussion, the relevant
part is that the quark form factors are represented in terms
the vector meson mass poles associated with the mesons ρ,
ω and ϕ depending of the type (l ¼ �; 0). The expressions
of the quarks form factors are valid for the spacelike
and timelike regions. In the timelike region, however,
the vector mass poles are corrected by finite decay widths.
The isovector transitions, like γ�N → Δð1232Þ and
γ�Λð1116Þ → Σ0ð1385Þ, depend on the isovector form
factors (meson ρ). Other transitions depend on a combi-
nation of isovector, isoscalar and strange quark form
factors.

Even though our quarks have structure, including proc-
esses which can be interpreted as meson cloud dressing of
the quarks, there are processes involving the meson cloud
dressing that are not taken explicitly into account. The
processes in which there is a meson exchange between the
different quarks cannot be represented by the quark
dressing due to the meson cloud. Instead, the processes
in which the meson is exchanged between different quarks
are regarded in our model, as the meson is emitted and
absorbed by baryon states, based on a baryon-meson
molecular picture [12,13,30]. Those effects are discussed
in more detail in Sec. III C.
We consider here the covariant spectator quark model for

the γ�B → B0 transition from Refs. [10,12,13]. As men-
tioned,we assume in first approximation that the octet baryon
(ΨB) and the decuplet baryon (ΨB0 ) wave functions are both
described by the dominant S-wave quark-diquark configu-
ration. In the transition, only the symmetric flavor compo-
nents of the octet baryonwave functions (jMSi) contribute to
the transition form factors, because the decuplet baryon has
no contributions from scalar diquarks. The explicit expres-
sions are presented in Refs. [9,10,12,77]. In the S-wave
approximation, the transition is dominated by the magnetic
dipole form factor, GM as in the γ�N → Δð1232Þ transition
(GE ¼ GC ≡ 0). As a consequence, in Eq. (2.1) we can
replace jGTðq2;WÞj by jGMðq2;WÞj.
When we take into account the pion cloud effects, one

can decompose GM into two components [30,72,86]

GMðq2;WÞ ¼ GB
Mðq2;WÞ þ Gπ

Mðq2;WÞ; ð3:8Þ

where GB
M represent the contribution from the three-quark

core (bare contribution) and Gπ
M represent the contribution

from the pion cloud. In the previous equation, we use q2 ¼
−Q2 to convert the spacelike relations for GB

M and Gπ
M to

the timelike region, and use W to generalize the depend-
ence of the form factor on the resonance mass (MB0 in the
spacelike expressions). We omit the indices B and B0 in the
form factors for simplicity. In some octet baryon to
decuplet baryon electromagnetic transitions, the contribu-
tions of the kaon cloud may be also considered. For a
discussion of the magnitude of the kaon cloud contributions
check Ref. [13].
It is worth noticing that the dominance of the magnetic

dipole form factor is an approximation, and a consequence
of the S-wave quark-diquark structure. In the case of the
γ�N → Δð1232Þ transition there is evidence that the quad-
rupole form factors GE and GC may have significant pion
cloud contributions [53,55]. The contributions of those
form factors to jGTðq2;WÞj from Eq. (2.3) are, however,
not significant, sinceGE is very small andGC is suppressed
for small q2.
The valence quark contribution GB

M and the pion cloud
contribution Gπ

M are discussed in the two next subsections.
The numerical results for transition form factors are

TABLE II. Quark flavor wave functions jB0i for the decuplet
baryons [77]. Not included here are the Δþþ, Δ− and Ω− states.

B0 jB0i
Δþ 1ffiffi

3
p ½uudþ uduþ duu�

Δ0 1ffiffi
3

p ½dduþ dudþ udd�

Σ�þ 1ffiffi
3

p ½uusþ usuþ suu�
Σ�0 1ffiffi

6
p ½udsþ dusþ usdþ sudþ dsuþ sdu�

Σ�− 1ffiffi
3

p ½ddsþ dsdþ sdd�

Ξ�0 1ffiffi
3

p ½ussþ susþ ssu�
Ξ�− 1ffiffi

3
p ½dssþ sdsþ ssd�
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presented afterwards. We anticipate here that as in the case
of the γ�N → Δð1232Þ transition, the pion cloud/meson
cloud contributions are relevant for the description of the
γ�B → B0 transitions.

B. Valence quark contributions

The contributions from the valence quarks to the octet
baryon to decuplet baryon electromagnetic form factors
(γ�B → B0) were calculated in previous works. The expres-
sion for the magnetic form factor can be written as [12]

GB
Mðq2;WÞ ¼ 4

3
ffiffiffi
3

p gvIðq2;WÞ; ð3:9Þ

where

Iðq2;WÞ ¼
Z
k
ψB0 ðPþ; kÞψBðP−; kÞ; ð3:10Þ

is the overlap integral of the octet baryon and decuplet
baryon radial wave functions, and

gv ¼
1ffiffiffi
2

p
�

2MB

W þMB
jS1ðq2Þ þ

MB

MN
jS2ðq2Þ

�
: ð3:11Þ

The functions jSi represent the projection of the flavor
operators into the flavor components of the decuplet baryon
and the mixed symmetric component of the octet baryon
flavor state [12]. The explicit expressions in terms of the
quark form factors are presented in Table III.
In Table III and along the draft, we use the asterisk ( �) to

represent the excited states of Σ and Ξ, members of
the baryon decuplet. The label γ�N → Δ includes the
γ�p → Δþ and γ�n → Δ0 transitions (n is the neutron).
The overlap integral (3.10) is invariant and can be

evaluated in any frame. For convenience we use the baryon
B0 rest frame, where Pþ ¼ ðW; 0Þ, P− ¼ ðEB;−qÞ, with
EB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B þ q2
p

. The momentum transfer takes the form
q ¼ ðω;qÞ, where

ω ¼ W2 −M2
B þ q2

2W
; jqj ¼

ffiffiffiffiffiffiffiffiffiffiffi
yþy−

p
2W

: ð3:12Þ

The spacelike region, q2 ≤ 0, is characterized by jqj ≥ jqj0
and the timelike region, ðW −MBÞ2 ≥ q2 > 0, is charac-

terized by 0 ≤ jqj < jqj0, where jqj0 ¼ W2−M2
B

2W .
In the calculations, we use the experimental masses

MN ¼ 0.939 GeV, MΛ ¼ 1.116 GeV, MΣ ¼ 1.192 GeV
and MΞ ¼ 1.318 GeV, for the octet baryons. As before,
W represents the decuplet baryon masses. In the calcu-
lations associated with the physical decuplet baryons, we
use the physical masses: MΔ ¼ 1.232 GeV, MΣ� ¼
1.385 GeV, and MΞ� ¼ 1.533 GeV.

