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We consider a detailed account on the construction of the heavy-quark parton distribution functions for
charm and bottom, starting from nf ¼ 3 light flavors in the fixed-flavor-number (FFN) scheme and by
using the standard decoupling relations for heavy quarks in QCD. We also account for two-mass effects.
Furthermore, different implementations of the variable-flavor-number (VFN) scheme in deep-inelastic
scattering (DIS) are studied, with the particular focus on the resummation of large logarithms inQ2=m2

h, the
ratio of the virtuality of the exchanged gauge boson Q2 to the heavy-quark mass squared m2

h. Little impact
of resummation effects is found in the kinematic range of the existing data on the DIS charm-quark
production so that they can be described very well within the FFN scheme. Finally, we study the theoretical
uncertainties associated to the VFN scheme, which manifest predominantly at small Q2.

DOI: 10.1103/PhysRevD.102.054014

I. INTRODUCTION

The process of deep-inelastic scattering (DIS) of leptons
off a nucleon target provides important information on the
nucleon structure and the parton content. Therefore, it plays
a central role in the determination of the parton distribution
functions (PDFs), especially for the proton PDFs [1]. At
large values of Bjorken x the DIS data constrain the valence
quark distributions, while at small x they are sensitive to the
sea-quark and gluon distributions. In addition, the DIS
cross sections at small x contain substantial contributions
from charm and bottom quarks. The virtuality Q2 of the
exchanged gauge boson is the other important kinematic
variable in DIS. It offers a wide range of scales to probe, for
instance, in electron-proton scattering, the parton dynamics
inside the proton. Depending on the value of Q2, different
theoretical descriptions of DIS within quantum chromo-
dynamics (QCD) may be applied. This concerns in par-
ticular the number nf of active quark flavors and the
treatment of the heavy quarks, as charm and bottom.
At low scales, whenQ2 is of the order of the heavy-quark

mass squared m2
h, one typically works with nf ¼ 3 mass-

less quark flavors. Then, the proton structure function is
composed only out of light-quark PDFs for up, down and

strange and of the gluon PDF. Massive quarks appear in the
final state only or contribute as purely virtual corrections.
At higher scales, for Q2 ≫ m2

c; m2
b compared to the charm

and bottom quark masses squared, additional dynamical
degrees of freedom lead to theories with nf ¼ 4 or 5
effectively light flavors, depending on whether charm is
considered massless or even both charm and bottom. The
massive renormalization group equations rule these dyna-
mics and provide the corresponding scale evolution, linking
to nf ¼ 3 massless quarks at very low virtualities. In
general, the transition for the flavor dependence of the
strong coupling αs, i.e., αsðnfÞ → αsðnf þ 1Þ, is achieved
at some matching scale μ0 with the decoupling relations [2]
which can be implemented perturbatively in QCD. These
decoupling relations introduce a logarithmic dependence
on the heavy-quark massesmc andmb. In a similar manner,
this is realized for the PDF fi of a parton i with the help of
suitable heavy-quark operator matrix elements (OMEs)
[3,4], which, in the perturbative expansion, also depend
logarithmically on the heavy-quark masses. The transition
fiðnfÞ → fiðnf þ 1Þ, again at a matching scale μ0, implies
also the introduction of new heavy-quark PDFs for charm
or bottom when they become effectively light flavors and
can then be considered as effective dynamical degrees of
freedom inside the proton.
For a given fixed value of nf, and having decoupled the

heavy quarks in an appropriate manner, one may define the
fixed-flavor-number (FFN) scheme. In the FFN scheme
used in the ABMP16 global fit of proton PDFs [5], only
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light quarks and gluons are considered in the initial state,
while heavy quarks appear in the final state as a result of the
hard scattering of the incoming massless partons. Existing
data on the heavy-quark DIS production are well described
by the FFN scheme with nf ¼ 3; see Refs. [1,6]. However,
many PDF fits, like those of CT18 [7], MMHT14 [8] and
NNPDF3.1 [9], employ various different versions of the so-
called variable-flavor-number (VFN) scheme. In the VFN
scheme the quark flavors charm and bottom are considered
also in the initial state from a certain mass scale onward and
are dealt with as partonic components in the proton. As a
consequence, the original distributions fiðnfÞ are mapped
into the distributions fiðnf þ 1Þ at a chosen scale μ0;
cf. [3]. In addition, the VFN scheme effectively performs a
resummation of logarithms in the ratio Q2=m2

c (or Q2=m2
b)

through the parton evolution equations for the charm (or
bottom) PDF [10], although the corresponding logarithms
are not necessarily large for realistic kinematics.
The difference in modeling of the heavy-quark contri-

bution, i.e., the choice for the FFN or the VFN scheme, has
an impact on the PDFs obtained in global fits [1,11].
Therefore, a detailed comparison of the two approaches is
mandatory in view of the use of the respective PDF sets in
QCD precision phenomenology.
A particular prescription for a VFN scheme has been

proposed in [3], commonly referred to as the BMSN (Buza-
Matiounine-Smith-van Neerven) scheme. In PDF fits, the
VFN scheme using this approach yields results which are
not very different from the ones in the FFN scheme [12].
This happens due to a smooth transition between the nf-
and ðnf þ 1Þ-flavor regimes at the matching scales μ0 ¼
mc and μ0 ¼ mb, respectively, which is imposed in the
BMSN ansatz. However, the BMSN prescription is based
on heavy-quark PDFs, i.e., charm and bottom, which are
derived with the help of fixed-order matching conditions.
Therefore, the results of our previous study [12] cannot be
directly compared to the PDF fits in Refs. [7–9] which
apply heavy-quark PDF evolution.
In the present article we discuss the phenomenology of a

modified BMSN prescription, which also includes the scale
evolution of heavy-quark PDFs in order to clarify the basic
features of such VFN schemes. Our studies are limited to
the case of DIS charm-quark production, since this process
is most essential phenomenologically and, at the same time,
a representative case.
The paper is organized as follows. Basic features of

QCD factorization, the VFN scheme and the BMSN
prescription are outlined in Sec. II. In Sec. III we describe
the particularities introduced by the heavy-quark PDF
evolution and Sec. IV contains the benchmarking of various
factorization schemes based on existing data for DIS charm-
quark production.We address implications of VFN schemes
for predictions at hadron colliders in Sec. Vand conclude in
Sec. VI. Technical details of the various implementations of
heavy-quark schemes are summarized in the Appendix.

