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The effect of conserved baryon, isospin, and strangeness charges on the behavior of phase transitions in
dense matter is studied. Baryonic matter is described within the three-flavor Polyakov–Nambu–Jona-
Lasinio model and several charge fractions YQ are considered. The role of the vector interaction, which can
be important to describe dense systems, is discussed. Special attention is given to the case with charge
fraction YQ ¼ 0.4, due to its importance in heavy-ion collisions and core-collapse supernova matter. It is
shown that the possible formation of chiral-symmetric quark matter in the laboratory will be favored in
asymmetric matter. Besides, the inclusion of the vector interaction reinforces the formation of quark matter
at lower densities.
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I. INTRODUCTION

We investigate the phase transition associated with the
restoration of chiral symmetry in a system with more than
one conserved charge (multicomponent systems): baryonic
charge, isospin, and strangeness. This is relevant for
scenarios where asymmetric matter occurs, like in heavy-
ion collisions (HICs) [1] and compact stars [2]. Given a fixed
electric-to-baryon charge ratio, Q=B ≠ 0.5, this additional
isospin degree of freedom cannot be exploited by the system
in pure phases. In the mixed phase, however, the total
asymmetry is constant, while the local asymmetries of each
phase can be different. Formore than one globally conserved
charge, such as baryon, isospin, and/or strangeness, phase
equilibriumhas to be implemented by imposingGibbs rules,
which modify both the structure of the mixed phase and
the determination of the transition point. When only one
globally conserved charge is allowed, the phase equilibrium
is obtained by a Maxwell construction at constant pressure.
In the modelling of a first-order phase transition with

density as the order parameter, it is often assumed that the
coexistence region can be obtained by a Maxwell con-
struction at constant pressure. However, this is not true if
different charges correspond to good quantum numbers,
and in that case full Gibbs conditions must be applied [3].

In a multicomponent system, the local concentrations of
charges vary during the crossing of a phase-coexistence
region, as well as the pressure and baryonic chemical
potential. Considering the phase diagram in the temper-
ature-pressure plane, for a given temperature, the transition
occurs over a range of pressures. This effect is well known
in plasma and condensed matter physics and was recently
applied to the hadronic sector in Ref. [4].
In Ref. [5] the liquid gas phase transition in asymmetric

nuclear matter, a system with more than one conserved
charge, was intensely discussed. In fact, when building the
equation of state for a neutron star, both electric and
baryonic charges have to be conserved. The description
of the phase transition from hadrons to quarks inside such
an object is obtained by applying a Gibbs construction in
order to identify the limits of the mixed phase [2]. Finding
the equilibrium points that satisfy all Gibbs conditions may
be cumbersome, but in Ref. [6] a new statistical method
was introduced to study the thermodynamics of a multifluid
system that reduced the problem to Maxwell constructions.
It consists of keeping only one density fixed and replacing
the others by their intensive conjugated variables.
We will perform our study within the (2þ 1)-flavor

Polyakov-loop-extendedNambu–Jona-Lasinio (PNJL)model
[7–11]. Models of the Nambu–Jona-Lasinio type are
effective field theories describing the basic mechanisms
that drive the spontaneous breaking of chiral symmetry
[12]—a key feature of quantum chromodynamics (QCD)—
and are widely used to study the phase diagram of strongly
interacting matter (also called the QCD phase diagram),
hadron phenomenology, and the quark phase of the neutron
star equation of state. The inclusion of the Polyakov loop in
these models allows to better reproduce lattice-QCD results
and to study the confinement-deconfinement transition.
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We consider a model with both a vector-isoscalar and a
vector-isovector contribution, with equal coupling con-
stants. Starting from a QCD-inspired color current-current
interaction, these vector channels and the tensor channel
can be related to the scalar-pseudoscalar channel using a
Fierz transformation into color-singlet channels [13].
Indeed, in Refs. [14,15], a so-called Fierz-complete min-
imal set of channels was proposed from which any other
interaction channel can be derived using Fierz transforma-
tions. In such an approach, the scalar-pseudoscalar and
vector couplings are not independent and indeed they can be
fixed by the scalar-pseudoscalar coupling [13,16]. From a
phenomenological point of view, the vector coupling can
also be fixed in thevacuumby requiring themodel to be able
to reproduce the vacuum masses of vector mesons.
However, the vector interactions are known to couple to
density degrees of freedom and the overall magnitude of the
vector interaction might be density dependent, i.e., chemi-
cal potential dependent. In fact, there is still no constraint
for the choice of an induced vector coupling at finite density.
For example, we do not know if vector interactions induce a
more attractive or repulsive interaction (and thus its sign is
also unknown). Several studies of the QCD phase diagram
and the neutron star equation of state have considered
the vector couplings as free parameters (see, e.g.,
Refs. [9,17–23]):
(1) It has been shown that the vector interaction has a

