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Minijets provide useful information on parton interactions in the low transverse-momentum (low-pT )
region. Because minijets produce clusters, we study the clustering properties of produced particles in high-
energy pp collisions as a first step to identify minijets. We develop an algorithm to find clusters by using
the k-means clustering method, in conjunction with a k-number (cluster number) selection principle in the
space of pseudorapidity and azimuthal angles. We test the clustering algorithm using events generated by
PYTHIA8.1 for pp collision at

ffiffiffi
s

p ¼ 200 GeV. We find that clustering of low-pT hadrons occurs in high
multiplicity events. However, similar clustering properties are also present for particles produced randomly
in a finite pseudorapidity and azimuthal angle space. To distinguish the dynamics from random generations
of events, it is necessary to examine the correlation between particles and between clusters. We find that the
correlations between clusters may provide a useful tool to distinguish the underlying dynamics of the
reaction mechanism.

DOI: 10.1103/PhysRevD.102.054007

I. INTRODUCTION

The mechanism of relativistic parton-parton hard scatter-
ing is an important basic perturbative QCD particle produc-
tion process in high-energy nucleon-nucleon collisions
[1–29]. Because of the composite nature of a nucleon,
multiple hard scattering between partons of the projectile
and target nucleons will lead to the production of jets and
dijets whose subsequent fragmentation gives rise to the
production of particle clusters. It is different from the non-
perturbative flux-tube fragmentationprocess [6,10,25,30–46]
in which a quark of one nucleon and the diquark of the other
nucleon (or a gluon of one nucleon and the gluon of the other
nucleon [47–52]) form one flux tube and the subsequent
fragmentation of the flux tube leads to the production of
hadrons. It is also different from the direct-fragmentation
process [53] inwhich the partons from the composite nucleon
fragment directly into the detected particles.
The hard-scattering process was originally proposed as

the dominant process for the production of high-pT jet
clusters of order many tens of GeV/c [1–7]. However, the
UA1Collaboration found that it is also the dominant process
for the production of particle clusters with a totalpT of a few

GeV/c for pp̄ collisions at
ffiffiffi
s

p ¼ 0.2 to 0.9 TeV [15]. The
term “minijet” was introduced to describe low-pT jet
clusters [16]. The dominance of jet production was found
to extend to lower pT domains at high collision energies
because (i) the fraction of particles produced by such a
process increases rapidly with collision energies

ffiffiffi
s

p
, and

(ii) the jet-production invariant cross section at midrapidity
varies as an inverse power of pT [8,16,17,27,29,54].
Recently, the region of dominance of the hard-scattering

process has been found to extend to the production of
hadrons even to the lower pT region of a few tenths of a
GeV/c [26–29]. An indirect piece of evidence comes from
the observation on the transverse momentum spectra of
produced hadrons: For the production of particles with pT
within the range from a few tenths of aGeV to a few hundred
GeV in high-energy pp and pp̄ collisions at

ffiffiffi
s

p ¼ 0.9 to
7 TeV, the hadron transverse spectra, whose magnitude
spans over 14 decades of magnitude, can be described by a
simple Tsallis inverse-power-law type distributionwith only
3 degrees of freedom [26–29]. The simplicity of the power-
law type transverse spectra suggests that only a single
mechanism, the hard-scattering process, dominates over
the extended pT domain. An additional piece of direct
evidence comes from the jetlike structure in the two-hadron
angular ðΔη;ΔϕÞ correlation data in a minimum-pT-bias
measurement of the STAR Collaboration in pp collisions atffiffiffi
s

p ¼ 200 GeV [55–58]. The momentum distributions of
hadrons associated with a hadron trigger of a few GeV/c in
pp collisions at the same energy exhibit a jetlike cluster
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structure within a cone in a similar manner, as observed
by the STAR Collaboration [59–66] and the PHENIX
Collaboration [66,67].
The extension of the dominance of the hard-scattering

model to the low-pT domain of a few tenths of GeV/c raises
serious questions on the large and divergent perturbative
quantum chromodynamics (pQCD) corrections at low pT
and the competition from nonperturbative flux tube frag-
mentation process associated with low-pT phenomena. We
need additional theoretical and experimental comparisons
of the hard-scattering model to construct the proper
phenomenological description in the low-pT region.
If the hard-scattering process of the pp collision is

appropriate also for the low-pT region, then multiple parton
interactions (known also as multiple collision processes)
[1,7,11–14] must occur to produce multiple minijets and
mini-dijets [1,7,8,11–17]. Among many other diagrams,
the hard-scattering process can lead to the production of
one, two, and three pairs of mini-dijets as depicted in
Figs. 1(a)–1(c). Furthermore, a parton of one proton can
make multiple collisions (known also as rescattering [14])
with different partons of the other proton, as depicted in
Figs. 1(d)–1(f). The numbers of produced minijets can be
even, as in Figs. 1(a)–1(c), or odd, as in Figs. 1(d)–1(f).
There can also be additional higher-order diagrams with the
radiation and the absorption of gluon partons, which lead to
additional minijets.
The multiple parton scattering processes in the production

of high-pT jets have been observed in high-energy pp or pp̄
collisions [68–71]. Theoretical discussions on the production
of minijets beyond the leading order has been investigated,
and hard inclusive dijet production with multiparton inter-
actions has also been considered [18–24,27,72]. However,
in the low-pT region, the experimental investigation for

multiple parton interactions with the production of multiple
minijets and mini-dijets remains lacking.
We would like to develop tools to study multiple hard-

scattering processes for the production of multiple minijets
and mini-dijets in the low-pT domain in pp collisions at
high energies. As a first step, we examine here the
clustering properties of minijets in the pseudorapidity
and azimuthal angle space and search for an algorithm
to assist the finding of minijet clusters candidates.
The minijet processes in a nucleon-nucleon collision are

not only intrinsically important with regard to our under-
standing of the underlying mechanism for low-pT particle
production, they are also extrinsically valuable in applica-
tions because nucleon-nucleon collisions lie at the heart of a
nucleus-nucleus collision, and the low-pT particle produc-
tion dominates the particle production process. An under-
standing of the mechanism of low-pT particle production in
nucleon-nucleon collisions provide vital information on the
initial condition that may exist at the early stage of nucleus-
nucleus collisions, on whichmuch interest has been focused
recently. In particular, the observation of the near-side jet
and the away-side ridge in high-multiplicity events in high-
energypp collisions [59–66,73–80] indicates that the initial
dynamics of the system after the production of a jet or a
minijet [79] depends on the initial configuration of the
system. The examination of such a system also calls for an
event-by-event study of the multiple minijet and mini-dijet
productions in pp collisions.
Our event-by-event study has been stimulated by a similar

investigation for particle production at lower pp collision
energies, where the particle production process may be
dominated by flux-tube fragmentation [81]. There, the basic
conservation laws and the semiclassical picture of the
fragmentation process provide powerful tools to reconstruct
the space-timedynamics of thepair production processes that
may occur, if exclusive data for the production process are
available. In the present investigation, the space-time dynam-
ics of parton-parton hard scattering may provide useful
experimental information on themultiple collision processes
and on the constituent nature of the colliding nucleons.
In the search for separated minijet and mini-dijets, one of

the important ingredients is the pT threshold value that sets
the pT limit for the inclusion of a particle as part of a
minijet. Clearly, the higher the pT limit, the cleaner will be
the cluster and their possible corresponding minijet part-
ners. On the other hand, the higher the pT value, the lower
will be the number of cluster counts and the lower the
sampling statistics. Furthermore, because each minijet
occupies a substantial area in ðη;ϕÞ space, the limited
angular and azimuthal space may make the separation of
the minijets a more difficult task. In the present manuscript,
we shall use the minimum-bias selection of particles
with pT ≥ 0.15 GeV=c. An optimum pT limit and cluster
multiplicity will need to be searched for in realistic
applications with real data.
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FIG. 1. Various multiple collision diagrams in a pp hard
scattering leading to the production of jets, which are called
minijets when the transverse momentum of the jet is small.
Shown here are diagrams for the production of (a) a dijet pair,
(b) two dijet pairs, and (c) three dijet pairs. Furthermore, a
scattered parton can make an additional collision with a different
parton of the other proton, as shown in diagrams (d), (e), and (f).
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This paper is organized as follows. In Sec. II, we
summarize the properties of a minijet from previous
studies. In Sec. III, we exhibit the distribution of produced
charged hadrons in the whole range of rapidity and
azimuthal angles for sample minimum-biased PYTHIA

calculations to illustrate the occurrence of clusters for
pp collisions at ffiffiffiffiffiffiffispp

p ¼ 200 GeV. In Sec. IV, we intro-
duce the algorithm for finding clusters in the pseudora-
pidity and azimuthal angle space. The algorithm consists of
the k-means clustering method supplemented by the
k-number (cluster number) selection principle, based on
the physical properties of minijet clusters. We illustrate the
usage of such an algorithm in Sec. V, using sample events
with high multiplicities generated by PYTHIA8.1. We exam-
ine the change of the clustering behavior as a function of
increasing multiplicities in PYTHIA8.1 events in Sec. VI. We
investigate whether similar properties of clustering can be
found in a random distribution within the same finite ðη;ϕÞ
phase space in Sec. VII. We study the correlation between
particles and between clusters in Sec. VIII. We present
our conclusions and discussions in Sec. IX. We discuss
another method of finding the cluster number, the elbow
method, and note its ambiguities in the Appendix. For
completeness, we also include the results of the azimuthal
angular correlations and pseudorapidity correlations in the
Appendix.

