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symmetry breaking

Yu-Son Jun,"" Jung-Min Suh,"" and Hyun-Chul Kim 124
1Department of Physics, Inha University, Incheon 22212, Republic of Korea
2School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455, Republic of Korea

® (Received 14 May 2020; accepted 26 August 2020; published 14 September 2020)

The axial-vector form factors and axial-vector constants of the baryon decuplet are investigated within a
pion mean-field approach, which is also known as the chiral quark-soliton model. Given an axial-vector
current with a specified flavor, there are four different form factors of a decuplet baryon. When we consider
the singlet, triplet, and octet axial-vector currents, we have twelve different form factors for each member of
the baryon decuplet. We compute all these axial-vector form factors of the baryon decuplet, taking into
account the rotational 1/N,. corrections and effects of flavor SU(3) symmetry breaking. We find that, for a
given flavor, two of the form factors for a decuplet baryon are only independent within the present
approach. We first examine properties of the axial-vector form factors of the A isobar and Q™ hyperon. We
also compare the results of the triplet axial-vector form factors of AT with those from lattice QCD and those
of the present work for the axial-vector constants of the baryon decuplet with the lattice data. All the results
for other members of the baryon decuplet are then presented. The results of the axial charges are compared
with those of other works. The axial masses and axial radii are also discussed.
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I. INTRODUCTION

The axial-vector constants play a very important role in
understanding the structure of a baryon both in strong and
weak interactions. While the axial-vector structures of the
baryon octet are relatively well known by their semi-
leptonic decays, those of the baryon decuplet are still
much less understood, since almost all members of the
decuplet decay strongly except for the Q™ baryon. Thus, it
is very difficult to get access to the internal structure of
them. However, since the lattice data on the axial-vector
form factors and the axial-vector constants of the baryon
decuplet are now available [1,2], we anticipate that lattice
QCD will provide more information on the axial-vector
structure of the baryon decuplet in the near future. While it
is rather difficult to measure the axial-vector properties of
the baryon decuplet experimentally, there have been vari-
ous theoretical works. For instance, the axial charge of the
A isobar was studied in chiral perturbation theory [3,4]. In
Refs. [5,6], the axial charges of the A, X*, and E* were
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computed within the Goldstone-boson-exchange relativis-
tic constituent quark model (RCQM). Recently, the axial-
vector form factors and the axial-vector constants of the
baryon decuplet were derived from lattice QCD [1,2]. The
axial charge of A™ was also studied in the light cone sum
rules (LCSR) [7]. Very recently, the axial charges of the
baryon decuplet except for the Q~ baryon were also
calculated in a pertubative chiral quark model (PCQM) [8].

In the present work, we want to investigate the axial-
vector form factors of the baryon decuplet within the
framework of the chiral quark-soliton model (yQSM)
[9-16]. The model is based on the pion mean-field approach
that was proposed ingeniously by Witten [17,18]. In the limit
of the large number of colors (N, — o0), a baryon can be
viewed as a bound state of the N, valence quarks by a pion
mean field. The presence of the N, valence quarks brings
about the vacuum polarization that creates a pion mean field.
Then the pion mean field influences the valence quarks self-
consistently. As a result, they are bound by the pion mean
field, so that a baryon emerges as a bound state of the N,
valence quarks in the form of a chiral soliton. However, to
identify the classical solution or the chiral soliton as a
baryon, one has to quantize it to provide the quantum
numbers of the baryon correctly. In fact, there are two
different quantum fluctuations, both of which are of order
1/N.. The first one is the meson fluctuations, which can be
in principle treated by expanding the meson fields around
the saddle point. The functional integral over them will
provide the meson-loop 1/N, corrections. Since they will
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contribute mainly to the Dirac-sea part, we will ignore them.
The second fluctuations will arise along the direction of the
zero modes. These zero-mode contributions cannot be
ignored, since they are not at all small. Thus, we will
integrate over these zero modes completely, which yield the
proper quantum numbers of a baryon and will provide the
rotational 1/N, corrections. As for details of the collective
quantization, we refer to Refs. [10,19].

There is yet another caveat. While the zero-mode
collective quantizations can be applied to the SU(2) version
of the yQSM, they bring about a paradox when it comes to
the SU(3) yQSM. A part of the rotational 1/N, corrections
causes the violation of gauge symmetries. This arises from
the inherent time nonlocality of the yQSM, which yields
the time ordering of the collective operators. The trouble-
some term comes from one term that contains one of the
moments of inertia, i.e., /,. In Ref. [20], the symmetry-
conserving collective quantization was proposed, in which
an unwanted term can be systematically removed by
using the limit of the nonrelativistic quark model (NRQM),
since the yQSM interpolates the NRQM and the Skyrme
model, which correspond to the limiting cases of the small
and large soliton sizes, respectively. While the symmetry-
conserving quantization does not provide a final solution
for this trouble, it makes the model satisfy all possible
gauge symmetries.

The SU@B) yQSM has been successfully applied to
describe various properties of the lowest-lying baryons
including both the light and singly heavy baryons. For
example, the model explains very well the electromagnetic
form factors of the baryon octet and decuplet [21-23], the
axial-vector form factors of the nucleon [24], the scalar form
factor [25], tensor charges and tensor form factors [26-29],
the gravitational form factors [30], and so on. Very recently,
the model was extended to the description of singly heavy
baryons. For example, the electromagnetic form factors of
the singly heavy baryons both with spin 1/2 and 3/2 were
investigated [31,32]. Thus, we want to examine the axial-
vector form factors of the baryon decuplet within the same
framework, focusing on the comparison of the present
results with those from the lattice QCD [1,2].

The axial charge and axial-vector form factors of
the nucleon have been studied within the yQSM previously
by various works [33—39]. In fact, the previous calculations
of the axial charge g, expose well how the yQSM has
been developed and understood. The first calculations
of g, [33,34] did not consider the rotational 1/N . correc-
tions that arise from the time ordering of the collective
operators. The numerical result for g, turned out to be
much underestimated, compared with the experimental
data. Wakamatsu and Watabe [35] observed that non-
commutativity of collective operators, which is of order
1/N,, provides a sizable effect on g,. However, as pointed
outin Ref. [38], the 1 /N, corrections suggested in Ref. [35]
violate the G parity. Moreover, that part of the contribution

does not comply with the Pauli exclusion principle [36]. In
Ref. [39], it was pointed out that the 1/N . corrections from
Ref. [35] also do not preserve the partial conservation of the
axial-vector current (PCAC). In Ref. [36], Christov et al.
carried out the calculation of g4 based on the formalism of
the functional integral, in which the time ordering of the
collective operators arises naturally, and found that these
rotational 1/N, corrections indeed describe g, quantita-
tively without causing the violation of the G parity and the
Pauli principle. On the other hand, the problem related to the
PCAC still exists. As was discussed in Ref. [19] in detail, it is
well known that the PCAC is broken by the rotational 1/N..
corrections. Several expedients were suggested but they also
suffered from other problems. This conceptual discrepancy
is deeply rooted in a partial consideration of the large N
expansion. While we expect that a possible solution may
come from the consistent treatment of the 1/N . corrections
by including the quantum fluctuations of the mesons that is
also of order 1/N, it is of great difficulty to consider them
within the present framework. On the other hand, the
rotational 1/N,. corrections correctly reproduce the result
of g4 = (N, + 2)/3in the limit of NRQM [40]. Having kept
this problem in mind, we will investigate the axial-vector
form factors of the baryon decuplet, which have never been
studied within the framework of the yQSM.