The octet baryon radial wave functions take the form
proposed on Refs. [9,10] for the study of the octet baryon
electromagnetic form factors

ψNðP; kÞ ¼
NN

mDðβ1 þ χNÞðβ2 þ χNÞ
; ð3:13Þ

ψΛðP; kÞ ¼
NΛ

mDðβ1 þ χΛÞðβ3 þ χΛÞ
; ð3:14Þ

ψΣðP; kÞ ¼
NΣ

mDðβ1 þ χΣÞðβ3 þ χΣÞ
; ð3:15Þ

ψΞðP; kÞ ¼
NΞ

mDðβ1 þ χΞÞðβ4 þ χΞÞ
; ð3:16Þ

whereNB are normalization constants and βi (i ¼ 1, 2, 3, 4)
are square momentum-range parameters in units MBmD.
The parameters determined in Ref. [9], are β1 ¼ 0.0532,
β2 ¼ 0.809, β2 ¼ 0.603 and β2 ¼ 0.381. This parametriza-
tion reflects the natural order for the size of the baryon
cores β2 > β3 > β4.
As for the decuplet baryon, we use the parametrization

from Ref. [77]

ψΔðP; kÞ ¼
NΔ

mDðα1 þ χΔÞ3
; ð3:17Þ

ψΣ�ðP; kÞ ¼ NΣ�

mDðα1 þ χΣ� Þ2ðα2 þ χΣ� Þ ; ð3:18Þ

ψΞ� ðP; kÞ ¼ NΞ�

mDðα1 þ χΞ�Þðα2 þ χΞ� Þ2 ; ð3:19Þ

where NB0 are normalization constants and αi (i ¼ 1, 2) are
square momentum-range parameters in unitsMBmD. In the
present case the power associated with the factors in α1 and

TABLE III. Coefficients jSi (i ¼ 1, 2) used to calculate the
valence quark contributions for the transition form factors. The
label γ�N → Δ includes the γ�p → Δþ and γ�n → Δ0 transitions
(n is the neutron).

jSi

γ�N → Δ
ffiffiffi
2

p
fi−

γ�Λ → Σ�0 ffiffi
3
2

q
fi−

γ�Σþ → Σ�þ ffiffi
2

p
6
ðfiþ þ 3fi− þ 2fi0Þ

γ�Σ0 → Σ�0 ffiffi
2

p
6
ðfiþ þ 2fi0Þ

γ�Σ− → Σ�− ffiffi
2

p
6
ðfiþ − 3fi− þ 2fi0Þ

γ�Ξ0 → Ξ�0 ffiffi
2

p
6
ðfiþ þ 3fi− þ 2fi0Þ

γ�Ξ− → Ξ�− ffiffi
2

p
6
ðfiþ − 3fi− þ 2fi0Þ
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α2 is related with the number of strange quarks (0, 1 or 2).
The radial wave function of the Ω−, unnecessary for the
present study, can be found in Ref. [77]. In the calculations
we use the values determined in the study of the decuplet
baryon electromagnetic form factors α1 ¼ 0.3366 and
α2 ¼ 0.1630 [77].
The normalization constants are determined by the

conditions

Z
k
½ψBðP; kÞ�2 ¼ 1;

Z
k
½ψB0 ðP; kÞ�2 ¼ 1: ð3:20Þ

We consider positive values for all normalization constants.
The signs of the transition form factors are consequence of
these conventions.
The octet baryon (ψB) and decuplet baryon (ψB0) radial

wave functions, presented above, ensure that the valence
quark contribution to GM defined by Eq. (3.9) is propor-
tional to 1=Q4 for very large Q2 [72], consistent with
estimates from perturbative QCD (pQCD) [92].
The parametrizations of the octet baryon and decuplet

baryon radial wave functions were obtained from fits to the
lattice QCD simulations of the electromagnetic form
factors for pion masses larger than 350 MeV (small meson
cloud contributions) [10,77,93,94]. The estimates of the
valence quark contributions to the octet baryon and
decuplet baryon elastic form factors are extrapolated to
the physical regime using our extension of the model from
the lattice to the physical case. Details of the procedure can
be found in Refs. [9,10,74,77,86].
Our estimates for the γ�N → Δð1232Þ transition form

factors compare very well with the lattice QCD simulations
with the corresponding pion masses [74]. Our results are
also consistent with the bare core estimates from the EBAC
model [30,74]. The EBAC model is a meson-baryon
coupled-channel dynamical model where the meson-
baryon couplings are calibrated by the pion electro-
production data and photo-production data [4,95]. The
contributions of the bare core are obtained when we set the
meson-baryon coupling to zero [95].
Based on the results for the γ�N → Δð1232Þ for the lattice

QCD regime, where meson cloud effects are negligible, and
on the comparison with the EBAC results at the physical
point, one can conclude that the calibration of the valence
quark degrees of freedom is under control [13]. Our para-
metrizations of the pion cloud contributions, discussed below,
are inferred from the comparisonbetween the extrapolation to
the physical limit and the physical data [3,30,73].
A final note about the global normalization of the wave

functions is in order. The wave functions associated to the
baryon decuplet are normalized properly because the
decuplet baryons are described by a model where we
neglect the pion cloud contributions. As for the baryon
octet, the normalization of the valence quark component is

modified due to the inclusion of the pion cloud component.
We note, however, that this correction only affects GB

M and
that, due to the magnitude of the normalization constant
and the relative contribution from the valence quark
contributions, the normalization effects can be estimated
as 3% at most. One concludes, then, that in a first
approximation, we can ignore the normalization correction
due to the pion cloud dressing.

C. Pion cloud contributions

The pion cloud contribution to the γ�B0 → B transition
are estimated by the SUð3Þ extension of our pion cloud
model for the γ�N → Δð1232Þ transition [72–74].
We use, in particular the results of Ref. [13], where the

meson cloud contributions of the diagrams of Fig. 1 are
determined explicitly in the limit q2 ¼ 0. The calculations
of the meson cloud loops are based on the cloudy bag
model [96–98]. The explicit calculations use the meson-
baryon couplings for the possible octet baryon and decuplet
baryon intermediate states from Fig. 1. The connection with
the quark microscopic properties between the covariant
spectator quark model and the cloudy bag model is
performed matching the Dirac and Pauli couplings. In
Ref. [13], in addition to the pion, we considered also the
contributions of the kaon and the eta [13]. The eta
contributions prove to be very small. More details about
the meson and baryon contributions to the processes from
Fig. 1 are included in Appendix C.
In the present work, we consider the simplest approxi-

mation, taking into account only the pion cloud contribu-
tions, and drop the kaon cloud contributions, since the
extrapolation of the pion cloud contributions to finite q2,
based on the results of the γ�N → Δð1232Þ transition is
straightforward.
The generalization of the pion cloud contributions to the

timelike region follows the lines of our work for the γ�N →
Δð1232Þ [30]. We represent then

Gπ
Mðq2Þ ¼ Gπa

M ð0ÞFπðq2Þ
�

Λ2
π

Λ2
π − q2

�
2

þGπb
M ð0ÞG̃2

Dðq2Þ; ð3:21Þ

(a) (b)

FIG. 1. Meson cloud contributions for the electromagnetic
transition form factors. Between the initial octet (B) and final
decuplet (B0) baryon states, there are several possible intermedi-
ate baryon states: B1 in diagram (a); B1 and B2 in diagram (b).
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where Gπa
M ð0Þ and Gπb

M ð0Þ are the pion contributions for the
diagrams (a) and (b) in the limit q2 ¼ 0, respectively, Fπ is
the pion electromagnetic form factor, Λ2

