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The axial-vector form factors and axial-vector constants of the baryon decuplet are investigated within a
pion mean-field approach, which is also known as the chiral quark-soliton model. Given an axial-vector
current with a specified flavor, there are four different form factors of a decuplet baryon. When we consider
the singlet, triplet, and octet axial-vector currents, we have twelve different form factors for each member of
the baryon decuplet. We compute all these axial-vector form factors of the baryon decuplet, taking into
account the rotational 1=Nc corrections and effects of flavor SU(3) symmetry breaking. We find that, for a
given flavor, two of the form factors for a decuplet baryon are only independent within the present
approach. We first examine properties of the axial-vector form factors of theΔþ isobar andΩ− hyperon. We
also compare the results of the triplet axial-vector form factors ofΔþ with those from lattice QCD and those
of the present work for the axial-vector constants of the baryon decuplet with the lattice data. All the results
for other members of the baryon decuplet are then presented. The results of the axial charges are compared
with those of other works. The axial masses and axial radii are also discussed.
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I. INTRODUCTION

The axial-vector constants play a very important role in
understanding the structure of a baryon both in strong and
weak interactions. While the axial-vector structures of the
baryon octet are relatively well known by their semi-
leptonic decays, those of the baryon decuplet are still
much less understood, since almost all members of the
decuplet decay strongly except for the Ω− baryon. Thus, it
is very difficult to get access to the internal structure of
them. However, since the lattice data on the axial-vector
form factors and the axial-vector constants of the baryon
decuplet are now available [1,2], we anticipate that lattice
QCD will provide more information on the axial-vector
structure of the baryon decuplet in the near future. While it
is rather difficult to measure the axial-vector properties of
the baryon decuplet experimentally, there have been vari-
ous theoretical works. For instance, the axial charge of the
Δ isobar was studied in chiral perturbation theory [3,4]. In
Refs. [5,6], the axial charges of the Δ, Σ�, and Ξ� were

computed within the Goldstone-boson-exchange relativis-
tic constituent quark model (RCQM). Recently, the axial-
vector form factors and the axial-vector constants of the
baryon decuplet were derived from lattice QCD [1,2]. The
axial charge of Δþ was also studied in the light cone sum
rules (LCSR) [7]. Very recently, the axial charges of the
baryon decuplet except for the Ω− baryon were also
calculated in a pertubative chiral quark model (PCQM) [8].
In the present work, we want to investigate the axial-

vector form factors of the baryon decuplet within the
framework of the chiral quark-soliton model (χQSM)
[9–16]. The model is based on the pionmean-field approach
thatwas proposed ingeniously byWitten [17,18]. In the limit
of the large number of colors (Nc → ∞), a baryon can be
viewed as a bound state of the Nc valence quarks by a pion
mean field. The presence of the Nc valence quarks brings
about the vacuum polarization that creates a pionmean field.
Then the pion mean field influences the valence quarks self-
consistently. As a result, they are bound by the pion mean
field, so that a baryon emerges as a bound state of the Nc
valence quarks in the form of a chiral soliton. However, to
identify the classical solution or the chiral soliton as a
baryon, one has to quantize it to provide the quantum
numbers of the baryon correctly. In fact, there are two
different quantum fluctuations, both of which are of order
1=Nc. The first one is the meson fluctuations, which can be
in principle treated by expanding the meson fields around
the saddle point. The functional integral over them will
provide the meson-loop 1=Nc corrections. Since they will
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contribute mainly to the Dirac-sea part, wewill ignore them.
The second fluctuations will arise along the direction of the
zero modes. These zero-mode contributions cannot be
ignored, since they are not at all small. Thus, we will
integrate over these zero modes completely, which yield the
proper quantum numbers of a baryon and will provide the
rotational 1=Nc corrections. As for details of the collective
quantization, we refer to Refs. [10,19].
There is yet another caveat. While the zero-mode

collective quantizations can be applied to the SU(2) version
of the χQSM, they bring about a paradox when it comes to
the SU(3) χQSM. A part of the rotational 1=Nc corrections
causes the violation of gauge symmetries. This arises from
the inherent time nonlocality of the χQSM, which yields
the time ordering of the collective operators. The trouble-
some term comes from one term that contains one of the
moments of inertia, i.e., I2. In Ref. [20], the symmetry-
conserving collective quantization was proposed, in which
an unwanted term can be systematically removed by
using the limit of the nonrelativistic quark model (NRQM),
since the χQSM interpolates the NRQM and the Skyrme
model, which correspond to the limiting cases of the small
and large soliton sizes, respectively. While the symmetry-
conserving quantization does not provide a final solution
for this trouble, it makes the model satisfy all possible
gauge symmetries.
The SU(3) χQSM has been successfully applied to

describe various properties of the lowest-lying baryons
including both the light and singly heavy baryons. For
example, the model explains very well the electromagnetic
form factors of the baryon octet and decuplet [21–23], the
axial-vector form factors of the nucleon [24], the scalar form
factor [25], tensor charges and tensor form factors [26–29],
the gravitational form factors [30], and so on. Very recently,
the model was extended to the description of singly heavy
baryons. For example, the electromagnetic form factors of
the singly heavy baryons both with spin 1=2 and 3=2 were
investigated [31,32]. Thus, we want to examine the axial-
vector form factors of the baryon decuplet within the same
framework, focusing on the comparison of the present
results with those from the lattice QCD [1,2].
The axial charge and axial-vector form factors of

the nucleon have been studied within the χQSM previously
by various works [33–39]. In fact, the previous calculations
of the axial charge gA expose well how the χQSM has
been developed and understood. The first calculations
of gA [33,34] did not consider the rotational 1=Nc correc-
tions that arise from the time ordering of the collective
operators. The numerical result for gA turned out to be
much underestimated, compared with the experimental
data. Wakamatsu and Watabe [35] observed that non-
commutativity of collective operators, which is of order
1=Nc, provides a sizable effect on gA. However, as pointed
out in Ref. [38], the 1=Nc corrections suggested in Ref. [35]
violate the G parity. Moreover, that part of the contribution

does not comply with the Pauli exclusion principle [36]. In
Ref. [39], it was pointed out that the 1=Nc corrections from
Ref. [35] also do not preserve the partial conservation of the
axial-vector current (PCAC). In Ref. [36], Christov et al.
carried out the calculation of gA based on the formalism of
the functional integral, in which the time ordering of the
collective operators arises naturally, and found that these
rotational 1=Nc corrections indeed describe gA quantita-
tively without causing the violation of the G parity and the
Pauli principle. On the other hand, the problem related to the
PCAC still exists. Aswas discussed inRef. [19] in detail, it is
well known that the PCAC is broken by the rotational 1=Nc
corrections. Several expedients were suggested but they also
suffered from other problems. This conceptual discrepancy
is deeply rooted in a partial consideration of the large Nc
expansion. While we expect that a possible solution may
come from the consistent treatment of the 1=Nc corrections
by including the quantum fluctuations of the mesons that is
also of order 1=Nc, it is of great difficulty to consider them
within the present framework. On the other hand, the
rotational 1=Nc corrections correctly reproduce the result
of gA ¼ ðNc þ 2Þ=3 in the limit of NRQM[40]. Having kept
this problem in mind, we will investigate the axial-vector
form factors of the baryon decuplet, which have never been
studied within the framework of the χQSM.
The present paper is organized as follows: in Sec. II, we

recapitulate the axial-vector form factors of the baryon
decuplet. In Sec. III, we show succinctly how to compute
them within the framework of the χQSM. In Sec. IV, we
first present the results of the axial-vector form factors of
the Δþ isobar and Ω− hyperon, scrutinizing the effects of
flavor SU(3) symmetry breaking. In order to compare the
present results with those from the lattice data, we first
derive the form factors with the pion mass varied from the
physical value to unphysical ones. The results are then
compared with those from the lattice QCD with the
corresponding values of the pion mass employed. We show
the results of the axial-vector form factors of all other
members of the baryon decuplet, emphasizing the effects of
flavor SU(3) symmetry breaking. Finally, we show the
results for the axial charges in comparison with those from
other approaches. The results of the axial masses and axial
radii are also presented. In the last section, we summarize
the present work and give outlook for future works.

II. AXIAL-VECTOR FORM FACTORS OF THE
BARYON DECUPLET

The axial-vector current is defined as

Aa
μðxÞ ¼ ψ̄ðxÞγμγ5

λa

2
ψðxÞ; ð1Þ

where ψðxÞ denotes the quark field ψ ¼ ðu; d; sÞ in flavor
space. The λa stand for the well-known flavor SU(3)
Gell-Mann matrices. The superscript a represents one of
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a ¼ 0, 3, 8 that correspond to the singlet, triplet, and octet
currents, respectively. By using the Lorentz structure and
the consideration of spin, parity, and charge conjugation,
we can parametrize the matrix element of the axial-vector
current between the baryon decuplet with spin 3=2 in terms
of four different real form factors [1,41],

hBðp0; J03ÞjAa
μð0ÞjBðp; J3Þi

¼ −ūαðp0; J03Þ
�
γμ

�
gðaÞB1 ðq2Þηαβ þ hðaÞB1 ðq2Þqαqβ

4M2
B

�

þ qμ
2MB

�
gðaÞB3 ðq2Þηαβ þ hðaÞB3 ðq2Þqαqβ

4M2
B

��
γ5uβðp; J3Þ;