The present paper is organized as follows: in Sec. II, we
recapitulate the axial-vector form factors of the baryon
decuplet. In Sec. III, we show succinctly how to compute
them within the framework of the yQSM. In Sec. IV, we
first present the results of the axial-vector form factors of
the A isobar and Q™ hyperon, scrutinizing the effects of
flavor SU(3) symmetry breaking. In order to compare the
present results with those from the lattice data, we first
derive the form factors with the pion mass varied from the
physical value to unphysical ones. The results are then
compared with those from the lattice QCD with the
corresponding values of the pion mass employed. We show
the results of the axial-vector form factors of all other
members of the baryon decuplet, emphasizing the effects of
flavor SU(3) symmetry breaking. Finally, we show the
results for the axial charges in comparison with those from
other approaches. The results of the axial masses and axial
radii are also presented. In the last section, we summarize
the present work and give outlook for future works.

II. AXTAL-VECTOR FORM FACTORS OF THE
BARYON DECUPLET

The axial-vector current is defined as

la

Af(x) =@ (x)7,rs 5 w(x),

) (1)

where y(x) denotes the quark field w = (u, d, s) in flavor
space. The A stand for the well-known flavor SU(3)
Gell-Mann matrices. The superscript a represents one of
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a = 0, 3, 8 that correspond to the singlet, triplet, and octet
currents, respectively. By using the Lorentz structure and
the consideration of spin, parity, and charge conjugation,
we can parametrize the matrix element of the axial-vector
current between the baryon decuplet with spin 3/2 in terms
of four different real form factors [1,41],

(B(p',J5)|A5(0)[B(p, J3))

—a a)B a)B a4
_(p', ) [y,,{gﬁ B (P 1ap + <q2>4M§}
B

u (a)B; 2 h(g)B 9a4p B J
+ou, {93 (4 )ap + 13" (q )4MB}]Y W’ (p,J3),
(2)

where My is the mass of the baryon involved. 7,4

represents the metric tensor of Minkowski space, expressed
|

3 My

)Br A2y
@) =~\35

(B(p'.3/2)le; - A*(0)[B(p.1/2)).

5 2 2
5(0) = -3 oo [P 3y 372)e 408 1/2) -

2E307 | 2M3

as 7,4 = diag(1,—1,-1,-1). g, designates the momentum
transfer ¢, = p!, — p, and its square is given as ¢> = —Q?
with Q? > 0. J; (J3) is the eigenvalue of the third
component of the spin operator J (J'), which is projected
along the direction of the momentum p (p'). u®(p,J3) is
the Rarita-Schwinger spinor that describes a decuplet
baryon with spin 3/2 [42], carrying the momentum
p and J3, which can be described by the combination of
the polan'zation vector and the Dirac spinor, u*(p,J3) =

Dois C2 73 o ?(p)us(p). It satisfies the Dirac equation and the

—S 1

auxiliary equations p,u®(p,J;) =0 and y,u*(p,J;) = 0.
In the Breit frame, the form factors defined in Eq. (2)

are expressed in terms of the spatial parts of the axial-

vector current projected by the spherical basis vectors

e, [43.,44],

2 B0 1/2ke 47 0)B(p.-1/2)]

2
5(05) = =B (5093720 A(O)B(p.32) = 32 (B! 3/2er - A% B(p. 1/2)|
6 2 2
4(0%) = g (3817 1/2)e0- 4018051720y = 2O D) a1 32y, %0 8(7.1/2)
2 2
TR B/ A0 B =1/2) = B 32 e A0 (0. 3/2)| o)

where Ejp denotes the energy of the corresponding
baryon, ie., Eg = \/M% + Q?/4, and e, are expressed
explicitly in terms of the Cartesian basis vectors e, = Z,
e, =—(x+)/V2, e = (,\?— i$)/+/2. We want to men-
t10n that the form factors h1 1% (0?) are in fact the same as

g1 3 ®(Q?) apart from the kinematical factors.

III. AXTAL-VECTOR FORM FACTORS IN THE
CHIRAL QUARK-SOLITON MODEL

The yQSM is constructed by the effective chiral action as

a functional of the pseudo-Nambu-Goldstone (pNG) field
% given as

Seff[”a] = _NcTr In D, (4)

where Tr represents the functional trace running over four-

dimensional Euclidean space-time, spin, flavor, and color

spaces. The N, is the number of colors. D designates the
one-body Dirac operator defined by

= i)+ iMU"s + if, (5)

where M stands for the dynamical quark mass and U”3 (x)
denotes the flavor SU(3) chiral field defined by

v = B0 B0, ()

2

where U(x) = exp(iA“z“(x)/ f,) with the pion decay con-
stant f,. m in Eq. (5) represents the current quark mass
matrix given as 71 = diag(m,, my, mg) in flavor space.
We assume the isospin symmetry in this work, so that the
current quark mass of the up and down quarks are set equal
to each other, i.e., m,=my with their average mass
m=(my+my)/2. Then, the current quark mass matrix is
written as 7 = diag(m, m, mg) = m + ém. Sm includes
the mass of the strange current quark, which can be
decomposed as

om :m11+m8/18, (7)

where m; and mg represent the singlet and octet components
of the current quark masses, respectively: m; = (—m+my)/3
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and mg = (/i — my)/+/3. The Dirac operator (5) with y, can
be written as

y4D = —i0, + h(U(z")) — 6m, (8)

where 0, stands for the time derivative in Euclidean space.
h(U) is called the one-body Dirac Hamiltonian written as

h(U) = iysy;0; — yaM U — yuim. 9)

The presence of the /m in the Hamiltonian is required to
reproduce correctly the Yukawa tail of the pion field, which
plays an essential role in describing the isovector charge
radii of the proton [45].