π ¼ 1.53 GeV2,
and G̃D is a generalization of the traditional dipole form
factor. The coefficients Gπa

M ð0Þ and Gπb
M ð0Þ are presented in

Table IV. In Eq. (3.21) we omit the dependence onW, since
the coefficients Gπa

M ð0Þ and Gπb
M ð0Þ are determined in the

physical limit (W ¼ MB0 ).
We use the parametrization [30]

Fπðq2Þ ¼
α

α − q2 − 1
π βq

2 log q2

m2
π
þ iβq2

; ð3:22Þ

where α ¼ 0.696 GeV2, β ¼ 0.178 and mπ is the mass of
the pion. In the spacelike region Fπ takes the form (analytic
continuation)

Fπðq2Þ ¼
α

α − q2 − 1
π βq

2 log ð−q2Þ
m2

π

: ð3:23Þ

Equation (3.22) is derived from an analytic expression
which include the structure of the two-pion threshold
[30,51,75] for q2 ≫ 4m2

π, in order to obtain a simpler
parametrization of the Fπ data. Although the two-pion
structure is not included explicitly, the error in the approxi-
mation is small, since the imaginary component has a small
magnitude in the region 0 ≤ q2 ≤ 4m2

π . One derives, then a
smoother approximation to the imaginary part of Fπ

without significant loss of accuracy. Higher precision
parametrizations based on more complex analytic struc-
tures and a larger number of parameters can be found in
Refs. [99–101].
Following Ref. [30], the function G̃D is defined as

G̃Dðq2Þ ¼
Λ4
D

ðΛ2
D − q2Þ2 þ Λ2

DΓ2
D
; ð3:24Þ

where Λ2
D ¼ 0.9 GeV2 and ΓDðq2Þ is an effective width.

The explicit expression for ΓDðq2Þ is presented in
Appendix B.
The parametrization of (3.21) is motivated by the fast

suppression of the pion cloud contributions in the spacelike
region. This effect is simulated by simple multipole
functions, and with the direct photon coupling with the
pion in the diagram 1(a). The second term simulates the
contributions from the diagram 1(b) and therefore includes
the contributions from several intermediate electromagnetic
transitions between octet and/or decuplet baryon states
(check Appendix C). The multipole powers are chosen
using the expected falloff for large Q2, estimated by pQCD
[92]. Analysis based on pQCD suggests that the valence
quark contributions dominate GM and that GM ∝ 1=Q4.

Extending the analysis for the meson cloud effects,
interpreted as the contributions of meson-baryon systems,
one concludes that those contributions2 are ruled at very
largeQ2 byGM ∝ 1=Q8. The second term of (3.21) falls off
with 1=Q8. The first term of (3.21) falls of with
1=ðQ6 logQ2Þ, still close to the expected rule.
The extension of the model with the inclusion of the

kaon cloud will require the generalization of the two terms
from Eq. (3.21) to the case of the kaon. This nontrivial
generalization is planed for a future work.
In the last column of Table IV, we include for conven-

ience the bare contribution GB
Mð0;MB0 Þ to the magnetic

form factor at q2 ¼ 0. The relative magnitude of the pion
cloud contribution at q2 ¼ 0 can then be estimated
by Gπ

Mð0Þ=ðGB
Mð0;MB0 Þ þ Gπ

Mð0ÞÞ.

D. Transition form factors

We now discuss the results for the transition form factor
associated to Eqs. (3.8), (3.9) and (3.21). Our transition
form factors are real functions (by construction) in the
spacelike region, and became complex only in the timelike
region (q2 > 0). We present the results for jGMj, because
only the magnitude of GM is relevant for the radiative and
Dalitz decays. The sign of GM in the spacelike region is the
consequence of the our convention to the flavor states
presented in Tables I and II.
The numerical results for jGMj, for several values of W

near the physical mass MB0 are presented in Fig. 2 by the
thick lines. For the Σ� decays the we choose a range of
variation based on the Σ� total decay width, and on the

TABLE IV. Coefficients of the pion cloud contributions. In the
last column, we include the bare contribution at q2 ¼ 0.

Gπa
M ð0Þ Gπb

M ð0Þ Gπ
Mð0Þ GB

Mð0;MB0 Þ
γ�N → Δ 0.713 0.610 1.323 1.633

γ�Λ → Σ�0 0.669 0.358 1.027 1.683

γ�Σþ → Σ�þ 0.149 0.513 0.663 2.094
γ�Σ0 → Σ�0 0.000 0.270 0.270 0.969
γ�Σ− → Σ�− −0.149 0.026 −0.124 −0.156

γ�Ξ0 → Ξ�0 0.222 0.086 0.308 2.191
γ�Ξ− → Ξ�− −0.222 0.084 −0.138 −0.168

2Using pQCD one can show that the leading order form factor
with n active constituents behaves for large Q2 like 1=Q2ðn−2Þ.
For a system of three quark, one obtains the a falloff with
1=Q4. For a system of three quarks and a quark-antiquark
pair (5 constituents), resembling a baryon-meson system,
one expect then a falloff with 1=Q8. Meson cloud contributions
are then characterized by an extra suppression of 1=Q4 for large
Q2.
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range of the HADES simulations [42]. For the Ξ� decays,
since the decay width is very small (about 10 MeV), we
consider a wider range for a better visualization of the
dependence on q2.
In addition to jGMj, we include also the result of the

valence quark contribution jGB
Mj (thin lines) and the absolute

values of the pion cloud contribution (dotted line), according
to Eq. (3.21). The line associated to the pion cloud corre-
sponds, in fact, to the estimate associated with the largest
value ofW. The remaining cases have the same shape, except
that the estimates are limited to q2 ≤ ðW −MBÞ2.

The data included in the graph represent the magnitude
of the experimental magnetic form factors for q2 ¼ 0,
estimated from the radiative decay width data. The GMð0Þ
data is discussed in more detail in the next section. The
experimental values for jGMð0Þj are important to infer the
accuracy of the constant form factor model. The model
associated with the constant form factor corresponds to a
horizontal line with the magnitude of the experimental
value for jGMð0Þj.
One can notice that the model estimates for theΔ → γ�N

and Σ�0 → γ�Λ decays have a magnitude comparable with

FIG. 2. Magnitude of transition form factorGM. The thick lines represent the total (valence plus pion cloud) and the thin lines represent
the valence quark contribution. The dotted line represent the pion cloud contributions (follow the discussion in the main text). The data
are from Table V.
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the data. In the case of the Σ�þ → γ�Σþ decay the model
underestimate clearly the data. This underestimation is in
part the consequence of neglecting the kaon cloud con-
tributions. When those effects are taken into account one
obtain GMð0Þ ¼ 3.22, only 1.5 standard deviations from
below the data [13].
In Fig. 2, one can observe the dependence of the

transition form factors on the variable W. In general, for
a fixed value of q2 the magnitude of GM decreases withW,
as a consequence of our analytic expressions for GB

