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We introduce an infinite set of jet substructure observables, derived as projections of N-point energy
correlators, that both are convenient for experimental studies and maintain remarkable analytic properties
derived from their representations in terms of a finite number of light ray operators. We show that these
observables can be computed using tracking or charge information with a simple reweighting by integer
moments of nonperturbative track or fragmentation functions. Our results for the projected N-point
correlators are analytic functions of N, allowing us to derive resummed results to next-to-leading
logarithmic accuracy for all N. We analytically continue our results to noninteger values of N and define a
corresponding analytic continuation of the observable, which we term a ν correlator, that can be measured
on jets of hadrons at the LHC. This enables observables that probe the leading twist collinear dynamics of
jets to be placed into a single analytic family, which we hope will lead to new insights into jet substructure.
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I. INTRODUCTION

The Large Hadron Collider (LHC) provides a rich
sample of high-energy jets, opening up new opportunities
to study the dynamics of QCD and providing new avenues
to search for physics beyond the Standard Model [1,2].
To perform first-principles QCD calculations in the com-
plicated environment of LHC collisions has required
significant theory progress, including the development of
techniques to calculate groomed observables [3–5], and
field theoretic formalisms for computing observables that
incorporate the tracking [6–8] or charge information [9,10]
often used to mitigate pileup and improve angular reso-
lution. These advances have enabled the first comparisons
of theoretical predictions with precision measurements for
jet substructure observables [11–16].
Despite these successes, one of the drawbacks of

observables that incorporate grooming algorithms or
tracking information is that this significantly complicates
perturbative calculations, preventing the use of more

modern techniques for loop and phase space integrals
and hindering the understanding of their underlying math-
ematical and field theoretic structure. This is particularly
true for observables that use tracking information, which
has prevented their use for precision measurements, despite
their experimental advantages. To enable increasingly
precise QCD measurements of jet substructure observables
at the high-luminosity LHC will require observables that
both are amenable to higher-order perturbative calculations
and can be computed using tracking information.
While there has been significant effort toward the

development of jet substructure observables at the LHC,
it has primarily been from the perspective of develo-
ping tagging observables rather than developing observ-
ables with the goal of simplifying their analytic structure.
To understand what makes an observable simple from a
theoretical point of view, one must begin by understanding
what it means from a field theoretic perspective to measure
the flow of energy (we will discuss later the case of charge)
within a jet. The basic objects that measure energy flow are
the energy flow operators [17–24] defined as

Eðn⃗Þ ¼
Z

∞

0

dt lim
r→∞

r2niT0iðt; rn⃗Þ; ð1Þ

where n⃗ is a unit three-vector that specifies the direction of
the energy flow and Tμν is the energy-momentum tensor.
The natural objects in the field theory are then correlation
functions of these energy flow operators:
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1

σtot

dσ
dn⃗1…dn⃗N

¼F:T: hOEðn⃗1Þ…Eðn⃗NÞO†i
hOO†i ; ð2Þ

which we will generically refer to as energy correlators. In
Eq. (2), the source operatorO in QCD can be, for example,
the electromagnetic current ψ̄γμψ or Higgs operator
h=vGμνGμν, and F.T. is a Fourier transformation to momen-
tum space. Since we will not consider oriented observables
in this paper, the Lorentz indices betweenO† andO can be
contracted and will be ignored throughout. When all the
energy flow operators in the correlator of Eq. (2) are placed
in a collinear limit, these energy correlators are a jet
substructure observable. This is illustrated for the particular
case of a three-particle correlator in Fig. 1 from a particle
physics perspective where the energy flow operators can be
thought of as calorimeter cells, and in Fig. 2 we show the
spacetime structure of the energy flow operators in a
Penrose diagram. However, as we will describe in detail
in this paper, these energy correlators are quite distinct from
the observables currently used for jet substructure at the
LHC, largely due to the interests of the field during its
developmental stages. For the particular case of two energy
flow operators, the observable in Eq. (2) is referred to as the
energy-energy correlator [25], which has been used exten-
sively as an eþe− event shape (see, e.g., [26,27] for
recent work).
The energy correlator observables in Eq. (2) are in a

sense the simplest observables in a field theory that
measure the flow of energy. In particular, they inherit a
number of simple theoretical properties from their direct
representation as a matrix element: They have manifest
symmetry properties [22,23,28,29], enjoy simple factori-
zation properties in limits [28–33], have simple nonper-
turbative behavior even away from singular regions of
phase space [19], can be analytically calculated to high
perturbative orders [24,34–36], and can be directly studied
using sophisticated techniques from conformal field theory
(CFT) [28,33,37,38], including at strong coupling in

N ¼ 4 super Yang-Mills (SYM) using the AdS/CFT
correspondence [21]. Furthermore, all infrared and collin-
ear safe energy flow observables can be expressed in terms
of these basic objects [17,18] (for recent work, see [39,40]).
While this connection is elegant, it is quite abstract, leading
to a significant divide between the more formal theoretical
study of simple energy correlator observables and the “real
world” study of more experimental or phenomenological
observables used at the LHC.
In this paper, we attempt to bridge the theory-experiment

divide by introducing observables that can be expressed in
terms of correlation functions of a finite number of energy
flow operators [as in Eq. (2)] and, hence, maintain simple
theoretical properties enabling them to be computed to high
perturbative orders but that are simultaneously experimen-
tally convenient. We present the perspective that the
simplest observables are precisely those that can be
expressed in terms of correlation functions of a finite
number of energy flow operators, and we “give teeth” to
this otherwise abstract perspective by concretely showing
that it enables a number of new jet substructure calculations
to higher perturbative orders, higher numbers of points, and
incorporating tracking and charge information. We believe
that this will both have an experimental impact, as well as
make more transparent the connections between jet sub-
structure and the more formal study of light ray operators.
In this paper, we will highlight a number of these
advantages, leaving more phenomenological studies at
higher perturbative orders, and with more detailed deriva-
tions, to future work.
In this paper, we introduce the projected energy corre-

lators, an infinite family of experimentally convenient
observables, each of which can be expressed in terms of
a finite number of energy flow operators. These projected
correlators behave similarly to common jet substructure

FIG. 1. Energy flow operators, shown in red, probe correlations
between flows of energy arising from the collision of two protons
at the LHC. In the small angle limit, they factorize from the rest of
the event and probe the collinear substructure of jets.

FIG. 2. Weighted cross sections can be formulated as matrix
elements of a finite number of energy flow operators, leading to
their simple theoretical properties.
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observables such as the groomed jet mass; namely, they
are single logarithmic collinear (soft insensitive) observ-
ables designed to probe the collinear structure of jets.
Furthermore, we show that this infinite family of observ-
ables, in fact, forms an analytic family, allowing us to
derive results and perform resummation for arbitrary
N-point projected correlators.
One of the key benefits of the projected energy corre-

lators that we will highlight in this paper is that they enable
a simple incorporation of nonperturbative information
relating to tracks or charges into perturbative calculations.
The track function formalisms of Refs. [6,7,9,10] have
unfortunately not so far been widely applied for standard jet
substructure observables, since such calculations are
perturbatively complicated and involve the full functional
form of the nonperturbative track functions. In this paper,
we show that the projected N-point correlators require only
integer moments ≤N that enter trivially as weights.
Furthermore, the resummation of track correlators in the
collinear limit requires only the renormalization of these
integer moments, which satisfy linear renormalization
group equations (as compared with the nonlinear equation
for the full track function), which enable them to be
computed to higher perturbative orders. This will allow
for high-order perturbative calculations involving track
information.
A further particularly interesting feature of our analysis is

that our formulas for the N-point projected correlators are
analytic functions of N (for both the anomalous dimensions
and the normalization constants), allowing us to consider
their analytic continuation to noninteger values of N. These
analytically continued observables have a scale evolution
determined by the anomalous dimensions of noninteger
twist-2 spin-N operators. We present a definition of these
observables that is valid for measurements at the LHC.
These observables correlate infinite combinations of par-
ticles within a jet (up to the fact that there are only a finite
number of particles in real world applications). This illus-
trates a qualitatively new way of defining jet substructure
observables through analytic continuation. Analytic con-
tinuation also provides a means of defining families, in a
mathematically precise sense, of observables that probe
specific aspects of jets. In this language, one of the primary
results of this paper is to place observables that probe the
twist-2 dynamics of jets into a single analytic family.
An outline of this paper is as follows. In Sec. II, we

discuss the difference between standard jet substructure
observables and weighted cross sections and emphasize that
standard jet substructure observables necessarily involve
matrix elements of an infinite number of energy flow
operators. We then discuss the implications of this obser-
vation for incorporating track and charge information. In
Sec. III, we introduce projections of the energy correlators
that are a function of a single scaling variable and are ideal
for experimental studies. We also discuss ratios of these

observables that are promising for precision measurements.
In Sec. IV, we analytically continue these observables to
noninteger values of N and define a new class of jet
substructure observables which we term ν correlators. In
Sec. V, we discuss the resummation of the ν correlators and
present numerical results for integer and noninteger values
of ν. In Sec. VI, we then generalize this to the case of
correlators using tracking information. We conclude and
discuss a number of future directions in Sec. VII.

II. OBSERVABLES VS WEIGHTED
CROSS SECTIONS

In this section, we discuss the difference between
standard “observables” and “weighted cross sections.” In
particular, we show that standard observables involve
knowledge of an infinite number of energy correlators,
and we will argue that weighted cross sections have a
number of advantages, particularly when interfacing with
nonperturbative data. A number of the properties of
weighted cross sections and observables that are discussed
in this section are known to experts in the field1; however,
we have chosen to discuss these issues in some detail, since
they are central to understanding the simplicity of the
energy correlators.
We begin by defining a weighted cross section as2

σω ¼
Z

d4xeiq·x
X
X

h0jOðxÞjXiwðXÞhXjO†ð0Þj0i

¼
Z

d4xeiq·xh0jOðxÞω̂O†ð0Þj0i: ð3Þ

Here ω̂ is a weight function that is a product of energy or
charge flow operators that weights the asymptotic final
state X [see Fig. 3(a)] and ωðXÞ is the eigenvalue of ω̂when
acting on X. Restricting our attention for now to energy
flow operators, we recall that the action of the energy flow
operators in Eq. (1) on a state jXi is

Eðn⃗ÞjXi ¼
X
i

k0i δ
ð2ÞðΩk⃗i

− Ωn⃗ÞjXi; ð4Þ

where i runs over all particles in the state jXi. We can
therefore write an energy weight ω̂ as a product of energy
flow operators:

ω̂ ¼ Eðn⃗1Þ…Eðn⃗NÞ: ð5Þ

This leads to an expression for an energy weighted cross
section as a Wightman function

1Unfortunately, we have found that different aspects are appre-
ciated by nonoverlapping groups of people.

2This notation is borrowed from Refs. [22–24], where
weighted cross sections in N ¼ 4 SYM were studied in detail
and whose perspective was influential to that presented here.
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σω ¼
Z

d4xeiq·xh0jOðxÞEðn⃗1Þ…Eðn⃗NÞO†ð0Þj0i: ð6Þ

Weighted observables are therefore directly expressible as
matrix elements of energy flow operators. As mentioned in
the introduction, the simple field theoretic definition of
these objects has allowed significant recent progress in their
understanding [24,28–30,32–36].
Weighted cross sections defined in this manner are

actually quite distinct from the observables that are most
commonly used in jet substructure at the LHC. Instead of
weighting the final state, it is more common to constrain it
to have a particular value under the application of an
operator ê,3

dσ
de

¼
Z

d4xeiq·xh0jOðxÞδðe − êÞO†ð0Þj0i; ð7Þ

as is shown schematically in Fig. 3(b). Many familiar event
shape observables (such as thrust [41] or the angularities
[42]) take this form, as do all jet substructure observables
introduced for tagging purposes (such as N-subjettinesses
[43,44] or combinations of energy correlation functions
[39,45–51]). For these observables, the operator ê can be
expressed as an integral over energy flow operators with an
angular weighting. Explicitly, for the case of thrustlike
event shapes which were studied in detail in [52–54],
one has

êjXi ¼ 1

Q

Z
dηfeðηÞETðη; t̂ÞjXi; ð8Þ

where

ETðηÞ ¼
1

coshðηÞ
Z

dϕ
Z

∞

0

dt lim
r→∞

r2niT0iðt; rn⃗Þ ð9Þ

is the transverse energy flow operator, Q ¼
ffiffiffiffiffi
q2

p
, feðηÞ is

an angular weighting function, and Eðη; t̂Þ is defined with
respect to the thrust axis t̂ and pseudorapidity η. This
construction extends in a straightforward manner to multi-
particle correlations. For example, one can write the three-
particle correlations in the small angle limit for a jet
substructure as

eðβÞ3 ∝
Z

d2Ω1d2Ω2d2Ω3Eðn⃗1ÞEðn⃗2ÞEðn⃗3Þθβ12θβ23θβ31; ð10Þ

where θij denotes the angle between the vectors n⃗i and n⃗j.
While this definition of an observable may seem quite

similar, the insertion of the δ function in Eq. (7) signifi-
cantly complicates their structure relative to weighted cross
sections. Unlike for weighted cross sections, which them-
selves can be directly expressed as matrix elements of
energy flow operators, it is the moments of these observ-
ables,

Z
en

dσ
de

¼
Z

d4xeiq·xh0jOðxÞênO†ð0Þj0i; ð11Þ

that are weighted cross sections. In particular, the moments
of these weighted cross sections are directly related to the
energy flow polynomials [39]. The operator valued δ
function in Eq. (7) is formally defined by its moments

FIG. 3. An illustration of the difference between a weighted cross section and a more standard jet observable. For a weighted cross
section, shown in (a), a weighting function ωðXÞ is applied to the final state (here the cut is illustrated by the black bar). For a more
standard jet observable, shown in (b), the final state is constrained by an operator êðXÞ, and the cross section is calculated as a function of
this constraint.

