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Classical scale invariance (CSI) may shed light on the weak scale origin, but the realistic CSI extension
to the standard model requires a bosonic trigger. We propose a scalar dark matter (DM) field X as the
trigger, establishing a strong connection between the successful radiative breaking of CSI and DM
phenomenologies. The latter forces the breaking scale to approximately OðTeVÞ. It brightens the test
prospect of this scenario via a gravitational wave, a sharp prediction of CSI phase transition (CSIPT), which
is first order and has strong supercooling. Moreover, we carefully deal with some techniques which are
commonly used to analyze CSIPT but may be missed. In particular, we clarify the imprecision of Witten’s
formula used in the single field case to calculate the bubble nucleation rate and stress that the essence of
Witten’s approximation is the validity of high-temperature expansion.
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I. INTRODUCTION

The origin and stabilization of the weak scale are the
fundamental questions of the particle standard model (SM),
and they lead the progresses of modern particle physics.
Classical scale invariance (CSI) may shed light on these
questions. The SM just contains two scales: the explicit
negative mass parameter −μ2jHj2 in the Higgs potential,
which accounts for the weak scale origin, and the dynami-
cal scale ΛQCD, which determines the mass scale of the
composite particles such as proton and neutron. Sending
μ2 → 0, the SM becomes scale invariant at the classical
level. However, CSI is violated at quantum level by
anomaly, so hopefully a scale can be radiatively generated
]1 ]. Moreover, CSI may be the symmetry that protects the
weak scale free of the notorious fine-tuning, as long as the
SM Higgs field does not couple to a heavy field with a
sizeable strength, which generates a physical large quad-
ratic correction to the Higgs field [2].
Nevertheless, the SM itself is not consistent with this

symmetry, owing to the heaviness of top quark and the
lightness of Higgs boson. To get a viable SM extension
consistent with CSI, new elements, probably bosons, should
be introduced to trigger CSI spontaneously breaking
(CSISB) at the quantum level. The trigger is characterized
by a relatively strong interaction with the scalon field, whose

vacuum expected value (VEV) is the main order parameter
of CSISB. It is tempting to conjecture that the new element is
the missing piece of the SM, the dark matter (DM). Put it in
another more inspiring way, DM spin is related to the weak
scale origin. In such a framework, DM plays a vital role, and
it might “explain” why DM should be there. In turn, due to
the CSI, DM mass is no longer a dimensional parameter put
in by hand; instead, its mass origin is tied with CSISB.
Moreover, as the trigger, the main interaction of DM should
be with the scalon feld. Hence, this framework has its
theoretical merits, being a basis for DM model building.
Actually, studying DM in the CSI framework is not rare, and
an incomplete list of references is collected in Refs. [3–14].
We then consider a simple CSI extension to SM by two real
singlet scalars, with one being the scalon and the other one
being the trigger, which is the DM candidate at the same
time. DM playing the role of the trigger is very expected
from DM relic density because the interactions of DM must
be dominated by DM-scalon portal coupling so as to avoid
the strong exclusion to the usual DM-Higgs portal coupling.
In the presence of multiscalars, one should carefully

study the mechanisms of CSISB and electroweak sponta-
neously breaking. Different mechanisms are suitable for
different parameter space of the dimensionless couplings;
we refer to a nice review in Ref. [15]. Confronting the
correct DM relic density and suppressed DM-nucleon
recoil rate, we focus on two frequently studied cases:

(i) In Gildener-Weinberg approach on the valley, the
tree-level potential admits a valley at some scale
μGW, and one can apply the Gildener-Weinberg
approach [16] to study CSISB. This approach treats
the CSISB and the electroweak symmetry breaking
(EWSB) in a single step.
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(ii) In the Coleman-Weinberg approach in the decou-
pling limit, if the Higgs interactions with the scalon
and trigger are irrelevantly small, CSISB by the
scalon is reduced to the conventional single field
case, and one can apply the Coleman-Weinberg
(CW) approach [17], whereas the EWSB proceeds
via the usual mechanism.

Both scenarios leave viable parameter spaces, with scalon
VEV at the multi-TeV scale and a heavy DM at the
TeV scale.
DM triggers CSISB at zero temperature, and back to the

early Universe, it triggers the CSI phase transition (CSIPT).
It is known to be first order and tends to have a large
supercooling, so abundant gravitational waves (GWs) may
be produced during CSIPT. This has been studied by many
groups [18–26]. Specified to our model, due to the require-
ments from DM phenomenologies, the CSISB scale is at
the multi-TeV scale, hence a CSIPT scale, by virtue of
strong supercooling, from GeV to hundreds of GeV, which
falls in the sensitivity region of a space-based interferom-
eter. Despite the clear physical picture, there are some
unclear technique points in analyzing CSIPT. As one of the
focuses, this article is devoted to clarifying these subtle
aspects.
The paper is organized as follows. In Sec. II, we study

CSISB by virtue of the DM field, and in the following
section, DM phenomenology is analyzed. In Secs. IV and
V, we study in detail the CSI phase transition and the
subsequent GW signals, respectively. Section VI contains
the conclusions and discussions.