strong influence on the chiral-symmetry-restoration
phase transition, making (for a strong enough
interaction) a first-order phase transition turn into
a smooth crossover.

(2) The vector channel is important for modeling the
quark degrees of freedom inside the core of a
neutron star [23].

In Refs. [24,25] the authors have shown that divergent
density fluctuations result from spinodal decomposition
in a nonequilibrium first-order chiral phase transition; in
particular, the specific heat and charge susceptibilities
diverge at the isothermal spinodal lines. The study was
performed within the NJL model but the same conclusions
are expected to be generally true. Understanding how the
charge asymmetry may affect the metastable and unstable
regions of the phase diagram, where this divergent behavior
is also expected, is one of the objectives of our work.
This paper is organized as follows. In Sec. II the PNJL

model, which will be used to model dense baryonic matter,
is introduced. In Sec. III the results of considering more
then one conserved charge in the PNJL model are presented
and the phase transitions for different scenarios are shown.
Finally, in Sec. IV we present out conclusions and describe
some perspectives for future work.

II. MODEL AND FORMALISM

The (2þ 1)-flavor Lagrangian density for the PNJL
model reads

L¼ ψ̄ðiD− m̂þ μ̂γ0Þψ þGS

X8

a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�

−GDðdet ½ψ̄ð1þ γ5Þψ � þ det ½ψ̄ð1− γ5Þψ �Þ

−GV

X8

a¼0

½ðψ̄γμλaψÞ2 þ ðψ̄γμγ5λaψÞ2�

−UðΦ; Φ̄;TÞ: ð1Þ
Here the quark field is represented by ψ ¼ ðu; d; sÞT in
flavor space, and m̂ ¼ diagfðmu;md;msÞ is the corre-
sponding (current) diagonal mass matrix. Finite-density
effects are included by considering a finite quark chemical
potential matrix, μ̂ ¼ diagfðμu; μd; μsÞ. The Lagrangian
includes a scalar-pseudoscalar interaction which sponta-
neously breaks chiral symmetry in the vacuum by gen-
erating a quark-antiquark condensate. Also present is the
so-called Kobayashi-Maskawa-’t Hooft interaction, respon-
sible for the generation of six-fermion interactions [26,27]
which explicitly break the UAð1Þ symmetry and correctly
reproduce the observed hadron spectra. We also include in
the model a vector interaction. This term includes both a
vector-isoscalar and a vector-isovector interaction with a
coupling constant GV [28].
Since we are not interested in fixing the value of this

parameter by reproducing vector-meson masses, we will
study the effect of having a finite ratio ζ ¼ GV=GS which is
known to be important in the study of neutron stars [18,23]
or the QCD phase diagram [29]. Indeed, even fixing the
vector interaction in the vacuum does not restrict its
possible in-medium dependence since it couples to density
degrees of freedom.
ThePNJLmodel is also capable of describing the statistical

confinement-deconfinement transition, with the breaking of
ZðNcÞ symmetry. The quark fields areminimally coupled to a
background gluonic field in the temporal direction, A0