II. PROPERTIES OF A MINIJET

The structure of a minijet in the ðη;ϕÞ scatter plot can be
inferred from the distribution of the two-hadron angular
correlation as a function of the pseudorapidity difference
Δη ¼ η2 − η1 and the azimuthal angular differences Δϕ ¼
ϕ2 − ϕ1 of the two particles detected with angular coor-
dinates ðη1;ϕ1Þ and ðη2;ϕ2Þ in coincidence [55–67]. For
pp collisions at

ffiffiffi
s

p ¼ 200 GeV, the minijet structure
appears as a cluster of particles in the ðη;ϕÞ space (and
a cone in three-dimensional configuration space) as indi-
cated by a two-hadron Gaussian distribution in Δη and Δϕ
in the form

dN
dΔηdΔϕ

ðΔη;ΔϕÞ ∝ exp

�
−
ðΔηÞ2 þ ΔϕÞ2

2σ2ϕ

�
; ð1Þ

where the quantity σϕ was found to be [66]

σϕ¼
σϕ0maffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
aþp2

T;trigger

q ; σϕ0¼0.5; ma¼1.1GeV; ð2Þ

when triggered by a hadron with transverse momentum
pT;trigger. It should, however, be emphasized that the
Gaussian form of the distribution in Eq. (1) is only a
hypothesis. Actual shape of the distribution will require the
identification and the knowledge of minijets and all their
individual member particles, which are not yet generally

available. In the minimum-bias data at the Relativistic
Heavy Ion Collider energies, we shall consider the quantity
pT;trigger takes on the value of

ffiffiffiffiffiffiffiffiffiffi
hp2

Ti
p

, which is of order
0.4 GeV=c. Equation (2), therefore, yields σϕ ≃ 0.5. The
two-particle distribution of Eq. (1) has a half width at half
maximum at R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
¼ 1.2σϕ ¼ 0.6. We

can consider a circle of radius R in the ðη;ϕÞ plane. The
minimum separation between any two points inside the
circle is zero and the maximum separation is 2R. Setting
2R ¼ 2.4σϕ (or R ¼ 0.6) will allow the circle to contain a
large fraction (about 95%) of the Gaussian distribution (1)
within the circular domain. It is reasonable to assume that a
signature of a minijet cluster of particles is indicated by a
cluster of particles within a radius of R ≃ 0.6 in the plane
of ðη;ϕÞ.
In the hard-scattering process in the collision of two

partons, aþ b → a0 þ b0, the partons a0 and b0 materialize
subsequently as minijets. The initial a and b partons may be
endowed with a small intrinsic transverse momentum kT of
the order of 0.6 to 1.0 GeV=c [3,82–84]. The conservation
of 4-momentum requires that the scattered partons a0 and b0
will come out azimuthally in nearly back-to-back direc-
tions. The signature of a mini-dijet can be taken to be a pair
of minijets whose azimuthal angles are approximately
correlated within the range of π − R to π þ R.

III. DISTRIBUTIONS OF PRODUCED HADRONS
IN SAMPLE PYTHIA EVENTS

The description, in terms of partons, is useful only in the
early stages of the pp collision. Subsequent evolution of the
partons will require their hadronization into detectable
hadrons. The dynamics of particle production processes
leaves an imprint on the distribution of the produced particles.
Our knowledge of how partons hadronize remains

incomplete. We wish to obtain some insight on the
dynamics of the hadronization processes by examining
the distribution of the produced particles on an event-by-
event basis. To see what may be expected, it is instructive to
study the distribution of produced particles in the PYTHIA6.4

calculations with its hadronization model in which the
history of the evolution of the partons are recorded and
traceable [6].
In the PYTHIA6.4 description of the pp collision [6],

valence quarks, valence diquarks, and gluon partons are
produced, and they can be arranged into two initial strings
connected by leading valence quarks and antiquarks (or
diquarks). The produced gluons are then split into quark-
antiquark pairs and the quarks and their neighboring
antiquark (or diquark) are connected into segments of
shorter “kinky substrings”. Each substring is subsequently
fragmented to produce quark-antiquark pairs in accordance
with the nonperturbative Lund string fragmentation model.
In the Lund model, the fragmentation of the substring
segments follows the outside-inside cascades by producing
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a quark-antiquark pair carrying a light-cone momentum
fraction in accordance with a given fragmentation function.
The q-q̄ pair production leads to a shorter remainder string
with a smaller invariance mass, and the end parton particles
continue to repeat the string fragmentation process until the
invariance mass of the remainder string becomes lower than
the limit. After the fragmentation of the kinky substrings,
neighboring q and q̄ (or diquark) are then connected to
form hadrons. The production of the q-q̄ pairs leads to
clusters of hadrons that are likely to be correlated at the end
points and along the string. The outside-inside cascade of
string fragmentation of the leading partons of the string in
the Lund model is mathematically and kinematically
similar to the parton cascade in high-pT leading parton
fragmentation and parton showering, differing mainly in
the nature of the fragmentation functions.
In a PYTHIA event, charged and neutral hadrons, as well

as photons are produced. We shall focus on minimum-
biased events without any pT selection. They reside within
the window of ytarget ≤ η ≤ ybeam, and −π ≤ ϕ ≤ π in the
ðη;ϕÞ plane, where ybeam ¼ −ytarget ¼ 5.29 for pp colli-
sions at

ffiffiffi
s

p ¼ 200 GeV.
The scatter plots of produced charged hadrons obtained

in PYTHIA6.4 for a few randomly selected sample events,

event 5 and event 6, are displayed in Figs. 2 and 3. Each of
the pp events contains two separate quark-diquark sources
of strings or partons. A string source will produce particles
by string fragmentation, whereas a parton source will
collide to produce particles by the hard-scattering proc-
esses. To gain some insight on the pT and the charge of the
produced particles, we use circular and square points to
indicate pT less and greater than 0.5 GeV=c, respectively,
with solid points for positive particles and open points for
negative particles. In each event, the intermediate outputs
from PYTHIA6.4 allow the specification of the two separate
strings or partons from which the produced charged
hadrons originate. The patterns of hadron particles reveal
many interesting characteristics. One observes that pro-
duced particles tend to form clusters. A circle of radius
R ¼ 0.6 and a minimum of two hadrons can be conven-
iently used to separate different clusters, as such, a
definition leaves very few numbers of hadrons outside
the clusters. For each string, the clusters appear correlated
to form roughly a linear pattern along the axis indicated
by the dashed lines in Figs. 2 and 3. Because of the
fragmentation of kinky substrings along the greater parent
string, clusters have a tendency to correlate with an
azimuthal angular difference of about π. Source 1 of event
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FIG. 2. Scatter plots in the ðη;ϕÞ plane for produced charged
particles in the full ðη;ϕÞ plane in a randomly selected
sample event 5 generated by PYTHIA6.4 for pp collisions atffiffiffi
s

p ¼ 200 GeV. Cluster circles with a radius R ¼ 0.6 are plotted
to circumscribe the cluster centers. Some of the data points are
wrapped around to facilitate cluster association.
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FIG. 3. Scatter plots in the ðη;ϕÞ plane for produced charged
particles in the full ðη;ϕÞ plane in sample events generated by
PYTHIA6.4 for pp collisions at

ffiffiffi
s

p ¼ 200 GeV. Cluster circles
with a radius R ¼ 0.6 are plotted to circumscribe the cluster
centers.

WONG, JIANG, YAO, WEN, WANG, and HUANG PHYS. REV. D 102, 054007 (2020)

054007-4



5 in Fig. 2 and source 2 of event 6 in Fig. 3 give a large
number of clusters along the parent string. They appear to
bear the characteristic of a string fragmentation. Source 2 of
event 5 and source 1 of event 6 gives two groups of clusters,
which are roughly back-to-back correlated in the azimuthal
degree of freedom. They appear to bear the signature of
parton-parton collisions. Thus, both string fragmentation
and parton-parton hard scattering lead to clusters. One
expects intuitively that the string fragmentation will likely
lead to a chain of hadrons all along the rapidity axis as in
source 1 in event 5 and source 2 in event 6, whereas a
parton-parton hard scattering will lead to two groups of
clusters apart in rapidity, as in sources 2 in event 5, and
source 1 in event 6.