M. This
W-dependence was tested in our calculations in the lattice
QCD regime, where the masses of the baryons and mesons
are larger that the physical ones [3,74,86]. The W-depend-
ence of our results is an important characteristic of our
formalism, which has an impact on the calculation of the
radiative and the Dalitz decay widths in terms of W,
presented in the Sec. IV C.
In this aspect the present model is distinct of other

models, like the constant form factor model and some
VMD models [50]. The Iachello-Wan model [29,51]
includes only a weak W-dependence on the transition form
factors.
In the graphs, the spacelike results for GM are equivalent

to the results presented in the graph for jGMj, in most cases,
since GMð0Þ > 0. The exceptions are the Σ�− → γ�Σ− and
Ξ�− → γ�Ξ− decays, where GMð0Þ < 0, according to the
estimates from Ref. [13]. Our numerical values for GMð0Þ
are presented in the next section (see Table V).
The results for the Δ → γ�N form factors are almost

identical to the results from Ref. [30], except that in the
previous work we use the approximation Gπa

M ð0Þ ¼
Gπb

M ð0Þ ¼ 1
2
Gπ

Mð0Þ (pion cloud contributions equally di-
vided between the two pion cloud processes from Fig. 1).
The results for the Δ → γ�N form factors are interesting
because there is a deeper penetration in the timelike region
due the large values of the upper limit ðW −MBÞ2, where B
is the nucleon. For larger values of W one can notice
that the valence quark contribution line became more flat.

In that region, one can also observe the enhancement of
jGMj for large q2, a direct consequence of the pion cloud
contribution regulated by Eqs. (3.21) and (3.22), charac-
terized by the peak of Fπðq2Þ near q2 ≈m2

ρ ≃ 0.6 GeV2.
The first detailed study of the Δð1232Þ Dalitz decay at

HADES suggests that the constant form factor model is
insufficient to describe the data and that the signature of the
form factor dependence on q2 is present in the data [15].
The present calculations also suggest that the constant

form factor model is not a good approximation for the
Σ�0 → γ�Λ, Σ�− → γ�Σ− and Ξ�− → γ�Ξ− decays, since in
those cases jGMj is significantly enhanced near the pseu-
dothreshold. Those enhancements can be the consequence
of the bare contribution (Σ�− → γ�Σ− and Ξ�− → γ�Ξ−) or
the pion cloud contribution (Σ�0 → γ�Λ).
The results for the Σ�þ → γ�Σþ, Σ�0 → γ�Σ0 and Ξ�0 →

γ�Ξ0 transitions indicate that the relative pion cloud
contributions are smaller than in the other transitions.
From the graphs for jGMj, we also conclude that there are

different classes of magnitudes: Δ → γ�N and Σ�0 → γ�Λ;
Σ�þ → γ�Σþ and Ξ�0 → γ�Ξ0 (large magnitude); Σ�0 →
γ�Σ0 (moderate magnitude); Σ�− → γ�Σ− and Ξ�− → γ�Ξ−

(small magnitude) [12]. The impact of these magnitudes on
the Dalitz decay widths is discussed in Sec. IV B.
In the graphs for the Σ�− → γ�Σ− and Ξ�− → γ�Ξ−

transitions, one can notice nodes in both jGMj and jGB
Mj

in the spacelike region. Those nodes are a consequence of
zeros of GM due to a sign change. Since both form factors
are negative near q2 ¼ 0, the nodes indicate the point where
the functions became negative. The zero crossings are the
consequence of the sign change of the valence quark
contributions, according to our SUð3Þ parametrization of
the quark form factors (see Table III). Similar results were
also obtained in a previous study based on the covariant
spectator quark model [12], with a not so general descrip-
tion of the pion cloud contributions.
The Σ�− → γ�Σ− and Ξ�− → γ�Ξ− transitions are the

transitions with smaller valence quark contributions. This

TABLE V. Results forGMð0Þ corresponding to the B0 → γB decays. The values for jGMð0Þjexp are estimated using
the experimental values of ΓB0→γB. GMð0Þjπ is the estimate when we omit the kaon cloud contributions (only pion
cloud).

GMð0Þ GMð0Þjπ jGMð0Þjexp ΓðkeVÞ ΓexpðkeVÞ
Δ → γN 3.02 2.96 3.04� 0.11 [102] 648 660� 47 [102]

Σ�0 → γΛ 3.08 2.71 3.35� 0.57 [102] 399 470� 160 [102]
3.26� 0.37 [59] 445� 102 [59]

Σ�þ → γΣþ 3.22 2.76 4.10� 0.57 [103] 154 250� 70 [103]
Σ�0 → γΣ0 1.46 1.24 <11 [104] 32 <1750 [104]
Σ�− → γΣ− −0.31 −0.28 <0.8 [105] 1.4 <9.5 [105]

Ξ�0 → γΞ0 3.29 2.50 182
Ξ�− → γΞ− −0.38 −0.31 <4.2 [106] 2.4 <366 [106]
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result is also a consequence of our approximated SUð3Þ
symmetry. In the exact SUð3Þ limit the form factors fiþ,
fi− and fis are undistinguished and the valence quark con-
tribution vanishes because jSi ≡ 0, according to Table III.
The small but nonzero contributions to GB

M are then the
consequences of a small SUð3Þ symmetry breaking.

E. Comparison with the literature

Our estimates can be compared directly with other
estimates based on valence quark degrees of freedom.
Calculations based on nonrelativistic and relativistic quark

models [47,56–58,60] underestimate in general GM near
Q2 ¼ 0, which may be interpreted as a consequence of the
absence of meson cloud effects. Also lattice QCD simu-
lations underestimate GMð0Þ [63]. In Ref. [12], we compare
explicitly our upper limit for the valence quark contribution
for GMð0Þ, defined by Eq. (3.9) with Ið0;MB0 Þ ¼ 1,
with the lattice results from Ref. [63]. We conclude that
the two estimates are very close, within the lattice QCD
uncertainties.
We now compare our estimates of the valence quark

contributions with estimates based on the Dyson-
Schwinger framework from Ref. [62], also based on the
valence quark degrees of freedom. Our results for GB

M
compare well with the estimates from Ref. [62] above
1 GeV2, for transitions with larger magnitude for jGMj,
suggesting that the two methods have similar predictions
for the large-Q2 region. For the Σ−� and Ξ−� decays, both
formalisms predict small but different magnitudes. Recall
that those transitions are more sensitive to the mechanisms
of SUð3Þ symmetry breaking. Both formulations predict
that the quark core contributions vanish in some point
between 0 and 1 GeV2. Below Q2 ¼ 1 GeV2, the com-
parison is more delicate, because the Dyson-Schwinger
estimates are presented as an interval of variation. From the
results for Q2 ¼ 0.1 and 0.2 GeV2, one can conclude that
we overestimate the results from Ref. [62] in about
30%–50%.
The transition form factors have also been calculated

with a SUð3Þ chiral quark-soliton model [68], taking into
account some pion production from the nucleon. The
model explains well the γ�N → Δð1232Þ lattice QCD data
for GM for the corresponding pion mass. The model
calibrated by Q2 ≃ 0 data describe well the low-Q2 data
but falls off slower that the experimental data. The
estimates of the reaming transition form factors compare
well with our estimates of the bare contribution to GMð0Þ
(see Table IV), but differ in sign. The unnormalized
estimate of GM for the γ�N → Δð1232Þ transition is also
similar to our estimate forGB

Mð0Þ. Their form factors have a
slower falloff with Q2 when compared with our estimates.
When we restrict the analysis toQ2 ¼ 0 there are several

frameworks which provide estimates for jGMð0Þj closer to
the available data. There are calculations based on chiral
perturbation theory [46,69,70] and the large Nc limit [71].
Those estimates are restricted in the range of Q2, and rely

on the determination of low-energy constants. Also calcu-
lations based on QCD sum rules predict large contributions
to jGMð0Þj in comparison with our estimates [64,65]. One
notices, however, that those the comparison between quark
models and QCD sum rules have to be performed with care,
since the normalization in QCD sum rules is based on
distribution amplitudes defined for large Q2, in contrast
with quark models, where the normalization is defined
at Q2 ¼ 0.
In the next section, we study the impact of our model for

the transition form factors on the radiative and Dalitz decay
widths.