In the flavor SU(3), we need to incorporate the hedgehog
structure of the pion field [18,46] by embedding the SU(2)
Usy(p)(x) field into SU(3) such that the hedgehog sym-
metry is preserved. The pion field with hedgehog symmetry
is expressed as
|

1 . . T
(B0 LY AZO)B(p. 1) = 5 Jim exp (ip -

2

' =nP(r), i=1,23, (10)
where n' = x'/r with r = |x| and P(r) represents the
profile function of the chiral soliton. All other components
of z¢ are set equal to zero. Thus, to preserve this hedgehog
symmetry, the SU(3) U(x) field can be constructed by the
trivial embedding [18]

me)::exponaza/fﬁ)::(eXp“”'TP(ﬁ/f?) O). (11)

0 1

In the pion mean-field approximation, the pion mean field
arises as the solution of the classical equation of motion,
which is derived from 8S.¢/5P(r) = 0. The equation of
motion can be solved self-consistently, which resembles the
Hartree approximation in many-body problems.

We can derive the matrix elements of the axial-vector
current (2) by using the functional integral,

T
ipg§> /d3xd3yexp(—ip’~y+ip-x)

a

X / Dr* / Dy / IDWTJB()”T/Z)’//-‘-(O)Véﬂﬂ}’sA_W(O)J;(x’ -T/2)

2

mmP/ﬁwmwﬂ, (12)

where the baryon states |B(p,J3)) and (B(p',J%)| are, respectively, written in terms of Ioffe-type baryonic currents,

1 .
B(p.J3) = lim_explipuss) = [ dxexplip -5} (x.50)l0).

. . 1 .
(B J5)| = lim exp(ipin) 7= [ dyesp(=ip'-3) 01l 51). (13)

where Jz(x) denotes the loffe-type current consisting of N, valence quarks [47],

Ay,

1
JB ('x) = Feil"'iNC FJJ3TT3YWG]i] ('x) e W(XNL_ iN(: ('x)’ (14)
c

with spin-flavor and color indices @; - --ay_and iy - iy ,

respectively. The matrices F(Jx}zTaf’sy secure the baryon state

with pertinent quantum numbers JJ3T7T3Y by projecting
out. Similarly, we can express the creation current operator
J5(x) [9,19].

In order to quantize the chiral soliton, we have to
perform the functional integral over the pNG fields.
Since we use the pion mean-field approximation or the
saddle point approximation, we neglect the 1/N . pion-loop
corrections. However, we have to take into account the zero
modes that do not change the energy of the soliton. Thus,
the functional integral over the U field is replaced by those

[
over both the rotational and translational zero modes. We
refer to Ref. [21] for details. The integral over the trans-
lational zero modes yields naturally the Fourier transform,
which indicates that the baryon state has the proper trans-
lational symmetry. On the other hand, by performing the
rotational zero-mode quantization, we can restore the
rotational symmetries. Thus, the zero-mode quantization
leads to the collective Hamiltonian,

Hon :Hsym+Hsba (15)

where
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Hsym =

C1+2—IIZJ2 2122./2,

|Mw

Hg, = aD{) +ﬂY4F—— (16)

Here, 1| and I, represent the moments of inertia for the
soliton and D(ﬁ) denote SU(3) Wigner D functions. The
inertial parameters «a, f#, and y, which break flavor SU(3)
symmetry explicitly, are expressed in terms of the moments
of inertia /, and /,, and the anomalous moments of inertia

K] and Kz,

where X,y stands for the pion-nucleon X term. In the
presence of the flavor SU(3) symmetry breaking term H g,
the collective wave functions of the baryon decuplet are no
more in pure states but are mixed with states in higher
representations. The states of the baryon decuplet are then
obtained by the standard second-order perturbation theory,
|

B1o,,) = 1035, B) +a5;|2755, B) + a35|353, B),  (18)

with the mixing coefficients,

15/2 5/V14
2 2+/5/7
azB7 = dyy > a?s = dszs (19)
V/3/2 3,/5/14
0 2./5/7

respectively, in the basis [A, X*, E*, Q|. The parameters ay;
and ass are written as

1 5 1 1
6127——§2<0!+57>7 a3s = — 22 (0’—57>, (20)

which have been already determined numerically in
Ref. [48]: ay; =0.126 and az5 = 0.035. Each state in
Eq. (18) is given in terms of the SU(3) Wigner D functions
in such a way that they satisfy the quantization condi-
tion [16].

Having calculated Eq. (12) with the zero-mode quanti-
zations, we can derive the final expressions of the axial-
vector form factors,

(0% = B - BY@) + 3= o) [T 85100 - 820 - (4@ - 2@ | @)
() = 2 (o) + B0 + 2 o) [ e + 8@ - (@) v 2@ 2
for the flavor singlet,
(@B 2y _ D28)> B()2 B()2 1 ®)7 2m B ()2 B ()2
(%) =2 (4310 = 4307+ 57 | 0T+ 2 i DD | 55107) - B0}
m i @)
%2 (oia,) + 2 ool epien) - caee - (o) - phe)
+ 20 (DY) ~ (DY D) (HE(0%) ~ HE(Q2)} ~ 2o (D D) (T (0%) - TH(0%))
-2 d, n (DYDY TR0 - THOY) (23)
(H>B(Q2) <D(8)>{A/B(Q2)—I—A/B(Q2)}+ |:<D(8).7 >+2msK <D(8)D(8)> {BE(0?) + BE(0*)}
93 331, a8 ’3 V3 1\83 Hag 0 2
m i(p®
%2 [iola,) + 2 kool epen + epion - 0 e + o)
+ 20 (D) ~ (WD) (P (0) + HE(0) - Za (DY DINTE(0?) + TP (%)
— 2T dy s (DD TQY) + TH@). 24)
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for the nonsinglet. The indices p and g run over 4 to 7. The
d,, stand for the SU(3) symmetric tensors. Ag(z) to J, gﬂ)

and A/ ) to J'B 0.(2) Fepresent components of the axial-vector

form factors of whrch the explicit expressions can be found
in Appendix A and Refs. [24,49]. The (---) are just the
short-handed notations for the matrix elements of the SU(3)
Wigner D function between the decuplet baryons. The
explicit results for the matrix elements of the SU(3) Wigner
D function can be found in Appendix B. As mentioned in
the Introduction, we will follow the symmetry-conserving
quantization [20], which makes it possible to remove
spurious terms by using the limit of the NRQM.

The contributions coming from the flavor SU(3) sym-
metry breaking consist of two different terms, i.e., that from
the effective chiral action and that from the collective wave
functions, which are decomposed as

90 (0%) = (g ‘;<Q2>>Sym> + (g4 (@)@
+ (913 (02 (25)
where (g1} (0%))(¥) (giﬁgf@z)) ), and (gy(3; (Q2)) ™"

correspond respectively, to the flavor SU(3) symmetnc
term, the flavor SU(3) symmetry-breaking term from
the effective chiral action, and the collective wave func-
tions. The singlet axial-vector form factors (¢ = 0) can be
written as

(4% (Q2) v —3’—;1{B§<Q2>—B§<Q2>}, (26)

(4% (%) =3J—;1{B'OB<Q2>+B;B<Q2>}, 27)

e R C = T
- {7y - 780, (28)
(@) = =T TP + B (@)
- (2o + 200 (29)
(9" (0*)™ = 0. (30)
(95" (@)™ = 0. (31)

Note that there are no N, leading-order contributions to the
singlet axial-vector form factors, which is the well-known
fact from any chiral solitonic models. For example, a simple
chirally symmetric version of the Skyrme model yields the

null result of 91(40) [50]. Since the singlet axial-vector constant
of the proton is just its quark spin content, chiral solitonic
models explain rather well the reason why the quark spin
content of the proton turns out very small experimentally.
Moreover, the linear m, corrections from the collective wave
functions also vanish. However, as we will show later
explicitly, the linear mg corrections contribute most domi-

nantly to the g3 (Qz) form factors of the baryon decuplet
except for those with hypercharge ¥ = 0. As written in
Egs. (26) and (27), the rotational 1 /N, corrections are flavor

independent; i.e., they contribute equally to g3 (QZ) form
factors for any hyperons in the decuplet.