3We will often refer to such observables as “δ-function-type
observables.”
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δðe − êÞ ¼ δðeÞ þ êδð1ÞðeÞ þ � � � þ ên

n!
δðnÞðeÞ þ � � � ; ð12Þ

and observables of this form therefore require the knowl-
edge of correlators of an infinite number of energy flow
operators. In particular, we conclude that any observable
that is defined by specifying its value on the final state
involves an infinite number of energy correlators to define
it (again, up to the fact that there are only a finite number of
particles in real world applications).
In this paper, we want to advocate that the use of

weighted cross sections provides many advantages, par-
ticularly in the context of precision calculations. The fact
that standard observables involve an infinite sum over all
moments hints that they are sure to be a more complicated
object and are likely to obscure the simple symmetry
properties of the underlying energy correlators. While in
perturbation theory, this is perhaps acceptable,4 we will see
that this complication is particularly transparent when
considering nonperturbative effects such as the inclusion
of track information. In particular, we will show that
observables involving only a finite number of energy
correlators are particularly convenient and will require
only a finite number of moments of nonperturbative
functions, instead of an infinite number. This allows for
new calculations of track-based observables and is one of
the key points that we wish to emphasize in this paper.
Although it is not the primary goal of this paper, it is also

worth emphasizing that the nature of the physics being
probed by the “weighted observables” such as the energy
correlators, as compared with δ-function-type observables,
is actually quite different. In particular, energy correlators
are by definition probing energy correlations at a particular
angular scale. This ensures that they probe the collinear
core of a jet and are insensitive to wide-angle soft radiation.
This is quite distinct from having a constraint δðe − êÞ and
demanding e ≪ 1 as is commonly done in jet substructure.
Because of the energy weighting necessary in the observ-
able for infrared and collinear safety, this condition is also
satisfied by soft radiation, giving rise to soft sensitivity.
There has been much interest in the jet substructure
community in achieving observables that are insensitive
to soft radiation, primarily focused on starting with
observables that are soft sensitive and eliminating this
sensitivity by grooming. However, the restriction to col-
linear physics can be automatically achieved by starting
with weighted cross sections, and we believe that this
perspective is beneficial from a theoretical perspective.
Finally, we conclude this section with a comment on the

adoption of “observables” as opposed to weighted cross

sections in the study of jet substructure at the LHC. The
rejuvenation of the study of the dynamics of QCD jets was
largely driven by the search for beyond the Standard Model
physics and, in particular, the construction of jet observ-
ables that tag jets with particular energy flows. Unlike
standard observables, weighted cross sections do not take a
single value on a given jet. For example, for the two-point
energy correlator, each pair of particles within the jet gives
an entry into the distribution, as opposed to a single entry
from the jet itself. Therefore, weighted-cross-section-type
observables are not by themselves obviously useful for
tagging.5 As jet substructure has transitioned to the pre-
cision study of QCD properties, the same observables
originally used for tagging have continued to be used.
However, as we will argue in this paper, in the context of
precision measurements, we should completely reconsider
the classes of observables that are used in the study of jet
substructure, and we will show that energy correlators offer
a number of significant advantages.

A. Incorporating tracks

One of the key advantages of weighted cross sections
that we highlight in this section is that they interface in a
simple manner with tracking information. This should be
intuitive: Instead of weighting by the total energy flowing
in a particular direction, one must simply change to
weighting by the energy flowing in tracks in that direction.
This modification requires only the knowledge of a single
(measurable) nonperturbative number, the average energy
converted into tracks; see Fig. 4. The goal of this section is
to make this precise using the language of track functions.
The results of this section hold for generic angles between
the energy correlators and are not restricted to the collinear
limit. The collinear limit will be considered in more detail
in Sec. VI, and here we will find additional simplifications
that arise when considering resummation with tracks.
In Refs. [6,7], an elegant field theoretic formalism for the

treatment of tracks was developed6 that allows for the
separation of perturbative and nonperturbative physics
through the introduction of a track function TiðxÞ, with i
denoting the parton label, i ¼ q, g. The precise field
theoretic definition of the track function is not required
here. It describes the distribution in energy fraction of a
parton i that hadronizes into tracks (charged particles) with
four momentum p̄μ

i ¼ xpμ
i þOðΛQCDÞ. Here 0 ≤ x ≤ 1,

and the track function satisfies the sum rule

4Although we should emphasize that the perturbative simplic-
ity of energy correlator observables has enabled a number of
analytic calculations [24,29,34–36] that were not possible for
standard δ-function observables, leading to valuable perturbative
data for improving our understanding of event shapes [55].

5Although, as mentioned above, their moments are directly
related to the energy flow polynomials which are a basis of
tagging observables [39]. It would also be interesting to under-
stand how to use weighted cross sections in the search for new
physics. For an early example of an observable that is closely
related to the energy correlators being used for new physics
searches, see [56].

6See also [57] for a generalization of the track function and jet
charge formalism to fractal observables.
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Z
1

0

dxTiðx; μÞ ¼ 1: ð13Þ

The track function is a nonperturbative object but has a
calculable scale (μ) dependence, similar to a fragmentation
function. We will define the following shorthand notation
for the moments of the track function:

TðnÞ
i ¼

Z
1

0

dxxnTiðx; μÞ: ð14Þ

At the level of detail that we work to in this section, one can
imagine that, to convert a perturbative calculation to a
calculation on tracks, one must simply tack a track function
onto each parton [6,7]. However, we will see that this
process is much simpler for weighted cross sections as
compared to δ-function-type observables.
We first consider the case of an observable defined with a

δ function:

dσ
de

¼
X
N

Z
dΠN

dσN
dΠN

δ½e − êðfpμ
i gÞ�; ð15Þ

where we use dσN to denote the N-body differential cross
section and dΠN the N-body Lorentz invariant phase space
measure. The observable defined on tracks is then given by

dσ
dē

¼
X
N

Z
dΠN

dσ̄N
dΠN

Z YN
i¼1

dxiTiðxiÞδ½e − êðfxipμ
i gÞ�:

ð16Þ

Here we have followed the notation of Ref. [7], where the
bar over the observable indicates the observable measured
on tracks. In Eq. (16), dσ̄N=dΠN denotes a matching
coefficient. In general, the analytic calculation of observ-
ables on tracks is complicated, because the measurement
constraint now involves the variables xi. This is not only a
technical complication, but, as we will see shortly, it will
also imply that the observable depends on the complete
functional form of the nonperturbative track function.
On the other hand, for an energy correlator it is trivial to

incorporate tracking information, since this just rescales the
weight function. This is shown schematically in Fig. 4. For

a particular partonic configuration (and for well-separated
correlators), the conversion to tracks is achieved by making
the following replacement for the weights:

Ei →
Z

dxixiTiðxiÞEi ¼ Tð1Þ
i Ei: ð17Þ

In other words, in going to a calculation in tracks, the first
moment of the track function appears as a multiplicative

constant for the weight, either Tð1Þ
q or Tð1Þ

g (TðnÞ
q ¼ TðnÞ

q̄ due
to the charge conjugation invariance of QCD). This means
that at any loop order one can trivially convert partonic
calculations for the energy correlators to calculations on
tracks. The moments of the track functions can then be
directly measured in experiment.
As an example to illustrate the difference in complexity

between these two situations, we consider the leading-order
(LO) calculation for both the thrust observable, which is a
standard observable of the form of Eq. (7), and the two-
point energy correlator (EEC). The LO calculation for
thrust was presented in Ref. [6]:

dσ
dτ̄

¼
Z

1

0

dy1dy2
dσ̄ðμÞ
dy1dy2

Z
1

0

dx1dx2dx3Tqðx1ÞTqðx2ÞTgðx3Þ

×δ½τ̄− τ̄ðy1;y2;x1;x2;x3Þ�; ð18Þ

with

dσ̄ðμÞ
dy1dy2

¼ σ0
αsðμÞCF

2π

θðy1 þ y2 − 1Þðy21 þ y22Þ
ð1 − y1Þð1 − y2Þ

; ð19Þ

where y1 ¼ 2Eq=Q, y2 ¼ 2Eq̄=Q are the normalized par-
ton energy and the measurement function for track thrust is

τ̄ ¼ θ½x1x3ð1 − y2Þ − x1x2ð1 − y3Þ�
· θ½x2x3ð1 − y1Þ − x1x2ð1 − y3Þ�x1x2ð1 − y3Þ
þ θ½x2x3ð1 − y1Þ − x1x3ð1 − y2Þ�
· θ½x1x2ð1 − y3Þ − x1x3ð1 − y2Þ�x1x3ð1 − y2Þ
þ θ½x1x3ð1 − y2Þ − x2x3ð1 − y1Þ�
· θ½x1x2ð1 − y3Þ − x2x3ð1 − y1Þ�x2x3ð1 − y1Þ; ð20Þ

where y3 ¼ 2 − y1 − y2. Already at LO, one can see that
this calculation is nontrivial, and the result involves the
complete functional dependence on the nonperturbative
track functions. This also makes it complicated to interface
with numerical calculations performed using subtraction
schemes.
On the other hand, for the EEC, the calculation at LO is

trivial, since it simply involves weighting the contribution

from the correlation of two quarks by ðTð1Þ
q Þ2 and the

contribution from the correlation of a quark and a gluon by

Tð1Þ
q Tð1Þ

g . For an eþe− source, we find

FIG. 4. Energy correlators using tracks. (a) When the detectors
are widely separated, only the first moment of the track functions
appears and simply rescales the weighting function. (b) Higher
moments of the track functions appear in contact terms when the
two detectors are placed at the same angle. These contact terms
are necessary for describing collinear limits.
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EECðzÞ ¼ σ0
αs
2π

CFððTð1Þ
q Þ2I1ðzÞ þ 2Tð1Þ

q Tð1Þ
g I2ðzÞÞ; ð21Þ

where

I1 ¼
�

1

6z2
þ 1

z3
−

4

z4

�
1

1 − z
þ
�
3

z4
−

4

z5

�
lnð1 − zÞ
1 − z

;

I2 ¼
�

53

12z2
−

41

4z3
þ 13

2z4

�
1

1 − z

þ
�
13

2z5
−

7

z4
þ 2

z3

�
lnð1 − zÞ; ð22Þ

and z ¼ ð1 − cos θÞ=2 is the angle between the two
correlated partons. This calculation involves no additional
complexities as compared to the standard fixed-order
calculation and requires only knowledge of the first
moments of the track functions, which are numbers (not
functions). Calculations beyond LO are possible using the
ingredients of the ordinary EEC calculation [34,35].
To deal with collinear limits, as illustrated in Fig. 4, one

must also consider the placement of multiple correlators on
the same parton. For an N-point correlator, one must
consider up to N correlators placed on a single parton.
If N correlators are placed on the same parton, one gets the
nth moments of the track functions:

En
i →

Z
dxixni TiðxiÞEn

i ¼ TðnÞ
i En

i : ð23Þ

These higher moments will be required when we consider
the resummation of the track energy correlators in the
collinear limit.
To illustrate the presence of these higher moments, we

can consider the gluon jet function for the EEC in the
collinear limit. This was computed without tracking infor-
mation through two loops in Ref. [32]. For the differential
jet function,7 the scale-independent piece was found to be

jgðzÞ ¼ δðzÞ þ αs
4π

�
14

5
CA þ 1

5
nf

��
1

z

�
þ

þ δðzÞ αs
4π

�
−
898

75
CA −

14

25
nf

�
: ð24Þ

On tracks, the result is simply

jgðzÞ ¼ δðzÞTð2Þ
g

þ αs
4π

�
14

5
CAðTð1Þ

g Þ2 þ 1

5
nfðTð1Þ

q Þ2
��

1

z

�
þ

þ δðzÞ αs
4π

�
−
898

75
CAðTð1Þ

g Þ2 − 14

25
nfðTð1Þ

q Þ2
�

þOðα2sÞ: ð25Þ

This result is intuitive; in particular, the second moments

Tð2Þ
g and Tð2Þ

q appear as the coefficients of the leading-order
δðzÞ contact terms, while the terms with a nontrivial z

dependence are weighted by ðTð1Þ
q Þ2 or ðTð1Þ

g Þ2, arising from
the detectors being placed on distinct particles, following
the replacement rule in Eq. (17).
We can again compare this to a track-based calculation

for an observable defined via a δ-function constraint. Even
for a “simple” observable such as thrust, the one-loop jet
function contains complicated dependence on the track
functions. We do not reproduce the full result here, which
can be found in Eq. (48) of Ref. [6], but illustrate just a
couple terms in the result