II. HEAVY-QUARK PDFS

The dynamics of massless partons in the proton are
parameterized in terms of the PDFs fi with i ¼ u, d, s, g for
up, down, strange quarks, and the gluon, respectively.
These define the set of flavor-singlet quark and gluon
PDFs, qs and g:

qsðnf; μ2Þ ¼
Xnf
l¼1

½flðnf; μ2Þ þ f̄lðnf; μ2Þ�;

gðnf; μ2Þ ¼ fgðnf; μ2Þ; ð1Þ

where μ denotes the factorization scale and we suppress the
dependence on the momentum fractions x here and below.
Using standard QCD factorization,1 the PDFs for the

heavy quarks charm and bottom (h ¼ c, b) at the scale μ in
the MS scheme and using on-shell renormalization for the
mass mh are then constructed from the quark-singlet and
gluon PDFs in Eq. (1) and the heavy-quark OMEs Aij as
follows [3,4]:

fhþh̄ðnf þ 1; μ2Þ ¼ Aps
hq

�
nf;

μ2

m2
h

�
⊗ qsðnf; μ2Þ

þ As
hg

�
nf;

μ2

m2
h

�
⊗ gðnf; μ2Þ; ð2Þ

where h ¼ c, b and ⊗ denotes the Mellin convolution in
the momentum fractions x. Typically, the matching con-
ditions are imposed at the scale μ0 ¼ mh, and we further
assume that fhþh̄ ¼ 0 at scales μ ≤ mh. In addition, the
transition fqsðnfÞ; gðnfÞg → fqsðnf þ 1Þ; gðnf þ 1Þg for
the set of the light-quark singlet and the gluon distributions
with the respective heavy-quark OMEs has to account for
operator mixing in the singlet sector

qsðnf þ 1; μ2Þ ¼
�
Ans
qq;h

�
nf;

μ2

m2
h

�
þ Aps

qq;h

�
nf;

μ2

m2
h

�

þ Aps
hq

�
nf;

μ2

m2
h

��
⊗ qsðnf; μ2Þ

þ
�
As
qg;h

�
nf;

μ2

m2
h

�
þ As

hg

�
nf;

μ2

m2
h

��

⊗ gðnf; μ2Þ; ð3Þ

gðnf þ 1; μ2Þ ¼ As
gq;h

�
nf;

μ2

m2
h

�
⊗ qsðnf; μ2Þ

þ As
gg;h

�
nf;

μ2

m2
h

�
⊗ gðnf; μ2Þ; ð4Þ

1A variant of the VFN scheme is used in the NNPDF3.1 fit of
Ref. [9], where the heavy-quark PDFs are parameterized by some
functional form, which is then fitted to the data.
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with h ¼ c, b (see Refs. [3,4]), also for matching relations
for the nonsinglet distributions.
The perturbative expansion of the OMEs in powers of the

strong coupling constant αs reads [using as ¼ αs=ð4πÞ as a
short-hand]

Aij ¼ δij þ
X∞
k¼1

aksA
ðkÞ
ij ¼ δij þ

X∞
k¼1

aks
Xk
l¼0

aðk;lÞij lnl
�
μ2

m2
h

�
;

ð5Þ

where the expressions aðk;0Þij contain the information, which
is genuinely new at the kth order. The leading-order (LO)
and next-to-leading-order (NLO) contributions to the
OMEs are given by the coefficients at order as and a2s
in Eq. (5), respectively. They have been determined
analytically in closed form in Refs. [3,13–15].2 At next-
to-next-to-leading order (NNLO) the heavy-quark OMEs
are known either exactly or to a good approximation
[4,5,16–19]. This includes specifically the nonsinglet and

pure-singlet constant parts að3;0Þhq in Eq. (5) and the term

að3;0Þhg at order a3s. In the latter case an approximation based
on fixed Mellin moments [4] with a residual uncertainty in
the small-x region has been given in Refs. [5,17].
It should be noted that the decoupling relations in

Eqs. (2)–(4) assume the presence of a single heavy quark
at each step only. Thus, the bottom-quark contributions are
ignored in the transition from nf ¼ 3 to 4 and in the
construction of the charm-quark PDF. However, starting at
two-loop order, the perturbative corrections to the heavy-
quark OMEs contain graphs with both charm- and bottom-
quark lines. With the ratio of masses ðmc=mbÞ2 ≈ 1=10,
charm quarks generally cannot be taken as massless at
the scale of the bottom quark. Such two-mass contributions
to the heavy-quark OMEs have been computed recently
[20–22]. At three-loop order (and beyond), these correc-
tions can neither be attributed to the charm- nor to the
bottom-quark PDFs separately. Rather, one has to decouple
charm and bottom quarks together at some large scale and
the corresponding VFN scheme, i.e., the simultaneous
transition with two massive quarks, fiðnfÞ → fiðnf þ 2Þ,
has been discussed recently in Ref. [23]. This proceeds in
close analogy to the simultaneous decoupling of bottom
and charm quarks in the strong coupling constant αs; see for
instance Ref. [24]. We will elaborate on these aspects
further below.
First, we will limit our studies to the case of the charm-

quark PDF and apply Eqs. (2)–(4) to change from nf ¼ 3
to 4. At LO only the heavy-quark OME As

hg contributes and
the coefficients are

að1;0Þhg ðxÞ¼ 0; að1;1Þhg ðxÞ¼ 4Tfð1−2xþ2x2Þ¼Pð0Þ
qg ðxÞ
nf

;