IV. ALGORITHM FOR FINDING CLUSTERS

As discussed in Sec. II, a minijet shows up as a cluster of
hadrons with a cone radius of R ¼ 0.6 in the ðη;ϕÞ space.
The sample events in PYTHIA6.4 in Sec. III indicate that
there are clusters of produced particles in PYTHIA model
calculations. Minijets are theoretically presumed to be
produced in PYTHIA calculations. It is, therefore, useful
to look for clusters as possible candidates for minijets.
Clusters, of the type shown in the last sections, can be

searched for by the k-means clustering method [85–91], in
conjunction with an additional k-number (cluster-number)
specification principle. In such a search, we ascribe the
characteristic cluster radiusR ¼ 0.6 to a cluster. If theminijet
producing hard-scattering process is dominant in the low-pT
region, as suggested in earlier studies [26,29,55–58], then
two clusters that are azimuthally correlated in a back-to-back
manner have a high probability to be a physical mini-dijet of
two correlated minijets at high collision energies.
For a given set ofM produced particles specified by their

angular positions fxi ¼ ðηi;ϕiÞ; i ¼ 1; 2; 3;…Mg and a
given K number of clusters, the k-means clustering method
consists of (i) partitioning the set of M particles into K
cluster subsets Sk ¼ fxki g; k ¼ 1; 2;…; K and (ii) finding
for each cluster subset the corresponding cluster center
fCk, k ¼ 1,2,...Kg so as to minimize the potential function

ΦðKÞ ¼
XK
k¼1

�X
xki∈Sk

ðxki − CkÞ2
�
; ð3Þ

which is defined as the total subset sum of the squares of
the distances between the cluster subset points and their
corresponding cluster center Ck.
For a fixed value of K, the variation of the above

potential function ΦðKÞ with respect to the cluster center
Ck is given by

δΦðKÞ ¼ −
XK
k¼1

�X
xki∈Sk

2ðxki − CkÞ · δCk

�
: ð4Þ

Because all δCk are independent, the minimization ofΦðKÞ
with respect to the variation of the positions of the cluster
centers Ck leads to δΦðKÞ=δCk ¼ 0 andX

xki∈Sk

2ðxki − CkÞ ¼ 0: ð5Þ

This yields Ck as the centers of gravity of the subset of
points of Sk ¼ fxki g; k ¼ 1; 2;…; K,

Ck ¼
1

Mk

X
xki∈Sk

xki ; ð6Þ

where Mk ¼ ðPxki∈Sk
1Þ is the number (multiplicity) of

particles in the subset Sk.
In numerical implementation of the k-means clustering

method for a given value of the cluster number K, one
chooses randomly the first cluster center as one of the data
points and chooses randomly the other K − 1 cluster
centers in the other data points with probability propor-
tional to the square of the distance from the first cluster
center [89]. For each data point, the knowledge of the
positions of the initial cluster centers then allows one to
calculate the squares of the distance between the data point
and all K cluster centers. One then assigns each data point
to the subset Sk with the smallest square of distance to its
cluster center Ck. After all subset assignments to Sk have
been completed for all data points, the center of gravity of
the data points in each new subset Sk is then recalculated to
give the new cluster centers Ck, with which the iterative
procedure will proceed until it converges. One then
calculates the potential function ΦðKÞ of Eq. (3) as the
sum of squared distances.
The above standard procedure is then repeated with other

random initialization of the initial cluster centers. After
many cluster center random initializations, corresponding
convergent solutions, and the potential functions ΦðKÞ
have been obtained, the proper solution for the case of a
given value of K can be found and selected as the solution
with the minimum value of the potential function ΦðKÞ.
For a given value of K, the k-means clustering method
then yields uniquely the cluster subsets of particles Sk ¼
fxki g; k ¼ 1; 2;…; K associated with each cluster and the
corresponding cluster center location Ck.
The k-means clustering method needs an amendment to

make it applicable for cluster searches because the method
will lead to poorly displaced and inaccurate cluster centers,
if isolated particle points that are obviously not part of a
cluster and quite far away from a cluster have been included
into the particle data set in the clustering algorithm. The
presence of these isolated particles is possible because the
cluster partners of these isolated particles may not be
detected within the narrow window of acceptance, and
there may further be other sources of particle production in
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addition to those from clusters. We need to use our
knowledge on the structure of the minijet in Eq. (1) to
sieve out these isolated data points in the set ofM particles.
We calculate the distances between any data point and all
other data points in the ðη;ϕÞ plane. The knowledge of
these distances allows us to exclude any data point whose
minimum separation to all other data points exceeds a
distance 2R, presumably the maximum separation for two
data points in a minijet. (If we allow a degree of fuzziness in
excluding these isolated points, the minimum separation
can be set to 2Rþ 2a, where a ≪ R is the diffuseness
parameter.) After these points are excluded to yield a
reduced set of particles belonging to clusters in this
modification, the k-means clustering method becomes very
efficient, fast converging, and capable of yielding accurate
cluster centers. The method is stable against the variations
of the positions of the cluster centers, which turn out to be
the centers of gravity of the subset Sk of the clustering
points, as given by Eq. (6). In this procedure, because the
azimuthal angle ϕ is equivalent to ϕ� 2π with a modulo of
2π, it is important to wrap around the azimuthal angles
when such a wrapping leads to an additional possibility of
minijet clustering.
We presume on the outset that a cluster consists of at

least two particles. The k-means clustering method requires
a prior knowledge of the cluster number K. There may be
different ways to partition a group of M particles into
different numbers of clusters, and the locations of the
cluster centers may also vary. The selection of K and the
identification of particles as belonging to different K
clusters may, therefore, be ambiguous. Our algorithm to
find clusters must contain an additional method to select the
appropriate cluster number K that is based on well-founded
physical principles.
For a given set of M produced particles on the ðη;ϕÞ

plane, one considers a possible range of cluster K numbers,
K ¼ Kmin;…; Kmax. The maximum limit Kmax occurs
when the cluster number Kmax þ 1 leads to the forbidden
case of having a cluster with only a single particle. For each
cluster number K in the range under consideration, the
k-means clustering method leads to a unique partition into
K clusters with their corresponding cluster centers Ck. To
select the appropriate K, we use the minijet physical
properties discussed in the last section that a cluster circle
with a radius R ¼ 0.6 of a physical minijet contains almost
all of the particles of the physical minijet. In order for the
cluster number K to lead to the appropriate partition of
the set of M particles into K physical minijets or clusters,
the corresponding K cluster circles with a radius R ¼ 0.6
should contain all, or almost all, M data points of the set.
There should be very few data points outside the cluster
circles. The k-number (cluster number) selection principle
is, therefore, that K should be the cluster number that leads
to the fewest number of data points Ω outside the cluster
circles with an assumed radius.

In the process of determining quantitatively the number
of outside data points, one finds that there are often some
data points close to the circular boundary, which can be
considered as part of the cluster. To account for such a
possibility of inclusion of these hadrons into the clusters,
we generalize the number of outside points from a discrete
number Ω to a continuous quantity by

Ω ¼
XK
k¼1

�X
xki∈Sk

�
1 −

1

1þ expfjxki−Ckj−R
a g

��
; ð7Þ

where, for our case, we have taken the value R ¼ 0.6. In the
case with a sharp boundary a → 0, we just have the case of
a discrete number of outside points. We shall use a ¼ 0.1
for numerical purposes. In applying the principle of the
least number of outside points, we calculate the generalized
Ω only for points close to the cluster’s boundary with the
region between R ∼ Rþ a. We directly reject points
beyond Rþ a as they are too far away from the clusters,
and the possibility to involve these points inside the clusters
is also very low. What is more, we also directly involve the
points within R inside the clusters. By these ways, we can
make the sharp circle clusters to be flexible, and we still
ensure the algorithm to be stable and fast.
For each iteration in each event, there may be particles

farther away from all cluster centers beyond the separations
of Rþ a after particles are partitioned into sets of clusters.
These data points will not be included in the determination
of the new cluster centers for the next iteration.
By generalizing the number of outside points Ω, from a

discrete number to a continuous quantity, the principle of
smallest outside points choice of K is such that K is that the
quantity Ω is smallest for different K. If there are two K
values having the same fewest outside points within a
range, we should select the smaller K value because the set
of the smaller number of minijets can radiate a parton and
become the parent of the set with a greater number of
minijets.
In summary, our cluster finding algorithm, therefore,

consists of the k-means cluster method, supplemented by
the k-number selection principle of the fewest number of
data points outside of the cluster circles.