J̄ðs̄; x; μÞ ⊃ αsCF

2π

Z1

0

dx2

Z1

0

dz
z
Tq

�
x − ð1 − zÞx2

z

�
Tgðx2Þ

×

�
1

μ2
L0

�
s̄
μ2

�
ð1þ z2ÞL0ð1 − zÞ

þ δðs̄Þ
�
ð1þ z2ÞL1ð1 − zÞ

þ ln

�
xz2

½x − ð1 − zÞx2�x2

�

× ð1þ z2ÞL0ð1 − zÞ þ 1 − z

��
: ð26Þ

Here L0 and L1 are standard plus functions. This result
involves the complete functional dependence of the track
functions, which are nonperturbative objects. It also sug-
gests that calculations at two or three loops would be quite
complicated. From our perspective, this complicated
dependence is easily understood as arising from the fact
that the thrust observable requires knowledge of an infinite
number of correlators.
One final comment is in order. It is standard to consider

cross sections where the weight is a conserved quantity.
Here, of course, the track number, or the “energy in tracks,”
is not conserved, nor is it related to a combination of
standard Noether charges. Nevertheless, we can formally
define a charged energy flow operator as

T cðn⃗Þ ¼
Z

∞

0

dt lim
r→∞

r2niTc
0iðt; rn⃗Þ; ð27Þ7Later, we will also need the integrated jet function, which is

simply the cumulant of the differential jet function.
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with the action on a state

T cðn⃗ÞjXi ¼
X
i∈Xc

k0i δ
ð2ÞðΩk⃗i

−Ωn⃗ÞjXi: ð28Þ

Here Tc is the stress tensor but involving only the charged
fields, and similarly Xc denotes the charged particles in the
state X. This gives energy correlators measured on tracks a
clean field theoretic definition.
It would be interesting to compute the full angle EEC on

tracks at higher perturbative orders. This is straightforward
analytically at next-to-leading order (NLO) following the
calculations of Refs. [34,35], since going from a standard
perturbative calculation to a calculation on tracks simply
requires tagging partonic configurations with appropriate
track functions. It could also be performed numerically at
next-to-next-to-leading order (NNLO) using standard sub-
traction schemes.8 As with the standard EEC, there exists a
sum rule relating the integrated EEC cross section to the
total energy in tracks, which can be computed perturba-
tively [7]. Such a calculation could be interesting for
attempting to resolve potential discrepancies for αs extrac-
tions from event shapes, both by providing an additional
handle and since the experimental data for track observ-
ables is significantly more precise.

B. Incorporating charges

Although we will not discuss it in much detail in this
paper, it should also be immediately clear that we can
extend the above discussion of tracks to the calculation of
charge correlators. Here we will consider the measurement
of the object E ·Q; i.e., we define the operator

Q1ðn⃗Þ ¼
Z

∞

0

dt lim
r→∞

r2niJ0ðt; rn⃗ÞT0iðt; rn⃗Þ; ð29Þ

where the notation follows that in Ref. [9], namely, that the
subscript 1 indicates the energy weighting. The energy
weighting is convenient experimentally and will also keep
the renormalization group evolution identical to that of the
energy correlators. Charge correlators without the energy
weighting are also interesting and have been studied in
detail inN ¼ 4 SYM [22–24] and at leading order in QCD
[60], but we will not study them here.
The one-point correlators hQ1ðn⃗1Þi which measure the

average charge of the jet, as well as the two-point contact
term hQ1ðn⃗1ÞQ1ðn⃗1Þi, which measures the width of the jet
charge distribution on a jet, have both been studied in
Refs. [9,10] and have been measured [11–13]. In fact, the
entire jet charge distribution has been measured, so, in
principle, all the moments are known. Like the track
functions, these objects are nonperturbative, but their

renormalization group evolution can be computed pertur-
batively [9].
One can now study multipoint correlators of these

objects, hQ1ðn⃗1ÞQ1ðn⃗2Þ…Q1ðn⃗NÞi, or correlators with
some standard energy operators stuck in. Here, just as
with the track functions, the angular dependence can be
computed perturbatively, and the only nonperturbative
inputs that are required are integer moments of the
appropriate nonperturbative functions. For example, for
the two-point correlator, one needs the following moments
of the fragmentation functions:

D̃Q
i ¼

X
h

Qh

Z
1

0

dzzDhiðz; μÞ; ð30Þ

D̃Q2

i ¼
X
h

Q2
h

Z
1

0

dzz2Dhiðz; μÞ: ð31Þ

In QCD, one has the relations

D̃Q
g ¼

X
h

Qh

Z
1

0

dzzDhgðz; μÞ ¼ 0 ð32Þ

and

D̃Qn

q ¼ ð−1ÞnD̃Qn

q̄ : ð33Þ

These were extracted from various parton shower programs
in Ref. [9]. For a generic N-point correlator, one also needs

D̃Qn

i ¼
X
h

Qn
h

Z
1

0

dzznDhiðz; μÞ: ð34Þ

With these, one can then immediately algorithmically
weight partons in perturbative calculations to obtain corre-
lators of Q1. We will not discuss these objects further
in this paper, but we think they would be interesting
to measure and calculate to higher orders. They probe
interesting correlations well beyond what have been studied
previously.

III. EXPERIMENTAL OBSERVABLES

Having illustrated the simple properties of the energy
correlators, one may be under the impression that they are a
fairly constrained set of observables. For example, the two-
point energy correlator by itself is a single observable
(unlike the angularities [42], one cannot add an angular
weighting to their definition), and higher-point correlators
become increasingly complicated functions of multiple
variables that are not easily amenable to experimental
analyses. To overcome this, the goal of this section is to
introduce an infinite family of experimentally convenient
observables that depend on a finite number of energy
correlators.

8The EEC observable has been calculated numerically at
NNLO using the ColorfulNNLO subtraction scheme [58,59].
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A. Projected energy correlators

The simplest class of observables are distributions of a
single scaling variable. We would therefore like to general-
ize the two-point correlator to obtain scaling variables that
probe complementary aspects of the collinear structure
of jets.
The simplest extension of the two-point correlator is to

consider higher-point correlators but integrate out all the
information about the shape keeping the longest side fixed.
This effectively determines the size of the N points being
measured. We should point out that this is not the only way
to integrate out information. A different possibility is to
find the diameter of the minimal enclosing circle of the N
points being measured and use this diameter as the scaling
variable. Wewill refer to these observables as “projectedN-
point correlators.” In this paper, we will consider the
longest side definition only and will later show how to
generalize this definition to noninteger values of N, which
we will refer to as ν correlators. Studying the dependence
on the longest side gives access to the scaling behavior of
higher-point correlators. We will begin by defining these
observables in eþe− collisions, where they are defined for
generic angles. We will then consider their restriction to the
collinear limit, where they can be defined on jets at the
LHC. Throughout this section, we will provide definitions
in both a continuum (or CFT) language as well as in a
particle language applicable for experimental measure-
ments at the LHC.
We define the projected N-point correlator as

dσ½N�

dxL
¼

Z
dΩn⃗1

Z
dΩn⃗2δ

�
xL −

1 − n⃗1 · n⃗2
2

�YN
k¼3

Z
dΩn⃗k

Θðfn⃗gÞ
Z

d4x
eiq·x

QN h0jO†ðxÞEðn⃗1ÞEðn⃗2Þ…

Eðn⃗NÞOð0Þj0i; ð35Þ
where

dΩn⃗ ¼
1

4π
sin θdθdϕ ð36Þ

is the area element on the celestial sphere. The integration
region for dΩn⃗k is specified by

Θðfn⃗gÞ ¼
Y

1≤i<j≤N
iþj>3

θðjn⃗1 − n⃗2j − jn⃗i − n⃗jjÞ; ð37Þ

namely, we fix the angular distance between the first two
energy flow operators to be xL ¼ ð1 − cos θ12Þ=2 and
integrate over the remaining operators with the constraint
that their mutual angular distance, as well as their angular
distance with respect to the first two operators, be smaller
than xL. Taking the concrete case of the projected three-
point correlator, this definition involves integrating the
three-point correlator (whose analytic form was computed
at LO in Ref. [29]) over the configuration space of three

points shown in Fig. 5. The integration over Eðn⃗kÞ, k > 2
will lead to contact terms when two or more energy flow
operators are placed at the same point in the celestial
sphere. Such terms are straightforward to deal with in the
momentum space factorization language in D ¼ 4 − 2ϵ
dimensions [32]. In particular, the integration over the area
is nonsingular, as is guaranteed by the average null energy
condition.9 The finiteness of the integration ensures the
infrared and collinear (IRC) safety of the observable.
By definition, the projected N-point correlators have

support for xL ∈ ½0; 1� and obey the sum ruleZ
1

0

dxL
dσ½N�

dxL
¼ σtot; ð38Þ

which follows from

X
1≤i1;…;iN≤n

Q
N
a¼1 Eia

QN ¼ ðPn
i¼1 EiÞN
QN ¼ 1: ð39Þ

This is an extension of the sum rule for the two-point case
[28,32,33].
We can also define the projected N-point correlators on a

discrete set of particles. This is more convenient for
experimental measurements and perturbative calculations
in momentum space. Suppose we have a scattering with
center-of-mass energy Q into n particles, fp1; p2;…; png.
The projected N-point correlator can then be calculated as

FIG. 5. The geometry of the three-point correlator: The longest
side is placed along the real axis, and the third point of the
triangle, z3, lies inside the shaded blue region. The region to the
left of the dashed line is related by parity. To define the projected
correlator, z3 is integrated over the shaded blue region.

9The integration of the energy flow operator over a small area
element gives the energy ω deposited in that area. The average
null energy condition states that ω is always semipositive, and the
finiteness of total energy implies that ω is finite.
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dσ½N�

dxL
¼

X
n

X
1≤i1;…;iN≤n

Z
dσeþe−→Xn

Q
N
a¼1 Eia

QN

· δðxL −maxfxi1i2 ; xi1i3 ;…; xiN−1iNgÞ; ð40Þ
where Xn denotes a n-particle final state and xij ¼
ð1 − n⃗i · n⃗jÞ=2 ¼ ð1 − cos θijÞ=2 is the two-particle angu-
lar distance. The summation over n is needed to ensure IRC
safety, and, in the second sum, we allow the ia ¼ ib term,
which corresponds to the contact term mentioned before.
The δ function picks out the largest angle separation in the
NðN − 1Þ=2 angles. Equation (40) applies nonperturba-
tively. In perturbation theory, Xn consists of asymptotic
quarks and gluons, while nonperturbatively it consists of
discrete hadrons. For N ¼ 2, this reduces to the usual
definition of the EEC.
In a simulation or experiment, Eq. (40) can be imple-

mented as follows. For a scattering event consisting of n

final-state particles, the weight in the bin ½xL − Δ; xL þ Δ�
is given by

WΔðxLÞ¼
1

2Δ

X
1≤i1;…;iN≤n

Q
N
a¼1Eia

QN

·θðmaxfxi1i2 ;xi1i3 ;…;xiN−1iNg− ðxL−ΔÞÞ
·θðxLþΔ−maxfxi1i2 ;xi1i3 ;…;xiN−1iNgÞ: ð41Þ

The full histogram is obtained by filling all the bins,
summing over all events, and dividing by the total number
of events.
At lowest order in perturbation theory, it is straightfor-

ward to calculate the projected N-point correlator analyti-
cally for generic angles. As an example, for N ¼ 3 and
0 < xL < 1, we have for eþe− annihilation

dσ½3�

dxL
¼ σ0

αs
4π

CF

�
−
3ð20x3L − 75x2L þ 87xL − 30Þ lnð1 − xLÞ

2ð1 − xLÞx6L
−
3ð8x3L − 83x2L þ 144xL − 60Þ

4ð1 − xLÞx5L
þ θ

�
xL −

3

4

�

·

�
−
3ð−256x4L þ 1264x3L − 2088x2L þ 1407xL − 333Þ

8ð1 − xLÞx6L
−
3ð8x4L − 56x3L þ 123x2L − 105xL þ 30Þ lnð1 − xLÞ

ð1 − xLÞx6L
þ 6ð8x3L − 48x2L þ 75xL − 30Þ lnð2Þ

x6L

��
þOðα2sÞ; ð42Þ

where the first line without the theta function are due to
contributions where two (and only two) indices in i1, i2, i3
are identical in Eq. (40) (two-particle contribution), while
the term proportional to the step function θðz − 3=4Þ is due
to the contribution where i1 < i2 < i3 (three-particle con-
tribution). The point with xL ¼ 3=4 comes from the
Mercedes-Benz configuration, where the pairwise angle
is 2π=3. This is the fully symmetric configuration for a
three-particle final state. This number will decrease order
by order in perturbation theory and for a perfectly spherical
symmetric radiation pattern will reduce to 0. In Fig. 6, we
plot the projected three-point correlator atOðαsÞ [weighted
by xLð1 − xLÞ to suppress the contact term], along with the
separate two- and three-particle contributions. As a com-
parison, we also show the result for the standard EEC.
The projected correlators are particularly convenient in

the collinear limit where the nonanalytic behavior [e.g., the
θ function in Eq. (42)] that is present for generic angles is
power suppressed. For jets at the LHC, one can simply
define the identical observable but restricted to the con-
stituents of a jet identified using some jet algorithm.