ð6Þ
i.e., the constant term of the unrenormalized massive OME

As;ð1Þ
hg vanishes and the logarithmic one with Tf ¼ 1=2 is

proportional to the LO quark-gluon splitting function Pð0Þ
qg

in the normalization of Ref. [25]. For four active flavors we
abbreviate the charm PDF in Eq. (2) as cðx; μ2Þ≡
fcþc̄ð4; x; μ2Þ and consider its perturbative expansion

cðx; μ2Þ ¼ cð1Þðx; μ2Þ þ cð2Þðx; μ2Þ þ � � � ; ð7Þ

where the LO term cð1Þðx; μ2Þ has a particularly simple
form:

cð1Þðx;μ2Þ¼asðμ2Þln
�
μ2

m2
c

�Z
1

x

dz
z
að1;1Þhg ðzÞg

�
nf¼3;

x
z
;μ2

�
:

ð8Þ
Here, g denotes the gluon PDF in the three-flavor scheme.
This expression is used in the BMSN prescription [3] of the
VFN scheme and determines the charm-quark distribution at
all scales μ ≥ mc at fixed-order perturbation theory (FOPT).
On the contrary, other VFN prescriptions, like ACOT

(Aivazis-Collins-Olness-Tung) [26–28], FONLL (fixed
order calculation with a next-to-leading logarithmic one)
[29] or RT (Roberts-Thorne) [30] use Eq. (8) as a boundary
condition for cðx; μ2Þ at μ ¼ mc and derive the scale
dependence with the help of the standard QCD evolution
equations (DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi) ) for massless quarks. The evolution resums loga-
rithmic terms to all orders, so that the charm-quark
distribution acquires additional higher-order contributions
which are not present in the FOPT expression in Eq. (8). In
order to illustrate the numerical difference between these
two approaches, we consider the derivative of cðx; μ2Þ:
dcð1Þðx;μ2Þ

d lnμ2
¼ asðμ2Þ

Z
1

x

dz
z
að1;1Þhg ðzÞg

�
x
z
;μ2

�

þ
�

das
d lnμ2

�
cð1Þðx;μ2Þ

as

þasðμ2Þ ln
�
μ2

m2
c

�Z
1

x

dz
z
að1;1Þhg ðzÞ_g

�
x
z
;μ2

�
;

ð9Þ
where _gðx; μ2Þ≡ dgðx; μ2Þ=d ln μ2.
The first term in Eq. (9) corresponds to the right-hand

side of the standard DGLAP evolution equations [recall
Eq. (6)]; i.e., að1;1Þhg is proportional to Pð0Þ

qg . The second and
the third term, however, account for the difference between
the FOPT distributions and the evolved ones. These terms
vanish at the matching scale μ0 ¼ mc as they should by

2The initial calculation of the two-loop OMEs As;ð2Þ
hg and As;ð2Þ

gg;h
in Ref. [3] was incomplete; cf. Ref. [15].
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definition. For scales μ > mc the second term proportional
to the QCD β function is negative, since das=d ln μ2 ¼
βðasÞ=ð4πÞ < 0. However, the net effect of the difference
between the FOPT and the DGLAP evolved distributions
shown in Fig. 1 on the left is positive at small x and driven
by _g in the third term. Only at large x, where the gluon PDF

is negligible, the term proportional to βðasÞ dominates and
the net difference between the FOPT and the DGLAP
evolved distributions is negative.
The matching conditions for the charm quark at NLO are

more involved. The NLO term cð2Þðx; μ2Þ in Eq. (7) has
the form

cð2Þðx; μ2Þ ¼ a2sðμ2Þ
Z

1

x

dz
z
As;ð2Þ
hg

�
nf ¼ 3; z;

μ2

m2
c

�
g

�
nf ¼ 3;

x
z
; μ2

�

þ a2sðμ2Þ
Z

1

x

dz
z
Aps;ð2Þ
hq

�
nf ¼ 3; z;

μ2

m2
c

�
qs
�
nf ¼ 3;

x
z
; μ2

�
: ð10Þ

It includes the NLO corrections to the massive OMEs As;ð2Þ
hg

and Aps;ð2Þ
hq for nf ¼ 3 [see Eq. (5)], and the gluon and the

quark-singlet PDFs, g and qðsÞ, are taken in the three-flavor
scheme again [cf. Eq. (1)]. Since að2;0Þhg and að2;0Þhq in Eq. (5)

are nonzero in the MS scheme, cðx; μ2Þ at NLO does not
vanish anymore at the matching scale μ0 ¼ mc.
The comparison of the charm-quark FOPT distributions

at NLO based on Eqs. (8) and (10) and the evolved ones,

using cðx; μ2Þ only as the boundary condition at the
matching scale, shows in Fig. 1 qualitatively the same
pattern as at LO, although the numerical differences are
smaller now. At small x, driven by the scale derivative _g of
the gluon PDF, the FOPT distributions are larger while at
large x the terms proportional to βðasÞ dominate and the
DGLAP evolved distributions are larger. These observa-
tions can be expressed in quantitative form through the
scale derivative of the NLO term cð2Þðx; μ2Þ, which reads

dcð2Þðx; μ2Þ
d ln μ2

¼ a2sðμ2Þ
Z

1

x

dz
z

�
að2;1Þhg ðzÞ þ 2 ln

�
μ2

m2
c

�
að2;2Þhg ðzÞ

�
g

�
x
z
; μ2

�

þ a2sðμ2Þ
Z

1

x

dz
z

�
að2;1Þhq ðzÞ þ 2 ln

�
μ2

m2
c

�
að2;2Þhq ðzÞ

�
qs
�
x
z
; μ2

�
þ 2

�
das

d ln μ2

�
cð2Þðx; μ2Þ

as

þ a2sðμ2Þ
Z

1

x

dz
z
As;ð2Þ
hg

�
z;
μ2

m2
c

�
_g

�
x
z
; μ2

�
þ a2sðμ2Þ

Z
1

x

dz
z
Aps;ð2Þ
hq

�
z;
μ2

m2
c

�
_qs
�
x
z
; μ2

�
; ð11Þ

where, again, _gðx; μ2Þ≡ dgðx; μ2Þ=d ln μ2 and _qsðx; μ2Þ≡ dqsðx; μ2Þ=d ln μ2.