V. ILLUSTRATION OF THE ALGORITHM
FOR FINDING CLUSTERS

We shall apply the above algorithm for finding clusters
from charged hadrons generated by the PYTHIA8.1 for high-
energy pp collisions at

ffiffiffi
s

p ¼ 200 GeV. The event gen-
erators PYTHIA8.1 [9] and PYTHIA6.4 [8] include the multiple
parton interaction processes as described in Ref. [7] with
additional considerations on color correlations, flavor
correlations, junction topology, beam remnant configura-
tions [11], and interleaving initial state radiations [12]. The
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fully interleaving evolution [13] and rescattering [14] are
further included in PYTHIA8.2 [10].
In the series of PYTHIA programs, the basic picture of the

multiple collision process arises from the composite nature
of the proton, which possesses a parton spatial distribution
in addition to the standard parton momentum distribution
(parton distribution function). The parton-parton collisions
between the constituents of the projectile proton and the
target proton are assumed to be independent of each other,
and the number of collisions in an event is, therefore, given
by a Poisson distribution. The probability of parton-parton
collisions is then a function of the parton-parton cross
section and the impact parameter. To extend the parton-
parton scattering cross section to the low-pT region for
minimum-bias studies, the divergent parton-parton scatter-
ing cross section at low transverse momenta has to be
regularized with a cut-off parameter that can be chosen to
yield the appropriate charged-hadron multiplicity distribu-
tion. We expect finite multiple parton-parton multiple
collision probabilities for the independent collisions of
projectile partons with target partons as depicted in the
diagrams in Fig. 1. They lead to the production of multiple
minijets and mini-dijets in the angular scatter plots of
produced charged particles.
The probability for the occurrence of minijets and mini-

dijets depends on the charge multiplicity of the event,
which is part of the total hadron multiplicity. For brevity of
notation and its frequent usage, we shall abbreviate “charge
multiplicity” or “charged-particle multiplicity” simply by
“multiplicity” when ambiguities do not arise or are not
pertinent. We can restore back the term “charge multiplic-
ity” when it is properly needed.
In order to predict what may be expected experimentally

for multiple minijet and mini-dijet productions, we generate
minimum-bias events using the PYTHIA8.1, and we accept
primary charged particles with jηj ≤ 1. For each event
multiplicity, we select five random events for illustration.
We shall label each event by the index pMeI, where pM
stands for PYTHIA minimum-biased events with charge
multiplicity M, and eI denotes event number I with the
charge multiplicity M. We would like to search for the
presence of the expected and mini-dijetlike clusters from
the angular scatter plots of charged particles in these
events.
The detected and identified charged particles include not

only charged hadrons but also a small percentage (of about
12%) of eþ or e−. By convention, we include these leptons
in our charged multiplicity counts. However, because the
eþ and e− particles arise from many different hadronic and
nonhadronic sources and the relations between these
particles and their hadron parents if they arise from
hadronic decays are nontrivial, we shall exclude them in
our minijet finding algorithm. Their presence in the
scattered ðη;ϕÞ plot provides a sense of possible hadronic
activities in the vicinity of their angular locations.

In Figs. 4, 6, 7, and 8, we shall show sample scatter plots
of charged particles in the ðη;ϕÞ plane from minimum-bias
events simulated by the PYTHIA8.1 event generator. We
display the particle labels of kaons, protons, electrons, and
muons while the other particles are all charged pions. The
solid and open points denote positive and negative par-
ticles, respectively, and circular and square points denote
pT ≤ 0.5 GeV=c and pT > 0.5 GeV=c, respectively.
We shall illustrate the algorithm for finding clusters with

concrete examples. We consider three randomly selected
minimum-bias PYTHIA8.1 events withM ¼ 20 in Fig. 4. For
each of these events, we assume different cluster numbers
K and obtain K clusters and their corresponding cluster
centers Ck using the k-means clustering method. We then
construct cluster circles with a radius R ¼ 0.6 circum-
scribing the cluster centers.
In Fig. 4, for event p20e2 with K ¼ 4, 5, 6, and 7 on the

top panel, the number of points Ω outside of the cluster
circles are 10, 6, 4, and 2, respectively. For the case of
K ¼ 8, there is no k-means clustering solution without one
of the clusters possessing only a single particle. Because we
do not consider a single particle to be a cluster, K ¼ 8 is
excluded from our consideration for event p20e2. If the
clusters are minijet clusters, then almost all particle points
should be inside the cluster circles. The case ofK ¼ 7 leads
to the fewest number of particles Ω outside of the cluster
circles. According to the principle of fewest outside points,
K ¼ 7 is the proper number of clusters for event p20e2 on
the top panel. Similarly, for event p20e4 in Fig. 4 with
K ¼ 4, 5, 6, and 7 in the middle panel, the number of points
outside of the cluster circles are 8, 5, 3, and 0, respectively.
We infer that K ¼ 7 leads to clusters for event p20e4. For
event p20e5 in Fig. 4 with K ¼ 3, 4, 5, and 6 in the lower
panel, the number of outside points are 11, 6, 1, and 0. We
infer that K ¼ 6 is the proper cluster number with zero
points outside of the cluster circles.
It should be mentioned that there is another method, the

“elbow method”, to select the cluster numberK by studying
the K-dependence of the potential function ΦðKÞ [85,90].
The method consists of determining the cluster number
by the location of the “kink” where there is a sudden
change of the slope of the potential function. The method
suffers from the ambiguities in finding where the kink lies
and will not be used in the present context. We shall discuss
the ambiguities in such a method in Appendix A.

VI. SCATTER PLOTS OF PRODUCED
CHARGED PARTICLES FROM PYTHIA8.1

We study the clustering properties of charged particles
produced in pp collisions in events with −1 ≤ η ≤ 1, −π ≤
ϕ ≤ π and generated by PYTHIA8.1 at

ffiffiffi
s

p ¼ 200 GeV
without a pT selection. In reviewing the scatter plots in
the ðη;ϕÞ space as a function of the charged particle
multiplicity, it should be kept in mind that those events
with larger charge multiplicity numbers M are events with
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lower occurrence frequencies as given in Fig. 5. The
average number of charged particles within the window
of jηj ≤ 1 is hMi ¼ 6.94.
We plot in Figs. 6–8 clusters of particles within a radius

of R ¼ 0.6 obtained from the clustering algorithm. As the
multiplicity increases beyond M ¼ 6, there appears to be a
gradual onset of the production of multiple clusters for pp
collision at

ffiffiffi
s

p ¼ 200 GeV.
An interesting question arises whether the angular

clustering of data points at ðΔη;ΔϕÞ ∼ 0 may arise from
the decay of resonances. For a resonance with a mass M
decaying into two particles with momenta pi ¼ ðy; pTi;ϕiÞ
with i ¼ 1,2 and transverse masses mTi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Ti þm2

i

p
, the

angular correlation of the two particles for Δy ¼ ðy1 − y2Þ
and Δϕ ¼ ϕ1 − ϕ2 satisfies

M2 −m2
1 −m2

2

2

¼ mT1mT2 coshðΔyÞ − pT1pT2 cosðΔϕÞ: ð8Þ

For small jΔyj and jΔϕj, we can expand the cosh and cos
functions and get

mT1mT2ðΔyÞ2 þ pT1pT2ðΔϕÞ2
¼ M2 −m2

1 −m2
2 − 2mT1mT2 þ 2pT1pT2: ð9Þ

In the decay into two masses, the scatter plot of the two
final particles for small values of Δy and Δϕ fall within an
ellipse with ellipsoidal radii given by
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FIG. 4. Scatter plots in the ðη;ϕÞ plane for produced charged
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by PYTHIA8.1 for pp collisions at
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p ¼ 200 GeV. Cluster circles
with a radius R ¼ 0.6 circumscribe cluster centers obtained
with the k-means clustering method assuming different cluster
numbers K.
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aΔy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2