B. Ratios of projected correlators

An appealing feature of having multiple observables that
depend on the same variable xL is the ability to take ratios.
Such ratios should be more robust experimentally and are,

therefore, candidates for precision measurements of the
strong coupling.
We define the ratio observable

dσ½N;M�

dxL
¼

dσ½N�
dxL
dσ½M�
dxL

: ð43Þ

FIG. 6. Comparison between the standard EEC and the pro-
jected three-point correlator at OðαsÞ. Plotted here is the
coefficient of σ0CFαs=ð4πÞ. We have also multiplied the dis-
tribution by xLð1 − xLÞ to suppress the collinear (xL → 0) and
back-to-back (xL → 1) singularities. The remaining singular
behavior at xL → 1 is due to Sudakov double logarithms.
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The case withM ¼ 2 and N ¼ 3 is a particularly interesting
candidate observable for precision studies, since it should
be calculable with relative ease to next-to-next-to-leading
logarithmic (NNLL), and we expect that many uncertainties
will drop out in the collinear limit. We also expect that
hadronization corrections should be minimized for the
ratio. Furthermore, the ratio is convenient for probing αs,
since, as we will show, the variables scale like dσ½N�=dxL∼
xγðNþ1;αsÞ
L =xL,where schematically γðN þ 1; αsÞ is theMellin
moment of the timelike splitting function. In the ratio the
classical 1=xL scaling cancels, and the result is therefore
directly proportional toαs, plus higher-order corrections. This
is analogous to two- and three-jet ratios that are often used for
measurements of the strong coupling, but in the collinear limit
within a jet.

C. Higher-point projections

We also wish to emphasize that there are numerous other
jet substructure observables that can be constructed from the
energy correlators to probe increasingly complicated fea-
tures of jets. In this paper, we have focused on projections to
an effective two-point correlator. Beyond two-point corre-
lators, there is no longer just scaling information but also
shape information (and orientation). This shape dependence
probes in more detail the structure of the theory. The three-
point correlator in the collinear limit was computed in
Ref. [29] in N ¼ 4 SYM theory and in QCD for both
quark and gluon jets. It depends on three variables: the
longest side xL and a complex variable z3 defining the
position of the third point, as illustrated in Fig. 5. It would be
interesting to measure the structure of the three-point
correlator itself, since it provides a detailed probe of the
collinear structure of radiation in quark and gluon jets.
Much like how we generalized the two-point correlator

to the projected N-point correlator, we can define a triangle
projected N-point correlator. For any N points, one can
define two triangles by the longest side and then the third
point by the furthest point from either of the two ends of the
longest side. Both these triangles are then weighted with
the product of the energies of the N partons, much like for
the two-point correlator. The two triangles are necessary,
since for a triangle one also has an orientation. We leave the
calculation of triangle projected correlators to future work.
This construction can, of course, be done at higher points

as well. However, while it is feasible to measure and
visualize the four-point correlator, it becomes difficult to
visualize higher-point correlators, since they depend on a
large number of variables. Still, we believe that it is an
interesting question to understand what more general
classes of phenomenologically relevant observables can
be constructed from the energy correlators.

IV. ANALYTIC CONTINUATION

In this section, we discuss a potentially more far-reach-
ing consequence of jet (and jet substructure) cross sections

expressed directly in terms of energy flow operators, namely,
that they are amenable to analytic continuation. This will
allow us to place all the projected N-point correlators into a
single analytic family and to express calculations for arbi-
trary N-point projected correlators in terms of a single
analytic function. It will also allow us to define observables
that probe N-point correlations for noninteger N.
Our motivations for this extension are numerous. First,

as we will shortly discuss in some detail, for integer values
of N, the anomalous dimension determining the scaling of
the projectedN-point correlator is the N þ 1moment of the
splitting function. In the case of a conformal field theory,
one can further use reciprocity [61–65] to relate this to
the N þ 1 moment of the twist-2 spin-N þ 1 anomalous
dimensions. In perturbation theory, these are analytic
functions of N, which has recently been extended to an
analytic continuation in spin of the operators [37]. It is
therefore interesting to understand if these anomalous
dimensions govern the behavior of jet observables. This
analytic continuation also provides the potential of directly
probing Balitsky-Fadin-Kuraev-Lipatov (BFKL) physics in
timelike jets at the LHC, as we will describe in more detail
in Sec. IV C.
Second, analytic continuation of observables places

them in a much more rigid structure, which we hope will
improve our understanding of jet substructure observables.
In the study of jet substructure, it is common to speak of
observables, such as the angularities [42], as a family of
observables depending on an angular weight. This angular
weighting, which is often called β, can then be tuned to
probe different physics within the jet. However, the
angularities are not an analytic function of β,10 and
the parameter β does not have a direct interpretation in
the underlying field theory. The ν correlators introduced in
Sec. IVA achieve an extension of the two-point correlator
that is analogous to the angularities in that there is a single
parameter that can be varied, but the ν correlators are
analytic functions of this parameter, and there is a direct
operator interpretation of ν in the field theory.
Finally, and more generally, one would ultimately like

more sophisticated ways of designing observables that
probe specific field theoretic features of jets. It may turn
out that the observables with the simplest analytic proper-
ties have complicated algorithmic definitions, potentially
involving infinite correlations of particles within jet.
Analytic continuation offers a genuinely new way of
constructing jet substructure observables and may allow
for a new organization of observables. Here we will
consider observables that probe the twist-2 collinear
dynamics of jets; however, one can imagine other analytic
families of observables that probe, for example, twist-3
dynamics.

10It is possible that, with the use of a recoil free axis,
angularities could be analytic functions of β [66].
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A. Definition of ν correlators

While it is clear that we can analytically continue
analytic functions arising in calculations, what is remark-
able is that we are able to present an observable that can
actually be measured on jets of hadrons at the LHC, that
corresponds to these analytically continued functions.
In this section, we will show how this is done and
verify its consistency at next-to-leading order.
To understand how to analytically continue the

N-point correlators to generic complex values of N,
we must think of the observable in a manner that is
appropriate for analytic continuation. From here on, we
will use ν instead of N to emphasize that we are dealing
with noninteger point correlators. The standard N-point
projected correlator can be understood as measuring the
largest angle within each group of m ≤ N particles within
the jet and assigning a weight based on the energies of
the m particles in the jet. The restriction m ≤ N is due to
the fact that we can place multiple correlators on the
same particle. The relative weightings can be thought
of as arising from the binomial formula. For

example, for the three-point correlator with three par-
ticles, we have

ðE1 þ E2 þ E3Þ3 ¼ 6ðE1E2E3Þ þ ðE3
1 þ E3

2 þ E3
3Þ

þ ð3E2
1E2 þ 3E2

1E3 þ 3E2
2E3

þ 3E2
1E1 þ 3E2

3E1 þ 3E2
3E2Þ; ð44Þ

where the first term describes energy correlators placed
on three distinct particles, and the second term describe
contact terms. Observables constructed in this manner are
guaranteed to be infrared and collinear safe, at least when
integrated over the angles, due to the sum rule in Eq. (38).
Since these are polynomial weightings, they provide a
starting point for performing the analytic continuation. It
should be intuitively clear at this point that, for generic
values of ν, the analytically continued observables will
probe infinite correlations, since the expansion of ðE1 þ
E2 þ E3Þν using the binomial theorem does not collapse to
a finite sum unless ν is an integer.
We define the analytic continuation of the N-point

correlator, which we call a ν correlator, as

dσ½ν�

dxL
¼

X
n

Z
dσeþe−→Xn

·

� X
1≤i1≤n

W ½ν�
1 ði1ÞδðxLÞ þ

X
1≤i1<i2≤n

W ½ν�
2 ði1; i2ÞδðxL − xi1i2Þ

þ
X

1≤i1<i2<i3≤n
W ½ν�

3 ði1; i2; i3ÞδðxL −maxfxi1i2 ; xi1i3 ; xi2i3gÞ þ � � �

þ
X

1¼i1<i2<…<in¼n

W ½ν�
n ði1; i2;…; inÞδðxL −maxfxi1i2 ; xi1i3 ;…; xin−1ingÞ

�
; ð45Þ

where each term in the square brackets probes a specific number of particles being measured. In the last term, the
summation collapses into a single term. The weights for the different numbers of particles being correlated are

W ½ν�
1 ði1Þ ¼

Eν
i1

Qν ;

W ½ν�
2 ði1; i2Þ ¼

ðEi1 þ Ei2Þν
Qν −

X
1≤a≤2

W ½ν�
1 ðiaÞ;

W ½ν�
3 ði1; i2; i3Þ ¼

ðP3
a¼1 EiaÞν
Qν −

X
1≤a<b≤3

W ½ν�
2 ðia; ibÞ −

X
1≤a≤3

W ½ν�
1 ðiaÞ;

� � � ;

W ½ν�
n ði1;…; inÞ ¼

ðPn
a¼1 EiaÞν
Qν −

X
1≤a1<a2<���<an−1≤n

W ½ν�
n−1ðia1 ; ia2 ;…; ian−1Þ − � � � −

Xn
1≤a≤n

W ½ν�
1 ðiaÞ: ð46Þ

This observable obeys, by construction, the sum rule
Z

1

0

dxL
dσ½ν�

dxL
¼ σtot: ð47Þ

As expected, for generic values of ν this observable
involves correlations of an infinite number of particles.

However, for integer values of ν, the sum collapses.
Taking ν ¼ N, one can easily check that W ½N�

n ¼ 0 for
n > N. In reality, the sum also collapses because there are
only finitely many particles in a collision event. It is
therefore realistic to measure experimentally, although
an efficient algorithm will need to be developed when
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the particle number is large. As with the case of the
projected N-point correlator, the ν correlator can be
straightforwardly defined on jets by restricting the sum
to particles within the jet.

B. Infrared safety at fixed order

We now give a proof that Eq. (45) is IRC safe at the first
nontrivial order in perturbation theory. We use eþe− → qq̄
as an example and work to OðαsÞ, to illustrate a nontrivial
soft and collinear cancellation. The well-known Kinoshita-
Lee-Nauenberg (KLN) theorem [67,68] states that inclusive
cross sections in eþe− are infrared finite to all orders in
perturbation theory. At OðαsÞ, the inclusive cross section
can be separated into one-loop two-particle final states
(virtual corrections) and tree-level three-particle final states
(real corrections). While their individual contributions
diverge, their sum after integration over their respective
phase spaces is finite:

Z
dσV;qq̄ þ

Z
dσR;qq̄g ¼

αs
π
σ0: ð48Þ

In particular, dσV;qq̄ ¼ Vðαs; ϵÞdσ0 contains explicit IR
poles:

Vðαs; ϵÞ ¼
αs
4π

CF

�
−

4

ϵ2
−
6

ϵ
þ finite terms

�
; ð49Þ

where we have set μ ¼ Q for simplicity. On the other hand,
the differential three-body cross section dσR;qq̄g is finite.
Divergences arise only after integration over phase space.
We shall consider virtual and real corrections separately.
For the virtual corrections, we have

dσ½ν�V
dxL

¼
Z

dσV;qq̄½ðW ½ν�
1 ð1Þ þW ½ν�

1 ð2ÞÞδðxLÞ

þW ½ν�
2 ð1; 2ÞδðxL − 1Þ�; ð50Þ

where in Eq. (50) the weight functions are given by

W ½ν�
1 ð1Þjqq̄ ¼ W ½ν�

1 ð2Þjqq̄ ¼ 2−ν; ð51Þ

W ½ν�
2 ð1; 2Þjqq̄ ¼ 1 − 21−ν: ð52Þ

The weight function will, in general, be different for
different numbers of particles in the final state, for which
we use a subscript to denote. Virtual corrections contribute
only to the end point of the ν correlator.