ð2Þ
where MB is the mass of the baryon involved. ηαβ
represents the metric tensor of Minkowski space, expressed

as ηαβ ¼ diagð1;−1;−1;−1Þ. qα designates the momentum
transfer qα ¼ p0

α − pα and its square is given as q2 ¼ −Q2

with Q2 > 0. J3 (J03) is the eigenvalue of the third
component of the spin operator J (J0), which is projected
along the direction of the momentum p (p0). uαðp; J3Þ is
the Rarita-Schwinger spinor that describes a decuplet
baryon with spin 3=2 [42], carrying the momentum
p and J3, which can be described by the combination of
the polarization vector and the Dirac spinor, uαðp; J3Þ ¼P

i;s C
3
2
J3
1i1

2
s
ϵαi ðpÞusðpÞ. It satisfies the Dirac equation and the

auxiliary equations pαuαðp; J3Þ ¼ 0 and γαuαðp; J3Þ ¼ 0.
In the Breit frame, the form factors defined in Eq. (2)

are expressed in terms of the spatial parts of the axial-
vector current projected by the spherical basis vectors
en [43,44],

gðaÞB1 ðQ2Þ ¼ −
ffiffiffi
3

2

r
MB

EB
hBðp0; 3=2Þje1 · Aað0ÞjBðp; 1=2Þi;

hðaÞB1 ðQ2Þ ¼ −
ffiffiffi
3

2

r
4M5

B

E3
BQ

2

�
2M2

B þQ2

2M2
B

hBðp0; 3=2Þje1 · Aað0ÞjBðp; 1=2Þi −
ffiffiffi
3

p

2
hBðp0; 1=2Þje1 · Aað0ÞjBðp;−1=2Þi

�
;

gðaÞB3 ðQ2Þ ¼ −
4M2

B

Q2

�
hBðp0; 3=2Þje0 · Aað0ÞjBðp; 3=2Þi −

ffiffiffi
3

2

r
MB

EB
hBðp0; 3=2Þje1 · Aað0ÞjBðp; 1=2Þi

�
;

hðaÞB3 ðQ2Þ ¼ 8M6
B

E2
BQ

4

�
3hBðp0; 1=2Þje0 · Aað0ÞjBðp; 1=2Þi −

ffiffiffi
3

p ð2M2
B þQ2Þffiffiffi

2
p

EBMB

hBðp0; 3=2Þje1 · Aað0ÞjBðp; 1=2Þi

þ 3MBffiffiffi
2

p
EB

hBðp0; 1=2Þje1 · Aað0ÞjBðp;−1=2Þi −M2
B þQ2

M2
B

hBðp0; 3=2Þje0 · Aað0ÞjBðp; 3=2Þi
�
; ð3Þ

where EB denotes the energy of the corresponding
baryon, i.e., EB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

B þQ2=4
p

, and en are expressed
explicitly in terms of the Cartesian basis vectors e0 ¼ ẑ,
e1 ¼ −ðx̂þ iŷÞ= ffiffiffi

2
p

, e−1 ¼ ðx̂ − iŷÞ= ffiffiffi
2

p
. We want to men-

tion that the form factors hðaÞB1;3 ðQ2Þ are in fact the same as

gðaÞB1;3 ðQ2Þ apart from the kinematical factors.

III. AXIAL-VECTOR FORM FACTORS IN THE
CHIRAL QUARK-SOLITON MODEL

The χQSM is constructed by the effective chiral action as
a functional of the pseudo-Nambu-Goldstone (pNG) field
πa given as

Seff ½πa� ¼ −NcTr lnD; ð4Þ

where Tr represents the functional trace running over four-
dimensional Euclidean space-time, spin, flavor, and color
spaces. The Nc is the number of colors. D designates the
one-body Dirac operator defined by

D ≔ i=∂ þ iMUγ5 þ im̂; ð5Þ
where M stands for the dynamical quark mass and Uγ5ðxÞ
denotes the flavor SU(3) chiral field defined by

Uγ5ðxÞ ≔ 1þ γ5
2

UðxÞ þ 1 − γ5
2

U†ðxÞ; ð6Þ

where UðxÞ ¼ expðiλaπaðxÞ=fπÞ with the pion decay con-
stant fπ . m̂ in Eq. (5) represents the current quark mass
matrix given as m̂ ¼ diagðmu; md; msÞ in flavor space.
We assume the isospin symmetry in this work, so that the
current quark mass of the up and down quarks are set equal
to each other, i.e., mu¼md with their average mass
m̄¼ðmuþmdÞ=2. Then, the current quark mass matrix is
written as m̂ ¼ diagðm̄; m̄; msÞ ¼ m̄þ δm: δm includes
the mass of the strange current quark, which can be
decomposed as

δm ¼ m11þm8λ
8; ð7Þ

wherem1 andm8 represent the singlet and octet components
of the current quarkmasses, respectively:m1¼ð−m̄þmsÞ=3
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andm8 ¼ ðm̄ −msÞ=
ffiffiffi
3

p
. The Dirac operator (5) with γ4 can

be written as

γ4D ¼ −i∂4 þ hðUðπaÞÞ − δm; ð8Þ

where ∂4 stands for the time derivative in Euclidean space.
hðUÞ is called the one-body Dirac Hamiltonian written as

hðUÞ ¼ iγ4γi∂i − γ4MUγ5 − γ4m̄: ð9Þ

The presence of the m̄ in the Hamiltonian is required to
reproduce correctly the Yukawa tail of the pion field, which
plays an essential role in describing the isovector charge
radii of the proton [45].
In the flavor SU(3), we need to incorporate the hedgehog

structure of the pion field [18,46] by embedding the SU(2)
USUð2ÞðxÞ field into SU(3) such that the hedgehog sym-
metry is preserved. The pion field with hedgehog symmetry
is expressed as

πi ¼ niPðrÞ; i ¼ 1; 2; 3; ð10Þ

where ni ¼ xi=r with r ¼ jxj and PðrÞ represents the
profile function of the chiral soliton. All other components
of πa are set equal to zero. Thus, to preserve this hedgehog
symmetry, the SU(3) UðxÞ field can be constructed by the
trivial embedding [18]

UðxÞ¼ expðiπaλa=fπÞ¼
�
expðin · τPðrÞ=fπÞ 0

0 1

�
: ð11Þ

In the pion mean-field approximation, the pion mean field
arises as the solution of the classical equation of motion,
which is derived from δSeff=δPðrÞ ¼ 0. The equation of
motion can be solved self-consistently, which resembles the
Hartree approximation in many-body problems.
We can derive the matrix elements of the axial-vector

current (2) by using the functional integral,

hBðp0; J03ÞjAa
μð0ÞjBðp; J3Þi ¼

1

Z
lim
T→∞

exp

�
ip4

T
2
− ip0

4

T
2

�Z
d3xd3y expð−ip0 · yþ ip · xÞ

×
Z

Dπa
Z

Dψ

Z
Dψ†JBðy; T=2Þψ†ð0Þγ4γμγ5

λa

2
ψð0ÞJ†Bðx;−T=2Þ

× exp

�
−
Z

d4rψ†iDðπaÞψ
�
; ð12Þ

where the baryon states jBðp; J3Þi and hBðp0; J03Þj are, respectively, written in terms of Ioffe-type baryonic currents,

jBðp; J3Þi ¼ lim
x4→−∞

expðip4x4Þ
1ffiffiffiffi
Z

p
Z

d3x expðip · xÞJ†Bðx; x4Þj0i;

hBðp0; J03Þj ¼ lim
y4→∞

expð−ip0
4y4Þ

1ffiffiffiffi
Z

p
Z

d3y expð−ip0 · yÞh0jJBðy; y4Þ; ð13Þ

where JBðxÞ denotes the Ioffe-type current consisting of Nc valence quarks [47],

JBðxÞ ¼
1

Nc!
ϵi1���iNc

Γα1���αNc
JJ3TT3Y

ψα1i1ðxÞ � � �ψαNc iNc
ðxÞ; ð14Þ

with spin-flavor and color indices α1 � � �αNc
and i1 � � � iNc

,
respectively. The matrices Γα1���αNc

JJ3TT3Y
secure the baryon state

with pertinent quantum numbers JJ3TT3Y by projecting
out. Similarly, we can express the creation current operator
J†BðxÞ [9,19].
In order to quantize the chiral soliton, we have to

perform the functional integral over the pNG fields.
Since we use the pion mean-field approximation or the
saddle point approximation, we neglect the 1=Nc pion-loop
corrections. However, we have to take into account the zero
modes that do not change the energy of the soliton. Thus,
the functional integral over the U field is replaced by those

over both the rotational and translational zero modes. We
refer to Ref. [21] for details. The integral over the trans-
lational zero modes yields naturally the Fourier transform,
which indicates that the baryon state has the proper trans-
lational symmetry. On the other hand, by performing the
rotational zero-mode quantization, we can restore the
rotational symmetries. Thus, the zero-mode quantization
leads to the collective Hamiltonian,

Hcoll ¼ Hsym þHsb; ð15Þ

where
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Hsym ¼ Mcl þ
1

2I1

X3
i¼1

Ĵ2i þ
1

2I2

X7
p¼4

Ĵ2p;

Hsb ¼ αDð8Þ
88 þ βŶ þ γffiffiffi

3
p

X3
i¼1

Dð8Þ
8i Ĵi: ð16Þ

Here, I1 and I2 represent the moments of inertia for the

soliton and Dð8Þ
ab denote SU(3) Wigner D functions. The

inertial parameters α, β, and γ, which break flavor SU(3)
symmetry explicitly, are expressed in terms of the moments
of inertia I1 and I2, and the anomalous moments of inertia
K1 and K2,

α ¼
�
−
ΣπN

3m̄
þ K2

I2

�
ms;