The triplet axial-vector form factors (a = 3) are
expressed as

B(02)— BB(O2) CB(OY)—CB(O%) i{DB(0O2)—DB (0>
(9(13)B(Q2))(sym):_% [Z{Ag(Qz)—Af(Qz)}—B(’(Q )1182(Q ) CO(Q )[262 (Q )_ {DO(Q )]1 Dz(Q )}} (32)
( (QZ)) sym) _ _% |:2{-A63(Q2) +.A/QB(Q2)} _ B/OB(QZ)ZB/zB(Qz) C6B(Q2) ZCQB(Q2) 3 i{Df)B(Qz)IT D/ZB(QZ)}}
(33)
5
e == | | {5 sren - 2o - (e -aen |
0
11 16
o {ﬁ{cwo—CB<Q2>}—{JB<Q2>—JB(QZ)}}+ (HE(0Y) ~HE(OY} . (34)
19 12 0 2 0 2 20 0 2 ’
0 21
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5
@ == B0 + B2 ) - 0 + 72 @)
0

378 1,
11 ) 16
o |- @ aren | |owe) @] e
19 [ 7 10 2 0 2 20 0 2 ;
0 21
5
. B(0?) — B3(Q?
(923)B(Q2))(Wf) :_% ?2 j {2{Ag(Q2)—A§(Q2)}+3{BO(Q )Il B (Q )}
0
n CH(Q%) = C3(0*) H{D§(Q) - Dg(QZ)}}
I 1,
1
+% z {2{Ag(Q2) — AB(0%)} _5{By(Q )Il— B3 (%)}
0
SB@)-AE)_{PIe) -} »
5
ay; /B 2 /B 2
(953)B<Q2))(wf) — _% ?2 3 {Z{Aég(Qz) —|—.A’23(Q2)} +3{Bo (Q )IT Bz (Q )}
0
n Co’ () +CP(Q%)  i{DF(Q%) + DQB(QQ)}}
I, I
1
| 2 oo + apioyy - U LB
0
SR L@ AT D@ | )

Note that they are proportional to the eigenvalues of the third component of the isospin operator, 7'5. The octet axial-vector
form factors (a = 8) are obtained as

Y

B _BF(0*)=-B5(0*) C§(0*)-C5(0%) i{D§(Q*) -D5(0%)}
16V3 '

2{AB(0) - A2 ()} . . .

(o) (@) =
(38)
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/B ()2 /B ()2 /B ()2 /BZi/B2 /B ()2
(ggS)B(QZ))(sym:—%g |:2{A6B(Q2)+A/ZB(Q2)}_BO (Q )Zgz (0*) Cr(Q )Zcz (0°) Dy (Q )I‘i’Dz (0°)} ’
(39)
3
m 2 | (3B B B B
@™ @N™ == | {’fl{Bo<Qz>—Bz<Q2>}—{Io<Qz>—%(QZ)}}
L \—-12
15 12
* __145 {%{03(@)—CE(QZ)}—{Jé*(QQ)—Jf(Qz)}}—2 L, [B@) =120}, (40)
-18 =27
3
B us 2 1 /B /B B /B
o = | (THB e + B - I @)+ 77 (@)
-12
15
| Do | (B resen-ape+ @)
-18
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FIG. 1. Effects of the explicit flavor SU(3) symmetry breaking on the triplet axial-vector form factors gf) (Q?) and gg) (Q?) of the A*

isobar. In the left panel, the results of g?) (Q?) are drawn, whereas in the right panel, those of g?) (Q?) are depicted. The solid and dashed
curves represent the total results and those in the SU(3) symmetric case, respectively.

15
a, /B 2 /B 2
(@) =2 |9 T [ogapien + Ay + MG EEE)
0
LCPQ) O DR + D§B<Q2)}}
I, I
5
a /B 2 /B ()2
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8
S{C/B(Q2)+C/B(Q2)} l{D/B(Qz)—FD/B(QQ)}
+00 7, : —— 7 2 } : (43)

IV. RESULTS AND DISCUSSION

In the yQSM, the only free parameter is the dynamical
quark mass, M. Though it is determined by the saddle point
approximation from the instanton vacuum, it is fixed by
reproducing various properties of the nucleon. We will use
the value of M as M = 420 MeV as chosen in previous
works. Note that the numerical results are rather insensitive
to the values of M at least within the range of
M = (400-450) MeV. The pion decay constant is deter-
mined by using the experimental data f, = 93 MeV. The
current-quark masses are fixed by the pion and kaon
masses. In the present work, we deal with the strange
current quark mass perturbatively. We will take the value of

[
the strange current quark mass to be my = 180 MeV; that is
larger than those taken in chiral perturbation theory. The
reason is that with this value of 180 MeV, we are able to
reproduce the mass splittings of the hyperons and singly
heavy baryons. Thus, we have no free parameter to fit in the
present calculation.

Since there are numerous form factors of the baryon
decuplet, we will first concentrate on those of the A™ isobar
and Q™ hyperon. In the left panel of Fig. 1, we draw the

results of the triplet axial-vector form factor g<13) (Q?) of the

A", whereas in the right panel, we show those of gf) (0?).
As for those for other members of the baryon decuplet, we
will display them on Fig. 5 and Fig. 6 and will discuss them
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FIG. 2. Effects of the explicit flavor SU(3) symmetry breaking on the singlet axial-vector form factors gI (Qz) and g3 (Qz) of the A™

isobar and Q™. In the upper left panel, the results of glo) (Q?) of AT are drawn, whereas in the upper nght panel, those of g

(Qz) are

depicted. The lower left panel shows the results of the first Q™ singlet axial-vector form factor g1 (Qz) while the lower right one

illustrates those of the g3 (e (

respectively. Notations are the same as in Fig. 1.

later on. Note that as defined in Eq. (2), 91 (QZ) form
factor is the most well-known axial-vector form factor.
A great deal of theoretical works have considered this one,
because its value at Q> = 0 gives the axial charge of the
A", The Goldberger-Treiman relation connects it to the
strong coupling constant g,,A A- As depicted in the left panel
of Fig. 1, the results of g1 (QZ) decrease monotonically
and slowly as Q? increases. The effects of the linear m
corrections are marginal. They provide approximately
overall 10% correction to the form factor g (Qz) The
right panel of Fig. 1 exhibits the numencal results for the

second axial- Vector form factor, g3 (Q2) of the AT, In
contrast with g1 1(02), the Q2 dependence of g3 1(0?) is

prominent. The result of g.”(Q?) falls off drastically as 0
increases. One can understand this behavior as follows as

shown in Appendix A, all components of g3 (QZ) are

Q?). The solid and dashed curves represent the total results and those in the SU(3) symmetric case,

proportional to Q~2, which cause such strong Q* depend-
ence. Moreover the kinematical prefactor makes the

magnitude of ¢\”(0?) much larger than that of ¢*’(0?).
On the other hand, the effects of flavor SU(3) symmetry

breaking are rather small on gf)( 0?).