The real corrections can be written as

dσ½ν�R
dxL

¼
Z

dσR;qq̄g½ðW ½ν�
1 ð1Þ þW ½ν�

1 ð2Þ þW ½ν�
1 ð3ÞÞδðxLÞ

þ ðW ½ν�
2 ð1; 2ÞδðxL − x12Þ þW ½ν�

2 ð1; 3ÞδðxL − x13Þ
þW ½ν�

2 ð2; 3ÞδðxL − x23ÞÞ
þW ½ν�

3 ð1; 2; 3ÞδðxL −maxfx12; x13; x23gÞ�: ð53Þ

We divide the three-body phase space into hard, qg
collinear, q̄g collinear, and large-angle soft radiation region
according to the infrared behavior of QCD matrix element.
In the hard region, the final states are nondegenerate, and
x12, x13, and x23 take generic values between 0 and 1. This
region is clearly IRC finite.
We now consider the qg collinear limit 1k3. In this

region, we have x13 ¼ 0, x12 ¼ x23 ¼ 1. The real correc-
tions in this region become

dσ½ν�R;1k3
dxL

¼
Z
1k3

dσR;qq̄g½ðW ½ν�
1 ð1Þ þW ½ν�

1 ð2Þ þW ½ν�
1 ð3Þ

þW ½ν�
2 ð1; 3ÞÞδðxLÞ

þ ðW ½ν�
2 ð1; 2Þ þW ½ν�

2 ð2; 3Þ
þW ½ν�

3 ð1; 2; 3ÞÞδðxL − 1Þ�: ð54Þ

Using Eq. (46), we can simplify this to

dσ½ν�R;1k3
dxL

¼
Z
1k3

dσR;qq̄g

��
W ½ν�

1 ð2Þ þ ðE1 þ E3Þν
Qν

�
δðxLÞ

þ
�ðE1 þ E2 þ E3Þν

Qν −
ðE1 þ E3Þν

Qν −W1ð2Þ
�

× δðxL − 1Þ

¼
Z
1k3

dσR;qq̄g½21−νδðxLÞ þ ð1 − 21−νÞδðxL − 1Þ�;

ð55Þ

where in the second equality we have used the collinear
kinematics, E1 þ E3 ¼ Q=2. The q̄g collinear limit is
identical due to charge conjugate invariance of QCD:

dσ½ν�R;2k3
dxL

¼
dσ½ν�R;1k3
dxL

: ð56Þ

We now consider the large-angle soft radiation region 3s.
We have x12 ¼ 1, and x13 and x23 take generic values
between 0 and 1. The real corrections become
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dσ½ν�R;3s
dxL

¼
Z
3s

dσR;qq̄g½ðW ½ν�
1 ð1ÞþW ½ν�

1 ð2ÞþW ½ν�
1 ð3ÞÞδðxLÞ

þðW ½ν�
2 ð1;2ÞþW ½ν�

3 ð1;2;3ÞÞδðxL−1Þ
þW ½ν�

2 ð1;3ÞδðxL−x13ÞþW ½ν�
2 ð2;3ÞδðxL−x23Þ�

¼
Z
3s

dσR;qq̄g½ð21−νþW ½ν�
1 ð3ÞÞδðxLÞ

þð1−21−νþW ½ν�
1 ð3ÞÞδðxL−1Þ

−W ½ν�
1 ð3ÞδðxL−x13Þ−W ½ν�

1 ð3ÞδðxL−x23Þ�; ð57Þ

where

W ½ν�
1 ð3Þ ¼ Eν

3

Qν ð58Þ

vanishes for ReðνÞ > 0. We have shown the IR singularities
reside in the end point in the individual contributions.
Adding the different regions together, we find that

dσ½ν�V
dxL

þ
dσ½ν�R;1k3
dxL

þ
dσ½ν�R;2k3
dxL

þ dσ½ν�R;3s
dxL

¼ReðνÞ>0 ½21−νδðxLÞ þ ð1 − 21−νÞδðxL − 1Þ�

·

�Z
dσR;qq̄ þ

�Z
1k3

þ
Z
2k3

þ
Z
3s

�
dσR;qq̄g

�
: ð59Þ

The third line is IRC finite by the KLN theorem. We
have therefore shown that the projected ν-point correlator
is IRC safe at this order. For ν ¼ 1, there is no back-to-
back end-point contribution, δðxL − 1Þ. This agrees with
the expectation that ν ¼ 1 corresponds to the one-point
correlator, which has only collinear end-point contribu-
tion δðxLÞ.
We have therefore shown that the ν correlator is IRC safe

at OðαsÞ for ν > 0. We have also shown in Fig. 7 a fixed-
order calculation in Event2 at OðαsÞ and Oðα2sÞ, which
provides further evidence that the ν correlators are IRC

safe. As ν decreases, the ν correlator is increasingly
sensitive to low-energy soft gluon radiation. It therefore
also provides a probe of nonperturbative soft physics. Since
ν is a tunable parameter, the ν correlators provide a
convenient way to experimentally probe different aspects
of QCD dynamics in a single style of measurement.

C. Analytic structure of the ν plane

We now discuss in more detail the physics of the ν
correlators. As we shall show in Sec. V, the scale evolution
of the ν correlators with xL is determined by the twist-2
spin-νþ 1 anomalous dimensions up to running coupling
effects. The twist-2 anomalous dimensions are well known
to have a rich analytic structure, for example, enabling
analytic continuation between the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) and BFKL regimes
[69–74] (for a detailed review of the analytic properties
of the twist-2 anomalous dimensions, see [75]). More
recently, there has been renewed interested in the analytic
properties of these operators in the context of conformal
field theories [37,76]. One can therefore hope that this
analytic structure is reflected in the behavior of the ν
correlators, which can be measured in collider experiments.
Here we highlight some of the key features of the ν
correlators in the ν plane in Fig. 8(b). The resummation
of the ν correlators for generic values of ν will be presented
in Sec. V and will provide additional insight.
For positive integer ν, the ν correlators correspond to

standard N-point correlators which evolve with the anoma-
lous dimensions of the twist-2 spin-N þ 1 operators, which
are standard local operators. The case N ¼ 2 has received
the most attention [28,32,33]. Another positive integer
value of particular interest is ν ¼ 1. In terms of the matrix
elements of energy flow operators, this corresponds to a
three-point function, which in a CFT is completely fixed by
symmetry. This has been discussed in detail in Ref. [21]. In
the context of QCD, the ν ¼ 1 case is the well-known semi-
inclusive hadron production in eþe−, where perturbative
coefficients have been computed to NNLO [77,78]. More
generally, since the anomalous dimension of the stress

FIG. 7. The LO and NLO predictions for the projected ν-point correlator, for (a) ν ¼ e−1, (b) ν ¼ π, and (c) ν ¼ 2þ i. Calculations
were performed numerically with EVENT2. Note the qualitatively different behavior for ν > 1 and ν < 1, as discussed in the text. The
finiteness of the distributions for various ν demonstrate the IRC safety at two loops. Since these are weighted cross sections, they are
allowed to be negative or even complex.
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tensor vanishes, the ν ¼ 1-point correlator will not exhibit
any nontrivial scaling behavior. For ν ¼ 4, the relevant
scaling anomalous dimension corresponds to that of the
Konishi operator [79]. Finally, as ν → ∞, the twist-2 ano-
malous dimensions scale like γðjÞ∝Γcusp lnðjÞ as j→∞
(here we use ν ¼ j − 1 as is common), where Γcusp is the
cusp anomalous dimension [80,81]. Its physical appearance
here follows from arguments analogous to those presented
in Ref. [82]. It is also important to comment on the region
of applicability of our result as ν → ∞. For the results given
in this section, we have worked at leading twist. However,
even at weak coupling, due to the logarithmic growth of the
twist-2 anomalous dimension, at sufficiently large j, one
has a level crossing with the twist-4 operators. This level
crossing has been studied explicitly in Ref. [83]. While it is
theoretically interesting, it occurs when j ≃ eπ=αsNc , which
in perturbation theory seems to be well beyond what could
be considered practically in experiments.
A phenomenologically interesting region is the analytic

continuation toward ReðνÞ ¼ 0. It is well known that both
the spacelike and timelike anomalous dimensions diverge in
this limit in fixed-order perturbation theory. At lowest order,
this behavior is a power law γðνÞ ∝ 1=ν. The anomalous
dimension itself must be resummed to have a well-defined
scaling in this limit. Although the EEC is naively a timelike
measurement, one can use reciprocity [63,64] to show that
the scaling of the observable is determined by the spacelike
anomalous dimension in a conformal field theory [32,33].
When conformal symmetry is broken, it naively seems like it
must be formulated as a timelike problem.
In the case of a CFT, reciprocity allows the behavior as

ν → 0 to be interpreted in terms of the BFKL Pomeron. The
fact that BFKL dynamics can appear in jet physics [84]
may be surprising but arises due to a conformal mapping
relating the transverse plane in BFKL dynamics to the

celestial sphere in eþe− annihilation [84–86] (for a recent
discussion, see [87]). The BFKL theory [88–90] describes
the behavior of the twist-2 anomalous dimensions in this
limit. In particular, the BFKL equation [91]

ν

−4g2
¼ Ψ

�
−
γ

2

�
þ Ψ

�
1þ γ

2

�
− 2Ψð1Þ ð60Þ

relates the anomalous dimension γ and ν in this limit.
Inverting this equation, we have the behavior of γ as
ν → 0 [91]:

γ ¼ 2

�
−4g2

ν

�
− 4ζ3

�
−4g2

ν

�
4

þ � � � : ð61Þ

Therefore, the divergence of the anomalous dimension
which controls the scaling of the measurable jet observable
is controlled by the BFKL equation.
In the timelike case, the resummation of the anomalous

dimension as ν → 0 has been studied in the context of
multiplicity. There it is well known (see, e.g., [92,93]) that,
as ν → 0, the anomalous dimension takes the form

γ ¼ −
1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ 8CAαs

π

r
− ν

�
; ð62Þ

which now has a finite limit as ν → 0. As we will discuss in
more detail shortly, this provides some insight into the
physical interpretation of the ν correlator as ν → 0 as a form
of multiplicity correlation. Multiplicity itself is both soft
and collinear unsafe but can be made soft safe after
resummation of the scaling anomalous dimension. Here
ν, which corresponds to the energy weighting in the
observable, is tracking the soft safety of the observable,
while the resolution parameter xL is tracking the colli-
near safety. We will see later that, as xL → 0, the ν-point

FIG. 8. (a) The analytically continued ν-point correlators probe the analytic family of twist-2 spin-j operators using the collinear
physics of jets. For integer values of ν, these collapse to the standard N-point correlators. (b) In the complex ν plane, the observable
exhibits poles at negative integer values, related to BFKL physics. The pole at ν ¼ 0, corresponding to the BFKL Pomeron in the
spacelike case, is associated with multiplicity in the timelike case. As ν → ∞, one observes logarithmic growth in ν associated with the
cusp anomalous dimension.
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correlator for ν < 1 diverges, corresponding to the fact that
multiplicity and multiplicity fluctuations diverge as the
scale at which they are probed (loosely, the infrared
regulator) is taken to zero.
There is also an intriguing parallel with the analytic con-

tinuation of twist-2 operators considered in Refs. [37,94].
There the operators which analytically continue the twist-2
operators to noninteger spin collapse to local operators at
integer values. This is analogous to how the ν correlators
collapse to correlating finite numbers of particles within
jets for integer values of ν. It would be interesting to
understand more formally this connection.

V. RESUMMATION FOR THE ν CORRELATOR

In this section, we discuss the factorization and resum-
mation of the ν correlator for generic values of ν and
present results through NLL accuracy. The resummed
results also provide considerable insight into the physical
interpretation of the ν correlators for noninteger values of ν
that was discussed in the previous section.

A. Factorization formula

In the small-angle limit, we propose a timelike factori-
zation formula for the ν correlator:

Σ½ν�
�
xL; ln

Q2

μ2

�
¼

Z
1

0

dxxνJ⃗½ν�
�
ln
xLx2Q2

μ2

�
· H⃗

�
x;
Q2

μ2

�
;

ð63Þ

where we have suppressed the αsðμÞ dependence in all
functions. This is an extension of the factorization formula
for the EEC presented in Ref. [32]. This factorization holds
both in conformal and nonconformal theories. The hard
function satisfies the timelike DGLAP evolution equation

dH⃗ðx; ln Q2

μ2
Þ

d ln μ2
¼ −

Z
1

x

dy
y
P̂ðyÞ · H⃗

�
x
y
; ln

Q2

μ2

�
; ð64Þ

where P̂ðy; αsÞ is the singlet timelike splitting matrix. From
renormalization group (RG) invariance of the physical
cross section, we find that the jet function satisfies a
modified timelike DGLAP evolution equation:

dJ⃗½ν�ðln xLQ2

μ2
Þ

d ln μ2
¼

Z
1

0

dyyνJ⃗½ν�
�
ln
xLy2Q2

μ2

�
· P̂ðyÞ: ð65Þ

This is one of the main results in this paper. It is surprising
that while the measurement defined by the ν correlator can
become quite involved, its scale dependence is simple and
is fixed completely by RG invariance argument. This
illustrates the power of factorization.

B. Hard function

The hard functions for the ν correlators are equal to the
coefficient functions for semi-inclusive hadron fragmenta-
tion [77,78] and are sensitive to only the hard scaleQ of the
problem. They are vectors in flavor space:

H⃗

�
x; ln

Q2

μ2

�
¼

�
Hq

�
x; ln

Q2

μ2

�
; Hg

�
x; ln

Q2

μ2

��
; ð66Þ

where Hqðx; lnQ2=μ2Þ is the probability of finding a quark
(or antiquark) with momentum fraction x ¼ ð2p · qÞ=Q2,
where p is the momentum of the quark, and q2 ¼ Q2, and
similarly for Hg. We consider two processes in this paper:

eþe− annihilation H⃗ee and Higgs decay H⃗h. To achieve the
NLL accuracy considered in this paper, we need the hard
functions to NLO, which we give in the Appendix.