IV. RADIATIVE AND DALITZ DECAY WIDTHS

We present here our estimates for the B0 radiative and
Dalitz decay widths. We start with the radiative decays at
the pole: ΓγBðMB0 Þ. Later on, we discuss the functions
d
dqΓeþe−Bðq;WÞ, Γeþe−BðWÞ and ΓγBðWÞ.

A. Electromagnetic decay widths

Using the dominance of the magnetic dipole form factor,
we can write [9,10,50]

ΓγB ¼ α

16

ðM2
B0 −M2

BÞ3
M3

B0M2
B

jGMð0Þj2: ð4:1Þ

In Table V, we present the model estimates for GMð0Þ and
Γ≡ ΓγB in the second and fifth columns, and compare
those estimates with the experimental data [6,102–106], in
the fourth and sixth columns. jGMð0Þjexp is determined
from Γexp using Eq. (4.1). The numerical results were
calculated in Ref. [13]. For the decays for which there are
no data, we include the experimental estimate of the upper
limit when available.
The estimate of the third column,GMð0Þjπ , correspond to

the calculation which exclude the kaon cloud contribution
(only pion cloud), as in Sec. III D.
As discussed in the previous section, our estimate of

GMð0Þ, given byGMð0Þjπ, is consistent with the data for the
Δ → γN and Σ�þ → γΛ decays, and underestimates the
result for the Σ�þ → γΣþ decay. Calculations based on
chiral perturbation theory [46,69], large Nc limit [71] and
QCD sum rules [65], compare well with the available data.
A detailed comparison between model estimates and
experimental data can be found in Refs. [12,13].
On Table V, one can notice that the experimental limit for

the Σ�− decay is close to our model estimate. One can
conclude then that there is some hope that this decay width
can be measured in a near future.

B. Dalitz decay rates

The results for the Dalitz decay rates are presented in
Fig. 3, for all the decuplet baryon decays, for several values
of W. We include the labels B0 → eþe−B in order to
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identify the decaying decuplet baryon. Recall that
Σ0ð1385Þ decay on Λð1116Þ and on Σ0ð1193Þ.
The thick solid lines indicate the final result: the

combination of valence quark and pion cloud contributions.
The thin lines indicate the valence quark contributions
(when we drop the pion cloud contributions).
The dashed lines indicate the result of the constant form

factor model, obtained when we consider: GM ≡ GMð0Þ,
also known as QED estimate. To represent the QED
estimate, we consider the following convention:

(i) In cases where experimental data exist (Δ → γN,
Σ�0 → γΛ and Σ�þ → γΣþ), we use the magnetic

form factor determined by the electromagnetic decay
width (see Table V). For the Σ�0 → γΛ transition
we approximate the result by the central value
(jGMð0Þjexp ≃ 3.3).

(ii) In the remaining cases, we use our best estimate
given by the results from Table V, corresponding to
the value of GMð0Þ which include the pion and kaon
clouds (second column).

For the discussion of the q2-dependence of our model,
we include also the model estimate of the Dalitz decay
when we replace GMðq2Þ, by GMð0Þjπ. The results are
represented by the dotted lines. In the case of the

FIG. 3. Dalitz decay rates d
dqΓeþe−B for different values of W. Note a difference of scales. The thick solid lines represent our final

estimation (bare plus pion cloud). The thin solid lines represent the bare quark approximations. The results of the constant form factor
model [GMðq2Þ → GMð0Þ] are indicated by the dashed lines. The dotted lines represent the estimate of the constant form factor model
when we exclude the kaon cloud (GMðq2Þ → GMð0Þjπ).
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Δ → eþe−N decay we omit this estimate because it over-
laps the estimate of the constant form factor model
(dashed line).
The importance of the pion cloud contributions is

clearly shown in Fig. 3, from the difference between the
thick (total) and thin (bare) solid lines. This difference of
magnitude is a consequence of the relative magnitude of
the corresponding estimates for the transition form
factors. We recall that based on the estimates from
Ref. [13], also presented in Table IV, the valence quark
contributions to the transition form factors are about
55%–70% of the total. One concludes, then, that when
the pion cloud contribution are about 50% of the total,
the bare estimates for d

dqΓeþe−B are about 1=4 of the total,
since the decay widths are proportional to jGMj2. This
rough estimate is valid for most decays. The main
exceptions are the Σ�þ → eþe−Σþ, Σ�0 → eþe−Σ0 and
Ξ�0 → eþe−Ξ0 decays, where the relative contribution of
the core is larger (smaller pion cloud contributions).
The magnitudes of the different decays can be clearly

observed in the scale of the Dalitz decay widths: large
magnitudes for Δ → eþe−N, Σ�0 → eþe−Λ, Σ�þ →
eþe−Σþ and Ξ�0 → eþe−Ξ0 (scale 10−3); intermediate
magnitude for Σ�0 → eþe−Σ0 (scale 10−4); small magni-
tudes for Σ�− → eþe−Σ− and Ξ�− → eþe−Ξ− (scale 10−5)
[13]. Those magnitudes are the consequence of the mag-
nitudes of the magnetic form factors discussed in Sec. III D.
Concerning the comparison with the constant form

factor model (dashed lines), one can conclude that the
results are very close for the Δ → eþe−N decay, for
small values of W. This happens because our model is
compatible with the experimental value for jGMð0Þj, as
discussed earlier. In the remaining cases, our result
underestimates the constant form factor model. This
underestimation is mainly a consequence of the non-
inclusion of the kaon cloud contribution in our q2-
dependent estimates, in contrast with the constant form
factor model. This underestimation was discussed in
detail in Sec. III D for the Σ�þ → γ�Σþ form factor.
The impact of the form factor dependence on q2 can be

inferred from the comparison between the exact estimate
(thick solid line) and the dotted line. As anticipated in
Sec. III D, the q2-dependence is more relevant for the
Σ�0→eþe−Λ, Σ�− → eþe−Σ− and Ξ�− → eþe−Ξ− decays.
The dominance of the exact result over the dotted line
is clearly observed for large q2, particularly for large
values of W.
In Fig. 4, we compare the magnitudes of the Σ� and Ξ�

Dalitz decay rates at respective the mass poles. Note the
similarity between the results forΣ�þ=Ξ�0 decays, as well as
Σ�−=Ξ�− decays in the region of q2 where they can be
compared. These similarities are the consequence of the
SUð3Þ symmetry structure of the covariant spectator quark
model, combined with similar relative pion cloud contribu-
tions for the decays under discussion. The relations between

the valence quark contributions, GB
M, given by Eq. (3.9) are

explained by their dependence on the functions jSi , which,
according to Table III are identical in the cases Σ�þ=Ξ�0
and Σ�−=Ξ�−.
The similarities between the Σ�− and Ξ�− decays are also

explained by the U-spin symmetry [13,59], which is valid
to the valence quark component of the transition form
factors. The U-spin symmetry, states that the decay
transitions are similar when we replace a d-quark by a
s-quark in the initial and final states [59]. The symmetry
predicts also similar magnitudes for the Δ → γN and the
Σ�0 → γΛ Dalitz decay rates [12,13]. This property, how-
ever, is not valid in the context of our model due to the
difference of magnitudes of the pion cloud contributions
(larger in the first case).
Our model is compatible with the U-spin symmetry,

because it is based on an approximate SUð3Þ flavor
symmetry. In the present case, the symmetry implies that
the quark form factors associated with the u quark
(combination of isovector and isoscalar components) and
the s quark are similar at low q2. We recall, however, that
the U-spin symmetry is valid only for the valence quark
component of the transition. The covariant spectator quark
model estimates provide then a more consistent description
of the radiative and Dalitz decays.

C. Decay widths in terms of the invariant mass

The results for the radiative (B0 → γB) and Dalitz
(B0 → eþe−B) decay widths in terms of W are presented
in Fig. 5, for all the decuplet baryon decays. The thick lines
represent our estimates. The thin lines represent the
estimates of the constant form factor model. We include
also the data for ΓγB at the physical mass in the cases:
Δ → γN, Σ�0 → γΛ and Σ�þ → γΣþ, according to the
results from Table V.

FIG. 4. Comparison between the Σ� and Ξ� Dalitz decay rates at
the physical point (W ≃ 1.385 GeV for Σ� and W ≃ 1.533 GeV
for Ξ�).
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In the cases Σ�0 → γΛ and Σ�þ → γΣþ, one can notice
some underestimation of the data. This result is in part
the consequence of including only the contribution of the
pion cloud. The inclusion of the kaon cloud approaches
the model estimate to the data, as can be inferred
also from Table V (compare the second and the third
columns).
We choose to not include the kaon cloud contributions

on the radiative decays, because our extension for finite q2

is justified, at the moment, only for the pion cloud
contribution. In general, the kaon cloud contributions are
at most 20% of the pion cloud contributions (Table V),
except for Ξ�0, where the effect of the kaon is about 25% of
the pion cloud.

Concerning the comparison with the results of the QED
model, there are two points to debate. First, when we use a
constant value for jGMj, the results for ΓγBðWÞ are close to
the model estimates for ΓγBðWÞ for small values of W, and
start to overestimate the model above a certain value of W.
Second, the overestimation of QED model, for large values
of W is expected due our model underestimation for jGMj.
More definite conclusions can be drawn only when the
unknown decay widths are determined experimentally.
Regarding the inclusion of q2-dependent kaon cloud

contributions, our expectation is that the slope associated
with the kaon cloud contributions is larger than the slope
associated with the pion cloud contributions near q2 ¼ 0,
since the kaon cloud effects are more suppressed than the

FIG. 5. Electromagnetic and Dalitz decay widths for all the decuplet decays in terms of W. The thick lines represent our model. The
thin lines represent the constant form factor model. Data from Table V.
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pion cloud effects in the spacelike region.3 The conse-
quence of this trend is that the transition form factors are
expected to be enhanced in the timelike region with the
inclusion of the kaon cloud contributions. We recall,
however, that the kaon cloud contributions near q2 ¼ 0
are at most about 20% of the pion cloud contributions.
There is then the possibility that the kaon cloud effects may
not be very relevant in the region 0 < q2 ≤ ðW −MBÞ2.
Only more detailed calculations can determine how impor-
tant may be the enhancement of the transition form factors
due to the kaon cloud effects, in the timelike region.
Our estimates for the B0 → eþe−B Dalitz decays under-

estimate, in general, the QED model. This tendency is a
consequence of the results obtained for the Dalitz decay
rates (Fig. 3), where the QED model overestimates, in
general, the covariant spectator quark model. The exception
is the Δ → eþe−N decay, where our model and the QED
estimates are close.
It is worth noticing, that only the Δð1232Þ Dalitz decay

wasmeasured experimentally at the pole (W ≃ 1.232 GeV).
Our estimate of the Δð1232Þ Dalitz decay width is con-
sistent with the result of HADES [15]. All estimates for the
B0 → eþe−B Dalitz decays at the physical decuplet baryon
mass (MB0) are presented in Table VI. Excluding the
Δð1232Þ, the remaining estimates are predictions to be
tested by future experiments.
The Σ�0 → eþe−Λ decay width was also estimated

within the chiral perturbation theory combined with
dispersion relations [45], obtaining a slightly larger value

(3.0–3.4 keV). The inclusion of the kaon cloud effects in
our framework can also increase our estimate.

V. OUTLOOK AND CONCLUSIONS

The HADES facility provides a rare opportunity to study
electromagnetic transitions between baryon states in the
timelike region (q2 > 0). Those experiments complement
the information obtained from electro-production of baryon
resonances in the spacelike region (q2 ≤ 0). The recent and
the upcoming results from HADES motivate the develop-
ment of theoretical models for the γ�B → B0 transition form
factors in the timelike region, where B and B0 are generic
baryons.
Of particular interest are the Dalitz decays of baryons

(B0 → eþe−B), including hyperons. Measurements of
the Δð1232Þ Dalitz decays have been reported recently.
The analysis of the Σ0ð1385Þ → eþe−Λð1116Þ decay is
expected in a near future. Due to the capability of HADES
to produce hyperons, other decuplet baryon Dalitz decays
are expected to be measured in the following years. The
next natural candidate, based on the estimated magnitude,
is the Σþð1385Þ → eþe−Σþð1193Þ decay.
To complement the experimental activity at HADES, we

present here model estimates for the Dalitz decay rates and
Dalitz decay widths for all decuplet baryons. Our calcu-
lations are based on the covariant spectator quark model for
the octet baryon to decuplet baryon electromagnetic tran-
sitions, extended in the present work to the timelike region.
Themodelwas previously calibrated by latticeQCDdata for
the baryon octet and baryon decuplet, and takes into account
the pion cloud dressing of the baryon cores. The model is
successful in the description of the radiative decays:
Δð1232Þ → γN, Σ0ð1385Þ → γΛð1116Þ and Σþð1385Þ →
γΣþð1193Þ. Under study is the extension of the present
model with the inclusion of the kaon cloud contribution for
finite q2, which may approach the model estimates to
the data.
We conclude that, in general, the valence quark effects

give the dominant contribution to the transition form factors
and to the Dalitz decay widths, but that pion cloud con-
tributionprovides significant corrections,which improve the
description of the data. In most cases, the pion cloud effects
contribute with about 30%–45% to the transition form fac-
tors near q2 ¼ 0. In some cases, those contributions are only
about 20% (Σþð1385Þ, Σ0ð1385Þ and Ξ0ð1530Þ decays).
We conclude also, that different magnitudes are expected

to the radiative and Dalitz decay widths according with
valence quark content: large magnitudes for the Δð1232Þ,
Σ0ð1385Þ → eþe−Λð1116Þ, Σþð1385Þ and Ξ0ð1530Þ
decays; intermediate magnitudes for the Σ0ð1385Þ →
eþe−Σ0ð1193Þ decay; small magnitudes for the Σ−ð1385Þ
and Ξ−ð1530Þ decays. We observed also that the Σþð1385Þ
andΞ0ð1530Þ decays, aswell as theΣ−ð1385Þ andΞ−ð1530Þ
decays, have similar Dalitz decay rates.