In Fig. 2, we show the results of the singlet axial-vector
form factors. As shown in the left panel of Fig. 23 the effects
of the linear m, are almost negligible on the gg (Q?) form
factors of both A* and Q™. Note that the singlet axial-
vector constant, ggo) b (0), explains the quark spin content of
the corresponding baryon. If one neglects the effects of
flavor SU(3) symmetry breaking, g1 (Qz) is independent
of the flavor content of a decuplet baryon, as explicitly
expressed in Eq. (20). ggo)B(QZ) is also flavor independent
[see Eq. (27)] without mg corrections. However, when it

comes to the g (Qz) form factors, the linear m;
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FIG. 3. Effects of the explicit flavor SU(3) symmetry breaking on the octet axial-vector form factors of the AT and Q~ baryon.

Notations are the same as in Fig. 1.

corrections contribute remarkably large to them. This can
be understood by scrutinizing Eq. (25) for the singlet axial-
vector form factors, i.e., when a = 0. The flavor SU(3)

symmetric part [ggo)B(Qz)](sym contains only the rotational
1/N, corrections. Since there are no wave function
corrections, we have only the linear mg corrections from
the current quark mass term of the effective chiral action.
The tensor contribution Z?2(Q?) is the most dominant one

that governs the behavior of ggo) A+(Qz). Even though we
ignore all other terms, the result is not much changed. If one
looks into the expression for Z/2(Q?), which is given in
Appendix A, one can easily see that in general the tensor
contributions are dominant over the scalar ones kinemat-
ically. We can find a similar tendency in the Q™ singlet
axial-vector form factors as shown in the lower panel of

Fig. 2. In the case of Q~, the results of gio)(Qz) are very
similar to those of A*. The rotational 1/N . corrections give

the positive values of g§0>(Q2) for Q~, which are the same
as in the case of A™. This is due to the fact that as explained
previously, the rotational 1/N, corrections do not depend

on the flavor of the baryon decuplet. On the other hand, the
linear mg contributions become negative to the ggo)g (0?)
form factor. This is due to the fact that the hypercharge is
present in Eq. (29). One could suspect that the second-order

mg corrections might come into play in describing the

ggo) (Q?) form factors of the baryon decuplet. However, the
second-order m corrections should be suppressed at least
by two reasons: firstly, the parameter (m,/A)?* is much
smaller than the leading term, where A is the cutoff mass or
the normalization scale of the yQSM, which is of order
1 GeV. Secondly, expressions for the second-order m
corrections contain doubly summed energy denominators,
which lead to further suppression. So, we expect that the
second-order m, corrections should be much smaller than
the linear m, corrections.

Figure 3 depicts the octet axial-vector form factors of A™
and Q™. As illustrated in the upper left panel of Fig. 3, the

linear m, corrections suppress ggg)M(Qz) by about 17%,

while they are negligible to g(ls)g_(Qz) as shown in the

lower left panel of Fig. 3. Interestingly, the linear my

(8)2

corrections to g;”~ (Q?) become visible as Q? increases,
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FIG. 4. Numerical results of the triplet axial-vector form factors of the A* baryon in comparison with the data taken from lattice

QCD [1].

though they are still very small. On the other hand, the

results for ggS)M(Qz) show peculiar behavior. While it

shows a similar tendency of the linear mg corrections to

8)N(QZ), their magnitude is rather large. Interestingly,
the wave function corrections come into play in this case.
As shown in Eq. (43), the contribution from the 27-plet to

ggg)M( Q?) dominates over all other contributions, since it
contains A, (Q?) and iD,2" (Q?), which are the most
contributive ones. The linear m, corrections arising from
the effective chiral action are much smaller than those of

the wave function corrections. As a result, the g (QZ)
form factor is much reduced by the effects of flavor SU(3)
symmetry breaking. The lower right panel of Fig. 3 draws

“°(0?). In contrast to the

Ik (QZ), the linear m; corrections are almost negligible.
The reason can be also found in Eq. (43), where the
contribution of the 27-plet vanishes.

Since there are only the results from lattice QCD on the
triplet axial-vector form factors of the A™ [1], it is of great
importance to compare the present results with them.
However, before we make a comparison of the present
results with the lattice data, we have to consider the

the numencal results for g

unphysical pion mass used in the lattice simulation [1].
This means that we need to derive the profile function of the
chiral soliton by solving the equation of motion again. This
can be done as follows: in Eq. (9), we replace the physical
value of the average current quark mass of the up and
down quarks with the unphysical one that corresponds to the
pion mass adopted by the lattice calculation. Then the axial-
vector form factors of the baryon decuplet can be recalculated
by using the profile function with the unphysical value of the
pion mass. In fact, the pion mass dependence of baryonic
observables has been already investigated [31,32,51,52] in
the context of the comparison with lattice results.

In Fig. 4, we exhibit the results of the A™ triplet axial-
vector form factors in comparison with those from the
lattice calculation, taking into account the values of the
unphysical pion mass, Which are used in Ref. [1]. As

(QZ) and h (Q2) are in effect

the same, respectively, as g\ (0?) and ¢ (Q?) except for
the kinematical factors, which have been expressed implic-
itly in Eq. (3). As depicted in the upper left panel of Fig. 4,

mentioned previously, A

the results of g1 (QZ) increase as larger values of the
unphysical pion mass are used. The Q” dependence of the
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FIG. 5. Effects of the explicit flavor SU(3) symmetry breaking on g(l3)B(Q2) of the baryon decuplet except for the A* and Q™ baryons.
Notations are the same as in Fig. 1.

form factor tends to be similar to that of the lattice = The upper right panel of Fig. 4 depicts the results for
calculation. However, the lattice data seem to fall off rather 434" (92) with the pion mass varied. It is interesting to see

slowly as Q* increases, compared with the present results.  that the magnitude of the form factor decreases as large
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FIG. 6. Effects of the explicit flavor SU(3) symmetry breaking on gf)B(Qz) of the baryon decuplet except for the A* and Q™ baryons.