β ¼ −
K2

I2
ms; γ ¼ 2

�
K1

I1
−
K2

I2

�
ms; ð17Þ

where ΣπN stands for the pion-nucleon Σ term. In the
presence of the flavor SU(3) symmetry breaking term Hsb,
the collective wave functions of the baryon decuplet are no
more in pure states but are mixed with states in higher
representations. The states of the baryon decuplet are then
obtained by the standard second-order perturbation theory,

jB103=2i¼ j103=2;BiþaB27j273=2;BiþaB35j353=2;Bi; ð18Þ

with the mixing coefficients,

aB27 ¼ a27

2
666664

ffiffiffiffiffiffiffiffiffiffi
15=2

p
2ffiffiffiffiffiffiffiffi
3=2

p
0

3
777775
; aB35 ¼ a35

2
666664

5=
ffiffiffiffiffi
14

p

2
ffiffiffiffiffiffiffiffi
5=7

p
3

ffiffiffiffiffiffiffiffiffiffi
5=14

p
2

ffiffiffiffiffiffiffiffi
5=7

p

3
777775
; ð19Þ

respectively, in the basis ½Δ;Σ�;Ξ�;Ω�. The parameters a27
and a35 are written as

a27 ¼ −
I2
8

�
αþ 5

6
γ

�
; a35 ¼ −

I2
24

�
α −

1

2
γ

�
; ð20Þ

which have been already determined numerically in
Ref. [48]: a27 ¼ 0.126 and a35 ¼ 0.035. Each state in
Eq. (18) is given in terms of the SU(3) Wigner D functions
in such a way that they satisfy the quantization condi-
tion [16].
Having calculated Eq. (12) with the zero-mode quanti-

zations, we can derive the final expressions of the axial-
vector form factors,

gð0ÞB1 ðQ2Þ ¼ hĴ3i
3I1

fBB
0 ðQ2Þ − BB

2 ðQ2Þg þ 2ms

3
ffiffiffi
3

p hDð8Þ
83 i

�
K1

I1
fBB

0 ðQ2Þ − BB
2 ðQ2Þg − fIB

0 ðQ2Þ − IB
2 ðQ2Þg

�
; ð21Þ

gð0ÞB3 ðQ2Þ ¼ hĴ3i
3I1

fB0B
0 ðQ2Þ þ B0B

2 ðQ2Þg þ 2ms

3
ffiffiffi
3

p hDð8Þ
83 i

�
K1

I1
fB0B

0 ðQ2Þ þ B0B
2 ðQ2Þg − fI 0B

0 ðQ2Þ þ I 0B
2 ðQ2Þg

�
; ð22Þ

for the flavor singlet,

gðaÞB1 ðQ2Þ ¼ hDð8Þ
a3 i
3

fAB
0 ðQ2Þ −AB

2 ðQ2Þg þ 1

3
ffiffiffi
3

p
I1

�
hDð8Þ

a8 Ĵ3i þ
2msffiffiffi
3

p K1hDð8Þ
83 D

ð8Þ
a8 i

�
fBB

0 ðQ2Þ − BB
2 ðQ2Þg

þ dpq3
3I2

�
hDð8Þ

ap Ĵqi þ
2msffiffiffi
3

p K2hDð8Þ
apD

ð8Þ
8q i

�
fCB0 ðQ2Þ − CB2 ðQ2Þg − ihDð8Þ

a3 i
6I1

fDB
0 ðQ2Þ −DB

2 ðQ2Þg

þ 2ms

9
ðhDð8Þ

a3 i − hDð8Þ
88 D

ð8Þ
a3 iÞfHB

0 ðQ2Þ −HB
2 ðQ2Þg − 2ms

9
hDð8Þ

83 D
ð8Þ
a8 ifIB

0 ðQ2Þ − IB
2 ðQ2Þg

−
2ms

3
ffiffiffi
3

p dpq3hDð8Þ
apD

ð8Þ
8q ifJ B

0 ðQ2Þ − J B
2 ðQ2Þg; ð23Þ

gðaÞB3 ðQ2Þ ¼ hDð8Þ
a3 i
3

fA0B
0 ðQ2Þ þA0B

2 ðQ2Þg þ 1

3
ffiffiffi
3

p
I1

�
hDð8Þ

a8 Ĵ3i þ
2msffiffiffi
3

p K1hDð8Þ
83 D

ð8Þ
a8 i

�
fB0B

0 ðQ2Þ þ B0B
2 ðQ2Þg

þ dpq3
3I2

�
hDð8Þ

ap Ĵqi þ
2msffiffiffi
3

p K2hDð8Þ
apD

ð8Þ
8q i

�
fC0B0 ðQ2Þ þ C0B2 ðQ2Þg − ihDð8Þ

a3 i
6I1

fD0B
0 ðQ2Þ þD0B

2 ðQ2Þg

þ 2ms

9
ðhDð8Þ

a3 i − hDð8Þ
88 D

ð8Þ
a3 iÞfH0B

0 ðQ2Þ þH0B
2 ðQ2Þg − 2ms

9
hDð8Þ

83 D
ð8Þ
a8 ifI 0B

0 ðQ2Þ þ I 0B
2 ðQ2Þg

−
2ms

3
ffiffiffi
3

p dpq3hDð8Þ
apD

ð8Þ
8q ifJ 0B

0 ðQ2Þ þ J 0B
2 ðQ2Þg; ð24Þ
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for the nonsinglet. The indices p and q run over 4 to 7. The
dapq stand for the SU(3) symmetric tensors. AB

0ð2Þ to J B
0;ð2Þ

andA0B
0ð2Þ to J

0B
0;ð2Þ represent components of the axial-vector

form factors, of which the explicit expressions can be found
in Appendix A and Refs. [24,49]. The h� � �i are just the
short-handed notations for the matrix elements of the SU(3)
Wigner D function between the decuplet baryons. The
explicit results for the matrix elements of the SU(3) Wigner
D function can be found in Appendix B. As mentioned in
the Introduction, we will follow the symmetry-conserving
quantization [20], which makes it possible to remove
spurious terms by using the limit of the NRQM.
The contributions coming from the flavor SU(3) sym-

metry breaking consist of two different terms, i.e., that from
the effective chiral action and that from the collective wave
functions, which are decomposed as

gðaÞB
1ð3Þ ðQ2Þ ¼ ðgðaÞB

1ð3Þ ðQ2ÞÞðsymÞ þ ðgðaÞB
1ð3Þ ðQ2ÞÞðopÞ

þ ðgðaÞB
1ð3Þ ðQ2ÞÞðwfÞ; ð25Þ

where ðgðaÞB
1ð3Þ ðQ2ÞÞðsymÞ, ðgðaÞB

1ð3Þ ðQ2ÞÞðopÞ, and ðgðaÞB
1ð3Þ ðQ2ÞÞðwfÞ

correspond, respectively, to the flavor SU(3) symmetric
term, the flavor SU(3) symmetry-breaking term from
the effective chiral action, and the collective wave func-
tions. The singlet axial-vector form factors (a ¼ 0) can be
written as

ðgð0ÞB1 ðQ2ÞÞðsymÞ ¼ J3
3I1

fBB
0 ðQ2Þ − BB

2 ðQ2Þg; ð26Þ

ðgð0ÞB3 ðQ2ÞÞðsymÞ ¼ J3
3I1

fB0B
0 ðQ2Þ þ B0B

2 ðQ2Þg; ð27Þ

ðgð0ÞB1 ðQ2ÞÞðopÞ ¼ −
msY
12

�
K1

I1
fBB

0 ðQ2Þ − BB
2 ðQ2Þg

− fIB
0 ðQ2Þ − IB

2 ðQ2Þg
�
; ð28Þ

ðgð0ÞB3 ðQ2ÞÞðopÞ ¼ −
msY
12

�
K1

I1
fB0B

0 ðQ2Þ þ B0B
2 ðQ2Þg

− fI 0B
0 ðQ2Þ þ I 0B

2 ðQ2Þg
�
; ð29Þ

ðgð0ÞB1 ðQ2ÞÞðwfÞ ¼ 0: ð30Þ

ðgð0ÞB3 ðQ2ÞÞðwfÞ ¼ 0: ð31Þ

Note that there are no Nc leading-order contributions to the
singlet axial-vector form factors, which is the well-known
fact from any chiral solitonic models. For example, a simple
chirally symmetric version of the Skyrme model yields the

null result of gð0ÞA [50]. Since the singlet axial-vector constant
of the proton is just its quark spin content, chiral solitonic
models explain rather well the reason why the quark spin
content of the proton turns out very small experimentally.
Moreover, the linearms corrections from the collectivewave
functions also vanish. However, as we will show later
explicitly, the linear ms corrections contribute most domi-

nantly to the gð0Þ3 ðQ2Þ form factors of the baryon decuplet
except for those with hypercharge Y ¼ 0. As written in
Eqs. (26) and (27), the rotational 1=Nc corrections are flavor

independent; i.e., they contribute equally to gð0Þ3 ðQ2Þ form
factors for any hyperons in the decuplet.
The triplet axial-vector form factors (a ¼ 3) are

expressed as

ðgð3ÞB1 ðQ2ÞÞðsymÞ ¼−
T3

24

�
2fAB

0 ðQ2Þ−AB
2 ðQ2Þg−BB

0 ðQ2Þ−BB
2 ðQ2Þ

I1
−
CB0 ðQ2Þ−CB2 ðQ2Þ

I2
−
ifDB

0 ðQ2Þ−DB
2 ðQ2Þg

I1

�
; ð32Þ

ðgð3ÞB3 ðQ2ÞÞðsymÞ ¼ −
T3

24

�
2fA0B

0 ðQ2Þ þA0B
2 ðQ2Þg − B0B

0 ðQ2Þ þ B0B
2 ðQ2Þ

I1
−
C0B0 ðQ2Þ þ C0B2 ðQ2Þ

I2
−
ifD0B

0 ðQ2Þ þD0B
2 ðQ2Þg

I1

�
;