1 −m2
2 − 2ðmT1mT2 − pT1pT2Þ
mT1mT2

s
; ð10aÞ

aΔϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −m2

1 −m2
2 − 2ðmT1mT2 − pT1pT2Þ
pT1pT2

s
: ð10bÞ

Thus, the decay of a resonance may appear as a cluster
within a radius aΔy and aΔϕ and not necessarily and directly
from a minijet, depending on the quantities as given on the

right-hand side of the above equations. Upon approximat-
ing the rapidity y as the pseudorapidity η, the above results
show that the decay of a resonance may appear as a cluster
with the radii of Eq. (10).
The partitioning of the set of charged particles into

clusters can be carried out on an event-by-event basis in
Figs. 6–8 by identifying a cluster as an assemble of
particles represented by a circle in the ðη;ϕÞ plane
with a radius of R ¼ 0.6. We can furthermore identify a
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mini-dijetlike pair of clusters as two correlated clusters
whose centers are separated azimuthally within the range
from π − R to π þ R. In Figs. 6–8, we indicate a cluster and
its corresponding associated partner by circles of the same
line type and color. At the end edges of ϕ ¼ �π, the scatter
plots are sometimes wrapped around so as to facilitate the
partitioning particles into clusters, as in events p11e2,
p11e4, p11e5,….
The data in Figs. 6–8 reveal that as the multiplicity

increases, clusters of more than two particles within a

radius of R ¼ 0.6 occur with a greater probability. In most
of the events with M ¼ 7 to 9 and higher multiplicities,
a single cluster appears often to correlate roughly with an
associated partner in azimuthally nearly back-to-back
directions. There may be a fluctuation of the back-to-back
correlation due to the intrinsic transverse momentum of the
partons. We conclude from these figures that mini-dijetlike
clusters commence atM ∼ 7with the probability increasing
gradually asM increases and appear nearly consistently for
M ≳ 11, as indicated in Figs. 7 and 8.
We show in Fig. 7 the scatter plots of charged particles in

events with high multiplicities 11 ≤ M ≤ 15. As the
multiplicity number M increases beyond M ≳ 13, there
is a transition from the production of one pair of mini-
dijetlike clusters to the production of two pairs of mini-
dijetlike clusters with each pair of mini-dijetlike clusters
approximately azimuthally back-to-back with respect to
each other. The transition region is not sharp as many
events contain only a single pair of mini-dijetlike clusters
while many other events in Fig. 7 contain double correlated
mini-dijetlike clusters. We conclude from these figures that
two mini-dijetlike cluster pairs begin to set in withM ≳ 14
with the probability increasing gradually as M increases.
We show in Figs. 8 the scatter plots of charged particles

in events with ultra-high multiplicities 17 ≤ M ≤ 21. As
the multiplicity number M increases beyond M ≳ 17, the
production of two sets of mini-dijetlike clusters appears
nearly consistently with occasional production of five
clusters. In Fig. 8, events with M ≳ 20 appear to contain
events with three pairs of mini-dijetlike clusters.
The results from the present analysis indicates that

multiple clusters and mini-dijetlike clusters are common
occurrences for events with high multiplicities, and their
numbers increase with the increasing multiplicity M.
Figure 9(a) shows that for events generated by PYTHIA8.1

within jηj ≤ 1, the number of clusters K appears to
increase monotonically and approximately as a linear
function of charge multiplicityM. The relationship between
ðM=KÞPYTHIA and M is shown in Fig. 9(b). The ratio
ðM=KÞPYTHIA is 2.355 for M ¼ 5 and is 2.372 for M ¼ 8.

VII. CLUSTERING OF PARTICLES IN
A RANDOM DISTRIBUTION

The results in the last section indicate the copious
production of clusters in the theoretical model of
PYTHIA8.1. Many of these clusters also exhibit back-to-
back azimuthal correlations to make them good candidates
for physical mini-dijets. These theoretical clusters as well
as their corresponding experimental counterparts will
likely represent physical minijets and mini-dijets, if the
dominance of the parton-parton hard-scattering process
for minijet production is extended to the low-pT region as
suggested in [26,29,55–58].
It is worth noting that the clustering property by itself is

not sufficient to definitively identify a cluster as a minijet
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pp collisions at
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locations of the clusters.

WONG, JIANG, YAO, WEN, WANG, and HUANG PHYS. REV. D 102, 054007 (2020)

054007-10



cluster because similar clustering properties may also be
present in other particle production models. It is necessary
to have other independent collaborative supports for the
minijet occurrence in order to identify the observed clusters
as likely physical minijet clusters.
In order to bring the need for independent collaborative

supports into sharp focus, it is illustrative to examine the
clustering properties of particles produced in a simple
schematic model in which a total of Mrandom number of
particles are randomly and independently produced with a
uniform probability in the ðη;ϕÞ phase space within the
window of jηj ≤ Δηwindow=2 and jϕj ≤ π,

dPrandom

dηdϕ
¼ ΘðΔηwindow=2 − jηjÞΘðπ − jϕjÞ

2πΔηwindow
: ð11Þ

This can be the approximate mode of production when
particles are produced independently with a uniform

probability in rapidity, as from the fragmentation of a flux
tube at very high energies [6,10,25,30–46]. It can also be
the probability distribution used to describe noise particles
randomly produced within the experimental ðη;ϕÞ phase
space. We use the symbols fMrandom; Krandomg to denote the
multiplicity number and cluster numbers, respectively,
using a random generation of particles.
We find, in this case of random distribution, that particle

clustering also occurs when a large Mrandom number of
particles are produced randomly over a small phase space.
To understand such a clustering, we can pick any two
produced particles. The probability that a pair of particles
falling randomly within the circle of radius R with respect
to each other is

Prandom ¼
�

πR2

ΔϕwindowΔηwindow

�
; ð12Þ

where Δϕwindow ¼ 2π and Δηwindow ¼ 2 for the present
window. In an event with multiplicity Mrandom, the number
of distinct pairs is

ðnumber of distinct pairsÞ ¼ MrandomðMrandom − 1Þ
2

: ð13Þ

Therefore, with multiplicity Mrandom the (average) number
of clusters Krandomð2;MrandomÞ is the product of Eqs. (12)
and (13),

Krandomð2;MrandomÞ ¼
MrandomðMrandom − 1Þ

2ð2πΔηwindowÞ
πR2; ð14Þ

upon identifying a cluster as two particles falling within a
radius of R ¼ 0.6. However, because clusters can be
formed with more than two particles, the above quantity
Krandomð2;MrandomÞ represents only the upper limit of the
number of clusters when particles fall into and join other
clusters.
More generally, the number Krandomðn;MrandomÞ of

clusters of random coincidence for a cluster of n particles
within a radius of R in an event with multiplicity M is

Krandomðn;MrandomÞ ¼ CMrandom
n

�
πR2

2πΔηwindow

�
n−1

: ð15Þ

For a detector such as the STAR detector with a pseudor-
apidity window Δηwindow ¼ 2, we have

Krandomð2;MrandomÞ ¼
MrandomðMrandom − 1Þ

2
× 0.09: ð16Þ

Thus, the upper limit of the number of clusters from the
random distribution Eq. (11) increases quadratically as a
function of the multiplicityMrandom. This upper limit can be
quite large for large Mrandom. For example, from Eq. (16)
one expects the upper limit of Krandomð2;MrandomÞ ¼ 0.9

FIG. 9. Relations between charge multiplicity M and the
number of clusters K: for pp collisions at

ffiffiffi
s

p ¼ 200 GeV as
extracted from events generated by PYTHIA8.1 within jηj ≤ 1 and
jϕj ≤ π. (a) The relation of K as a function of M obtained from
PYTHIA (star symbol) and the random distribution (open circle).
(b) The ratio ofK=M as a function ofM for particles. (c) The ratio
of KPYTHIA=Krandom as a function of M.
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and 4.95 clusters for Mrandom ¼ 5 and Mrandom ¼ 11,
respectively. Thus, we would not be surprised to find
clusters even for randomly and independently distributed
particles as the multiplicity Mrandom increases from 4 to 11.
In our numerical example, we generate particles ran-

domly with the uniform probability distribution of Eq. (11)
within −π ≤ ϕ ≤ π and −1 ≤ η ≤ 1. We label the events as
xMrandomeI and show sample events with multiplicity from
Mrandom ¼ 5 to Mrandom ¼ 21 in Figs. 10–12, where we
shall not distinguish the charges and the types of particles.
We then use the minijet finding algorithm of Secs. III
and IV to locate cluster centers and circumscribe the cluster
in circles.
Figures 10–12 show that as the multiplicity increases,

the number of clusters Krandom also increases. In Fig. 9(a),
we show that the number of clusters Krandom appears to be
nearly a linear function of the multiplicity, similar to the
relationship for events generated by PYTHIA8.1. The number
of clusters Krandom estimated by Eq. (16) represents only an
upper limit because a cluster with more than two particles
can be formed in high multiplicity events. The number of
clusters increases only approximately linearly with multi-
plicity Mrandom, instead of the quadratic dependence of
Eq. (13), as shown in Fig. 9(a).
Figure 9(a) shows the cluster numbers K for events

generated by the random distribution along with those
generated by PYTHIA8.1 within jηj ≤ 1. The number of
clusters Krandom for the random distribution appears to
increase, likewise, monotonically and approximately as a
linear function of multiplicity M ¼ Mrandom. The relation-
ship between ðM=KÞrandom andM is shown in Fig 9(b). The
ratio ðM=KÞrandom is 2.354 for M ¼ 5 and is 2.357 for
M ¼ 8. The ratio KPYTHIA=Krandom is close to unity. It is
0.981 for M ¼ 5, and it is 0.996 for M ¼ 8, as shown in
Fig. 9(c).
One way to study the clusters that are formed is by way

of the ðΔη ¼ η1 − η2;Δϕ ¼ ϕ1 − ϕ2Þ correlations between
clusters located at ðη1;ϕ1Þ and ðη2;ϕ2Þ. Figures 10–12, for
the random and uniformly distributed particles, also exhibit
azimuthal correlations for some of the pairs, as cluster
circles of similar types in these figures indicate. Thus, the
clusters in the random distribution also exhibit approximate
azimuthal back-to-back correlations, as can be observed in
Figs. 10 and 11.
We can estimate the number of azimuthally back-to-back

correlated clusters D0 as a function of the number of
clusters Krandom. We consider a pair of clusters. The
probability that the pair of clusters can be considered
back-to-back correlated in azimuthal angles is