C. Jet function

The jet function, which depends on the details of the
measurement (and, hence, ν) is a vector in flavor space:

J⃗½ν� ¼
�
J½ν�q

J½ν�g

�
: ð67Þ

We expand the jet function in the strong coupling
constant as

J½ν�q ¼ Jq;½ν�0 þ αs
4π

Jq;½ν�1 þ
�
αs
4π

�
2

Jq;½ν�2 þ � � � ; ð68Þ

and similarly for the gluon jet function. The LO jet function
is given by

Jq;½ν�0 ¼ Jg;½ν�0 ¼ 2−ν: ð69Þ

We have chosen a slightly different normalization for the jet
function as compared with Ref. [32]. The 2−ν factor arises
because here we normalize the energy correlators to Q−ν,
which at LO is twice the jet pT . If, instead, we normalized
the energy correlators to ðpjet

T Þ−ν, the overall factor of
2−ν would be absent. The latter normalization may be
convenient for jet production at the LHC. We keep track of
the 2−ν factor when analytic formulas are presented, so
that conversion between the different normalizations is
straightforward.
At one-loop order, the jet function can be calculated from

the QCD 1 → 2 timelike splitting kernel:

αs
4π

Ji;½ν�1 ¼ μ2ϵeϵγE

ð4πÞϵ
Z

1

0

dx
Z

xLxð1−xÞQ2

0

ds
½xð1 − xÞs�−ϵ

ð4πÞ2−ϵΓð1 − ϵÞ

·
2g2

s
Pi→12ðxÞW ½ν�

2 ð1; 2Þ; ð70Þ
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where γE ¼ 0.577216… is Euler’s gamma constant, s is the invariant mass of the splitting pair, x is the momentum fraction
of the daughter particle 1, and

W½ν�
2 ð1; 2Þ ¼ 2−νð1 − xν − ð1 − xÞνÞ: ð71Þ

To this order, the relevant fragmentation kernels are

PgqðxÞ ¼ CF

�
1þ ð1 − xÞ2

x
− ϵx

�
;

PggðxÞ ¼ 2CA
ð1 − xþ x2Þ2

xð1 − xÞ ;

PqgðxÞ ¼
1

2

�
1 −

2xð1 − xÞ
1 − ϵ

�
: ð72Þ

We find the bare one-loop jet function to be [for the g → gg splitting, an additional symmetry factor 1=2 is needed in the
phase space of Eq. (70)]

2νJq;½ν�1 ¼ CF

�
3ðν − 1Þ − 4ðνþ 1ÞðΨðνÞ þ γEÞ

νþ 1

�
1

ϵ
− ln

xLQ2

μ2

�

þ 13ν3 þ 24ν2 − 25ν − 12

νðνþ 1Þ2 − 4ðΨðνÞ þ γEÞ2 −
12ðΨðνÞ þ γEÞ

νþ 1
þ 12Ψ0ðνÞ − 2π2

�
þOðϵÞ;

2νJg;½ν�1 ¼
�
CA

�ðν − 1Þð11ν2 þ 53νþ 66Þ
3ðνþ 1Þðνþ 2Þðνþ 3Þ − 4ðΨðνÞ þ γEÞ

�
−
2ðν − 1Þðν2 þ 4νþ 6Þnf
3ðνþ 1Þðνþ 2Þðνþ 3Þ

��
1

ϵ
− ln

xLQ2

μ2

�

þ CA

�
2ð67ν7 þ 804ν6 þ 3634ν5 þ 7380ν4 þ 4723ν3 − 5520ν2 − 8712ν − 2376Þ

9νðνþ 1Þ2ðνþ 2Þ2ðνþ 3Þ2 − 4ðΨðνÞ þ γEÞ2

−
8ð2ν2 þ 9νþ 11ÞðΨðνÞ þ γEÞ

ðνþ 1Þðνþ 2Þðνþ 3Þ þ 12Ψ0ðνÞ − 2π2
�

þ nf

�
−23ν7 − 276ν6 − 1190ν5 − 2376ν4 − 1703ν3 þ 1644ν2 þ 3060νþ 864

9νðνþ 1Þ2ðνþ 2Þ2ðνþ 3Þ2 þ 4ðν2 þ 3νþ 4ÞðΨðνÞ þ γEÞ
ðνþ 1Þðνþ 2Þðνþ 3Þ

�

þOðϵÞ: ð73Þ

Here ΨðzÞ is the digamma function ΨðzÞ ¼ Γ0ðzÞ=ΓðzÞ, which is a meromorphic function with poles at nonpositive integer
values. For the first few positive integer values of ν, we find

2Jq;½1�1 ¼ 2Jg;½1�1 ¼ 0;

22Jq;½2�1 ¼ CF

�
−
3

ϵ
−
37

3

�
;

22Jg;½2�1 ¼ −
14CA

5ϵ
−
nf
5ϵ

−
898CA

75
−
14nf
25

;

23Jq;½3�1 ¼ CF

�
−

9

2ϵ
−
37

2

�
;

23Jg;½3�1 ¼ −
21CA

5ϵ
−
3nf
10ϵ

−
449CA

25
−
21nf
25

;

24Jq;½4�1 ¼ CF

�
−

83

15ϵ
−
5206

225

�
;

24Jg;½4�1 ¼ −
181CA

35ϵ
−
38nf
105ϵ

−
82589CA

3675
−
11317nf
11025

; ð74Þ
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where we have set μ ¼ ffiffiffiffiffi
xL

p
Q for simplicity. The ν ¼ 2

results agree with Ref. [32] up to the 2−ν normalization.
In addition to QCD, we give results for the jet function in

N ¼ 4 SYM. In this theory, the one-loop jet function is
obtained from a single universal splitting kernel, PN¼4 ¼
2Nc=ðzð1 − zÞÞ and turns out to be quite simple:

2νJN¼4;½ν�
1 ¼ −8NcðΨðνÞ þ γEÞ

�
1

ϵ
− ln

xLQ2

μ2

�

− 4Nc½π2 þ 2ðΨðνÞ þ γEÞ2 − 6Ψ0ðνÞ� þOðϵÞ:
ð75Þ

In both QCD andN ¼ 4 SYM, the jet functions cross zero
at ν ¼ 1 due to the conservation of the energy-momentum
tensor. This can also be understood from the momentum
conservation sum rule in final-state fragmentation. The
constants in the N ¼ 4 jet function exhibit a uniform
transcendental weight,11 and, by comparing the result in
N ¼ 4with the result for the gluon jet function in QCD, we
see that the principal of maximal transcendentality holds
(this was already observed for ν ¼ 2 (j ¼ 3) in Ref. [32]).
In the collinear limit, the jet function is determined by a
fixed value of the spin, and the harmonic sums (polygamma
functions once analytically continued) evaluate to rational
numbers obscuring the weight information [see Eq. (74)].
By viewing the observable as a function of ν, we are able to
manifest the uniform transcendentality in the collinear
limit. We conjecture that uniform transcendentality persists
to all orders in αs, since it is ultimately inherited from the
uniform transcendental weight of the universal structure
constants in Ref. [95]. Uniform transcendentality has also
been observed for the deep inelastic scattering structure
functions in Ref. [96].

D. LL resummation and interpretation

In this section, we perform the LL resummation of the ν
correlators in the small-angle limit, which provides some
intuition for the behavior of the projected correlators as a
function of ν. Since the factorization formula and renormal-
ization group evolution equations are straightforward gener-
alizations of those presented in Ref. [32], it is trivial to solve
them in an identical manner for generic values of ν, and sowe
do not discuss this aspect further. We will consider both the
case of the conformal N ¼ 4 SYM theory as well as QCD
where there is a nonvanishing β function. Resummation at
NLL and numeric results will be presented in Sec. V E.
We begin by considering the case of N ¼ 4 SYM.

We find that the resummed result for the cumulant Σ½ν� is
given by

Σ½ν�ðxLÞ ¼ C½ν�ðαsÞx
γN¼4

J½ν�
ðαsÞ

L ; ð76Þ

where C½ν� is the structure constant,

γN¼4
J½ν� ðαsÞ ¼ γN¼4

S ðνþ 1; αsÞ; ð77Þ

and γN¼4
S ðνþ 1;αsÞ is the universal local twist-2 spin-νþ 1

anomalous dimension in N ¼ 4. [To maintain continuity
between QCD and N ¼ 4, we use conventions for the

anomalous dimensions in N ¼ 4 where γð0ÞuniðjÞ ∝
S1ðj − 2Þ. It is also common in N ¼ 4 to shift j by two
units.] The power-law behavior is due to conformal
symmetry [21,28] or reciprocity [32,33]. Differentiating
in xL, we have

dσ½ν�

dxL
¼ C½ν�ðαsÞγN¼4

J½ν� ðαsÞ
x
γN¼4

J½ν�
ðαsÞ

L

xL
: ð78Þ

The scaling of the ν correlator therefore allows one to probe
the spectrum of the underlying field theory through the
scaling in the xL variable.
The fact that we are able to have a scaling observable for

all values of ν allows us to connect different physical regions
with the same observable. In particular, the ν correlators
have different behavior depending on whether ν > 1 or
ν < 1. For positive integers, the scaling anomalous dimen-
sions correspond to the anomalous dimensions of local
twist-2 operators, which in a unitary CFT are guaranteed to
be positive [97,98]. This implies that the resummed cumu-
lant vanishes as xL → 0. For ν > 1 noninteger values, there
is no longer a correspondence with local operators, but the
anomalous dimensions remain positive by continuity and
monotonicity. For ν ¼ 1 (which corresponds to j ¼ 2), the
scaling anomalous dimension vanishes to all orders in
perturbation theory, since it corresponds to the anomalous
dimension of the stress tensor. This has the interesting
consequence that the cumulant is independent of the scaling
variable (i.e., the distribution is a δ function). For ν < 1, the
scaling anomalous dimension is negative. In this region,
there is no correspondence with a local operator, and,
therefore, the standard unitarity bounds do not apply. In
particular, this implies that the cumulant diverges as xL → 0.
While this is perhaps unusual for jet observables, this
behavior is physical. Some intuition can be gained by
recalling the expression for the multiplicity in an eþe−

collision at a scale Q2:

nðQ2;ΛÞ ∝
�
Q
Λ

�
−2γðν¼0Þ

; ð79Þ

where Λ is an infrared resolution [recall that, in our con-
ventions, γð1Þ < 0,which is opposite to the conventions often
used when discussing multiplicity]. This has a similar
behavior to the cumulant in Eq. (76), if we associate xL with
an infrared regulator, leading to an interpretation of the ν

11We assign a transcendental weight nþ 1 to ΨðnÞ. We also
assign transcendental weight 1 to γE, π, and 1=ϵ.
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correlator in the ν → 0 limit. Multiplicity correlators have
been considered inRefs. [99–101] (for a recentmeasurement,
see [102]), and the divergence at small angles is well known.
We therefore find that the ν correlators are able to connect, in a
single analytic observable, the EEC and multiplicity, as well
as all other observables lying in the complex ν plane.
Moving beyond a conformal theory, at LL accuracy

the simple scaling behavior is modified only through
the inclusion of the running coupling, and, therefore,
much of the intuition from the case of a conformal theory
carries over. In addition to the beta function, in QCD one
must also incorporate nontrivial flavor mixing. At LL, the
solution of the jet function evolution to the hard scale in
QCD is

J⃗½ν�LL ¼ 2−νð1; 1Þ exp
�
−
γ̂ð0Þðνþ 1Þ

β0
ln
αsð ffiffiffiffiffi

xL
p

QÞ
αsðμÞ

�
; ð80Þ

where γ̂ð0ÞðjÞ is the Mellin moment of the singlet time-
like splitting function at LO in QCD, γ̂ðj;αsÞ ¼
−
R
1
0 dzzj−1P̂ðz; αsÞ, where P̂ðz; αsÞ is the regularized

singlet timelike splitting kernel. Explicitly,

γ̂ðjÞ ¼
�
γð0Þqq ðjÞ 2nfγ

ð0Þ
qg ðjÞ

γð0Þgq ðjÞ γð0Þgg ðjÞ

�
; ð81Þ

where [92]

γð0Þqq ðjÞ ¼ −2CF

�
3

2
þ 1

jðjþ 1Þ − 2ðΨðjþ 1Þ þ γEÞ
�
;

γð0Þgq ðjÞ ¼ −2CF
ð2þ jþ j2Þ
jðj2 − 1Þ ;

γð0Þgg ðjÞ ¼ −4CA

�
1

jðj − 1Þ þ
1

ðjþ 1Þðjþ 2Þ

− ðΨðjþ 1Þ þ γEÞ
�
− β0;

γð0Þqg ðjÞ ¼ −
ð2þ jþ j2Þ

jðjþ 1Þðjþ 2Þ ; ð82Þ

and β0 ¼ 11=3CA − 2=3nf. One can check that the pole
terms on the rhs of Eq. (73) are given by

−γð0Þqq − γð0Þgq and − γð0Þgg − 2nfγ
ð0Þ
qg ; ð83Þ

respectively (recall j ¼ νþ 1). We therefore see that
even in QCD the scaling is still driven by the twist-2
spin-νþ 1 anomalous dimensions; however, this behavior
is no longer a power law due to the running coupling.
This jet function must then be projected on to an appro-
priate tree-level hard function. For example, for the case of
eþe−, one has