4,
through the covariant derivativeDμ¼∂μ−A0

4δ
0
μ. An approxi-

mate order parameter for this transition is the Polyakov loop
Φ. In the confined phase Φ → 0, while in the deconfined
phase Φ → 1. In this model, the effective potential
UðΦ; Φ̄;TÞ is built using the Ginzburg-Landau theory of
phase transitions: at low temperatures the ZðNcÞ symmetry
holds, while at high temperatures it is broken. We choose to
adopt the effective potential proposed in Refs. [30–32]:

UðΦ; Φ̄;TÞ
T4

¼−
1

2
aðTÞΦ̄Φ

þbðTÞ ln½1− 6ΦΦ̄þ 4ðΦ3þ Φ̄3Þ−3ðΦΦ̄Þ2�;
ð2Þ

with the T-dependent parameters [32]

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

; bðTÞ ¼ b3

�
T0

T

�
3

:
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Its parametrization values are a0 ¼ 3.51, a1 ¼ −2.47,
a2 ¼ 15.2, and b3 ¼ −1.75 [32] obtained with T0 ¼
270 MeV to reproduce the lattice QCD result. Due to the
presence of quarks we will rescale the critical temperature
to T0 ¼ 210 MeV.
The PNJL model is nonrenormalizable and a regulari-

zation scheme has to be introduced to deal with non-
convergent integrals in the model. In the present work,
the divergent ultraviolet sea-quark integrals are regularized
by a sharp cutoff Λ in three-momentum space. For the NJL
model parametrization, we consider Λ ¼ 602.3 MeV,
mu ¼ md ¼ 5.5 MeV, ms ¼ 140.7 MeV, GSΛ2 ¼ 1.835,
and GDΛ5 ¼ 12.36 [33].
Our goal is to describe a multicomponent system in

which the local concentrations of charges are kept fixed
across a phase-coexistence region. Although we are dis-
cussing the phase transition within a three-component
system composed of quarks u, d, and s, the results we
present are defined by the first two alone. The onset of s
quarks occurs for much larger baryonic densities and
chemical potentials than the ones shown in the following
figures. This was discussed in Ref. [29] and it was shown
that the s quark affects the QCD phase diagram only for a
baryonic chemical potential μB ≳ 1400 MeV.
Since we will be discussing the behavior of matter with a

fixed charge fraction with zero strangeness density
(ρs=ρB ¼ YS ¼ 0), the Gibbs free energy G is given by [4]

G ¼ BμB þQμQ ¼ BμBQ; ð3Þ

where B and Q are the baryon and charge number, respec-
tively, and μBQ ¼ μB þ YQμQ is the chemical potential
which is kept constant during a phase transition at constant
charge fraction [4] if the strangeness charge is zero.As shown
in Ref. [4], the following interphase chemical equilibrium
condition is imposed: μIBQ ¼ μIIBQ, with the local Gibbs free
energy per baryon μiBQ ¼ μiB þ Yi

Qμ
i
Q, where i ¼ I and II

designates the phase with broken chiral symmetry and the
chiral-symmetric phase, respectively.

III. RESULTS

In the following, we discuss the first-order phase
transition associated with the restoration of chiral sym-
metry in asymmetric quark matter, both with and without
vector interactions. This will be implemented by fixing the
value of YQ and by the conservation of baryon number B
and total net strangeness S ¼ 0. Due to its relevance in
HICs, namely, for Au-Au or Pb-Pb collisions, we will
frequently choose the charge fraction YQ ¼ 0.4 and YS ¼ 0

[34]. Another interesting scenario for asymmetric quark
matter is the one occurring in core-collapse supernova
matter where matter has a proton fraction below 0.4.
Scenarios with isospin charge conservation in strong
interaction were also studied in Refs. [35–37]. Although

strangeness may occur due to the weak interaction, in the
following discussion we consider YS ¼ 0.
We first analyze the phase diagram of the PNJL model