Prandom ¼ 2R
Δϕwindow

¼ 2R
2π

: ð17Þ

In an event with Krandom number of clusters, the number of
distinct pairs is

ðnumber of distinct pairsÞ ¼ KrandomðKrandom − 1Þ
2

: ð18Þ

Therefore, in such an event withKrandom number of clusters,
the (average) number of mini-dijetlike pairsD0ðKrandomÞ for
the random distribution is the product of Eqs. (14) and (18),

D0ðKrandomÞ ¼
KrandomðKrandom − 1Þ

2

�
R
π

�
: ð19Þ
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FIG. 10. Scatter plots in the ðη;ϕÞ plane for produced particles
in events with multiplicities Mrandom ¼ 5, 7, and 9, production
within jηj ≤ 1 and jϕj ≤ π. Circular curves indicate the locations
of the cluster circles with R ¼ 0.6.
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Thus, for Krandom ¼ 4, the number of mini-dijetlike pairs is
D0ðKrandomÞ ¼ 1.15. This means that when Krandom exceeds
about four, the number of mini-dijetlike pair of clusters
D0 ∼ 1 and back-to-back correlated mini-dijetlike pairs will
begin to set in, as one can observe from the number of mini-
dijetlike clusters in events x11e3, x13e2, and x15e1 with
Krandom ≳ 4 in Fig. 11.
Results in Figs. 10–12 indicate that by distributing

particles densely within a small angular phase space,

clustering and azimuthal correlations occur also for ran-
domly distributed sources of the particle. Thus, clustering
and azimuthal correlation by themselves cannot be
the only means of identifying minijets and mini-dijets.
The identification of these clusters, as such, arises from
other independent supports for the dominance of the
hard-scattering model for minijet production of low-pT
particles.
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FIG. 11. Scatter plots in the ðη;ϕÞ plane for produced particles
in events with multiplicities Mrandom ¼ 11, 13, and 15 generated
by an event generator with a uniform and independent production
within jηj ≤ 1 and jϕj ≤ π. Circular curves indicate the locations
of the cluster circles with R ¼ 0.6.
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FIG. 12. Scatter plots in the ðη;ϕÞ plane for produced particles
in events with multiplicities Mrandom ¼ 17, 19, and 21 generated
an event generator with a uniform and independent production
within jηj ≤ 1 and jϕj ≤ π. Circular curves indicate the locations
of the cluster circles with R ¼ 0.6.
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VIII. CORRELATIONS BETWEEN PARTICLES
AND BETWEEN CLUSTERS

A. Two-particle correlations

The results in the previous sections indicate that while
the PYTHIA event generator yields clusters in the ðη;ϕÞ
plane, such a clustering is not uniquely a property of the
dynamics of the particle production processes in QCD as
implemented in PYTHIA. Clustering also occurs with
randomly generated data arising from many sources. The
angular dimension πR2 relative to the window dimensions
Δηjwindow and Δϕjwindow gives rise to a finite clustering
probability even for random distributions, as discussed in
Eqs. (16), (17), and (19). The kinematic cuts and the shape
of the kinematic window also plays a significant role. With
a particular geometry in defining the acceptance window
such that fη1; η2g ∈ Δηwindow, the phase space of a corre-
lated particle-particle pair will not always be distributed
uniformly in the correlation coordinates fΔη;Δϕg. As a
consequence, the particle-particle correlations and the
associated cluster-cluster correlations will be distorted.
The assumed intrinsic property of the clusters play another
important role. For example, if we set the pT acceptance
threshold of the particles to be higher and higher, then the
multiplicity number and the number of clusters will be
lower, the greater the probability for a high multiplicity
event to reveal itself much more readily as originating from
a minijet as compared to a random cluster. Therefore, the
meaning of a cluster is defined by a given set of the
attributes of the delimiting constraints.
Given a set of these constraints, we would like to

examine the particle-particle and cluster-cluster correla-
tions for the purpose of extracting information on the
dynamics that distinguishes the PYTHIA8.1 results from
random results. The particle-particle and cluster-cluster
correlations are also called two-particle and two-cluster
correlations, respectively. After using PYTHIA8.1, or the
random distribution to simulate pp collisions, we collect
the kinematic data of the particles in each event. We pick all
combinations of particle pairs (or cluster pairs) that are in
the same events to calculate the Δϕ and Δη between any
two particles or clusters. Then we fill the 2D-histogram
withΔϕ andΔη to get the particle-particle or cluster-cluster
correlation function.
In Fig. 13, we show the un-normalized 2D two-particle

correlation distribution dN=dΔηdΔϕ as a function of the
correlation separation Δη and Δϕ within the window of
−1 ≤ η ≤ 1 and 0 ≤ ϕ ≤ π for M ¼ 5–7. There is the
symmetry of the distribution with respect to a change of
the sign of Δϕ or Δη. It suffices to display the distributions
only in the region of positive Δϕ and Δη. The color plot of
the event number in each bin is red for large number counts
and blue for fewer number counts.
The effect of the phase space limitations shows up

clearly in the correlation function for the case of the

random distribution in Fig. 13(a). Within the acceptance
window, the generated correlation function dN=dΔϕdΔη
along the η axis is large atΔη ¼ 0, and it falls down linearly
as Δη increases in the well-known form of a triangular
distribution. The generated correlated distribution is nearly
uniform in the Δϕ direction with minor fluctuations.
Figure 13(b) gives the two-particle correlation obtained

with the event generator PYTHIA8.1 for M ¼ 5–7, which
corresponds approximately to the average multiplicity
hMi¼6.94. It represents essentially the theoretical particle-
particle correlation function for the case of minimum-
biased measurements. One notes that the limited phase
space of the measurement window, likewise, distorts the
distribution to follow roughly the triangular shapes as a
function of Δη with an approximately uniform distribution
in Δϕ. However, upon careful examination, there are finer
differences in the region of ðΔϕ;ΔηÞ ∼ 0 and Δϕ ∼ π.

FIG. 13. Un-normalized 2D two-particle correlation distribu-
tion dN=ðdΔϕdΔηÞjM is produced by the events with multiplic-
ities M ¼ 5, 6, and 7. Figure (a) is the cluster-cluster correlation
for the random events and Fig. (b) is the cluster-cluster correlation
for PYTHIA events. The Δϕ and Δη are positive as they are only
differences in the azimuthal and pseudorapidity coordinates.
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Along the Δϕ axis, Fig. 13(b) shows two peaks at Δϕ ∼ 0
and Δϕ ∼ π.
The difference between the PYHTIA distribution and the

random distribution shows up in sharper focus upon taking
the ratio dN=dΔηdΔϕjPYTHIA=dN=dΔηdΔϕjrandom at each
ðΔη;ΔϕÞ point as shown in Fig. 14(a). We shall call such
ratio, dN=dΔηdΔϕjPYTHIA=dN=dΔηdΔϕjrandom, the nor-
malized correlation function. It is normalized with respect
to the constraints of the measurement as represented by a
random distribution within the measurement window. In
the comparison with experimental data, such normaliza-
tions are often carried out by event-mixing data.
The normalized 2D particle-particle correlation obtained

with the PYTHIA8.1 generator exhibits the gross feature of
the well-known shape with a near-side peak at ðΔη;ΔϕÞ∼0
arising from the near-side jet and an away-side ridge at
Δϕ ∼ π along the direction of approximately constant Δη
by momentum conservation in a parton-parton collision
[55–63,80,92,93]. Beyond these two regions, there is a
region of low correlations withΔη>0.6 and 0 < Δϕ < 1.5.
We can carry out similar analysis for other values of the

multiplicity number M. We find out that particle-particle
correlations change as the multiplicity M increases. In
Fig. 14(b), we show the particle-particle correlation for
M ¼ 11–13, for which one finds that as the multiplicity
increases the near-side jet gains in strength and angular
size, and the away side correlation becomes weaker
because momentum conservation is weakened by a larger
multiplicity.
In Fig. 14(c), we show the particle-particle correlation

for M ¼ 17–18, for which one finds that for such higher
multiplicity events the near-side jet gains even greater
in strength and angular size, and similar to the case of
M ¼ 11–13 the away side ridge distribution cannot be
distinguished.