ð33Þ

ðgð3ÞB1 ðQ2ÞÞðopÞ ¼−
msT3

378

2
6664

0
BBB@
5

3

1

0

1
CCCA
�
K1

I1
fBB

0 ðQ2Þ−BB
2 ðQ2Þg−fIB

0 ðQ2Þ−IB
2 ðQ2Þg

�

þ

0
BBB@
11

15

19

0

1
CCCA
�
K2

I2
fCB0 ðQ2Þ−CB2 ðQ2Þg−fJ B

0 ðQ2Þ−J B
2 ðQ2Þg

�
þ

0
BBB@
16

18

20

21

1
CCCAfHB

0 ðQ2Þ−HB
2 ðQ2Þg

3
7775; ð34Þ
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ðgð3ÞB3 ðQ2ÞÞðopÞ ¼−
msT3

378

2
6664

0
BBB@
5

3

1

0

1
CCCA
�
K1

I1
fB0B

0 ðQ2ÞþB0B
2 ðQ2Þg−fI 0B

0 ðQ2ÞþI 0B
2 ðQ2Þg

�

þ

0
BBB@
11

15

19

0

1
CCCA
�
K2

I2
fC0B0 ðQ2ÞþC0B2 ðQ2Þg−fJ 0B

0 ðQ2ÞþJ 0B
2 ðQ2Þg

�
þ

0
BBB@
16

18

20

21

1
CCCAfH0B

0 ðQ2ÞþH0B
2 ðQ2Þg

3
7775; ð35Þ

ðgð3ÞB1 ðQ2ÞÞðwfÞ ¼ −
T3

24

2
6664
a27
3

0
BBB@

5

6

7

0

1
CCCA
�
2fAB

0 ðQ2Þ −AB
2 ðQ2Þg þ 3fBB

0 ðQ2Þ − BB
2 ðQ2Þg

I1

þ CB0 ðQ2Þ − CB2 ðQ2Þ
I2

−
ifDB

0 ðQ2Þ −DB
2 ðQ2Þg

I1

�

þ a35
7

0
BBB@

1

2

3

0

1
CCCA
�
2fAB

0 ðQ2Þ −AB
2 ðQ2Þg − 5fBB

0 ðQ2Þ − BB
2 ðQ2Þg

I1

þ 5fCB0 ðQ2Þ − CB2 ðQ2Þg
I2

−
ifDB

0 ðQ2Þ −DB
2 ðQ2Þg

I1

�
3
7775; ð36Þ

ðgð3ÞB3 ðQ2ÞÞðwfÞ ¼ −
T3

24

2
6664
a27
3

0
BBB@

5

6

7

0

1
CCCA
�
2fA0B

0 ðQ2Þ þA0B
2 ðQ2Þg þ 3fB0B

0 ðQ2Þ þ B0B
2 ðQ2Þg

I1

þ C0B0 ðQ2Þ þ C0B2 ðQ2Þ
I2

−
ifD0B

0 ðQ2Þ þD0B
2 ðQ2Þg

I1

�

þ a35
7

0
BBB@

1

2

3

0

1
CCCA
�
2fA0B

0 ðQ2Þ þA0B
2 ðQ2Þg − 5fB0B

0 ðQ2Þ þ B0B
2 ðQ2Þg

I1

þ 5fC0B0 ðQ2Þ þ C0B2 ðQ2Þg
I2

−
ifD0B

0 ðQ2Þ þD0B
2 ðQ2Þg

I1

�
3
7775: ð37Þ

Note that they are proportional to the eigenvalues of the third component of the isospin operator, T3. The octet axial-vector
form factors (a ¼ 8) are obtained as

ðgð8ÞB1 ðQ2ÞÞðsymÞ ¼−
Y

16
ffiffiffi
3

p
�
2fAB

0 ðQ2Þ−AB
2 ðQ2Þg−BB

0 ðQ2Þ−BB
2 ðQ2Þ

I1
−
CB0 ðQ2Þ−CB2 ðQ2Þ

I2
−
ifDB

0 ðQ2Þ−DB
2 ðQ2Þg

I1

�
;

ð38Þ
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ðgð8ÞB3 ðQ2ÞÞðsymÞ ¼−
Y

16
ffiffiffi
3

p
�
2fA0B

0 ðQ2ÞþA0B
2 ðQ2Þg−B0B

0 ðQ2ÞþB0B
2 ðQ2Þ

I1
−
C0B0 ðQ2ÞþC0B2 ðQ2Þ

I2
−
ifD0B

0 ðQ2ÞþD0B
2 ðQ2Þg

I1

�
;

ð39Þ

ðgð8ÞB1 ðQ2ÞÞðopÞ ¼ ms

252
ffiffiffi
3

p

2
6664

0
BBB@

3

2

−3
−12

1
CCCA
�
K1

I1
fBB

0 ðQ2Þ−BB
2 ðQ2Þg−fIB

0 ðQ2Þ−IB
2 ðQ2Þg

�

þ

0
BBB@

15

−4
−15
−18

1
CCCA
�
K2

I2
fCB0 ðQ2Þ−CB2 ðQ2Þg−fJ B

0 ðQ2Þ−J B
2 ðQ2Þg

�
−2

0
BBB@

12

1

−12
−27

1
CCCAfHB

0 ðQ2Þ−HB
2 ðQ2Þg

3
7775; ð40Þ

ðgð8ÞB3 ðQ2ÞÞðopÞ ¼ ms

252
ffiffiffi
3

p

2
6664

0
BBB@

3

2

−3
−12

1
CCCA
�
K1

I1
fB0B

0 ðQ2ÞþB0B
2 ðQ2Þg−fI 0B

0 ðQ2ÞþI 0B
2 ðQ2Þg

�

þ

0
BBB@

15

−4
−15
−18

1
CCCA
�
K2

I2
fC0B0 ðQ2ÞþC0B2 ðQ2Þg−fJ 0B

0 ðQ2ÞþJ 0B
2 ðQ2Þg

�

−2

0
BBB@

12

1

−12
−27

1
CCCAfH0B

0 ðQ2ÞþH0B
2 ðQ2Þg

3
7775; ð41Þ

ðgð8ÞB1 ðQ2ÞÞðwfÞ ¼ 1

16
ffiffiffi
3

p

2
6664
a27
3

0
BBB@
15

8

3

0

1
CCCA
�
2fAB

0 ðQ2Þ−AB
2 ðQ2Þgþ3fBB

0 ðQ2Þ−BB
2 ðQ2Þg

I1

þCB0 ðQ2Þ−CB2 ðQ2Þ
I2

−
ifDB

0 ðQ2Þ−DB
2 ðQ2Þg

I1

�

−
a35
7

0
BBB@
5

8

9

8

1
CCCA
�
2fAB

0 ðQ2Þ−AB
2 ðQ2Þg−5fBB

0 ðQ2Þ−BB
2 ðQ2Þg

I1
þ5fCB0 ðQ2Þ−CB2 ðQ2Þg

I2

−
ifDB

0 ðQ2Þ−DB
2 ðQ2Þg

I1

�
3
7775; ð42Þ
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ðgð8ÞB3 ðQ2ÞÞðwfÞ ¼ 1

16
ffiffiffi
3

p

2
6664
a27
3

0
BBB@

15

8

3

0

1
CCCA
�
2fA0B

0 ðQ2Þ þA0B
2 ðQ2Þg þ 3fB0B

0 ðQ2Þ þ B0B
2 ðQ2Þg

I1

þ C0B0 ðQ2Þ þ C0B2 ðQ2Þ
I2

−
ifD0B

0 ðQ2Þ þD0B
2 ðQ2Þg

I1

�

−
a35
7

0
BBB@

5

8

9

8

1
CCCA
�
2fA0B

0 ðQ2Þ þA0B
2 ðQ2Þg − 5fB0B

0 ðQ2Þ þ B0B
2 ðQ2Þg

I1

þ 5fC0B0 ðQ2Þ þ C0B2 ðQ2Þg
I2

−
ifD0B

0 ðQ2Þ þD0B
2 ðQ2Þg

I1

�
3
7775: ð43Þ

IV. RESULTS AND DISCUSSION

In the χQSM, the only free parameter is the dynamical
quark mass,M. Though it is determined by the saddle point
approximation from the instanton vacuum, it is fixed by
reproducing various properties of the nucleon. We will use
the value of M as M ¼ 420 MeV as chosen in previous
works. Note that the numerical results are rather insensitive
to the values of M at least within the range of
M ¼ ð400–450Þ MeV. The pion decay constant is deter-
mined by using the experimental data fπ ¼ 93 MeV. The
current-quark masses are fixed by the pion and kaon
masses. In the present work, we deal with the strange
current quark mass perturbatively. We will take the value of

the strange current quark mass to bems ¼ 180 MeV; that is
larger than those taken in chiral perturbation theory. The
reason is that with this value of 180 MeV, we are able to
reproduce the mass splittings of the hyperons and singly
heavy baryons. Thus, we have no free parameter to fit in the
present calculation.
Since there are numerous form factors of the baryon

decuplet, we will first concentrate on those of the Δþ isobar
and Ω− hyperon. In the left panel of Fig. 1, we draw the

results of the triplet axial-vector form factor gð3Þ1 ðQ2Þ of the
Δþ, whereas in the right panel, we show those of gð3Þ3 ðQ2Þ.
As for those for other members of the baryon decuplet, we
will display them on Fig. 5 and Fig. 6 and will discuss them