with YQ ¼ 0.5. This specific value for YQ corresponds to
describing one-fluid matter consisting of symmetric matter,
with equal amount of quarks u and d (ρu ¼ ρd; ρs ¼ 0),
and, in this case, the phase transition is governed by μB. The
same concerns the study of pure neutron matter with charge
fraction YQ ¼ 0, which we will also refer to in the
following. To study the effect of a finite repulsive vector
interaction, we will present results for models with ζ ¼
GV=GS ¼ 0 and ζ ¼ GV=GS ¼ 0.5. The last value was
chosen in order to have the critical end point (CEP) at T ≈ 0
for YQ ¼ 0.
In Fig. 1 the phase diagram of the model is shown in

terms of the baryonic chemical potential (left panel) and the
baryonic density (right panel). In both panels the spinodal,
binodal, and crossover lines are represented by black, thick
red, and thin red lines, respectively, and the deconfinement
crossover is represented by the blue lines. In the right panel,
the regions between the binodal and spinodal lines and the
region inside the spinodal section correspond to regions of
metastable and unstable matter, respectively. They are
reached only during a nonequilibrium evolution of the
system. Under the present conditions, homogeneous chiral-
symmetric quark matter is attained at densities above
0.4 fm−3. However, below these densities chiral-symmetric
quark matter will have the form of clusterized matter. One
of the main objectives of the present study is to understand
under which conditions chiral-symmetric quark matter is
more favorably formed.
In the left panel of Fig. 2, we plot the pressure as a

function of the baryon density to exemplify a phase
transition from the broken phase to the symmetric one at
T ¼ 50 MeV, for ζ ¼ 0 (curve AB, in red) and ζ ¼ 0.5
(curve A0B0, in blue). This phase transition is obtained by
keeping YQ fixed during the transition; as a consequence,
the pressure rises slightly. It also shows that the phase
transition is weaker, i.e., corresponds to a smaller jump in
density, when taking ζ ¼ 0.5. This result is expected since
the addition of the vector interaction is known to drag the
first-order phase transition towards lower temperatures and
make the pressure stiffer at smaller densities. For ζ > 0.5
and neutral matter with YQ ¼ 0, the first-order phase
transition does not exist any more.
The right panel of Fig. 2 shows the phase diagram in the

T-P plane for both ζ ¼ 0 and ζ ¼ 0.5, with the charge ratio
YQ ¼ 0.4. As discussed before, the pressure is not constant
in a phase transition with a charge fraction different from 0
or 0.5. The bands define the range of pressures covered
during the phase transition. When a finite repulsive vector
interaction is considered the pressure at the transition
increases considerably.
In Fig. 3 the phase transition lines at different charge

fractions are plotted for ζ ¼ 0 (left panels) and ζ ¼ 0.5
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(right panels) in the T-μB plane (upper panels) and T-ρB
plane (lower panels). The two extremes YQ ¼ 0 and YQ ¼
0.5 describe one-component matter: neutral matter with zero
total electric charge and symmetric matter with an equal
amount of u and d quarks, respectively. In those extreme
cases, identified in Fig. 3 by dashed lines, the phase transition
occurs at constant pressure and baryonic chemical potential
and also reduces to a line in the T-μB plane.
For any other given YQ in the T-μB or T-ρB plane, the

line at which matter starts to recover chiral symmetry and
the line for which matter is already in a partial chiral-
symmetric state1 are not coincident (see Fig. 3). However,

in the T-μBQ plane the phase transition is defined by a
single line.
The effect of including a finite vector interaction is clear:

for a given YQ, a finite ζ pushes the critical region and CEP
toward higher values of the chemical potential μB and lower
values of the temperature. The main effect on the phase
transition of a charge fraction smaller than 0.5 is seen in the
localization of the CEP and the onset of the transition. In
asymmetric matter, i.e., with a smaller total charge, the CEP
moves to smaller temperatures and larger μB and the onset
of the transition moves to larger values of μB. For ζ ¼ 0,
the CEP chemical potential (μCEPB ) suffers a rather large
change with the reduction of the total charge YQ: going
from YQ ¼ 0.5 to YQ ¼ 0, μCEPB varies ≈89 MeV, while the
temperature TCEP is only moderately affected, suffering
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FIG. 2. Left: phase transition for asymmetric matter: pressure versus the baryonic density ρB for YQ ¼ 0.4, T ¼ 50 MeV, and
ζ ¼ GV=GS ¼ 0 and ζ ¼ GV=GS ¼ 0.5. The phase transition is indicated with a thin dashed line. Since it is a two-component system
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ζ ¼ 0 and 0.5.
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1A partial chiral-symmetric state in the sense that the con-
stituent quark mass is still far from the respective current one.
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a reduction of ≈16 MeV. If ζ ¼ 0.5, the CEP temperature
experiences the largest variation with decreasing YQ, with a
reduction of ≈78 MeV, while the change in μCEPBQ is not
larger than 54 MeV. In this case, the CEP occurs at zero
temperature for YQ ¼ 0.
There is no first-order phase transition for ζ ¼ 0.5 with

YQ ¼ 0 because the CEP occurs at T ¼ 0. This is similar to
neutron matter, for which there is no liquid-gas phase
transition [5]. The possible existence of a first-order phase
transition to a chirally symmetric state in neutral matter
depends strongly on the coupling constant GV , which plays
a role similar to the one played by the ρ-meson coupling for
nuclear relativistic mean-field models.
For all other charge fractions represented, the phase

transition is defined by two lines in the T-μB plane; see both
top panels of Fig. 3. The range of temperatures and
chemical potentials spanned by the ζ ¼ 0 model is much
larger, but the overall features are similar. For each charge
fraction, in the region between the left branch (at the lower
chemical potential or density limit) and the right branch
(at the larger chemical potential or density limit) matter
separates into two phases: a low-density phase with
broken chiral symmetry and a high-density (partially)
chiral-symmetric matter.

In the bottom panels of Fig. 3, the transition lines are
represented in the T-ρB plane and the presence of the vector
interaction has a noticeable effect. The line that defines the
left border of the transition region occurs at very low
densities if ζ ¼ 0 and T ≲ 20 MeV. On the other extreme,
all lines come close to ρB ¼ 0.4 fm−3, which lies below 3
times the saturation density. The smaller the charge
fraction, the lower the critical temperature, the smaller
the transition region, and the smaller the density at which
chiral-symmetric matter sets in, although the differences are
not very large if ζ ¼ 0. A different situation occurs for
ζ ¼ 0.5; in this case, both the critical temperature and the
width of the transition decrease drastically with decreasing
YQ, and at YQ ¼ 0 the phase transition is reduced to a point
(the CEP).
An important conclusion is that for a finite ζ the

transition to chiral-symmetric matter may occur at quite
low densities, making this phase more accessible exper-
imentally. For matter characterized by YQ ¼ 0.4 this is
possible already at twice saturation density for a small
temperature, and at an even smaller density for larger
temperatures. If during a nonequilibrium reaction the
system enters the region inside the binodal or spinodal,
the density for the appearance of chiral symmetric matter
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will be even lower as wewill discuss in the following. In this
case, however, in the formof clusterizedmatter. For ζ ¼ 0 the
unstable/metastable region extends until very low densities,
while for ζ ¼ 0.5 the low-density limit of the mixed phase
sets in between 0.01 and 01 fm−3 depending on the charge.
In Fig. 4 the phase diagrams in the T-ρB plane are shown

for YQ ¼ 0.4, with ζ ¼ 0 (left panel) and ζ ¼ 0.5 (right
panel). The full lines identify the limits of the mixed phase:
η ¼ 0 means that the matter is all in a broken-chiral-
symmetry phase, while matter with η ¼ 1 is in a completely
restored-chiral-symmetry (partially) phase. Between the
limiting lines of the mixed phase, several dashed lines show
where matter is constituted by different fractions of chiral-
symmetric matter, identified by η. Within the models we
have considered, it is possible to form chiral-symmetric
matter in clusterized matter at densities well below the
onset of pure chiral-symmetric matter, during a nonequili-
brium evolution of the system.