FIG. 1. The difference between the evolved c-quark distributions and the ones obtained with the FOPT conditions in various orders of
QCD (LO, dots; NLO, dashes; and NNLO�, solid lines) versus the factorization scale μ and at representative values of the parton
momentum fraction x (left, x ¼ 0.0002; right, x ¼ 0.002) taking the matching scale μ0 ¼ mc ¼ 1.4 GeV, where mc is the pole mass of
c-quark mass. The vertical dash-dotted lines display the upper margin for the HERA collider kinematics. Here NNLO� denotes PDFs
evolved using the NNLO splitting functions in combination with the NLO matching conditions as a boundary.
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Here, the first two terms in the right-hand side contain
the expressions used in the standard DGLAP equations to
evolve the charm-quark PDF, since the NLO splitting

functions Pð1Þ
qg and Pð1Þ

qq appear in the terms að2;1Þhg and

að2;1Þhq ; cf. [3,4]. However, there are also other contributions,
since the heavy-quark OMEs enjoy their own (massive)
renormalization group equation. In addition, the full
expression dcðx; μ2Þ=d ln μ2 at NLO contains, of course,
also the terms from _cð1Þðx; μ2Þ in Eq. (9) expanded to higher
order in as, for example the term proportional to βðasÞ. In
summary, these terms are responsible for decreasing the
difference between the FOPT and the evolved distributions
at NLO in Fig. 1.
As a further variant in the study of the DGLAP evolved

charm-quark PDF, one can perform the evolution using the
full NNLO splitting functions Pð2Þ

ij of Ref. [25] starting at
the matching scale μ0 ¼ mc from the boundary condition
for cðx;m2

cÞ at NLO in Eqs. (8) and (10). We denote this
variant as NNLO�, since there is a mismatch in the orders of
perturbation theory between the heavy-quark OMEs and
the accuracy of the evolution equations. The difference
with the NLO variant is due to terms which are formally
of higher order but nevertheless have significant numerical
impact at small x as shown in Fig. 1. There, the FOPT
distributions at NLO and the evolved ones at NNLO�
accuracy are very similar in the entire μ range. Only at
large x, the increased order in the DGLAP evolution is
negligible.
In Fig. 2 we display the scale derivatives of the charm-

quark PDF _cðx; μ2Þ≡ dcðx; μ2Þ=d ln μ2 calculated using
Eqs. (9) and (11). We consider the difference of _cðx; μ2Þ
determined in FOPT, _cFOPT, and the one evolved with the
standard DGLAP evolution, _cevol, choosing nf ¼ 4 and
starting from the expressions in Eqs. (8) and (10) at the
matching scale μ0 ¼ mc ¼ 1.4 GeV. Evidently, at LO the
difference _cFOPT − _cevol has to vanish at the matching scale,

while at NLO or in the NNLO� variant some finite offset at
μ0 ¼ mc ¼ 1.4 GeV remains. Remarkably, the results at
NLO and at NNLO�, i.e., using NLO boundary conditions
from Eqs. (8) and (10) and NNLO splitting functions in the
evolution of _cevol, are very different at low factorization
scales and only converge above μ2 ≳ 102…103 GeV2,
depending on the value of x. These large scales, however,
at which the NLO and the NNLO� variants become of
similar size, are typically well outside the kinematic range
of the HERA collider, whose upper limit is indicated by the
vertical arrow. This is the NNLO� approximation, which is
used in the NNLO PDF fits based on the VFN-scheme
description of the DIS heavy-quark production; therefore,
these findings in particular indicate that there is a sub-
stantial numerical uncertainty in the VFN prescriptions
ACOT [26–28], FONLL [29] or RT [30] due to the order of
the QCD evolution applied. In particular the additional
higher-order terms in the NNLO� variant do have a sizable
effect within the μ range covered by experimental data on
DIS charm-quark production and, hence, on the quality of
the description of those data in a fit using such VFN
prescriptions.
An additional source of uncertainty in the VFN

scheme concerns the choice of the matching scale μ0.
Conventionally it is set to the corresponding heavy-quark
mass, mc and mb for the four- and five-flavor PDFs,
respectively. A variation of μ0 leads to a modification of
the shape of the evolved heavy-quark PDFs, whereas, in
contrast, the FOPTones remain unchanged by construction.
Therefore, for μ0 > mh a difference between the FOPT and
the evolved heavy-quark PDFs is generally becoming
smaller, in particular within the phase-space region covered
by existing data; cf. Fig. 3. Such a variation of μ0 also
implies the use of the FFN scheme to describe data in a
wider kinematic range, e.g., up to μ0 ¼ 2mc instead of
μ0 ¼ mc for the illustration in Fig. 3. Therefore, the
uncertainty due to a variation of matching scale is not

FIG. 2. The same as in Fig. 1 for the scale derivatives of the charm-quark PDF, _cðx; μ2Þ≡ dcðx; μ2Þ=d ln μ2.
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completely independent from those related to the choice of
heavy-quark PDFs employed in the VFN scheme.

III. BMSN PRESCRIPTION OF THE VFN SCHEME

The heavy-quark distribution derived using the matching
conditions Eqs. (2)–(4) enter the zero-mass VFN scheme
(ZMVFN) expression for F2;h:

FZMVFN
2;h ¼

X∞
k¼0

aksðnfþ1Þ
X

i¼q;g;h

CðkÞ
2;i ðnfþ1Þ⊗ fiðnfþ1Þ;

ð12Þ

where CðkÞ
2;i are the massless DIS Wilson coefficients at the

kth order, which are known to next-to-next-to-next-to-
leading order (N3LO) [31]. This expression is valid at
asymptotically large momentum transfer Q2 ≫ m2

h, while
it is unsuitable for scales Q2 ≃m2

h since the heavy-quark
decoupling is not applicable. Therefore, a realistic imple-
mentation of the VFN scheme commonly includes a
combination of the ZMVFN expression in Eq. (12) with
the FFN one:

FFFN
2;h ¼

X∞
k¼1

aksðnfÞ
X
i¼q;g

HðkÞ
2;i ðnfÞ ⊗ fiðnfÞ; ð13Þ

where HðkÞ
2;i are the Wilson coefficients for the DIS heavy-

quark production, all known exactly at NLO [32] andHð3Þ
2;g to

a good approximation at NNLO [5,17]. Furthermore, in
order to avoid double counting, a subtraction has to be
carried out when combining Eqs. (12) and (13). For the
BMSN prescription of the VFN scheme [3] this subtraction
arises from the asymptotic FFN expression as follows:

Fasy
2;h ¼

X∞
k¼1

aksðnfÞ
X
i¼q;g

HðkÞ;asy
2;i ðnfÞ ⊗ fiðnfÞ; ð14Þ

where HðkÞ;asy
2;i is derived from HðkÞ

2;i taken in the limit of
Q2 ≫ m2

h. In summary BMSN prescription then reads

FBMSN
2;h ¼ FFFN

2;h þ FZMVFN
2;h − Fasy

2;h; ð15Þ

where a factorization scale μF ¼ mh is used throughout.
The asymptotic Wilson coefficients Hasy

2;i can be
expanded into a linear combination of the massless
Wilson coefficients C2;i and the massive OMEs
[3,4,13]. For this reason, the asymptotic expression
of Eq. (14) coincides with the ZMVFN one of
Eq. (12), when the FOPT matching conditions
Eqs. (2)–(4) are employed, up to the subleading non-
singlet terms and the difference between aksðnf þ 1Þ and
aksðnfÞ [12]. The latter exhibits a small discontinuity
at Q2 ≃m2

h beyond one loop [33,34], which is numeri-
cally negligible, so that FZMVFN

2;h and Fasy
2;h in Eq. (15)

essentially cancel. Therefore, at small Q2 one obtains
FBMSN
2;h → FFFN

2;h . On the other hand, at large scales Q2 ≫
m2

h the FFN term is canceled by Fasy
2;h and one has in this

limit that FBMSN
2;h → FZMVFN

2;h . In the present analysis we
keep terms up to Oðα2sÞ in Eqs. (12)–(14) likewise as
in our earlier study [12] and obtain in this way a smooth
transition between FFN scheme at small momentum
transfer to the ZMVFN scheme at large scales;
cf. Fig. 4.
A version of the BMSN prescription based on the NLO

evolution of the ðnf þ 1Þ-flavor PDFs also allows for a
smooth matching with the FFN scheme at the matching
point Q2 ¼ m2

h and small x because the NLO-evolved
PDFs and their scale derivatives do not have a discontinuity
with respect to the FOPT ones; cf. Fig. 2. For the variant
denoted NNLO� which uses NNLO-evolved PDFs the
trend is different: the slope of F2;h at Q2 ¼ m2

h predicted
by the BMSN prescription is substantially larger than the
one obtained with the FFN scheme; cf. Fig. 5. This is in line

FIG. 3. The same as in Fig. 1 at NNLO� and different values of the matching scale μ0 (solid line, μ0 ¼ mc; dashes, μ0 ¼ 2mc).
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with the difference between the NNLO and FOPT PDFs,
which is obviously not explained by the impact of the
resummation of large logarithms but rather by the mis-
match in the perturbative order of the matching conditions
and evolution kernels employed to obtain the NNLO
heavy-quark PDFs. Therefore, the difference between the
NLO and NNLO� variants of the VFN scheme should
essentially quantify its uncertainty due to the missing

NNLO corrections to the massive OMEs. At larger x this
uncertainty is less significant, however, still sizable given
the uncertainty in existing data.
A choice of the matching scale μ0 ¼ mh, i.e., at the mass

of the heavy quark, is a matter of convention rather than
appearing as a consequence of solid theoretical arguments.
Also note that, for DIS charm production, the matching
scale μ0 cannot be significantly shifted to scales much
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FIG. 4. The structure function Fc
2 for DIS c-quark production at values x ¼ 0.0001 (left) and x ¼ 0.001 (right) of the Bjorken variable

versus momentum transfer Q2 computed in the FFN scheme (solid lines), with the asymptotic expression of the FFN scheme (dots), the
ZMVFN scheme (dash-dotted lines) and the BMSN prescription of the VFN scheme (dashes) and using the FOPT c-quark distribution.
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lower than mc, because in this case the matching would be
performed at scales well below 1 GeV, where QCD
perturbative expansions are not converging anymore.
When μ0 is shifted upwards, e.g., μ0 ¼ 2mh, the difference
between the NLO and NNLO� variants of the VFN scheme
is becoming less significant. This is particularly due to the
fact that then essential parts of the problematic small-Q2

region are left for a theoretical description within the FFN
scheme; cf. Fig. 6.
The impact of scheme variations and the choice of

the matching scale are qualitatively similar for the c- and
b-quark production. Nonetheless, the effects are less
pronounced for the b-quark case [35], mainly because of
the smaller numerical value of strong coupling at the scale
mb. For this reason, and also due to more representative
kinematics of data, all our phenomenological comparisons
are focused on the c-quark contribution.

IV. BENCHMARKING OF THE FFN AND VFN
SCHEMES WITH THE HERA DATA

To study the phenomenological impact of the VFN
scheme uncertainties we consider several variants of
ABMP16 PDF fit [5], which include the recent HERA
data on heavy-flavor DIS production [6]. Furthermore, the
inclusive neutral-current DIS HERA data used in the
ABMP16 fit are excluded in order to illuminate the impact
of the scheme variation on the PDFs extracted from the fit.
For the same reason we exclude the collider data on W�-
and Z-boson production, which provide an additional
constraint at small x on the PDFs in the ABMP16 fit.
However, in order to keep the different species of quark
flavors disentangled, we add data on DIS off a deuteron

target, analogous to an earlier study in Ref. [36]. For all
variants we employ the NLO massive Wilson coefficients
[32] and the pole-mass definition for the heavy-quark
masses, so that a consistent comparison of the FFN scheme
with the original formulation of the BMSN prescription
and its modifications is possible. For the same purpose
we take the factorization scale μF ¼ mh both for the FFN
and VFN scheme. The values of mpole

c ¼ 1.4 GeV and
mpole

b ¼ 4.4 GeV used in the present study are not perfectly
consistent with the ones obtained in the ABMP16 fit
with the MS definition. However, they are close to the
values in the pole-mass scheme preferred by the HERA
data [6].3 With these settings, the FFN scheme provides a
good description of the c-quark production data; cf. Fig. 7.
The agreement of the fit with the data is equally good,
both at small and at large Q2, underpinning the fact that
any additional large logarithms cannot improve the theo-
retical data treatment within the range of kinematics
covered by the HERA data. This observation is indeed
long known [38].
In order to check this aspect in greater detail we also

compare predictions of various versions of the VFN
scheme with the data. Let us consider the VFN predictions
for the heavy-quark production cross sections which are
computed by using the BMSN prescription of Eq. (15) for
F2, while still keeping the FFN scheme for FL. The
justification of this approach derives from the small
numerical contribution of FL as compared to F2. In
addition, the modeling of FL within the VFN framework
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FIG. 6. The same as in Fig. 5 for the NNLO� c-quark distributions obtained with the matching scales μ0 ¼ mc (dash-dotted lines) and
μ0 ¼ 2mc (dashes).