FIG. 1. Effects of the explicit flavor SU(3) symmetry breaking on the triplet axial-vector form factors gð3Þ1 ðQ2Þ and gð3Þ3 ðQ2Þ of the Δþ

isobar. In the left panel, the results of gð3Þ1 ðQ2Þ are drawn, whereas in the right panel, those of gð3Þ3 ðQ2Þ are depicted. The solid and dashed
curves represent the total results and those in the SU(3) symmetric case, respectively.
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later on. Note that as defined in Eq. (2), gð3Þ1 ðQ2Þ form
factor is the most well-known axial-vector form factor.
A great deal of theoretical works have considered this one,
because its value at Q2 ¼ 0 gives the axial charge of the
Δþ. The Goldberger-Treiman relation connects it to the
strong coupling constant gπΔΔ. As depicted in the left panel

of Fig. 1, the results of gð3Þ1 ðQ2Þ decrease monotonically
and slowly as Q2 increases. The effects of the linear ms
corrections are marginal. They provide approximately

overall 10% correction to the form factor gð3Þ1 ðQ2Þ. The
right panel of Fig. 1 exhibits the numerical results for the

second axial-vector form factor, gð3Þ3 ðQ2Þ of the Δþ. In
contrast with gð3Þ1 ðQ2Þ, the Q2 dependence of gð3Þ3 ðQ2Þ is

prominent. The result of gð3Þ3 ðQ2Þ falls off drastically as Q2

increases. One can understand this behavior as follows: as

shown in Appendix A, all components of gð3Þ3 ðQ2Þ are

proportional to Q−2, which cause such strong Q2 depend-
ence. Moreover, the kinematical prefactor makes the

magnitude of gð3Þ3 ðQ2Þ much larger than that of gð3Þ1 ðQ2Þ.
On the other hand, the effects of flavor SU(3) symmetry

breaking are rather small on gð3Þ3 ðQ2Þ.
In Fig. 2, we show the results of the singlet axial-vector

form factors. As shown in the left panel of Fig. 2, the effects
of the linear ms are almost negligible on the gð0Þ1 ðQ2Þ form
factors of both Δþ and Ω−. Note that the singlet axial-

vector constant, gð0ÞB1 ð0Þ, explains the quark spin content of
the corresponding baryon. If one neglects the effects of

flavor SU(3) symmetry breaking, gð0ÞB1 ðQ2Þ is independent
of the flavor content of a decuplet baryon, as explicitly

expressed in Eq. (26). gð0ÞB3 ðQ2Þ is also flavor independent
[see Eq. (27)] without ms corrections. However, when it

comes to the gð0Þ3 ðQ2Þ form factors, the linear ms

FIG. 2. Effects of the explicit flavor SU(3) symmetry breaking on the singlet axial-vector form factors gð3Þ1 ðQ2Þ and gð3Þ3 ðQ2Þ of theΔþ

isobar and Ω−. In the upper left panel, the results of gð0Þ1 ðQ2Þ of Δþ are drawn, whereas in the upper right panel, those of gð0ÞΔ
þ

3 ðQ2Þ are
depicted. The lower left panel shows the results of the first Ω− singlet axial-vector form factor gð0Þ1 ðQ2Þ, while the lower right one

illustrates those of the gð0ÞΩ
−

3 ðQ2Þ. The solid and dashed curves represent the total results and those in the SU(3) symmetric case,
respectively. Notations are the same as in Fig. 1.
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corrections contribute remarkably large to them. This can
be understood by scrutinizing Eq. (25) for the singlet axial-
vector form factors, i.e., when a ¼ 0. The flavor SU(3)

symmetric part ½gð0ÞB3 ðQ2Þ�ðsymÞ contains only the rotational
1=Nc corrections. Since there are no wave function
corrections, we have only the linear ms corrections from
the current quark mass term of the effective chiral action.
The tensor contribution I 0B

2 ðQ2Þ is the most dominant one

that governs the behavior of gð0ÞΔ
þ

3 ðQ2Þ. Even though we
ignore all other terms, the result is not much changed. If one
looks into the expression for I 0B

2 ðQ2Þ, which is given in
Appendix A, one can easily see that in general the tensor
contributions are dominant over the scalar ones kinemat-
ically. We can find a similar tendency in the Ω− singlet
axial-vector form factors as shown in the lower panel of

Fig. 2. In the case of Ω−, the results of gð0Þ1 ðQ2Þ are very
similar to those ofΔþ. The rotational 1=Nc corrections give

the positive values of gð0Þ3 ðQ2Þ for Ω−, which are the same
as in the case ofΔþ. This is due to the fact that as explained
previously, the rotational 1=Nc corrections do not depend

on the flavor of the baryon decuplet. On the other hand, the
linear ms contributions become negative to the gð0ÞΩ

−

3 ðQ2Þ
form factor. This is due to the fact that the hypercharge is
present in Eq. (29). One could suspect that the second-order
ms corrections might come into play in describing the
gð0Þ3 ðQ2Þ form factors of the baryon decuplet. However, the
second-order ms corrections should be suppressed at least
by two reasons: firstly, the parameter ðms=ΛÞ2 is much
smaller than the leading term, where Λ is the cutoff mass or
the normalization scale of the χQSM, which is of order
1 GeV. Secondly, expressions for the second-order ms
corrections contain doubly summed energy denominators,
which lead to further suppression. So, we expect that the
second-order ms corrections should be much smaller than
the linear ms corrections.
Figure 3 depicts the octet axial-vector form factors ofΔþ

and Ω−. As illustrated in the upper left panel of Fig. 3, the

linear ms corrections suppress gð8ÞΔ
þ

1 ðQ2Þ by about 17%,

while they are negligible to gð8ÞΩ
−

1 ðQ2Þ as shown in the
lower left panel of Fig. 3. Interestingly, the linear ms

corrections to gð8ÞΩ
−

1 ðQ2Þ become visible as Q2 increases,

FIG. 3. Effects of the explicit flavor SU(3) symmetry breaking on the octet axial-vector form factors of the Δþ and Ω− baryon.
Notations are the same as in Fig. 1.
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though they are still very small. On the other hand, the
results for gð8ÞΔ

þ
3 ðQ2Þ show peculiar behavior. While it

shows a similar tendency of the linear ms corrections to
gð8ÞΔ

þ
1 ðQ2Þ, their magnitude is rather large. Interestingly,
the wave function corrections come into play in this case.
As shown in Eq. (43), the contribution from the 27-plet to
gð8ÞΔ

þ
3 ðQ2Þ dominates over all other contributions, since it
contains A0

2
ΔþðQ2Þ and iD0

2
ΔþðQ2Þ, which are the most

contributive ones. The linear ms corrections arising from
the effective chiral action are much smaller than those of

the wave function corrections. As a result, the gð8ÞΔ
þ

3 ðQ2Þ
form factor is much reduced by the effects of flavor SU(3)
symmetry breaking. The lower right panel of Fig. 3 draws
the numerical results for gð8ÞΩ

−

3 ðQ2Þ. In contrast to the

gð8ÞΔ
þ

3 ðQ2Þ, the linear ms corrections are almost negligible.
The reason can be also found in Eq. (43), where the
contribution of the 27-plet vanishes.
Since there are only the results from lattice QCD on the

triplet axial-vector form factors of the Δþ [1], it is of great
importance to compare the present results with them.
However, before we make a comparison of the present
results with the lattice data, we have to consider the

unphysical pion mass used in the lattice simulation [1].
This means that we need to derive the profile function of the
chiral soliton by solving the equation of motion again. This
can be done as follows: in Eq. (9), we replace the physical
value of the average current quark mass of the up and
down quarks with the unphysical one that corresponds to the
pion mass adopted by the lattice calculation. Then the axial-
vector form factors of thebaryon decuplet canbe recalculated
by using the profile function with the unphysical value of the
pion mass. In fact, the pion mass dependence of baryonic
observables has been already investigated [31,32,51,52] in
the context of the comparison with lattice results.
In Fig. 4, we exhibit the results of the Δþ triplet axial-

vector form factors in comparison with those from the
lattice calculation, taking into account the values of the
unphysical pion mass, which are used in Ref. [1]. As

mentioned previously, hð3Þ1 ðQ2Þ and hð3Þ3 ðQ2Þ are in effect

the same, respectively, as gð3Þ1 ðQ2Þ and gð3Þ3 ðQ2Þ except for
the kinematical factors, which have been expressed implic-
itly in Eq. (3). As depicted in the upper left panel of Fig. 4,

the results of gð3ÞΔ
þ

1 ðQ2Þ increase as larger values of the
unphysical pion mass are used. The Q2 dependence of the

FIG. 4. Numerical results of the triplet axial-vector form factors of the Δþ baryon in comparison with the data taken from lattice
QCD [1].
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form factor tends to be similar to that of the lattice
calculation. However, the lattice data seem to fall off rather
slowly as Q2 increases, compared with the present results.