Notations are the same as in Fig. 1.

pion masses are employed. The lattice data on gg3) A+(Qz)
show relatively smaller fluctuations, compared with those
on other axial-vector form factors. The Q? dependence

of the present results is in line with the lattice data.
Since there are large uncertainties in the lattice results
and a lack of data in smaller Q7 regions, it is rather difficult
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FIG. 7. Effects of the explicit flavor SU(3) symmetry breaking on g(IO)B(QZ) of the baryon decuplet except for the A* and Q™ baryons.
Notations are the same as in Fig. 1.

to make a clear comparison of the present results with those  fluctuations in general, we are not able to draw any
of the lattice calculation. In the lower panel of Fig. 4, we meaningful conclusions.
compare the results of 4\** (Q?) and hg3>A‘(Q2) with In Fig. 5, we show the numerical results for the triplet

those of lattice QCD. Since the lattice data show large  axial-vector form factors 9(13)(Q2) of the baryon decuplet
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FIG. 8. Effects of the explicit flavor SU(3) symmetry breaking on ggO)B(QZ) of the baryon decuplet except for the A* and Q™ baryons.
Notations are the same as in Fig. 1.

except for AT and Q™. The effects of the flavor SU(3)
symmetry breaking are in general marginal. Figure 6

presents those for gf)(Qz) of all other members of the
decuplet. The tendency of the linear mg corrections is
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basically the same as that for A™ as discussed in Fig. 1. In
Fig. 7, we illustrate those for the singlet axial-vector form

factors g(lo) (Q?) for the other members of the decuplet.
Again the results look very similar to those of AT and Q™ as
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FIG. 9. Effects of the explicit flavor SU(3) symmetry breaking on g(lg)B(Qz) of the baryon decuplet except for the A* and Q™ baryons.

Notations are the same as in Fig. 1.

explained in Fig. 2. As mentioned previously, if one
neglects the effects of flavor SU(3) symmetry breaking,

then ggo) #(@?) is flavor independent as clearly shown in
Fig. 7. In Fig. 8, we display the results for the ggo)(QZ) of

the baryon decuplet except for the AT and Q™. In particular,
those of Z* do not acquire any contributions from the linear
mg corrections. This can be easily understood by examining
Egs. (29) and (31). Since X* has hypercharge Y = 0, the
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linear m corrections from the effective chiral

The wave function corrections do not exist at all for
both ¢”(Q?) and ¢ (Q?). Figures 9 and 10 depict,
respectively, the results for ¢\ (02) and ¢{¥ (0?) for the

action vanish.
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other members of the baryon decuplet again except for A*
and Q. Interestingly, there are no flavor SU(3) symmetric
contributions to ¢\ (0?) and ¢\ (0?) of £* because of the
hypercharge of £*, as shown in Egs. (38) and (39). Thus,
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Dependence of the triplet axial-vector constants of the A isobars on the pion mass. The numerical results are drawn in the

solid curves, which are compared with those from lattice QCD (LQCD) [1,2].

the linear mg corrections are considered to be the leading-
order contributions.

In Table I, we list the results for the triplet axial-
vector constant, i.e., axial charge with the pion mass
varied, intending to compare them with those from
lattice QCD [1,2]. The third row presents the final
results from this work with the value of the physical
pion mass and the strange quark mass mg, = 180 MeV,
whereas the second row gives those without linear m
corrections. The present value of the AT™ axial charge is
in good agreement with those from the RCQM and yPT.
However, it is rather difficult to compare the present
results with those from lattice QCD. Interestingly, the
present results for the triplet axial-vector constants of
the other members of the baryon decuplet are in better
agreement with the corresponding lattice data. Note that
the lattice data are consistently smaller than the values
obtained in the present work. Those of X** and =*°
from the RCQM are in very good agreement with the
present results.

In Figs. 11 and 12, we show, respectively, the numerical
results for the triplet axial-vector constants of the A isobars,

~* and E* as functions of the pion mass, compared them

with the lattice data. The magnitudes of g?)B (0) generally

increase as the value of m, increases. The present results
turn out larger than those of lattice QCD. Figure 13 depicts
the numerical results for the singlet axial-vector constants
of the baryon decuplet as functions of the pion mass in

comparison with the lattice data [2]. As we have mentioned

(0)B

already, the values of g, (0) of the baryon decuplet are

almost the same each other. As the pion mass grows larger,

(0)B

the magnitudes of g; "~ (0) monotonically increase. When

m, = 432 MeV is used, those of g(lo)B(O) become larger by

about 30%. Interestingly, the present results get closer to
the lattice data as the value of the pion mass increases. They
are in very good agreement with the lattice data at
m, =432 MeV. Note that in the present framework the
singlet axial-vector constants are isospin symmetric. In
Fig. 14, we compare the results for the octet axial-vector
constants of the baryon decuplet with the corresponding
lattice data with the pion mass varied. Again, the magni-

tudes of the octet axial-vector constants also rise as the pion

. . 0)B
mass increases as in the case of g(1 ) (0). However, when

we compare the present results with the lattice data, the
situation turns out opposite. That is, the present results tend
generally to deviate, except for the Z*, from the lattice ones

as the pion mass increases. When it comes to the case of X*,

g(ls)z* (0) exhibits dependence on m, similar to the corre-

sponding lattice one. The results for ggg)B(O) are in good

agreement with the lattice data at m, = 213 MeV.

Table II lists the numerical results for g?)B(O), ggO)B(O),

and ggg)B(O), respectively, from the second row till the

fourth row. Since there are no lattice data and no results
from other works, they are the very first results for the
second set of the axial-vector constants. The fifth row lists
the results for the axial radii, which can be derived from the
results for the triplet axial-vector form factors of the baryon
decuplet as follows:
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are different from the present one by v/3, so we have considered

99" (0?)
00?

OF (44)

=6
91(

0) 00

Note that when the strangeness of a decuplet baryon
increases, the value of the axial radius becomes smaller,
as shown in Table II. This can be understood, since the
corresponding mass becomes larger due to the strange-
quark component. It is of great interest to compare the axial
radius of the A* with that of the proton, since the axial
radius of the proton is experimentally known. In a recent
review [53], the average value of the proton axial radius is
given as (r3), = 0.46(22) fm?. Interestingly, the result
obtained in the present work for the A1 axial radius is

it for comparison.

0.447 fm?, which is very similar to that of the proton. We
want to mention that (r3), = 0.536 fm* was obtained
within the same framework, i.e., the yQSM [24]. This
indicates that the present results for the triplet axial-vector
form factor of A" fall off more slowly than the proton one.