H⃗LLðxÞ ¼ 2

�
δð1 − xÞ

0

�
: ð84Þ

E. NLL resummation and numerical results

In this section, we present several numerical results to
highlight interesting features of the ν correlators, as well
as to verify our factorization formula against numerical
fixed-order calculations. We leave more detailed phe-
nomenological studies to a future publication.
Results in this section are presented to NLL accu-

racy,12 which resums terms through to αns lnðxLÞn−1. To
achieve this accuracy, we need the two-loop timelike
splitting functions and QCD beta function, as well as the
one-loop hard and jet functions. Only the jet function is
new and was given in Eq. (73). With these ingredients,
numerical predictions in the collinear limit can be
obtained using the factorization formula in Eq. (63),
combined with the renormalization group equations in
Eqs. (64) and (65).
We first verify the factorization formula in (63) by

comparing our predictions, truncated to Oðα2sÞ, with a
numerical fixed-order calculation in the small-angle limit.
We give the results obtained from expanding our factori-
zation formula for three representative values of ν,
ν ¼ 1=e; π; 2þ i, in (85):

xL
σ0

dσ½e−1�

dxL
¼ asð−15.6168Þ þ a2sð516.646 ln xL − 1107.8Þ;

xL
σ0

dσ½π�

dxL
¼ as1.41007þ a2sð53.8777 − 3.8045 ln xLÞ;

xL
σ0

dσ½2þi�

dxL
¼ þð2.51547 − 0.610332iÞas
þ a2sðð98.1462 − 30.7351iÞ
− ð9.58163 − 10.8713iÞ lnðxLÞÞ; ð85Þ

where as ¼ αs=ð4πÞ. These results are shown in Fig. 9 as
solid lines. We have also computed the ν correlator with the
QCD event generator EVENT2 [104,105] using the defini-
tion given in Eq. (45). EVENT2 calculates not just the
leading power terms in the xL → 0 limit that are described
by the factorization formulas presented in this paper, but

12Throughout this section, we use the logarithmic counting
appropriate for single logarithmic observables. Often in jet
substructure, a logarithmic counting appropriate for double
logarithmic observables is used, even if the observable is single
logarithmic. In particular, our NLL result has the same loga-
rithmic accuracy as the NNLL result for the groomed jet mass
[4,5]. For the case N ¼ 2, NNLL resummation is also avail-
able [32], and the relevant anomalous dimensions for the
groomed jet mass have also recently been extracted to enable
an NNLL prediction [103].
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also the power suppressed contributions. At small xL, it is
expected that the leading power logarithmic terms domi-
nate. The EVENT2 results are shown in Fig. 9 as dotted lines.
It can be seen that there is agreement between our
factorization prediction and EVENT2 when xL is sufficiently
small so that power suppressed terms can indeed be
neglected. There is some deviation at NLO for ν ¼ 1=e
when xL < e−13. We believe that this is due to the nature of
ν < 1 such that the observable is increasingly sensitive to
soft physics, while in EVENT2 there is an unphysical IR
cutoff to ensure numerical stability. To understand the
origin of the instability better, we have computed the
ν ¼ 1=e correlator in EVENT2 for a number of different
internal cutoff variables ranging from 10−8 to 10−14. The
results show a strong dependence on the cutoff variable, as
can be seen clearly from Fig. 10. This confirms our belief
that the deviation of EVENT2 from our analytic prediction is
indeed due to the unphysical IR cutoff in EVENT2. For
ν ¼ 2þ i, the results contain both real and imaginary parts.
This is not a problem, since what we computed are
correlation functions, or weighted cross sections, and do
not correspond to probabilities. The agreement between
Eq. (85) and EVENT2 provides a strong check on our

factorization formula (63). Furthermore, this agreement
between the NLO result in EVENT2 and our analytic result
strongly suggests that this observable is IRC safe at Oðα2sÞ,
at least for 0 < xL < 1. It would be interesting to have a
(dis)proof of IRC safety for the ν correlator to all orders.
We emphasize the different behavior as xL → 0 for ν ¼

e−1 < 1 and ν ¼ π > 1. As discussed above, for ν > 1, the
behavior (at least in the conformal case) is driven by an
anomalous dimension of a local operator which is con-
strained to be positive in a unitary theory. For ν < 1, this
association is lost, and the scaling flips sign. This is clearly
seen in the behavior of the fixed-order calculations in
Fig. 9. It also persists once resummation is included.
To resum the large logarithms arising in the collinear

limit, we follow the approach of Ref. [32] by solving the
RG equation (65) iteratively to high orders. We keep the
first 50 terms in αs expansion, which is sufficient to have
convergence to better than one per mille for the range of xL
considered here. In Fig. 11, we depicted the ν correlator at
LL and NLL for ν ¼ e−1, π, and 2þ i. These values allow
us to emphasize the qualitatively different behavior for
ν > 1 and ν < 1. We set Q ¼ 250 GeV so that we have a
sufficiently large window at small xL for perturbative
evolution. We observe reasonable perturbative convergence
when going from LL to NLL for ν ¼ π and 2þ i. On the
hand, the convergence is bad for ν ¼ e−1, as indicated by
the nonoverlapping scale bands. Since, for ν < 1, the ν
correlator probes the small x fragmentation kernel, one
might expect that some form of small x resummation for the
anomalous dimension becomes necessary, which we leave
for future work. The scale uncertainties are still large at
NLL due to large perturbative corrections to the NLL
coefficients, as already observed in Ref. [32] for EEC.
This calls for an NNLL calculation (which was already
performed in Ref. [32] for the case of N ¼ 2) for generic
values of ν, which we leave for future work.
In Fig. 12, we plot the ratio observable dσ½3;2�=dxL at

LL and NLL. As a comparison, we also plot the two-
point correlator (EEC) and three-point correlator in
Fig. 13. As is advocated in Sec. III B, it can indeed be
seen that the ratio observable dramatically reduces the scale
uncertainties and the magnitude of the corrections when

Event Event Event Event

EventEvent
EventEvent

FIG. 9. Comparison between our factorization formula and EVENT2 in the asymptotically small xL region for ν ¼ 1=e; π; 2þ i.

FIG. 10. 1=e-point correlator computed at the NLO with
EVENT2 and with different values of cutoff variable. The agree-
ment between EVENT2 and our analytic prediction is better for a
smaller cutoff.
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going from LL to NLL. While the remaining scale
uncertainty is still large, it nevertheless gives us hope that
by going to NNLL one would be able to control the
perturbative uncertainties.

VI. RESUMMATION FOR TRACKCORRELATORS

In this section, we briefly describe the resummation of
the energy correlators measured on tracks. The goal of this
section is to illustrate that track functions interface naturally
with energy correlators, since, much like the energy
correlators, moments of the track functions evolve with
moments of the twist-2 spin-j anomalous dimensions. In
this sense, we view EECs as the natural observable for
tracks. In this section, we will consider the specific case of
the two-point correlator at leading logarithmic accuracy.
As with the case of the energy correlators, we can write

down a timelike factorization formula for the cumulant Σ½ν�
tr

of ν-point correlators measured on tracks (here the sub-
script tr denotes tracks):

Σ½ν�
tr

�
xL; ln

Q2

μ2

�
¼
Z

1

0

dxxνJ⃗tr
½ν�
�
ln
xLx2Q2

μ2

�
· H⃗

�
x;
Q2

μ2

�
:

ð86Þ
Crucially, the incorporation of tracks does not change the
hard function and enters into only the jet function.
Renormalization group consistency then fixes that the

FIG. 12. Ratio of three-point and two-point correlator at LL
and NLL. Scale uncertainties are estimated by varying μ in
the numerator and denominator simultaneously by a factor of
5 and 5−1.

FIG. 11. LL (gray) and NLL (red) resummation for ν ¼ e−1, π, and 2þ i. Scale uncertainties are estimated by varying μ aroundQ by a
factor of 5−1 and 5.
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evolution of the jet function on tracks is identical to the
evolution of the standard jet function:

dJ⃗tr
½ν�ðln xLQ2

μ2
Þ

d ln μ2
¼

Z
1

0

dyyνJ⃗tr
½ν�
�
ln
xLy2Q2

μ2

�
· P̂ðyÞ: ð87Þ

This constraint arises from the fact that the energy
correlators are collinear (single logarithmic) observables
so that the factorization formula consists of only two
functions. This leads to a significant simplification as
compared to the case of Sudakov (soft sensitive) observ-
ables that exhibit a factorization into a hard function that is
independent of the measurement and two functions, the jet
and soft functions, that depend on the measurement. In the
case of a typical Sudakov observable, the use of tracks
modifies both the jet and soft functions in an equal and
opposite manner that is not constrained by renormalization
group consistency with the hard function. This is the case
for the example of track thrust considered in Ref. [6], where
the anomalous dimensions for the jet and soft functions are
modified by a nonperturbative constant. For the energy
correlators, the anomalous dimensions remain perturbative
and equal to their value without tracks.
We can therefore immediately derive the leading loga-

rithmic result for the ν correlators measured on tracks

Σ½ν�
tr ðxLÞ ¼ 2−νþ1ðTðνÞ

q ð ffiffiffi
z

p
QÞ; TðνÞ

g ð ffiffiffi
z

p
QÞÞ

· exp

�
−
γ̂ð0Þðνþ 1Þ

β0
ln
αsð ffiffiffiffiffi

xL
p

QÞ
αsðQÞ

�

·
�
1

0

�
: ð88Þ

We find the simplicity of this result to be quite remarkable
and suggestive that it can be extended to higher perturbative
orders.
Since the goal of this section is to illustrate the interplay

between track functions and energy correlators, rather than
perform a detailed phenomenological study, we have made
the simplification in Eq. (88) of assuming only one flavor
of quark. While the evolution of the track functions for
different quark flavors is the same, the nonperturbative
functions are, in general, distinct (although, in reality, they
are quite similar; see [6,7]). Therefore, in reality, one must
extend J⃗tr to include all the flavors separately. However, for
notational simplicity, we will not consider this complica-
tion here.
In Eq. (88), the moments of the track functions are

evaluated at the scale
ffiffiffiffiffi
xL

p
Q, and, therefore, to achieve a

particular logarithmic accuracy, one must also know the
evolution of the track functions to the corresponding order.
While the track functions themselves evolve with compli-
cated nonlinear evolution equations that are not currently
known at higher orders, the moments of the track functions
evolve via linear evolution equations. This will also allow
us to explain an interesting feature of Eq. (88), namely, that,

taking for concreteness ν ¼ 2, Tð2Þ
q ð ffiffiffiffiffi

xL
p

QÞ and Tð2Þ
g appear

in the result, even though these should physically appear
only as boundary terms. We will see the resolution of this
fact due to the tight interconnection between the RG
equations for the track functions and those for the EEC.
In the rest of this section, we will focus on the particular
case of the two-point correlator; however, the extension to
higher points should be clear.
The renormalization group evolution equation for the

track function at lowest order is a nonlinear evolution
equation [6,7]:

μ
d
dμ

Tiðx; μÞ ¼
1

2

X
j;k

Z
dzdxjdxk

αsðμÞ
π

Pi→jkðzÞ

· Tjðxj; μÞTkðxk; μÞδ½x − zxj − ð1 − zÞxk�:
ð89Þ

Little is known about its higher-order structure, but it is
expected to become increasingly nonlinear. A large sim-
plification occurs when one has to deal with only a finite
number of moments of the track functions, as occurs for the
energy correlators. Taking moments of Eq. (89), we find

FIG. 13. Two-point and three-point correlators at LL and NLL.
Scale uncertainties are estimated by varying μ in the numerator
and denominator simultaneously by a factor of 5 and 5−1.
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d
d ln μ2

TðnÞ
g ¼ −

Xn−1
k¼0

�
n

k

��Xk
i¼0

�
k

i

�
ð−1Þi

×

�
1

2
γggðn − kþ iþ 1ÞTðn−kÞ

g TðkÞ
g

þ
Xnf
m¼1

γqgðn − kþ iþ 1ÞTðn−kÞ
qm TðkÞ

qm

��

−
�
1

2
γggðnþ 1ÞTðnÞ

g þ
Xnf
m¼1

γqgðnþ 1ÞTðnÞ
qm

�
;

ð90Þ

and

d
d ln μ2

TðnÞ
qm ¼ −

Xn
k¼1

�
n

k

�Xn−k
i¼0

�
n − k

i

�
ð−1Þiγgq

× ðkþ iþ 1ÞTðn−kÞ
qm TðkÞ

g − γqqðnþ 1ÞTðnÞ
qm ;