3Changing the heavy-quark mass renormalization scheme to
the MS scheme is straightforward; cf. [19,37].

S. ALEKHIN, J. BLÜMLEIN, and S. MOCH PHYS. REV. D 102, 054014 (2020)

054014-8



is conceptually problematic [12], because the effects of
power corrections in m2

h=Q
2 cannot be disregarded for this

observable [13]. The light-flavor contribution to the inclusive
structure function F2 is also kept the same as in the FFN
scheme. One may further consider a modification of the
light-parton PDFs due to the scheme transformation of
Eqs. (3) and (4). However, this is numerically negligible
for the purposes of our study. The PDFs used in this
comparison are the ones obtained in the FFN version of
the fit. Therefore the obtained pulls display the impact of the
scheme variation on the heavy-quark production only.
As expected, predictions of the VFN scheme based on

the BMSN prescription and the FOPT heavy-flavor PDFs
are close to the FFN ones. The same applies to the case of
NLO-evolved PDFs, which are smoothly matched with the
FFN ones at small scales; cf. Fig. 5. In contrast, an excess
with respect to the small-Q2 data appears for the variant of
the fit with the NNLO� PDFs employed. This excess is
clearly related to the mismatch between the FFN scheme

and this variant of the VFN one. The DIS coefficient
functions remain the same for the NLO and NNLO� version
of the scheme. Therefore the difference observed appears
entirely due to the ambiguity in the treatment of PDF
evolution. At large Q2 the impact of the resummation of
large logarithms is marginal, in particular given the size of
the data uncertainties. The latter is true also for the case
of NLO-evolved PDFs.
The HERA data on c-quark production used in the

present analysis are accurate enough to provide a sensible
constraint on the small-x gluon distribution. Moreover, the
latter demonstrate sensitivity to the choice of the factori-
zation scheme; cf. Fig. 8. At x ∼ 0.0001 the FFN scheme
and the BMSN scheme with the FOPT and the NLO-
evolved PDFs are in qualitative agreement, while a much
lower gluon distribution is preferred in the variant based on
the NNLO� fit. At x≳ 0.001 the NLO and NNLO� fits give
comparable results that are in line with the trends observed
for the pull comparison; cf. Fig. 7.
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The difference between gluon and quark distributions
obtained in the NLO- and NNLO�-based fits is pronounced
at small x due to kinematic correlations with the small-Q2

region, where the difference between these two approaches
is localized, and reaches∼30% at x ¼ 10−4. The description
of the small-x inclusive DIS data is also sensitive to the
scheme choice due to a substantial contribution of the heavy-
quark production. In order to check this quantitatively, we
consider variants of the fits with various VFN scheme
prescriptions and the HERA inclusive data [39] added. In
line with the recent update of the ABMP16 fit [40], we
impose strong cuts on the momentum transfer Q2 >
10 GeV2 and on the hadronic mass W2 > 12.5 GeV2,
which allow one to avoid any impact of higher twist
corrections; cf. [41]. A description of data sensitive to the
heavy-quark contribution is similar for all schemes consid-
ered; cf. Table I. However, the sensitivity of the resulting
gluon distribution to the choice of heavy-quark PDF
evolution still reaches ∼30% at x ¼ 10−4; cf. Fig. 9. Such
a spread induces quite essential uncertainties in the small-x
VFN predictions, in particular in the c- and b-quark input
distributions for scattering processes at hadron colliders.

The same applies to thevalue ofαs extracted from these data;
cf. Table I.
The gluon distribution obtained using the BMSN pre-

scription with the NLO-evolved PDFs is increased with
respect to the FOPT one at x ∼ 0.01, which gives a hint on
the impact of the resummation of large logarithms at
these kinematics. No further substantial change in the
gluon distribution at x≳ 0.01 is observed, when the
NNLO corrections to the evolution are taken into account.
Therefore, one should expect a minor impact of the
logarithmic terms at higher order (higher powers) on the
description of the existing DIS data, although the compari-
son is somewhat deteriorated by the uncertainty from the
mismatch in perturbative orders in theNNLO� fits appearing
at x≲ 0.01. In this context it is also instructive to consider
the results of the FFN fit performed with account of the
NNLO corrections, which include the terms up to
Oðln2ðμ2=m2

hÞÞ [5] and MS masses mcðmcÞ ¼ 1.27 GeV
and mbðmbÞ ¼ 4.18 GeV [42]. The gluon distribution
obtained with these settings is similar to the VFN ones at
x≳ 0.01, located between the NLO and NNLO� fit results
at x ∼ 10−4 and lower by ∼5% than both of these variants at
x ∼ 0.01, where they agree with each other; cf. Fig. 9. This
plot also yields an upper limit on the estimate of the impact
of missing large logarithms in the NNLO FFN fit. On the
other hand, a comparison with the NNLO VFN fit at small
x is inconclusive due to the large uncertainties in the VFN
scheme appearing at these kinematics. A more accurate
estimate requires the NNLO VFN fit with a consistent
boundary condition based on OMEs at NNLO accuracy
[4,5,16–19].Nonetheless, at thepresent level of data accuracy
this upper limit is comparable with the experimental uncer-
tainties in the gluon distribution obtained from the fit.
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FIG. 8. Left panel: The relative uncertainty in the three-flavor gluon distribution xgðx; μÞ at the factorization scale μ ¼ 3 GeV versus x
obtained in the fit based on the BMSN VFN prescription with the FOPT heavy-flavor PDFs (hatched area) in comparison to the relative
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TABLE I. A difference in χ2 and αsðNf ¼ 5;MZÞ values
obtained for the combination of HERA DIS inclusive and
heavy-quark production data in various versions of the BMSN
VFN scheme with respect to the FOPT one. The total amount of
data points in the two datasets considered is equal to 1095.