A baryon form factor is often parametrized in terms of a

dipole-type parametrization given by

(3)B

B 91 (0)
9(13) (0% = @1 (45)

where M 4 is known as the axial mass. This parametrization
relates the axial mass to the axial radius by the following
relation:

(@)

TABLEII.  Numerical results for the flavor axial-vector constants except for the axial-vector constants g; (0), axial masses, and axial
radii. All the results are obtained with flavor SU(3) symmetry breaking taken into account.

mg = 180 MeV AT AT A° A~ Tt >0 p o =0 =5 Q-
gg3)B(0) 346.1 1154 —-115.4 —346.1 303.9 0 -303.9 193.7 —193.7 0
ggo)B(O) 7.822 7.822 7.822 7.822 1.622 1.622 1.622 —-8.204 —-8.204 -21.936
ggS)B(O) 50.8 50.8 50.8 50.8 -60.0 —-60.0 -60.0 -251.9 -251.9 —542.8
(ri) p [fm?] 0.447 0.447 0.447 0.447 0.438 0.438 0.431 0.431

M, [GeV] 1.023 1.023 1.023 1.023 1.033 1.033 1.041 1.041

0540
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(ri) = e (40)

The value of M 4 for the proton is also known experimentally
[54], whereas those of the baryon decuplet are unknown.
Equation (46) already implies that the present result for the
AT axial mass should be larger than the proton one that was
obtained also in Ref. [24], M4(p) = 0.934 GeV. Indeed,
the present result M 4 (A™*) = 1.023 GeV is larger than that.

Finally, we want to consider another type of the para-
metrization for the axial-vector form factors. In lattice
calculations, a p-pole parametrization is often adopted
[55-57], which can be expressed as

(3)
67" (%) = (47)

As drawn in the right panel of Fig. 1, itis rather difficult to fit
gg3)A+ (Q?) by using the dipole-type parametrization. On the
other hand, if one parametrizes gg3) A (Q?) by the p-pole

type (47), then we are able to parametrize gf)N(Qz) by
fixing the values of p; = 1472 and A, = 0.174 GeV.

Similarly, ggg)(Q2) can be fitted by using the p-pole
parametrization.

V. SUMMARY AND CONCLUSION

We aimed at investigating the axial-vector form factors of
the baryon decuplet within the framework of the self-
consistent chiral quark-soliton model. We consider the
rotational 1/N, corrections and the linear m, corrections.
Since all the parameters in the model were fixed by
reproducing the proton properties, we did not have any
parameter to fit. We first computed the triplet axial-vector
form factors of the A™, because lattice QCD and all other
models concentrated on them. We found that the effects of
flavor SU(3) symmetry breaking turn out very small on the
triplet form factors of A*. We then proceeded to compute the

singlet axial-vector form factors g(103) (Q?). In this case, there
is no leading-order contribution, so that the rotational 1 /N
and linear m corrections are only involved. Concerning the

g(lo) B(QZ) form factors, the linear m; corrections are almost

negligible. On the other hand, ggo) (Q?) form factors acquire
in general large contributions from the m, corrections. We
then derived the octet axial-vector form factors of the baryon
decuplet. The effects of flavor SU(3) symmetry breaking on

g(lg) (Q?) are in general very small. However, these linear m
corrections come into play as leading-order contributions in
the case of the X* octet axial-vector form factors, since the
symmetric parts vanish because of the values of their

hypercharges. The octet form factors ggg)(Qz) of the A
isobars get large m, contributions whereas those of Z* and
Q~ receive tiny mg corrections. We have carefully inspected

the dependence of the axial-vector constants as functions of
the pion mass to compare the present results with those from
lattice QCD. We found that the results of the axial-vector
constants turn out larger than the physical ones, when the
unphysical values of the pion mass are employed. The
magnitudes of the triplet axial-vector constants are in
general larger than the lattice data. When it comes to the
singlet axial-vector constants, the present results are in very
good agreement with the lattice data with m, = 432 MeV
used. On the other hand, the results for the octet axial-vector
constants are in better agreement with the lattice ones
at m, = 213 MeV.

We also presented the results for the axial radii and axial
masses of the baryon decuplet. We found that the axial
radius of A" is very close to the experimental data on the
proton axial radius. Compared with the value of the proton
axial radius derived from the same model, we observed that
the A" axial radius is smaller than that of the proton. It
indicates that the triplet axial-vector form factor of A™ falls
off more slowly than the proton one. When the strangeness
content of a decuplet baryon becomes larger, the corre-
sponding axial radius gets smaller. It indicates that the mass
of a baryon may be connected to the axial radius. We also
obtained the axial masses, which can be regarded as the
inverse of the axial radii. Since the p-pole parametrization
of hadronic form factors is often employed in lattice
calculations, we parametrized the present results of the
axial-vector form factors, in particular, of the triplet ones,
and determined the p and cutoff mass A,, hoping that
results from lattice QCD will appear in the near future.

Since we have computed all possible axial-vector form
factors with three different flavors, we are able to express
the axial-vector form factors in terms of the flavor-
decomposed form factors. This is also very interesting,
because we can scrutinize the strange-quark spin content
of the A isobars and the up- and down-quark spin content of
the Q- hyperon. The corresponding work will appear
elsewhere. In addition, we can also investigate the transition
axial-vector form factors of the baryon decuplet, which will
provide further understanding of the structure of the baryon
decuplet. The relevant investigation is under way.
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APPENDIX A: COMPONENTS OF THE
AXTAL-VECTOR FORM FACTORS

In this appendix, the Q*-dependent functions in Egs. (23)
and (24) will be expressed explicitly. AZ(Q?), - - -, TE(0?)
are defined by
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AB(@) =0 [ Prif Q)| #a(r)o ) + S0 )R (). (A1)

B0 =" [ @riv(lr) {Z (Do 1) (nfelval) 3 3 g (o () <m|r|n>R5<En,Em>} C(A2)

EB ngval —val = E” n,m

Cg(QZ)—NE—Af/dSVJO(Q"U { Z ————la(r)o-Teh, (1) n0|Val>—Z¢;(")0"T¢mo(")<m0|”>Rs(EmEmo)}»

E I_Eno

(43)
o0 = [ #riv(or) LZ S g1 x (1) - (vl
3 rIxeh0)- Onte R ) (A%)
0 =Vt [ driv@i)| 3 il < nihal
+§;¢i<r>a-r¢m<r><m|y°|n>R2<En,Em>}, (3)

m0h) =~ [ d3rjo<Q|r|>[ZE Bl () alyelval) + 5 S o) <m|y°r|n>R2<En,Em>}

nval —val n,m
(A6)
N.M ,
ahen ="t | d3rfo<er>L§me £ Palr)e () ol val)
NS 1) )R )| (A7)
n,mg
where the regularization functions are defined as
—E © du 2
E)— n o —uE? A8
Ru(E,) = 3o [ bt e (A8)
du E, e “En — E, e~ En
E, E,) z A
Ra(En ) = 5= [ 7o) Lo (A9)
1 0 1 1-— E, —aFE
Ru(EyE,) = o / dugp(u) / dag-mi-ti-ae; (L= D~ 0B, (A10)
27 Jo 0 a(l —a)
R5(En,E ) Sgn( )_Sgn(Em)‘ (All)