The upper right panel of Fig. 4 depicts the results for

gð3ÞΔ
þ

3 ðQ2Þ with the pion mass varied. It is interesting to see
that the magnitude of the form factor decreases as large

FIG. 5. Effects of the explicit flavor SU(3) symmetry breaking on gð3ÞB1 ðQ2Þ of the baryon decuplet except for the Δþ andΩ− baryons.
Notations are the same as in Fig. 1.
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pion masses are employed. The lattice data on gð3ÞΔ
þ

3 ðQ2Þ
show relatively smaller fluctuations, compared with those
on other axial-vector form factors. The Q2 dependence

of the present results is in line with the lattice data.
Since there are large uncertainties in the lattice results
and a lack of data in smallerQ2 regions, it is rather difficult

FIG. 6. Effects of the explicit flavor SU(3) symmetry breaking on gð3ÞB3 ðQ2Þ of the baryon decuplet except for the Δþ andΩ− baryons.
Notations are the same as in Fig. 1.
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to make a clear comparison of the present results with those
of the lattice calculation. In the lower panel of Fig. 4, we

compare the results of hð3ÞΔ
þ

1 ðQ2Þ and hð3ÞΔ
þ

3 ðQ2Þ with
those of lattice QCD. Since the lattice data show large

fluctuations in general, we are not able to draw any
meaningful conclusions.
In Fig. 5, we show the numerical results for the triplet

axial-vector form factors gð3Þ1 ðQ2Þ of the baryon decuplet

FIG. 7. Effects of the explicit flavor SU(3) symmetry breaking on gð0ÞB1 ðQ2Þ of the baryon decuplet except for the Δþ andΩ− baryons.
Notations are the same as in Fig. 1.
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except for Δþ and Ω−. The effects of the flavor SU(3)
symmetry breaking are in general marginal. Figure 6

presents those for gð3Þ3 ðQ2Þ of all other members of the
decuplet. The tendency of the linear ms corrections is

basically the same as that for Δþ as discussed in Fig. 1. In
Fig. 7, we illustrate those for the singlet axial-vector form

factors gð0Þ1 ðQ2Þ for the other members of the decuplet.
Again the results look very similar to those ofΔþ andΩ− as

FIG. 8. Effects of the explicit flavor SU(3) symmetry breaking on gð0ÞB3 ðQ2Þ of the baryon decuplet except for the Δþ andΩ− baryons.
Notations are the same as in Fig. 1.
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explained in Fig. 2. As mentioned previously, if one
neglects the effects of flavor SU(3) symmetry breaking,

then gð0ÞB1 ðQ2Þ is flavor independent as clearly shown in

Fig. 7. In Fig. 8, we display the results for the gð0Þ3 ðQ2Þ of

the baryon decuplet except for theΔþ andΩ−. In particular,
those of Σ� do not acquire any contributions from the linear
ms corrections. This can be easily understood by examining
Eqs. (29) and (31). Since Σ� has hypercharge Y ¼ 0, the

FIG. 9. Effects of the explicit flavor SU(3) symmetry breaking on gð8ÞB1 ðQ2Þ of the baryon decuplet except for the Δþ andΩ− baryons.
Notations are the same as in Fig. 1.
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linearms corrections from the effective chiral action vanish.
The wave function corrections do not exist at all for

both gð0Þ1 ðQ2Þ and gð0Þ3 ðQ2Þ. Figures 9 and 10 depict,

respectively, the results for gð8Þ1 ðQ2Þ and gð8Þ3 ðQ2Þ for the

other members of the baryon decuplet again except for Δþ

and Ω−. Interestingly, there are no flavor SU(3) symmetric

contributions to gð8Þ1 ðQ2Þ and gð8Þ3 ðQ2Þ of Σ� because of the
hypercharge of Σ�, as shown in Eqs. (38) and (39). Thus,

FIG. 10. Effects of the explicit flavor SU(3) symmetry breaking on gð8ÞB3 ðQ2Þ of the baryon decuplet except for the Δþ and Ω−

baryons. Notations are the same as in Fig. 1.
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the linear ms corrections are considered to be the leading-
order contributions.
In Table I, we list the results for the triplet axial-

vector constant, i.e., axial charge with the pion mass
varied, intending to compare them with those from
lattice QCD [1,2]. The third row presents the final
results from this work with the value of the physical
pion mass and the strange quark mass ms ¼ 180 MeV,
whereas the second row gives those without linear ms
corrections. The present value of the Δþþ axial charge is
in good agreement with those from the RCQM and χPT.
However, it is rather difficult to compare the present
results with those from lattice QCD. Interestingly, the
present results for the triplet axial-vector constants of
the other members of the baryon decuplet are in better
agreement with the corresponding lattice data. Note that
the lattice data are consistently smaller than the values
obtained in the present work. Those of Σ�þ and Ξ�0
from the RCQM are in very good agreement with the
present results.
In Figs. 11 and 12, we show, respectively, the numerical

results for the triplet axial-vector constants of theΔ isobars,
Σ� and Ξ� as functions of the pion mass, compared them

with the lattice data. The magnitudes of gð3ÞB1 ð0Þ generally
increase as the value of mπ increases. The present results
turn out larger than those of lattice QCD. Figure 13 depicts
the numerical results for the singlet axial-vector constants
of the baryon decuplet as functions of the pion mass in
comparison with the lattice data [2]. As we have mentioned

already, the values of gð0ÞB1 ð0Þ of the baryon decuplet are

almost the same each other. As the pion mass grows larger,

the magnitudes of gð0ÞB1 ð0Þ monotonically increase. When

mπ ¼ 432 MeV is used, those of gð0ÞB1 ð0Þ become larger by
about 30%. Interestingly, the present results get closer to
the lattice data as the value of the pion mass increases. They
are in very good agreement with the lattice data at
mπ ¼ 432 MeV. Note that in the present framework the
singlet axial-vector constants are isospin symmetric. In
Fig. 14, we compare the results for the octet axial-vector
constants of the baryon decuplet with the corresponding
lattice data with the pion mass varied. Again, the magni-
tudes of the octet axial-vector constants also rise as the pion

mass increases as in the case of gð0ÞB1 ð0Þ. However, when
we compare the present results with the lattice data, the
situation turns out opposite. That is, the present results tend
generally to deviate, except for the Σ�, from the lattice ones
as the pion mass increases. When it comes to the case of Σ�,
gð8ÞΣ

�
1 ð0Þ exhibits dependence on mπ similar to the corre-

sponding lattice one. The results for gð8ÞB1 ð0Þ are in good
agreement with the lattice data at mπ ¼ 213 MeV.

Table II lists the numerical results for gð3ÞB3 ð0Þ, gð0ÞB3 ð0Þ,
and gð8ÞB3 ð0Þ, respectively, from the second row till the
fourth row. Since there are no lattice data and no results
from other works, they are the very first results for the
second set of the axial-vector constants. The fifth row lists
the results for the axial radii, which can be derived from the
results for the triplet axial-vector form factors of the baryon
decuplet as follows:

FIG. 11. Dependence of the triplet axial-vector constants of the Δ isobars on the pion mass. The numerical results are drawn in the
solid curves, which are compared with those from lattice QCD (LQCD) [1,2].
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FIG. 13. Dependence of the singlet axial-vector constants gð0ÞB1 ð0Þ on the pion mass. The numerical results are drawn in the solid
curves, which are compared with those from lattice QCD (LQCD) [2].

FIG. 12. Dependence of the triplet axial-vector constants of the Σ� and Ξ� on the pion mass. The numerical results are drawn in the
solid curves, which are compared with those from lattice QCD (LQCD) [2].
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hr2AiB ¼ −6

gð3ÞB1 ð0Þ
∂gð3ÞB1 ðQ2Þ

∂Q2

				
Q2¼0

: ð44Þ

Note that when the strangeness of a decuplet baryon
increases, the value of the axial radius becomes smaller,
as shown in Table II. This can be understood, since the
corresponding mass becomes larger due to the strange-
quark component. It is of great interest to compare the axial
radius of the Δþ with that of the proton, since the axial
radius of the proton is experimentally known. In a recent
review [53], the average value of the proton axial radius is
given as hr2Aip ¼ 0.46ð22Þ fm2. Interestingly, the result
obtained in the present work for the Δþ axial radius is

0.447 fm2, which is very similar to that of the proton. We
want to mention that hr2Aip ¼ 0.536 fm2 was obtained
within the same framework, i.e., the χQSM [24]. This
indicates that the present results for the triplet axial-vector
form factor of Δþ fall off more slowly than the proton one.
A baryon form factor is often parametrized in terms of a

dipole-type parametrization given by

gð3ÞB1 ðQ2Þ ¼ gð3ÞB1 ð0Þ
ð1þ Q2

M2
A
Þ2
; ð45Þ

whereMA is known as the axial mass. This parametrization
relates the axial mass to the axial radius by the following
relation:

FIG. 14. Dependence of the octet axial-vector constant gð8ÞB1 ð0Þ on the pion mass. The numerical results are drawn in the solid curves,
which are compared with those from lattice QCD (LQCD) [2]. Note that the expressions for the octet axial-vector constants in Ref. [2]
are different from the present one by

ffiffiffi
3

p
, so we have considered it for comparison.