ð91Þ

where we have considered QCD with nf light flavors.
In particular, for the first two moments, which are

required for the two-point energy correlator, we have the

RG equations (for simplicity, we show below QCD with a
single quark flavor)

d
d ln μ2

Tð1Þ
g ¼ −γggð2ÞTð1Þ

g − 2γqgð2ÞTð1Þ
q ;

d
d ln μ2

Tð1Þ
q ¼ −γqqð2ÞTð1Þ

q − γgqð2ÞTð1Þ
g ; ð92Þ

and

d
d ln μ2

Tð2Þ
g ¼ −γggð3ÞTð2Þ

g − 2γqgð3ÞTð2Þ
q − γggð2ÞTð1Þ

g Tð1Þ
g

þ γggð3ÞTð1Þ
g Tð1Þ

g − 2γqgð2ÞTð1Þ
q Tð1Þ

q

þ 2γqgð3ÞTð1Þ
q Tð1Þ

q ;

d
d ln μ2

Tð2Þ
q ¼ −γqqð3ÞTð2Þ

q − γgqð3ÞTð2Þ
g þ 2γgqð3ÞTð1Þ

q Tð1Þ
g

− 2Tð1Þ
q Tð1Þ

g γgqð2Þ: ð93Þ

Much like the evolution equations for the two-point energy
correlator, we see that these evolution equations involve the
twist-2 spin-3 dimensions, although they also involve the
spin-2 anomalous dimension in off diagonal entries. We
can write this RG as a matrix evolution equation13:

d
d ln μ2

0
BBBBBBBB@

Tð2Þ
g

Tð2Þ
q

Tð1Þ
q Tð1Þ

q

Tð1Þ
g Tð1Þ

q

Tð1Þ
g Tð1Þ

g

1
CCCCCCCCA

¼

0
BBBBBBBB@

−γggð3Þ −2γqgð3Þ 2γqgð3Þ − 2γqgð2Þ 0 γggð3Þ − γggð2Þ
−γgqð3Þ −γqqð3Þ 0 2γgqð3Þ − 2γgqð2Þ 0

0 0 −2γqqð2Þ −2γgqð2Þ 0

0 0 −2γqgð2Þ −γggð2Þ − γqqð2Þ −γgqð2Þ
0 0 0 −4γqgð2Þ −2γggð2Þ

1
CCCCCCCCA

×

0
BBBBBBBB@

Tð2Þ
g

Tð2Þ
q

Tð1Þ
q Tð1Þ

q

Tð1Þ
g Tð1Þ

q

Tð1Þ
g Tð1Þ

g

1
CCCCCCCCA
: ð94Þ

While the RG for the full track function will become more
and more complicated at each perturbative order, the RG
for any fixed moment should close; namely, the RG for TðnÞ

i
involves only TðmÞ

i with m ≤ n. Furthermore, there are two
additional features of this matrix that can be derived by
considering its interplay with the resummation for the EEC

and that we, therefore, believe will hold to all orders: Lower
moments never mix back into the higher moments, which
fixes the blue entries of the matrix to be zero, and the
mixing of highest moments TðnÞ

i → TðnÞ
j (shown by the

entries in red) is identical to that of the energy correlators
(note that this holds for the Tð1Þ

i Tð1Þ
j entries of the matrix,

since the RG for these product terms is derived from the RG
for Tð1Þ

i → Tð1Þ
J mixing).

While the first of these conditions is easy to understand,
the second arises from the fact that for the EEC one should
not require contact terms in the bulk of the distribution.

13Again, we emphasize that here we consider the case of a
single quark flavor. The extension to five flavors is straightfor-
ward, albeit notationally cumbersome.
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As a simple example to illustrate this, we can consider the
case of pure Yang-Mills, as it avoids the need to diagonalize
matrices.14 In pure Yang-Mills, we have

d
d ln μ2

�
Tð2Þ
g

Tð1Þ
g Tð1Þ

g

�
¼

�−γð3Þ γð3Þ
0 0

��
Tð2Þ
g

Tð1Þ
g Tð1Þ

g

�
:

ð95Þ

The LL resummed result in pure Yang-Mills is

Σ½2�
tr ðxLÞ ¼

1

2
Tð2Þ
g ð ffiffiffiffiffi

xL
p

QÞ
�
αsð ffiffiffiffiffi

xL
p

QÞ
αsðQÞ

�−γð0Þð3Þ=β0
: ð96Þ

This result is naively surprising, since it depends on Tð2Þ
g ,

which should be required only to describe the contact terms
at xL ¼ 0. However, the resolution to this is that we should
also evolve the track function perturbatively to the common
scale Q. Using the RG, we find that at LL we can rewrite
this as

Σ½2�
tr ðxLÞ ¼

1

2
½Tð1Þ

g ðQÞ�2
�
αsð ffiffiffiffiffi

xL
p

QÞ
αsðQÞ

�−γð0Þð3Þ=β0
; ð97Þ

which corresponds with the physical intuition. We
therefore find that it evolves with the identical anoma-
lous dimension at LL regardless of whether or not tracks
are used. This relies crucially on the fact that the mixing
for the track functions is the same as for the energy
correlators. For the case where both quarks and gluons
are present, one can easily check that the same mecha-
nism occurs using Eq. (94) and that all dependence on

Tð2Þ
q and Tð2Þ

g cancels at LL accuracy. Furthermore, one

finds specific linear combinations cijT
ð1Þ
i Tð1Þ

j that evolve
with the same leading logarithmic anomalous dimen-
sions. One also finds other combinations of tracks
functions that vanish when the first moments of the
track functions are flavor independent, such as

ðTð1Þ
g Tð1Þ

g − 2Tð1Þ
g Tð1Þ

q þ Tð1Þ
q Tð1Þ

q Þ, that can evolve with
other anomalous dimensions, but that are numerically
irrelevant. It would be interesting to study this in more
detail with a proper extraction of the track functions;
however, we leave this to future work.
We therefore believe that the understanding of the

energy correlators places strong constraints on the
understanding of the RG evolution of moments of track
functions and that they interplay naturally. To extend the
calculation of the EEC or EEEC to higher perturbative

orders will require understanding the evolution of
moments of the track function to higher perturbative
orders. This has not been explored at all, and it will be
interesting to understand its consistency. Using the
arguments of this section, we believe that the form of
the matrix in Eq. (94) will persist at higher orders. Only
the entries in black are not fixed. We suspect that at
higher orders these entries will not correspond to
moments of splitting functions, but we believe that they
can be straightforwardly calculated by extracting the IR
poles from the calculation of the two-loop EEC jet
function computed on tracks. We therefore believe that
the evolution equations for the low moments of the track
functions should be much more tractable than the
nonlinear evolution equations for the full track functions
and that significant insight into their structure can be
gained by studying the energy correlators.
In Fig. 14, we compare the ratio between the EEC as

measured on tracks vs full calorimetric information for
quark and gluon jets, as computed using PYTHIA. This is

compared with ðTð1Þ
g Þ2 and Tð1Þ

d Tð1Þ
g , extracted from

Ref. [7]. The flatness of the ratio arises due to the
interesting interplay between the anomalous dimensions
for the moments of the track functions and those for the
energy correlators. We should emphasize that this com-
parison should be taken with a grain of salt, since it is
sensitive to the precise settings in PYTHIA (which were
presumably not the same in Ref. [7]) as in our study but is
meant to show qualitative agreement. A more detailed
analysis and a calculation at NLL will be presented in
future work.
In summary, in this section, we have emphasized two

significant simplifications that arise when studying the
resummation of energy correlators measured on tracks.
First, the fact that these observables are purely collinear

FIG. 14. Ratios between two-point energy correlators measured
on tracks to those using full calorimetric information as computed
using PYTHIA. This illustrates that over a wide perturbative regime
the LL evolution is approximately the same with or without
tracks, as discussed in more detail in the text.

14This example is artificial in that pure Yang-Mills does not
have charged particles. However, we can formally consider the
mixing problem in this theory without specifying the nonpertur-
bative track functions.
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allows the anomalous dimensions of the observables as
measured on tracks to be fixed by renormalization group
consistency. Second, and much more importantly, since the
observables involve only a finite number of moments of the
track functions, their RG evolution reduces to a linear
problem, which is constrained by the structure of the RG
for the energy correlators. We believe that these two
advantages will enable higher-order resummation for track
observables, which is a qualitative advance in precision
calculations.
A similar story to that presented in this section for tracks

also holds for charge correlators. As with the track
correlators, one can restrict to the study of their moments,
which avoids nonlinear evolution equations. It would be
interesting to consider these observables in more detail.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have advocated for the use of jet
substructure observables that are more closely connected to
correlation functions of energy (or charge) flow operators
in the underlying field theory. In particular, we have shown
that there are considerable advantages, both perturbatively
and nonperturbatively, to using observables that can be
expressed in terms of correlation functions of a finite
number of energy flow operators.
We introduced an infinite family of observables, the

projected energy correlators, that project the N-point
correlators down to a single scaling variable that can be
measured experimentally. These observables have simple
theoretical properties, allowing for their resummation
in the small-angle limit for any N at NLL accuracy. This
matches the current state-of-the-art resummation accuracy
for jet substructure observables, but for an infinite family of
observables, and in a single analytic formula. These
observables are also amenable to higher-order perturbative
calculations using modern techniques for loop integrals,
which we will consider in future work. Indeed, for the
particular case of N ¼ 2, results at NNLL are already
available [32].
In addition to the perturbative simplicity of the projected

energy correlators, we have also shown that observables
that can be expressed in terms of a finite number of energy
correlators are particularly simple to interface with non-
perturbative tracking information. We showed that the
N-point correlator requires only the knowledge of the
mth moments, with m ≤ N, of the track functions and that
perturbative calculations can be trivially upgraded to
calculations on tracks by weighting specific partonic
configurations with these moments. This contrasts with
calculations of more standard observables on tracks, which
involve the complete functional dependence of the track
function and are difficult beyond leading order. The ability
to incorporate tracking information is a key advantage of
the energy correlators in the LHC environment, but it may

also have applications for precision extractions of αs at
eþe− colliders.
A new aspect of our formulation is that it enables an

analytic continuation in N of the projected N-point corre-
lators. This allows jet observables to explore the complete
complex j plane of the twist-2 spin-j operators. For
noninteger values of N, the ν correlators correlate infinite
combinations of particles within a jet, yet they probe a
particularly simple aspect of the underlying physics. This
may be a general feature of observables in jet physics,
namely, that observables with simple physical properties
may be algorithmically complex. The analytic continuation
of the observables also places them into a clean analytic
family of observables that probe particular properties of the
collinear limit and makes manifest certain properties of the
result, such as the uniform transcendentality. We believe
that this is an important step toward identifying more
structure in the physics of jet substructure observables,
and it would be interesting to understand other analytic
families.
Since the goal of this paper was to introduce the

projected energy correlators and highlight some of their
convenient theoretical properties, there are a large number
of directions for future study. Phenomenologically, an
important goal will be to compute the ratio of the three-
point to two-point correlator at NNLL (both with and
without track information) at the LHC. All required
anomalous dimensions are known (the timelike splitting
kernels are known in QCD to NNLO [77,78,106,107]). In
Ref. [32], the two-loop jet function for the two-point
correlator in QCD was obtained using sum rules. To
incorporate tracking information, the calculation would
need to be done directly, but this should be feasible, as
should be the calculation of the NNLO jet function for the
projected three-point correlator. The primary difficulty at
hadron colliders is the hard functions. The hard functions
are currently known at NLO [108–111] and can be
approximated at partonic threshold to higher orders
[112]. Using modern techniques, they should be comput-
able to NNLO.
Another aspect of the energy correlators that will be

important to understand for phenomenological applications
is the structure of their nonperturbative corrections. This
should also be considerably simplified for observables
defined directly in terms of correlation functions of energy
flow operators. The leading nonperturbative corrections for
the energy correlators at generic angles were studied in
Ref. [19], where they were found to take a simple form.
Furthermore, it has been found that in the small-angle limit
where they are purely nonperturbative, these observables
have simple power-law behavior equal to that for an
infinitely strongly coupled system [113].
More formally, it will also be interesting to understand in

detail the relation of the ν correlators to the light ray
operators of Ref. [37], which provide the analytic
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continuation in spin of the standard twist-2 spin-N oper-
ators. This connection has been explored in detail for the
case of N ¼ 2, but the study of higher integer N as well as
noninteger ν may lead to a better understanding of these jet
substructure observables or facilitate their calculation.
Finally, it would also be interesting to design other

observables of this form that are directly related to the
underlying energy correlators, for example, projections
involving two or three variables, instead of the single-
variable case considered here. This would be a first step
toward understanding and organizing the space of jet
substructure observables and their relation to the physical
operator content of the field theory. Along these lines,
observables with energy weighting Eκ were considered in
Ref. [57], giving rise to “fractal jet observables.” It would
be interesting to understand more formally what these
correspond to in terms of light ray operators, and if these
have interesting theoretical properties.
The use of energy correlators for jet substructure opens

the door to precision calculations at the LHC, combining
high-order perturbative calculations with the use of
tracking and charge information. It will also facilitate the
development of connections between the study of jet
substructure and more formal studies of the properties of
light ray operators in quantum field theory. We hope to
further develop these connections in future work.
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APPENDIX

1. Hard functions

In this Appendix, we collect the hard functions used in
the factorization formula for the projected energy correla-
tors in the collinear limit.
For eþe− annihilation, the hard function is given by

1

2
Hee

q ¼ δð1 − xÞ þ αs
4π

CF

��
4π2
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− 9

�
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For Higgs decay via the effective hgg operator, the hard function is given by
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For simplicity, we have set μ ¼ Q. Logarithms can be recovered from the RG equation in Eq. (64).
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