FOPT NLO NNLO�

Δχ2 0 −3 −7
ΔαsðNf ¼ 5;MZÞ 0 −0.0030 −0.0035
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Finally, considering a variation of the matching scale for
the four-flavor PDFs from μ0 ¼ mc to μ0 ¼ 2mc leads to
VFN heavy-flavor predictions being closer to the FFN
ones; cf. Fig. 6. The phenomenological effect of such a
variation is more substantial at small Q2 and x due to
kinematic characteristics of the existing DIS experiments.
Therefore, the corresponding change of the gluon distri-
bution due to a matching point variation is significant
mostly at x≲ 10−3; cf. Fig. 10. It is comparable in size with
the VFN scheme uncertainty related to the boundary
conditions for the evolution. However, strictly speaking,
these two uncertainty sources should not be considered
independently since the impact of the matching scale
variation also manifests itself through the scheme change.

V. IMPLICATIONS OF VFN SCHEMES FOR
PREDICTIONS AT HADRON COLLIDERS

The contribution of heavy flavors to the hadroproduction
of massive states, like W�, Z and Higgs bosons, t quarks,
etc., are commonly taken into account within the four- or
five-flavor scheme. This allows for great simplifications of
the computations, since the VFN PDFs employed in this
case contain resummation effects, which are generally
rising with the factorization scale; cf. Fig. 1. Therefore,
the VFN scheme provides a relevant framework for the
phenomenology of heavy particle hadroproduction.
The NNLO four- and five-flavor PDFs still suffer from

the uncertainty due to the yet unknown exact NNLO
corrections to the massive OMEs. Moreover, for the
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FIG. 10. The same as in Fig. 9 for a comparison of two variants of the BMSN fit based on the NNLO� PDFs with the matching point at
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NNLO PDFs derived from the VFN fit including the small-
x DIS data this uncertainty is enhanced, since the part
of those DIS data, which provides an essential constraint
on the PDFs, also populates the matching region. The
observed spread in the five-flavor gluon distributions,
which are obtained from the VFN fits with varying treat-
ments of the matching ambiguity, is somewhat reduced
with increasing scales due to the general properties of the
QCD evolution. However, it is still comparable to exper-
imental uncertainties at x ∼ 0.01 and substantially larger at
x ∼ 10−4; cf. Fig. 11.
Altogether, this implies an uncertainty in predictions of

the production rates of the Higgs-boson and t-quark pairs at
the Large Hadron Collider (LHC) within a margin of few
percent and somewhat larger at the higher collision energies
discussed for future hadron colliders. Note that in the
ABMP16 fit [5], which is based on a combination of both
DIS and hadron collider data, the FFN and the five-flavor
VFN schemes are used for the theoretical description of
these samples, respectively. This allows one to keep the
advantages of theVFN scheme at large scales while avoiding
its problems concerning the DIS data. Nevertheless, the
NNLO massive OMEs [4,5,16–19] are still necessary to
generate NNLO PDFs free from the matching ambiguity.
In closing the studies of VFN schemes we wish to

address a conceptual problem of the five-flavor scheme
definition due to the fact that the b-quark massmb is not too
much larger thanmc. This relates to the inherent limitations
of the VFN schemes due to the successive decoupling of
one heavy quark at a given time. As discussed above,
starting from the two-loop order, the DIS structure func-
tions also receive contributions which contain two different
massive quarks [23]. At two loops, they are given by one-
particle reducible Feynman diagrams, while one-particle
irreducible graphs appear at the three-loop order for the first
time; cf. [20–22].

Here we will consider the two-loop effects, which arise
from virtual corrections with both charm and bottom
quarks. Thus, no production threshold is involved. For
the structure function F2 one obtains

Ftwo-mass;ð2Þ
2;h ðx;Q2Þ

¼ −e2ha2sðQ2Þ 16
3
T2
Fx ln

�
Q2

m2
c

�

× ln

�
Q2

m2
b

�Z
1

x

dz
z
ðz2 þ ð1 − zÞ2Þg

�
x
z
;Q2

�
; ð16Þ

which is to be added to Eqs. (12) or (13), with eh denoting
the fractional heavy-quark charge and using TF ¼ 1=2.
The effect of the two-mass contributions rises at small x
and large Q2, being more pronounced for the case of
b-quark production; cf. Fig. 12. For the kinematics of the
proposed lepton-proton LHeC collider it reaches up to
∼3%, which has impact on the phenomenology of heavy-
quark production.
As demonstrated in Ref. [23], the two-mass diagrams

at the two-loop order have the largest effects for the b- and
c-quark distribution at large Q2. The respective PDFs can
be obtained by adding the two-mass contributions to the
OMEs in Eq. (2). Comparing the heavy-quark PDFs with
and without the two-mass effects included, one finds that
the relative size of the effect is negative: b-quark distribu-
tions with the two-mass contributions included are
decreased by −2% to −6% in the range for Q2 from 30
to 10000 GeV2 at small x, x ¼ 10−4; c-quark distribution
the relative variations are smaller, amounting to −1% to
−4% forQ2 ¼ 100 GeV2 to 10000 GeV2 and x ¼ 10−4. In
precision fits these two-mass effects have consequences for
all PDFs and require the use of a different VFN scheme
compared to those with the decoupling of a single heavy
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FIG. 11. The same as in Fig. 9 for the five-flavor PDFs at the factorization scale μ ¼ 100 GeV.
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quark at the time; cf. [23]. At this point, however, we leave
detailed studies of VFN schemes with two massive quarks,
i.e., the simultaneous transition fiðnfÞ → fiðnf þ 2Þ for
PDFs, for future studies.