TABLE II. Numerical results for the flavor axial-vector constants except for the axial-vector constants gðaÞ1 ð0Þ, axial masses, and axial
radii. All the results are obtained with flavor SU(3) symmetry breaking taken into account.

ms ¼ 180 MeV Δþþ Δþ Δ0 Δ− Σ�þ Σ�0 Σ�− Ξ�0 Ξ�− Ω−

gð3ÞB3 ð0Þ 346.1 115.4 −115.4 −346.1 303.9 0 −303.9 193.7 −193.7 0

gð0ÞB3 ð0Þ 7.822 7.822 7.822 7.822 1.622 1.622 1.622 −8.204 −8.204 −21.936

gð8ÞB3 ð0Þ 50.8 50.8 50.8 50.8 −60.0 −60.0 −60.0 −251.9 −251.9 −542.8
hr2AiB ½fm2� 0.447 0.447 0.447 0.447 0.438 � � � 0.438 0.431 0.431 � � �
MA [GeV] 1.023 1.023 1.023 1.023 1.033 � � � 1.033 1.041 1.041 � � �
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hr2Ai ¼
12

M2
A
: ð46Þ

Thevalue ofMA for the proton is also known experimentally
[54], whereas those of the baryon decuplet are unknown.
Equation (46) already implies that the present result for the
Δþ axial mass should be larger than the proton one that was
obtained also in Ref. [24], MAðpÞ ¼ 0.934 GeV. Indeed,
the present resultMAðΔþÞ ¼ 1.023 GeV is larger than that.
Finally, we want to consider another type of the para-

metrization for the axial-vector form factors. In lattice
calculations, a p-pole parametrization is often adopted
[55–57], which can be expressed as

gð3ÞBi ðQ2Þ ¼ gð3ÞBi ð0Þ
ð1þ Q2

piΛ2
pi
Þpi

: ð47Þ

As drawn in the right panel of Fig. 1, it is rather difficult to fit

gð3ÞΔ
þ

3 ðQ2Þ by using the dipole-type parametrization. On the

other hand, if one parametrizes gð3ÞΔ
þ

3 ðQ2Þ by the p-pole

type (47), then we are able to parametrize gð3ÞΔ
þ

3 ðQ2Þ by
fixing the values of p3 ¼ 1.472 and Λp3

¼ 0.174 GeV.

Similarly, gð8Þ3 ðQ2Þ can be fitted by using the p-pole
parametrization.

V. SUMMARY AND CONCLUSION

We aimed at investigating the axial-vector form factors of
the baryon decuplet within the framework of the self-
consistent chiral quark-soliton model. We consider the
rotational 1=Nc corrections and the linear ms corrections.
Since all the parameters in the model were fixed by
reproducing the proton properties, we did not have any
parameter to fit. We first computed the triplet axial-vector
form factors of the Δþ, because lattice QCD and all other
models concentrated on them. We found that the effects of
flavor SU(3) symmetry breaking turn out very small on the
triplet form factors ofΔþ.We then proceeded to compute the

singlet axial-vector form factors gð0Þ1;3ðQ2Þ. In this case, there
is no leading-order contribution, so that the rotational 1=Nc
and linearms corrections are only involved. Concerning the

gð0ÞB1 ðQ2Þ form factors, the linear ms corrections are almost

negligible. On the other hand, gð0Þ3 ðQ2Þ form factors acquire
in general large contributions from the ms corrections. We
then derived the octet axial-vector form factors of the baryon
decuplet. The effects of flavor SU(3) symmetry breaking on

gð8Þ1 ðQ2Þ are in general very small. However, these linearms
corrections come into play as leading-order contributions in
the case of the Σ� octet axial-vector form factors, since the
symmetric parts vanish because of the values of their

hypercharges. The octet form factors gð8Þ3 ðQ2Þ of the Δ
isobars get large ms contributions whereas those of Ξ� and
Ω− receive tinyms corrections. We have carefully inspected

the dependence of the axial-vector constants as functions of
the pionmass to compare the present results with those from
lattice QCD. We found that the results of the axial-vector
constants turn out larger than the physical ones, when the
unphysical values of the pion mass are employed. The
magnitudes of the triplet axial-vector constants are in
general larger than the lattice data. When it comes to the
singlet axial-vector constants, the present results are in very
good agreement with the lattice data with mπ ¼ 432 MeV
used. On the other hand, the results for the octet axial-vector
constants are in better agreement with the lattice ones
at mπ ¼ 213 MeV.
We also presented the results for the axial radii and axial

masses of the baryon decuplet. We found that the axial
radius of Δþ is very close to the experimental data on the
proton axial radius. Compared with the value of the proton
axial radius derived from the same model, we observed that
the Δþ axial radius is smaller than that of the proton. It
indicates that the triplet axial-vector form factor of Δþ falls
off more slowly than the proton one. When the strangeness
content of a decuplet baryon becomes larger, the corre-
sponding axial radius gets smaller. It indicates that the mass
of a baryon may be connected to the axial radius. We also
obtained the axial masses, which can be regarded as the
inverse of the axial radii. Since the p-pole parametrization
of hadronic form factors is often employed in lattice
calculations, we parametrized the present results of the
axial-vector form factors, in particular, of the triplet ones,
and determined the p and cutoff mass Λp, hoping that
results from lattice QCD will appear in the near future.
Since we have computed all possible axial-vector form

factors with three different flavors, we are able to express
the axial-vector form factors in terms of the flavor-
decomposed form factors. This is also very interesting,
because we can scrutinize the strange-quark spin content
of the Δ isobars and the up- and down-quark spin content of
the Ω− hyperon. The corresponding work will appear
elsewhere. In addition, we can also investigate the transition
axial-vector form factors of the baryon decuplet, which will
provide further understanding of the structure of the baryon
decuplet. The relevant investigation is under way.
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APPENDIX A: COMPONENTS OF THE
AXIAL-VECTOR FORM FACTORS

In this appendix, theQ2-dependent functions in Eqs. (23)
and (24) will be expressed explicitly.AB

0 ðQ2Þ, � � �, J B
0 ðQ2Þ

are defined by
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AB
0 ðQ2Þ ¼ NcMB

EB

Z
d3rj0ðQjrjÞ

�
ϕ†
valðrÞσ · τϕvalðrÞ þ

X
n

ϕ†
nðrÞσ · τϕnðrÞR1ðEnÞ

�
; ðA1Þ

BB
0 ðQ2Þ¼NcMB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

1

Eval−En
ϕ†
valðrÞσϕnðrÞ · hnjτjvali−

1

2

X
n;m

ϕ†
nðrÞσϕmðrÞ · hmjτjniR5ðEn;EmÞ

�
; ðA2Þ

CB0 ðQ2Þ¼NcMB

EB

Z
d3rj0ðQjrjÞ

� X
n0≠val

1

Eval−En0

ϕ†
valðrÞσ ·τϕn0ðrÞhn0jvali−

X
n;m0

ϕ†
nðrÞσ ·τϕm0

ðrÞhm0jniR5ðEn;Em0
Þ
�
;

ðA3Þ

DB
0 ðQ2Þ ¼ NcMB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

sgnðEnÞ
Eval − En

ϕ†
valðrÞðσ × τÞϕnðrÞ · hnjτjvali

þ 1

2

X
n;m

ϕ†
nðrÞσ × τϕmðrÞ · hmjτjniR4ðEn; EmÞ

�
; ðA4Þ

HB
0 ðQ2Þ ¼ NcMB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞσ · τhrjnihnjγ0jvali

þ 1

2

X
n;m

ϕ†
nðrÞσ · τϕmðrÞhmjγ0jniR2ðEn; EmÞ

�
; ðA5Þ

IB
0 ðQ2Þ ¼ NcMB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞσϕnðrÞ · hnjγ0τjvali þ

1

2

X
n;m

ϕ†
nðrÞσϕmðrÞ · hmjγ0τjniR2ðEn; EmÞ

�
;

ðA6Þ

J B
0 ðQ2Þ ¼ NcMB

EB

Z
d3rj0ðQjrjÞ

� X
n0≠val

Nc

Eval − En0

ϕ†
valðrÞσ · τϕn0ðrÞhn0jγ0jvali

þ Nc

X
n;m0

ϕ†
nðrÞσ · τϕm0

ðrÞhm0jγ0jniR2ðEn; Em0
Þ
�
: ðA7Þ

where the regularization functions are defined as

R1ðEnÞ ¼
−En

2
ffiffiffi
π

p
Z

∞

0

ϕðuÞ duffiffiffi
u

p e−uE
2
n ; ðA8Þ

R2ðEn; EmÞ ¼
1

2
ffiffiffi
π

p
Z

∞

0

ϕðuÞ duffiffiffi
u

p Eme−uE
2
m − Ene−uE

2
n

En − Em
; ðA9Þ

R4ðEn; EmÞ ¼
1

2π

Z
∞

0

duϕðuÞ
Z

1

0

dαe−αuE
2
m−ð1−αÞuE2

n
ð1 − αÞEn − αEmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αð1 − αÞp ; ðA10Þ

R5ðEn; EmÞ ¼
sgnðEnÞ − sgnðEmÞ

2ðEn − EmÞ
: ðA11Þ

Here, jvali and jni denote the state of the valence and sea quarks with the corresponding eigenenergies Eval and En of the
one-body Dirac Hamiltonian hðUÞ, respectively.
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AB
2 ðQ2Þ, � � �, J B

2 ðQ2Þ are defined by

AB
2 ðQ2Þ ¼ NcMB

EB

Z
d3rj2ðQjrjÞ½ϕ†

valðrÞf
ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕvalðrÞþ

X
n

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕnðrÞR1ðEnÞ�; ðA12Þ

BB
2 ðQ2Þ ¼ NcMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕnðrÞ · hnjτjvali

−
1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕmðrÞ · hmjτjniR5ðEn; EmÞ

�
; ðA13Þ

CB2 ðQ2Þ ¼ NcMB

EB

Z
d3rj2ðQjrjÞ

� X
n0≠val

1

Eval − En0

ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕn0ðrÞhn0jvali

−
X
n;m0

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕm0

ðrÞhm0jniR5ðEn; Em0
Þ
�
; ðA14Þ

DB
2 ðQ2Þ ¼ NcMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

sgnðEnÞ
Eval − En

ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 × τϕnðrÞ · hnjτjvali

þ 1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 × τϕmðrÞ · hmjτjniR4ðEn; EmÞ

�
; ðA15Þ

HB
2 ðQ2Þ ¼ NcMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τhrjnihnjγ0jvali

þ 1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕmðrÞhmjγ0jniR2ðEn; EmÞ

�
; ðA16Þ

IB
2 ðQ2Þ ¼ NcMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕnðrÞ · hnjγ0τjvali