B. Two-cluster correlations

While the particle-particle correlations comprise a part of
the standard tools in the analysis of experimental data, it is
of interest to develop cluster-cluster correlations as another
useful tool in the study of the dynamics of the particle
production process. Accordingly, for a set of delimiting cut-
off attributes for accepting a particle and a cluster, we apply
the cluster-searching algorithm to locate the clusters and
their centers. Because each cluster has at least two particles,
we start to study events with at least five particles so that
there are sufficient number of particles and clusters to
examine cluster-cluster correlations. With the knowledge of
the cluster centers, we pick all combinations of particle
pairs that are in the same event to calculate the Δϕ and Δη
between the centers of any two clusters and obtain the
cluster-cluster correlation.
Figure 15(a) is the 2D two-clusters correlation distribu-

tion of the Δϕ and Δη with K ¼ 2 for the random
distribution. This case ofK ¼ 2 corresponds approximately

to the case of M ¼ 5–7 as shown in Fig. 13. We can
understand the gross features of the cluster-cluster corre-
lation in Fig. 15(b) in the following way. In the region of

FIG. 14. 2D normalized two-particles correlation function
ðdN=dΔϕdΔηÞðPYTHIAÞ=ðdN=dΔϕdΔηÞðRandomÞ. The figures are
produced by events with M ¼ 11, 12, and 13. The horizontal
coordinate is Δη, and the vertical coordinate is Δϕ.
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Δη ∼ 1.4, the correlations for the random case is small,
arising from the phase-space limitation of the triangular
distribution of the particle-particle correlations as shown in
15(a). As Δη decreases below the cluster radius R, those
particles falling within the domain of the first cluster within
a radius R will become part of the other cluster, and thus,
the probability of another cluster in the ðΔη;ΔϕÞ < R
region of the first cluster is essentially zero when K ¼ 2 as
indicated by a void in the ðΔη;ΔϕÞ ∼ 0 region. For the
region at (Δη ∼ 0, Δϕ ∼ π), there is a natural enhancement
of the correlation because the relatively large value of the
correlation function at Δη ∼ 0 that enhances the formation
of clusters at Δη ∼ 0 and Δϕ ∼ π.
Figure 15(b) gives the 2D two-clusters correlation

distribution of the Δϕ and Δη with K ¼ 2 obtained

with particles generated by PYTHIA8.1. This case of
K ¼ 2 corresponds to the case of M ¼ 5–7 as shown
in Fig. 13(b) and represents approximately the

FIG. 15. Un-normalized 2D two-cluster correlation distribution
dN=ðdΔϕdΔηÞ is produced by events with two clusters. Figure
(a) is the two-cluster Δη − Δϕ correlation function for events
from the random distribution, and Fig. (b) is the two-cluster
Δη − Δϕ correlation function for events generated by PYTHIA8.1.
The Δϕ and Δη are positive as they are only differences of the
azimuthal and pseudorapidity coordinates of the pair of clusters.

FIG. 16. Normalized 2D two-clusters correlation with function
ðdN=dΔϕdΔηÞðPYTHIAÞ=ðdN=dΔϕdΔηÞðRandomÞ. The figures are
produced by events with 2, 4, and 6 clusters. The horizontal
coordinate is the ratio of Δη, and the vertical coordinate is the
ratio of Δϕ.
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minimum-biased case. The cluster-cluster correlation for
the PYTHIA8.1 case retains some of the gross features as
presented from the random case, arising from the phase-
space limitation of the measurement windows. There is,
however, finer differences arising from the dynamics of the
PYTHIA8.1 particle generating processes. There appears to
be an enhancement of the distribution at Δϕ ∼ π reflecting
the occurrence of the back-to-back nature of the fragmen-
tation processes as implemented in the PYTHIA8.1 program.
The fine details show up more clearly upon taking the
ratio dN=dΔηdΔϕjPYTHIA=dN=dΔηdΔϕjrandom over the
ðΔη;ΔϕÞ plane. Such a ratio will be called the normalized
cluster-cluster correlation function for PYTHIA8.1 as show in
Fig. 16(a).
The 2D normalized cluster-cluster correlation functions

for K ¼ 2, 4, and 6 in Fig. 16 exhibits the dynamics and its
variation of the PYTHIA calculations as the cluster number
changes. For K ¼ 2, the correlation shows a near-side jet in
the region of ðΔη;ΔϕÞ ∼ 0. This near-side jet grows in
strength as the cluster number K increases. On the other
hand, at Δϕ ∼ π there appears to be an away-side ridge
along the η direction for K ¼ 2. As K increases, the ridge
feature is modified to become a peak at ðΔη ∼ 1.4, Δϕ ∼ πÞ
separated from the peak at ðΔη;ΔϕÞ ∼ 0.
It is instructive to compare the particle-particle correc-

tions in Fig. 14 with their corresponding cluster-cluster
correlations in Fig. 16. For the case of M ¼ 5–7 that
corresponds closely with the case of K ¼ 2, one observes
in both particle-particle and cluster-cluster correlations the
occurrence of the near-side jet and the away-side ridge.
The cluster-cluster correlation yields an amplified ampli-
tude of about 30 percent, whereas the particle-particle
correlation yields an amplitude of only about 10 percent.
Thus, in comparison with the particle-particle correlation,
the cluster-cluster correlation amplifies the amplitude for
the away-side ridge to a greater degree. For the case of
M ¼ 10–13 in comparison with K ¼ 4, the correlation at
ðΔη;ΔϕÞ ∼ 0 is enhanced while the particle-particle cor-
relation does not exhibit a large enhanced amplitude at
that location; the cluster-cluster correlation exhibits an
enhanced amplitude at Δη ∼ 1.4 and Δϕ ∼ π. For the case
of M ¼ 17–19, or the corresponding case of K ¼ 6,
the correlation at ðΔη;ΔϕÞ ∼ 0 is even more enhanced.
Furthermore, the correlation function appears to be
greatly enhanced at ðΔη ∼ 1.4;Δϕ ∼ πÞ indicating a regu-
larity of the dynamics at a certain Δη ∼ 1.4 in the away-
side angles.
For completeness, there are additional pieces of infor-

mation one can gain from the results of dN=dϕ and dN=dη
distributions, which we shall present in the Appendix.

IX. CONCLUSIONS AND DISCUSSIONS

The parton-parton hard scattering is an important process
in high-energy nucleon-nucleon collisions. Although

originally conceived to involve only the production of
high-pT particles, it has been suggested that the dominance
of the hard-scattering process may extend to the low-pT
region with the production of minijets and mini-dijets as the
collision energy increases.
As a first attempt to identify minijets, we develop

an algorithm to search for clusters using the k-means
clustering method, supplemented with a k-number (cluster-
number) selection principle. The method adopts a scheme
of random initialization of the initial centers, minimizing
the potential function ΦðKÞ for a fixed K, and looking
for the K number of clusters that leaves the fewest
number of particles Ω outside the cluster circles. The
method is stable, fast, and yields clusters and their
associated particles.
Using such a method, we have located clusters in the

ðη;ϕÞ plane on an event-by-event basis, using events
generated by PYTHIA8.1, which contains the dynamics of
multiple parton interactions. To a cluster identified by the
procedures, one often finds an associated cluster located at
approximately jΔϕjet−jetj ∼ π � R. Their azimuthal angular
correlation suggests that they may be identified as the two
partners of a mini-dijetlike pair. We find that clusters of
low-pT hadrons are common occurrences for PYTHIA8.1

events with high multiplicities. The number of multiple
clusters increases approximately linearly with increasing
multiplicity M.
It must be pointed out, however, that clustering and

azimuthal correlations alone cannot be the only means
to identify minijets and mini-dijets. A randomly distributed
set of particles in large multiplicities also exhibit clustering
properties similar to those from the PYTHIA8.1 program
with minijets. The ability to distinguish the dynamics
of the particle production processes will require the
measurement of the particle-particle and cluster-cluster
correlations.
We have examined the particle-particle and cluster-

cluster correlations obtained with particles generated from
PYTHIA and compared these correlations with those from
the random distribution. We need to normalize these
correlations properly by dividing the correlation function
obtained in PYTHIA by the correlation function obtained
by a random distribution. We find that the normalized
correlation function from PYTHIA has features that distin-
guish themselves from those of a random distribution.
In this regard, the quantitative assessment of the
dominance of the relativistic hard-scattering process in
the low-pT region needs to be independently established
in order to identify the clusters as physical minijets.
The success of such an identification will provide a tool
to investigate minijet and mini-dijet properties, for
which not much detailed information has been collected.
Furthermore, quantitative predictions based on first
principles of perturbative QCD for the low-pT region
is difficult because the multiple collision probability
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involves higher-order corrections beyond the leading
order [72].
From our investigations, one may also wish to

develop strategies to apply the proposed algorithm to
examine experimental data at various energies and examine
information on the production cross sections and the phase-
space distribution of these objects, for comparison with
the theory of multiple minijet production as a function of
the collision energies. In this regard, we should note that the
higher the pp collision energy, the greater the probability is
of the dominance of the hard-scattering process for the
production of low-pT particles, and the greater the prob-
ability will be of the clusters to be physical minijets.
We have introduce a general method only as a first step

towards our eventual goal of locating minijets. In future
practical analysis in the search for minijets in experimental
data, it may be reasonable to include a supplementary
requirement that a minijet must contain at least a single
particle with a pT greater than a certain threshold value p0