TABLE VI. Decuplet baryon Dalitz decay widths. The HADES
result for the Δð1232Þ Dalitz decay is 4.90� 0.83 keV [15].

Decay Γeþe−B (keV)

Δ → eþe−N 4.9

Σ�0 → eþe−Λ 2.4

Σ�þ → eþe−Σþ 0.81
Σ�0 → eþe−Σ0 0.16
Σ�− → eþe−Σ− 0.83 × 10−3

Ξ�0 → eþe−Ξ0 0.76
Ξ�− → eþe−Ξ− 1.2 × 10−3

3This effect can be better understood assuming that the meson
cloud contributions to the transition form factors can, near
q2 ¼ 0, be simulated by a multipole function 1=ð1þQ2=Λ2Þn,
where n > 2 is an integer (the exact value is not important for the
discussion) and Λ2 is a cutoff of Q2. One conclude, then, that the
cutoff associated with the kaon cloud is smaller than the one
associated to the pion, since the kaon cloud effects are suppressed
more strongly than the pion cloud effects. The consequence of
this relation between cutoffs is that the magnitude of the
derivative of the kaon cloud multipole (∝ 1=Λ2) at q2 ¼ 0 is
larger than the magnitude of the derivative of the pion cloud
multipole.
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We also analyze the role of the q2-dependence of the
form factors. We conclude that, in general, the QED
approach (constant form factor model) is not a good
approximation, as already observed in the case of the
Δð1232Þ Dalitz decay. The impact of the q2-dependence of
the form factors is, however, less significant than in the case
of the Δð1232Þ. The Σ0ð1385Þ → γ�Λð1116Þ transition
form factors are enhanced in the timelike region due to
the pion cloud effects. The q2-dependence is also relevant
for the Σ−ð1385Þ → eþe−Σ−ð1193Þ and Ξ−ð1530Þ →
eþe−Ξ−ð1318Þ decays.
The covariant spectator quark model proved also to be a

useful framework to study Dalitz decays of nucleon excited
states (N�), more specifically in the cases of the Δð1232Þ,
Nð1520Þ and Nð1535Þ resonances [30–32]. Under study is
the possibility of extending the formalism to other baryon
systems, which may also be regarded as a combination of
valence quark cores combined with meson cloud excita-
tions of the baryon cores.
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APPENDIX A: QUARK FORM FACTORS

Motivated by the VMD mechanism, we use the follow-
ing parametrizations for the quark form factors fi0 and fi�
(i ¼ 1, 2)

f1−ðq2Þ ¼ λq þ ð1 − λqÞ
m2

ρ

m2
ρ − q2

− c−
M2

hq
2

ðM2
h − q2Þ2 ðA1Þ

f1þðq2Þ ¼ λq þ ð1 − λqÞ
m2

ω

m2
ω − q2

− cþ
M2

hq
2

ðM2
h − q2Þ2 ðA2Þ

f10ðq2Þ ¼ λq þ ð1 − λqÞ
m2

ϕ

m2
ϕ − q2

− c0
M2

hq
2

ðM2
h − q2Þ2 ðA3Þ

f2−ðq2Þ ¼ κ−

�
d−

m2
ρ

m2
ρ − q2

þ ð1 − d−Þ
M2

h

M2
h − q2

�
ðA4Þ

f2þðq2Þ ¼ κþ

�
dþ

m2
ω

m2
ω − q2

þ ð1 − dþÞ
M2

h

M2
h − q2

�
ðA5Þ

f20ðq2Þ ¼ κ0

�
d0

m2
ϕ

m2
ϕ − q2

þ ð1 − d0Þ
M2

h

M2
h − q2

�
; ðA6Þ

where mρ, mω and mϕ represent the masses of the mesons
ρ, ω and ϕ, respectively. The terms with Mh correspond to
an effective heavy vector meson which parametrize the

short range effects. The value ofMh is fixed asMh ¼ 2MN
[76,86]. In numerical calculations, we use the approxima-
tion mω ¼ mρ for simplicity.
In Eqs. (A4)–(A6), κq represent quark anomalous mag-

netic moments. We use the parametrization derived from
the study of the octet and decuplet baryons [10,77]. We
take in particular κ− ¼ 1.435, κþ ¼ 1.803 and κ0 ¼ 1.462.
To convert to the flavors q ¼ u, d, s, one uses
κu ¼ 1

4
ðκþ þ 3κ−Þ, κd ¼ 1

2
ð2κ− − κþÞ and κs ¼ κ0 [76,77].

In the equations λq is a parameter related with the quark
density number in deep inelastic scattering [76]. The
numerical value is λq ¼ 1.21. The remaining parameters
are cþ ¼ 4.160, c− ¼ 1.160, c0 ¼ 4.427, dþ ¼ d− ¼
−0.686 and d0 ¼ −1.860 [10,77].
The expressions (A1)–(A6) are valid in the region

q2 < 0, when the vector meson decay widths vanish, Γv ≡
0 (v ¼ ρ;ω;ϕ). For the extension of the quark form factors
to the timelike region (q2 > 0), we consider the replace-
ment (v ¼ ρ;ω;ϕ)

m2
v

m2
v − q2

→
m2

v

m2
v − q2 − imvΓvðq2Þ

: ðA7Þ

The decay width functions Γvðq2Þ, which describe the
dressing of the vector mesons in terms of the possible
meson decay channels, are discussed next.
Following our previous works based on the Δð1232Þ

Dalitz decay, we consider for the isovector components
(ρ-pole) the function [30,75,99,107]

Γρðq2Þ ¼ Γ0
ρ
m2

ρ

q2

�
q2 − 4m2

π

m2
ρ − 4m2

π

�
3=2

θðq2 − 4m2
πÞ; ðA8Þ

where Γ0
ρ ¼ 0.149 GeV. The previous equation parame-

trize the width associated to the decay ρ → 2π for a
virtual ρ with square four-momentum q2 [107,108].
Alternative parametrizations for Γρðq2Þ are presented in
Refs. [19,109–111].
For the isoscalar channel, associated with the ω-meson,

one needs to consider the combination of the decays
ω → 2π and ω → 3π. Following our work on the
Nð1520Þ Dalitz decay [31], we decompose