þ 1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕmðrÞ · hmjγ0τjniR2ðEn; EmÞ

�
; ðA17Þ

J B
2 ðQ2Þ ¼ NcMB

EB

Z
d3rj2ðQjrjÞ

� X
n0≠val

Nc

Eval − En0

ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕn0ðrÞhn0jγ0jvali

þNc

X
n;m0

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕm0

ðrÞhm0jγ0jniR2ðEn; Em0
Þ
�
: ðA18Þ

A0B
0 ðQ2Þ, � � �, J 0

0
BðQ2Þ are defined by

A0B
0 ðQ2Þ ¼ −

4NcM2
B

Q2

EB −MB

EB

Z
d3rj0ðQjrjÞ½ϕvalðrÞσ · τϕvalðrÞ þ

X
n

ϕ†
nðrÞσ · τϕnðrÞR1ðEnÞ�; ðA19Þ

B0B
0 ðQ2Þ ¼ −

4NcM2
B

Q2

EB −MB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞσϕnðrÞ · hnjτjvali

−
1

2

X
n;m

ϕ†
nðrÞσϕmðrÞ · hmjτjniR5ðEn; EmÞ

�
; ðA20Þ
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C0B0 ðQ2Þ ¼ −
4NcM2

B

Q2

EB −MB

EB

Z
d3rj0ðQjrjÞ

� X
n0≠val

1

Eval − En0

ϕ†
valðrÞσ · τϕn0ðrÞhn0jvali

−
X
n;m0

ϕ†
nðrÞσ · τϕm0

ðrÞhm0jniR5ðEn; Em0
Þ
�
; ðA21Þ

D0B
0 ðQ2Þ ¼ −

4NcM2
B

Q2

EB −MB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

sgnðEnÞ
Eval − En

ϕ†
valðrÞðσ × τÞϕnðrÞ · hnjτjvali

þ 1

2

X
n;m

ϕ†
nðrÞσ × τϕmðrÞ · hmjτjniR4ðEn; EmÞ

�
; ðA22Þ

H0B
0 ðQ2Þ ¼ −

4NcM2
B

Q2

EB −MB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞσ · τhrjnihnjγ0jvali

þ 1

2

X
n;m

ϕ†
nðrÞσ · τϕmðrÞhmjγ0jniR2ðEn; EmÞ

�
; ðA23Þ

I 0B
0 ðQ2Þ ¼ −

4NcM2
B

Q2

EB −MB

EB

Z
d3rj0ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞσϕnðrÞ · hnjγ0τjvali

þ 1

2

X
n;m

ϕ†
nðrÞσϕmðrÞ · hmjγ0τjniR2ðEn; EmÞ

�
; ðA24Þ

J 0B
0 ðQ2Þ ¼ −

4NcM2
B

Q2

EB −MB

EB

Z
d3rj0ðQjrjÞ

� X
n0≠val

Nc

Eval − En0

ϕ†
valðrÞσ · τϕn0ðrÞhn0jγ0jvali

þNc

X
n;m0

ϕ†
nðrÞσ · τϕm0

ðrÞhm0jγ0jniR2ðEn; Em0
Þ
�
; ðA25Þ

and A0B
2 ðQ2Þ, � � �, J 0B

2 ðQ2Þ are defined by

A0B
2 ðQ2Þ ¼ −

4NcM2
B

Q2

2EB þMB

EB

Z
d3rj2ðQjrjÞ

�
ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕvalðrÞ

þ
X
n

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕnðrÞR1ðEnÞ

�
; ðA26Þ

B0B
2 ðQ2Þ ¼ −

4NcM2
B

Q2

2EB þMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕnðrÞ · hnjτjvali

−
1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕmðrÞ · hmjτjniR5ðEn; EmÞ

�
; ðA27Þ

C0B2 ðQ2Þ ¼ −
4NcM2

B

Q2

2EB þMB

EB

Z
d3rj2ðQjrjÞ

� X
n0≠val

1

Eval − En0

ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕn0ðrÞhn0jvali

−
X
n;m0

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕm0

ðrÞhm0jniR5ðEn; Em0
Þ
�
; ðA28Þ
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D0B
2 ðQ2Þ ¼ −

4NcM2
B

Q2

2EB þMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

sgnðEnÞ
Eval − En

ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 × τϕnðrÞ · hnjτjvali

þ 1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 × τϕmðrÞ · hmjτjniR4ðEn; EmÞ

�
; ðA29Þ

H0B
2 ðQ2Þ ¼ −

4NcM2
B

Q2

2EB þMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τhrjnihnjγ0jvali

þ 1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕmðrÞhmjγ0jniR2ðEn; EmÞ

�
; ðA30Þ

I 0B
2 ðQ2Þ ¼ −

4NcM2
B

Q2

2EB þMB

EB

Z
d3rj2ðQjrjÞ

�X
n≠val

1

Eval − En
ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕnðrÞ · hnjγ0τjvali

þ 1

2

X
n;m

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1ϕmðrÞ · hmjγ0τjniR2ðEn; EmÞ

�
; ðA31Þ

J 0B
2 ðQ2Þ ¼ −

4NcM2
B

Q2

2EB þMB

EB

Z
d3rj2ðQjrjÞ

� X
n0≠val

Nc

Eval − En0

ϕ†
valðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕn0ðrÞhn0jγ0jvali

þNc

X
n;m0

ϕ†
nðrÞf

ffiffiffiffiffiffi
2π

p
Y2 ⊗ σ1g1 · τϕm0

ðrÞhm0jγ0jniR2ðEn; Em0
Þ
�
:

ðA32Þ

APPENDIX B: MATRIX ELEMENTS OF THE SU(3) WIGNER D FUNCTION

In the following, we list the results of the matrix elements of the relevant collective operators for the axial-vector form
factors of the baryon decuplet in Tables III and IV.

TABLE III. The matrix elements of the single and double Wigner D function operators.

J3 ¼ 3=2 Δ Σ� Ξ� Ω

hBRjDð8Þ
33 jBRi − 1

4
T3 − 1

4
T3 − 1

4
T3 − 1

4
T3

hBRjDð8Þ
83 jBRi −

ffiffi
3

p
8
Y −

ffiffi
3

p
8
Y −

ffiffi
3

p
8
Y −

ffiffi
3

p
8
Y

hBRjDð8Þ
38 Ĵ3jBRi

ffiffi
3

p
8
T3

ffiffi
3

p
8
T3

ffiffi
3

p
8
T3

ffiffi
3

p
8
T3

hBRjDð8Þ
88 Ĵ3jBRi 3

16
Y 3

16
Y 3

16
Y 3

16
Y

hBRjdbc3Dð8Þ
3b ĴcjBRi 1

8
T3

1
8
T3

1
8
T3

1
8
T3

hBRjdbc3Dð8Þ
8b ĴcjBRi

ffiffi
3

p
16
Y

ffiffi
3

p
16
Y

ffiffi
3

p
16
Y

ffiffi
3

p
16
Y

J3 ¼ 3=2 Δ Σ� Ξ� Ω

hBRjDð8Þ
83 D

ð8Þ
38 jBRi − 5

84
T3 − 1

28
T3 − 1

84
T3 0

hBRjDð8Þ
83 D

ð8Þ
88 jBRi

ffiffi
3

p
56

ffiffi
3

p
84

−
ffiffi
3

p
56

−
ffiffi
3

p
14

hBRjDð8Þ
88 D

ð8Þ
33 jBRi − 5

84
T3 − 1

28
T3 − 1

84
T3 0

hBRjDð8Þ
88 D

ð8Þ
83 jBRi

ffiffi
3

p
56

ffiffi
3

p
84

−
ffiffi
3

p
56

−
ffiffi
3

p
14

hBRjdbc3Dð8Þ
8c D

ð8Þ
3b jBRi − 11

ffiffi
3

p
252

T3 − 5
ffiffi
3

p
84

T3 − 19
ffiffi
3

p
252

T3
0

hBRjdbc3Dð8Þ
8c D

ð8Þ
8b jBRi 5

56
− 1

42 − 5
56

− 3
28
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J3 ¼ 3=2 Δ Σ� Ξ� Ω

hB27jDð8Þ
33 jBRi − 1

12

ffiffi
5
6

q
T3

− 1
8
T3 − 7

12

ffiffi
1
6

q
T3

0

hB27jDð8Þ
83 jBRi 1

8

ffiffi
5
2

q
1
4

ffiffi
1
3

q
1
8

ffiffi
1
2

q
0

hB27jDð8Þ
38 J3jBRi − 1

8

ffiffi
5
2

q
T3

− 3
ffiffi
3

p
16

T3 − 7
8

ffiffi
1
2

q
T3

0

hB27jDð8Þ
88 J3jBRi 3

16

ffiffiffiffi
15
2

q
3
8 3

16

ffiffi
3
2

q
0

hB27jdab3Dð8Þ
3a JbjBRi − 1

24

ffiffi
5
6

q
T3

− 1
16
T3 − 7

24

ffiffi
1
6

q
T3

0

hB27jdab3Dð8Þ
8a JbjBRi 1

16

ffiffi
5
2

q
1
8

ffiffi
1
3

q
1
16

ffiffi
1
2

q
0

J3 ¼ 3=2 Δ Σ� Ξ� Ω

hB35jDð8Þ
33 jBRi − 1

20

ffiffiffiffi
1
14

q
T3 − 1

8

ffiffiffiffi
1
35

q
T3 − 1

4

ffiffiffiffi
1
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q
T3

0

hB35jDð8Þ
83 jBRi − 1

8

ffiffiffiffi
3
14

q
− 1

4

ffiffiffiffi
3
35

q
− 3

8

ffiffiffiffi
3
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