2(E - Em)

Here, |val) and |n) denote the state of the valence and sea quarks with the corresponding eigenenergies E,, and E,, of the
one-body Dirac Hamiltonian h(U), respectively.
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AB(Q?), -+, JB(Q?) are defined by

A7) =N [ iy (Q) ) (VERY: © ) - )+ Y BV, ® iy e (R (E, (A12)

B2(0%) =2 [ #ris(0i)| Y- ol VERY @ 1) v

B n#val val — Ln

Sy @ b)) RAE B (13

e3(0) =20 [ Pri0)| 3 5t B VIR ), o ) ol

no#val val =
ST @ bt DN RAEn En) | (AL

D7) =" [ Priztol)| 3 2By () (V2RY: © 01} <) - ol

n#val val

3 S BV, ® 01}, x 7y, 1) <m|r|n>R4<En,Em)}, (A15)

Z ﬁ¢ial(r){\/2_ﬂY2 ® 0'1}1 . T<r|n> <n|y0|val>

n#val

+%;¢Z(r){\/ﬁY2 ® 0'1}1 -T¢m(l‘)<m|y0|n>Rz(En,Em):| , (A16)

N.M
a0 =" [ i)

1
70" =~ [ riv(lr) LZ e PO {VERY @ 1)) (nelval)

IOV B e hlr)- e RaE, B (A1)

N.M N
TR0 == / d%(erl)[Z 5 PaV2rY2 @ i}y 2y, (1) (nolyval)
ng#val = Va o

NS BUOVIRY © 01}t 1)l D) RalEr )| (ATS)

n,mg
Aé)B(QQ), ) \76B(Q2) are deﬁned by

4N M} Eg — My

A/OB (QZ) = Q2 Ep

/ d3rj0(Q|r|){¢val(r)6 ’ T¢Val(r) + Z¢;(r)6 : Td)n(r)Rl (En)]’ (A19)

ANM2Ez—M , 1,
BE)B(QZ) — Q2 B BEB B / d3r]0(Q|r|) |:Z m(ﬁwl(r)dgbn(r) . <n|T|Val>
n#val — va n

3 ) - e RS (BB | (A20)
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o (g?) = ~ My By — My / d3rjo<Q|r|>[Z L 41,00 - 2, () molval)

Q2 EB ny#val val — Eno
—anr;(r)a-r¢mo<r><mo\n>7e5<En,Emo>], (A21)

2 _
pp (oY) = - B2 [ i) [Z SEUED i 7)o x D)pa(r) - {nleval)

QZ EB n#val Eval - En
1
+§nzm:<l5l (r)o x T, (r) - (m|t|n)R4(E,. Em)] , (A22)
AN M3 Ep— M 1
HY(Q%) = - ch £ BEB B/dsrfo(Q|r|){#ZlEval_Enqbial(r)o‘-1<r|n><n|y0|val)
1 ;
#3200 )0l R, Emﬂ L (ay)

AN M%Ez — M 1
7(0?) = - e [ 10| Y-t luled(r)- el
n#val — Va n

3 S B o) - (P ey R(E,. Em>], (A24)

AN M2 —
T5(0?) =~ NeMp Ep =~ My / d3rjo<Q|r|>[Z Ne 4t (1) - 2hny (F) (noly”|val)

Q2 EB ng#val —val _Eno
NS )0 2y () ol ) Ra(Er E)] L (A2s)
n,mg

and AB(Q?), -+, JB(Q?) are defined by

AN M3 2Ey + My

Ap(2) = - 2N [ Qi) 4Ly ()(V28Y: © 1) )
VI @ o)y (R () (A26)

2
B(0?) = - N 2N [ o0l |3 L plu V2T © 010 - (el

2
Q EB n#val val = Ln

=SS HVIY © o i) (el Re(Ene B (827

4N M%2Eg + M . 1 /o
C/ZB(QZ) — Q2 B BE: B / d3rjz(Q|r|) |: Z ﬁﬁﬁial("){ 27Z'Y2 ® 61}1 . r¢n0(r)<n0|val>
np#val — va o

~SOIVIRT: ® a5 O ) R(En En)| . (A28)

n,mg
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; AN.M%2Ez + M . sgn(E,)
DZB(QZ) - Q2 £ BEB B/d3r]2<Qr|) |:n¢Z,;IEval _ val( ){\/—YZ ® 0-1}1 X T¢n< ) <n|r|val>
3 VIR, © 1)y x () (el Ry(Er )| (429
4 22E M 1
rp() = - g L | d3rjz<Q|r|>[n;1Eval_E B () (VDY @ 01}, - elelm) ol val
+%Z¢Z(7){\/2_7TY2 ® o1} 'T¢m(r)<m|70|”>R2(EmEm)]v (A30)
AN .M%2 M 1
72(0?) = - e B2 LN [ prjy (i) | Y 5t ) (VIR ® () - (el
n#val
3SRV © o1} )l e By )| (A3
4 29 M N.
0% = =G 2 [y (0)| Y- e Bl VIR @ by )l

ny#val

+NCZ¢1<r>{@Y2 ® a1y T 1)l ) Ry )|

n,mg

(A32)

APPENDIX B: MATRIX ELEMENTS OF THE SU(3) WIGNER D FUNCTION

In the following, we list the results of the matrix elements of the relevant collective operators for the axial-vector form
factors of the baryon decuplet in Tables III and IV.

TABLE III. The matrix elements of the single and double Wigner D function operators.
J3=3/2 A oy = Q
1 1 1 1
(Br|DS|Br) —4Ts i, i, _ir,
8
(Br|D |Br) -y ~ Ly _ By _ Gy
8 A
(B|DS T3] BR) ar, B, B, B,
. 3 3 3 3
<BR|D$3)13|BR> 6 6 Y Y Y
N 1 | 1 1
(Brldye3D5) | Br) 513 513 s13 U
8 S
(Brldyes D4 T, |Br) 2y =Y oY Y
Js=3/2 A p ch Q
5 i 1

(Br|DS DY |Br) —s113 5T — LT, 0
<BR|D83 Dsg |Br) 5_\/3 V3 _% _\1/_§
<BR|D38 23 ‘BR> _ieSTT3 _2_18T3 _3L4T3 0

3 3 3 3
(Br|D D |Br) Z g —% -
(Br|dyes D3 D3y 1Bre) — 58T —32 Ty - 55T 0

1 s 3

<BR|dbc3D8c Dg, |Br) % T _% T8
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TABLE IV. The transition matrix elements of the single Wigner D function operators coming from the 27-plet and 35-plet component

of the baryon wavefunctions.

Jy=3/2 A T = Q
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