Γωðq2Þ ¼ Γ2πðq2Þ þ Γ3πðq2Þ; ðA9Þ

where the first term parametrize the decay ω → 2π a and
the second term parametrize the decay ω → 3π. The
expression for Γ2πðq2Þ is similar to Γρðq2Þ except for the
strength [31,107]. As for the decay ω → 3π, we consider a
model based on the process ω → ρπ → 3π, where the
intermediate ρ decays into 2 pions [107]. We do not
reproduce here the expressions for Γ2π and Γ3π , since they
can be found in Ref. [31]. We just point out that the 3π
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channel dominates for q2 > 0.55 GeV2. A more detailed
discussion of Γωðq2Þ is presented in Ref. [31].
Finally, for the ϕ decay width, we consider the simplified

parametrization

Γϕðq2Þ ¼ Γ0
ϕ

m2
ϕ

q2

�
q2 − 4m2

K

m2
ϕ − 4m2

K

�
3=2

θðq2 − 4m2
KÞ; ðA10Þ

where Γ0
ϕ ¼ 4.23 × 10−3 GeV, and mK is the kaon mass

(mK ≃ 0.5 GeV). Equation (A10) describes the ϕ → 2K (K
is the kaon) under the assumption that it is the dominate
decay of the ϕ. According with PDG the 2K decays
correspond to about 85% of the ϕ decays [6].
For the range of the calculation of the present work

(W < 2 GeV) the regularization of the ϕ pole is not
very relevant, since m2

ϕ ≃ 1 GeV2 ≫ q2. The singularities
associated to the ϕ-meson appear, then only for
W ≥ MB þmϕ > 2.1 GeV. Nevertheless, we regularize
the ϕ-propagator for consistence. We note also that even
the calculations more dependent on the ϕ-pole, in particular
the Dalitz decay widths Γeþe−BðWÞ, are weakly dependent
on the shape of Γϕðq2Þ.
We also concluded that the Dalitz decay widths

Γeþe−BðWÞ depend weakly of the explicit form used for
Γρðq2Þ in Eq. (A8). Equivalent results can be obtained

when we replace m2
ρ

q2 by
mρ

q , following Refs. [109]. The main

differences appear only near q2 ¼ m2
ρ, and their effects are

diluted in the integration in q.

APPENDIX B: REGULARIZATION
OF HIGH MASS POLES

For a givenW the square momentum q2 is limited by the
kinematic condition q2 ≤ ðW −MBÞ2. If there is a singu-
larity at q2 ¼ Λ2 the singularity will appear for values ofW
such that ðW −MBÞ2 ≥ q2, or W ≥ MB þ Λ.
To avoid those singularities, for single poles with

a generic momentum scale Λ, we use the following
procedure

Λ2

Λ2 − q2
→

Λ2

Λ2 − q2 − iΛΓXðq2Þ
; ðB1Þ

where

ΓXðq2Þ ¼ 4Γ0
X

�
q2

q2 þ Λ2

�
2

θðq2Þ: ðB2Þ

In the last equation Γ0
X is a constant given by

Γ0
X ¼ 4Γ0

ρ ≃ 0.6 GeV.
This procedure is used on the pole q2 ¼ M2

h of the
quarks form factors, for the single pole (Pauli form factors)
and double pole (Dirac form factors).

For powers of monopole factors used in the pion cloud
contribution (3.21), we approximate the result by the
magnitude of the expression:

�
Λ2

Λ2 − q2

�
n

→

�
Λ4

ðΛ2 − q2Þ2 þ Λ2½ΓXðq2Þ�2
�n

2

; ðB3Þ

where ΓXðq2Þ is determined by Eq. (B2).
In the generalization of the dipole function G̃D defined

by Eq. (3.24), we use Eq. (B2), with Λ ¼ ΛD.

APPENDIX C: CALCULATION OF THE MESON
CLOUD CONTRIBUTIONS

We present here a brief revision of the calculation of the
contributions of the diagrams (a) and (b) from Fig. 1,
following Ref. [13].
The calculations of the meson cloud contributions are

based on the cloudy bag model (CBM). Since those con-
tributions depend on the photon couplings with the bare
baryons, it is necessary to make the connection between the
Dirac and Pauli couplings between CBM and the covariant
spectator quark model. This connection was performed in
Ref. [13] with the comparison of the results from both
frameworks for the octet baryon to decuplet baryon
transitions. One obtains the same result for the magnetic
transition form factor at low Q2 in both frameworks, when
we define the quark (q ¼ u, d, s) effective magnetic
moments as

μq ¼
ffiffiffi
2

3

r �
2MB

MB0 þMB
þ MB

MN
κq

�
Ið0;MB0 Þ; ðC1Þ

where Ið0;MB0 Þ is defined by Eq. (3.10). Notice that
the value of μq depends on the explicit transition. In the
static limit, where all baryons are very heavy and the mass
differences can be neglected, one obtains μq ∝ ð1þ κqÞ.
In Eq. (C1), the presence of the overlap integral is

important because it tend to reduce the contribution of the
bare core when we use different radial wave functions for
the octet baryon and decuplet baryon. In an exact SUð3Þ
model where octet and decuplet baryons are described by
the same radial wave functions (also no mass difference),
we obtain Ið0;MB0 Þ ¼ 1 [13].
We can now describe the calculations of the meson cloud

contributions from the diagrams Fig. 1(a) and (b) to the
magnetic form factors.

1. Diagram (a)

The calculation of the contributions for the diagram 1(a)
are performed based on

GMCa
M ¼

X
M;B1

CM
BB0;B1

HM
BB0 ðB1Þ; ðC2Þ
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where M labels the intermediate meson states (M ¼ π, K),
CM
BB0;B1

are coefficients in the CBM framework, and

HM
BB0 ðB1Þ is the CBM loop integral associated to a diagram

with an intermediate baryon B1 and the meson M. The
function HM

BB0 ðB1Þ is defined by Eq. (4.2) from Ref. [13].
The labels of the state B1 used in the calculations are

displayed in Table VII. The couplings associated to the
states are presented in Table IV from Ref. [13]. For
completeness, we present also the intermediate states
associated to the kaon.

2. Diagram (b)

The calculations of the contributions for the diagram 1(b)
are performed based on

GMCb
M ¼

X
M;B1;B2

DM
BB0;B1;B2

H2M
BB0 ðB1; B2Þ; ðC3Þ

where M labels the intermediate meson states (M ¼ π, K,
η), DM

BB0;B1;B2
are coefficients in the CBM framework, and

H2M
BB0 ðB1; B2Þ is the CBM loop integral associated to a

diagram with the intermediate baryons B1, B2 and the

mesonM. The integralH2M
BB0 ðB1; B2Þ is defined by Eq. (4.4)

in Ref. [13].
The function GMCb

M include the contributions of the
baryons B1, B2 displayed in Table VIII. The explicit
expressions for DM

BB0;B1;B2
are linear combinations of the

effective quark form factors μq and are presented in the
Appendix A of Ref. [13].
The dependence of the diagram 1(b) contributions on the

intermediate bare states are then expressed by the depend-
ence on the effective quark form factors.
Note that in intermediate state, one has all kinds of

baryon transitions: octet to octet, octet to decuplet, decuplet
to octet and decuplet to decuplet.
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