IV. CONCLUSIONS

In this work we studied how the restoration of chiral
symmetry, within the PNJL model with and without vector
interactions, is affected by the conservation of more then
one charge. Although a three-flavor quark model was
considered, the critical region studied is only defined by
the up and down quarks, because the effect of the s quarks
is only felt at higher energies than the ones considered.
During a phase transition involving more than one

conserved charge, pressure is not constant, indicating the
presence of a mixed phase. In this case, the transition region
defined in the T-μB or T-ρB plane is limited by two distinct
lines, divided by a mixed phase. The width of this mixed
phase is dependent on the total charge fraction YQ and
heavily dependent on the vector coupling ζ ¼ GV=GS.
The inclusion of a vector interaction weakens the

phase transition both when considering a one-fluid system

(such as those consisting of symmetric matter or neutral
matter) or a system with more than one conserved charge
(such as asymmetric quark matter with a charge fraction
0 < YQ < 0.5). In particular, when taking a sufficiently
strong vector coupling the CEP disappears.
It was shown that for asymmetric matter the restoration

of chiral symmetry occurs at smaller densities, as suggested
in Ref. [38], and that the binodal section is reduced; in
particular, the low-density onset and high-density limits of
the binodal move to larger and smaller densities, respec-
tively. This effect is stronger if the vector interaction is
included. Besides, the localization of the CEP also moves
to lower temperatures.
During a nonequilibrium evolution, the system may

reach regions of the phase diagram, such as the metastable
or unstable regions inside the binodal and spinodal sec-
tions, that are forbidden to equilibrium thermodynamics
[24]. We have shown that under these conditions it is
possible to form clusters made of chiral-symmetric matter
at rather low densities. It is clear that these densities are
model dependent. However, the fact that asymmetric matter
favors the formation of chiral-symmetric matter at lower
densities than the predictions from symmetric matter is
quite general. These results are, in particular, of interest for
neutron stars where the proton fraction is especially low.
Besides, it was also shown that the occurrence of a quark
phase inside two solar-mass neutron stars requires the
inclusion of the vector interaction in the Lagrangian density
of NJL-like models; see, for instance, Refs. [18,23,39].
These two characteristics—the asymmetry of matter and
the presence of the vector interaction—may indicate that in
hot environments (such as in neutron star mergers or proto-
neutron stars) the presence of chiral-symmetric quark
matter is possible even at moderate densities. Carrying
these conclusions to the laboratory, they seem to show that
using large neutron-rich nuclei in heavy collisions may give
rise to conditions favorable to the formation of clusters of
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chiral-symmetric quark matter at intermediate densities
attainable, for instance, at FAIR or NICA. Even stable
heavy nuclei such as lead or uranium with a charge fraction
∼0.4would already be sufficiently asymmetric to create the
necessary conditions for quark matter formation. Unstable
radioactive beams of very asymmetric heavy nuclei would
further improve these conditions.
In the present study we have paid special attention to

conditions presently attained at the RHIC, in particular, a
charge fraction of 0.4 (as in Pb-Pb collisions) and zero
strangeness fraction, i.e., the strangeness density is put to
zero. In order to connect our results with lattice QCD
calculations, we have checked the leading-order contribution
inμB for the expansions of the electric charge and strangeness
chemical potentials, μQ and μS (see Refs. [40,41]). For
chemical potentials below 400 MeVand temperatures of the
order of 200 MeV, these temperature-dependent coefficients
areq1 ¼ −0.04 and s1 ¼ 0.34. Amore extended comparison
with lattice QCD data, within a larger region of temperature
and chemical potentials, is beyond the scope of this work and
is left for upcoming investigations.
As future work, it would be interesting to study

this scenario in a QCD model beyond the mean-field
approximation. One way to incorporate quantum

fluctuations in this calculation is by using the functional
renormalization group (FRG). Recently, the QCD phase
has been studied by applying the FRG approach to the
quark meson model [42–46]. The influence of strangeness
neutrality on thermodynamic quantities such as the equa-
tion of state was studied in Ref. [47]. Imposing strangeness
conservation and the initial isospin asymmetry of the
colliding nuclei is the natural step forward to continue
these studies.
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