VI. CONCLUSIONS

The precise description of the parton content in the
proton across a large range of scales is a an important
ingredient in precision phenomenology. The treatment of
heavy quarks with a mass mh requires adapting the
number of light flavors in QCD to the kinematics under
consideration, set by the factorization scale μ, which is
typically associated with the hard scale of the scattering
process. Within the ABMP16 global PDF fit, the FFN
scheme with nf ¼ 3 light flavors provides a good
description of the existing world DIS data, while the
LHC processes are typically described with nf ¼ 5

massless flavors by implementing decoupling of heavy
quarks and a transition from three- to four- or five-flavor
PDFs, including the possibility for the resummation of
large logarithms in Q2=m2

h.
To check the effects of such a resummation on the

analysis of existing DIS data we have studied the c-quark
PDF, constructed with the help of massive OMEs in QCD,
and we have quantified differences between the use of
perturbation theory at fixed order and subsequent evolu-
tion. We have found that the impact of the PDF evolution
as used in the BMSN prescription of VFN scheme is sizable
and rather x dependent than Q2 dependent, showing
little impact on the large-log resummation on the heavy-
quark production at realistic kinematics. Moreover, these
differences must be considered an inherent theoretical
uncertainty of VFN schemes since using NLO or NNLO
accuracy for the evolution leads to significantly different

results due to mismatch in the orders of perturbation theory
between the heavy-quark OMEs and the accuracy of the
evolution equations. Likewise, and related, the choice of
the matching point position employed in the VFN schemes
has an impact on heavy-quark PDFs and therefore brings
additional uncertainty.
With the help of variants of the ABMP16 PDF fit, we

have confronted the FFN scheme and different realizations
of VFN schemes (FOPT, evolved at NLO, evolved at
NNLO) in the BMSN approach with the combined HERA
data and DIS c-quark production. The FFN scheme delivers
a very good description of those data and we have found
little need for the additional resummation of large loga-
rithms in the kinematic range covered by HERA. From the
fit variants, we have also determined the gluon and the total
light-flavor sea-quark distributions, illustrating again the
sizable numerical differences obtained by adopting the
respective VFN scheme variants. Depending on the value of
x, the observed differences for the gluon PDF are well
outside the experimental uncertainties at low factorization
scales and persist as well as at high scales of Oð100Þ GeV.
The VFN scheme choices are, therefore, highly relevant for
LHC phenomenology and affect the predictions for the
hadroproduction of massive particles within a margin of a
few percent.
In summary, despite being applicable in a limited

kinematic range, the FFN scheme works very well for
the modern PDF fits and contains much smaller theoretical
uncertainty than the VFN schemes currently available. As
an avenue of future development, the latter will benefit
from improving the perturbative accuracy of the massive
OMEs used, including their NNLO corrections, which are
known exactly or to a good approximation. Other features
of VFN schemes to be improved concern the simultaneous
decoupling of bottom and charm quarks, which is advisable
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x (solid line, x ¼ 0.0001; dashes, x ¼ 0.001; dot dashes, x ¼ 0.01).
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due to the close proximity of the mass scales mb and mc.
We leave these issues for future studies.
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APPENDIX: HEAVY-QUARK SCHEME
IMPLEMENTATIONS

We briefly summarize the technical details of the various
implementations of heavy-quark schemes in PDF fits of
ABMP16 [5], CT18 [7], MMHT14 [8] and NNPDF3.1 [9].

1. ABM

The ABMP16 PDF fit [5] is based on the FFN
scheme in a part concerning heavy-flavor DIS production.
Nonetheless, for the collider data on t-quark, W- and
Z-boson production, where the VFN scheme is more
relevant, the five-flavor PDFs are constructed from the
three-flavor ones [see Eqs. (2)–(4)] using currently avail-
able information on the heavy-quark OMEs and employing
NNLO evolution for the matched PDFs. All relevant
formulas are implemented in the code OPENQCDRAD

(version 2.1), which is publicly available [43].

2. CT

CT18 [7] uses the ACOT VFN scheme [26–28], spe-
cifically an NNLO realization [44] of the so-called
S-ACOT-χ variant. The S-ACOT-χ VFN scheme features
a slow rescaling of the parton momentum fractions z in the
argument of the respective massless Wilson coefficient

functions in FZMVFN
2;h in Eq. (12) by replacing z → χ ¼

zð1þ 4m2
h

Q2 Þ and restricting the integration range of z in the

convolutions to xð1þ 4m2
h

Q2 Þ ≤ z ≤ 1 with the Bjorken var-
iable x. The slow rescaling is motivated by its properties to
model energy conservation in the DIS production of heavy
final states. Reference [44] also explores a wider family
of rescaling choices, which interpolate smoothly between
z and χ.

3. MMHT

MMHT14 [8] uses the RT VFN scheme [30], specifically
the TR0 prescription from Ref. [45] for PDF fits at NNLO.
The RT scheme requires as a constraint the continuity of
physical observables in the threshold region, i.e., for the
expression for FFFN

2;h in Eq. (13) below and FZMVFN
2;h in

Eqs. (12) above threshold. To that end, the derivative of the
structure function, dF2=d lnQ2, is supposed to be continu-
ous at the matching point Q2 ¼ m2

h in the gluon sector. To
achieve this modeling constraint, a Q2-independent term is
added above the matching point to the expression for
FZMVFN
2;h to maintain continuity of the structure function.

The TR0 prescription specifies this procedure up to
NNLO [45].

4. NNPDF

A version of NNPDF3.1 fit [9] based on perturbative
generation of heavy-quark distributions uses the FONLL
VFN scheme [29], which has been devised to combine the
heavy-quark DIS structure functions and the ZMVFN
expressions in analogy to Eq. (15). FONLL suppresses
the difference of FZMVFN

2;h in Eq. (12) and the necessary
subtraction term, i.e., the expression analogous to Fasy

2;h in
Eq. (14), which is needed to avoid double counting, with a

kinematical damping factor ð1 − Q2

m2Þ2. In this manner, it is
guaranteed that only FFFN

2;h of Eq. (13) remains for virtual-
itiesQ2 ≃m2

h near threshold. The variant FONLL-C is used
to determine the PDFs at NNLO [29].
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