(say 1 GeV=c). Such a supplementary condition will serve
the good purpose of fixing the minijet cluster number K to
facilitate the searching algorithm (in place of the present
principle of the least number of outside points). It will
reduce the number of clusters so that the effects of the finite
size of the experimental windows is reduced. It will also
bring us closer to the goal of examining minijets, multiple
minijets, and their correlations. Future investigation along
such directions, in conjunction with a properly modified
k-means clustering algorithm, will be of great interest.
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APPENDIX A: THE ELBOW METHOD OF
CLUSTER NUMBER SELECTION

There is another method to select the cluster number K
by studying the K-dependence of the potential function
ΦðKÞ. For a given K value, after the minimization of the
potential function ΦðKÞ with respect to the random
initialization of the cluster centers and the variations of
the cluster center positions, the quantity ΦðKÞ of Eq. (3) is
then evaluated. The potential function ΦðKÞ is, on the
whole, a decreasing function of increasing K (Fig. 17), as it
reaches the limiting value of zero when the number of
clusters K is the same as the number of data points M. An
inefficient and a slowly decreasing function of ΦðKÞ
occurs, if a cluster is subdivided into smaller subclusters
with a subsequently smaller change of the ΦðKÞ slope. On
the other hand, a large and abrupt change of ΦðKÞ as a

function of K signifies a significant change of the structure
of the clustering configuration and may be the location
of the appropriate cluster number. Hence, it has been
suggested that the proper cluster number K occurs at the
kink (or elbow) of the curve of ΦðKÞ as a function of
K or at the location of an abrupt change of the slope of
ΦðKÞ [85,90].
We calculate the potential functionΦðKÞ as a function of

the cluster number K for events with M ¼ 20 as shown in
Fig. 4. For event p20e2 shown in Fig. 4, a kink of PðKÞ
occurs at K ¼ 3, and a very weak kink also appears to
occur at K ¼ 6. The determination of the location of the
kink is not without ambiguity. The elbow method would
suggest the cluster number of K ¼ 3 or 6, but as we
observed in Fig. 4, the proper cluster number as determined
from the principle of fewest outside points is K ¼ 7. For
event p20e4, kinks of ΦðKÞ occur at K ¼ 3 and 5, but the
appropriate cluster number as determined from the princi-
ple of fewest outside points is 7. For p20e5, the potential
function shows a sharp kink atK ¼ 3 and weaker kinks at 5
and 6, whereas the method of the principle of fewest outside
points gives K ¼ 6. The method of the sharpest kink has
the difficulty of recognizing the location of the kink, as
many changes of slopes occur at different locations. If one
takes the method to be given by the location with the
greatest change of the magnitude of the slope, it would give
K numbers, which differ from the k-number selection
principle of the fewest number of outside points.
We conclude that in the elbow method the determination

on the location of the kink is ambiguous, and there is
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FIG. 17. Potential function ΦðKÞ, the sum of square distances
between the subset data points and their corresponding cluster
centers, as a function of the number of clusters K, for minimum-
bias events with multiplicity M ¼ 20 generated by PYTHIA8.1.
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no obvious method to resolve the ambiguities. The prin-
ciple of the fewest outside points should be the proper
criterion for the selection of the proper cluster numberK, as
it is based on the physical property of the clustering of a
minijet.

APPENDIX B: TWO-PARTICLE AND
TWO-CLUSTER dN=dΔη AND dN=dΔϕ

The results in Sec. VIII provide a wealth of information
on the particle-particle and cluster-cluster correlation
functions dN=dΔηdΔϕ in the ðΔη;ΔϕÞ plane. The shape
of the correlation function landscape contains many
interesting features. In many measurements, it may be
useful also to collect information on the “marginal dis-
tributions” dN=dΔη and dN=dΔϕ by integrating the two-
dimensional distribution dN=dΔηdΔϕ over Δη or Δϕ
directions as

dN
dΔη

¼
X
Δϕ

dN
dΔηdΔϕ

dΔϕ;

and
dN
dΔϕ

¼
X
Δη

dN
dΔηdΔϕ

dΔη:

These marginal distributions are not as informative as the
full two-dimensional dN=dΔηdΔϕ distribution because
many important features may become obscured when the
two dimensional distribution has been integrated. They
provide partial information on the particle or cluster
distribution projected in certain directions. Recognizing
that these marginal distributions are only part of the full
distribution, we shall show here the marginal distributions
for various values of particle numbers M and cluster
number K, for completeness.

1. Two-particle dN=dΔη and dN=dΔϕ
Fig. 18 gives the un-normalized two-particle correlation

distribution with M ∼ 5–7. The quantity dN=dΔϕ in
Fig. 18(a) shows a nearly flat distribution for the
random distribution but a back-to-back correlation for
the PYTHIA8.1 calculations. The quantity dN=dΔη in
Fig. 18(b) shows a triangular distribution because of
the η window. The difference between the distributions
from PYTHIA8.1 and from the random distribution is
small.
To illustrate the finer differences between the distribu-

tions, we defined normalized distributions as

normalized
dN
dΔη

¼
dN

dΔηjPYTHIA
dN

dΔηjrandom
ðB1Þ

and

normalized
dN
dΔϕ

¼
dN

dΔϕjPYTHIA
dN

dΔϕjrandom
: ðB2Þ

We display the normalized distribution for Δϕ and Δη
for M ∼ 5–7 in Fig. 19(a) and (b) and for M ∼ 11–13 in
Fig. 19(c) and (d). The minijet component shows up
as a peak at Δϕ ∼ 0 in dN=dΔϕ in Fig. 19(a) and (c).
The away-side back-to-back correlation appears as
a rising peak of dN=dΔϕ at Δϕ ∼ π in Fig. 19(a)
and (c). The near-side jet shows up as peak at η ∼ 0 in
dN=dΔη and shows up at both M ∼ 5–7 in Fig. 19(b)
and (d). The dN=dη at large Δη gives a peak at large η for
M ∼ 5–7, but the distribution decreases for large values
of M in Fig. 19(d). The away-side peak has a smaller
magnitude as K increases, expected by the dilution effect of
momentum conservation.

2. Two-cluster dN=dΔη and dN=dΔϕ
Figure 20(a) and (b) give the un-normalized two-clusters

correlation distribution dN=dΔϕ and dN=dΔη, respec-
tively, for K ¼ 2. The dN=dΔϕ distribution is nearly flat
for Δϕ ∼ π but suppressed near the region near Δϕ ∼ 0

FIG. 18. Un-normalized two-particle differential correlation
distribution (a) dN=dΔϕ and (b) dN=dΔη, for events with
multiplicity M ¼ 5 ∼ 7. The red inverted triangle points are for
events generated by PYTHIA8.1, and the black circular points are
from events generated from a random distribution.
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because particles near ðΔη;ΔϕÞ ∼ 0 becomes part of the
first cluster, and there cannot be a second cluster nearby.
Similar behavior occurs for the distribution from PYTHIA

events. The two distributions have slightly different behav-
iors at Δϕ ∼ π, arising from the occurrence of back-to-back
correlations in dijet events. The distribution in Fig. 20(b)
for dN=dΔη is similar to the triangular distribution in
Fig. 18(b), except that the distribution decreases faster to
zero at a smaller value of Δη ∼ 1.6 instead of Δη ∼ 2.0 in
Fig. 18(b).
We show the normalized dN=dΔϕ and dN=dΔη for

K ¼ 2 in Fig. 21(a) and Fig. 21(b), for K ¼ 4 in Fig. 21(c)
and Fig. 21(d), and for K ¼ 6 in Fig. 21(e) and Fig. 21(f).
While these distributions collaborate what one can find
out about the shape of the distributions in the full two-
dimensional dN=dΔηdΔϕ distribution, it is difficult to
extract information on the two-dimensional distribution
from the marginal distributions. What can be stated is that
as a function of increasing K values, the normalized
dN=dΔϕ distribution has a peak at Δϕ ∼ π that remains
for K ¼ 4 and 6.

FIG. 20. Un-normalized two-cluster differential correlation
distribution (a) dN=dΔϕ and (b) dN=dΔη, for events with
multiplicity M ¼ 5 ∼ 7. The red star “�” points are for events
generated by PYTHIA8.1 and the (black) circular points are from
events generated from a random distribution.

FIG. 19. Normalized two-particles correlation function with
M ¼ 5 to 7 and ¼ 11 to 13. Figures (a) and (c) are Δϕ with
function ðdN=dΔϕÞPYTHIA=ðdN=dΔϕÞrandom and Figs. (b) and (d)
are that of Δη with function ðdN=dΔηÞPYTHIA=ðdN=dΔηÞrandom.
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