II. SCALE GENESIS BY SCALAR DARK MATTER

As stated in the Introduction, in the CSI extension to the
SM, a radiative CSISB trigger, a bosonic field providing the
dominant quantum correction, is indispensable. One simple
option is a spin-1 gauge boson from a gauge group [27], for
instance, Uð1ÞB−L. It is tempting to consider that the
missing part of the SM, the DM field X, does this job.
We find that related scenarios are investigated before, in
particular, a spin-1 DM [28–31], though the authors do not
explicitly name the scenario. Reference [4] for the first time
studied the possibility of a spin-0 DM being the trigger.
Anyway, DM as a trigger establishes a close connection
between DM and CSISB, and their interplay gives rise to
interesting phenomenologies. In this section, we will first
set up the model and then analyze in detail how the DM
could trigger radiative CSISB.

A. Simple (effective) model setup

To build a realistic CSI model that could successfully
accommodate the weak scale and also the Higgs boson, it is
better to consider that the weak scale is not the main scale
for CSISB. Otherwise, the model will hit the Landau pole at
a very low scale without an elaborate arrangement of the

model [32]. So, we will focus on the scenario that CSISB is
dominated by a scalar field S. It is dubbed as the scalon
field, and we will also term it “scalon” for short. As
expected, the simplest extension with S but without a
trigger fails [33]. In this paper, we introduce a real singlet
scalar DM as the trigger. The total Lagrangian of our model
is

Ltot ¼ LSMðno Higgs potentialÞ þ KS;X − V0ðH; S; XÞ;
ð2:1Þ

where KS;X collects the kinetic terms for S and X and V0 is
the tree-level potential,

V0 ¼ λjHj4 þ λhs
2

jHj2S2 þ λhx
2

jHj2X2 þ λsx
4
S2X2

þ λs
4
S4 þ λx

4
X4; ð2:2Þ

where H is the SM Higgs doublet and its neutral compo-
nent H0 is decomposed as H0 ¼ 1ffiffi

2
p ðReH0 þ iImH0Þ. The

successful radiative CSISB vitally relies on the scalon-
trigger/DM coupling with a sizable λsx. To stabilize X, we
impose a Z2 symmetry which only acts on the DM field:
X → −X. A similar model has been studied in Ref. [19,34],
but we will widely extend their discussions. Actually, we
prefer to explain the above model as an effective model for
the CSI framework having a DM trigger, and one can
complete it in many different ways, e.g., the model based
on local Uð1ÞB−L considered in Ref. [4].
Because of CSI, an accidental Z0

2 acting on S emerges,
S → −S. As a result, CSISB at the same time breaks Z0

2. On
the other hand, it is well known that the spontaneously
breaking of a discrete symmetry would give rise to the
domain wall problem. It is easily cured by the seesaw sector
for neutrino masses,

−LN ¼ yNl̄HN þ λsn
2

SN2 þ H:c:; ð2:3Þ

because it explicitly breaks Z0
2. As a side comment, in order

to generate neutrino masses in the framework of CSI, a
specific singlet scalon field S may be always required, no
matter whether via the normal seesaw mechanism or via
radiative mechanism [13,14,35]. To simplify the discus-
sions, we assume that terms in the seesaw sector are
irrelevant to CSISB, and it is true as long as λsn is
sufficiently small.

B. CSI radiative symmetry breaking

Now, we investigate CSISB in the model considered in
the last subsection. The beautiful idea that generating a
mass scale from a theory without an explicit mass scale is
by Coleman and Weinberg in the celebrated paper from

ZHAOFENG KANG and JIANG ZHU PHYS. REV. D 102, 053011 (2020)

053011-2



1973 [1]. Their basic observation is that CSI is anomalous
and thus it is broken by quantum effects, hence generating a
scale, equivalently driving the ground state of the system
away from the origin. The first attempt is a scalar QED, a
single scalar field (the scalon) charged under an Abelian
gauge group with gauge coupling gX. Then, given the
hierarchy 1 ≫ g4X ∼ λs with λs the self-coupling of the
scalon, the model succeeds in radiative CSISB via tree-loop
balance in the perturbative region. However, the situation
becomes more complicated if the scalon is a combination of
several fields. Later Gildener and Weinberg proposed a
method [16,36] to reduce this complicated problem to the
single-field case, but it merely applies to the models whose
couplings demonstrate a hierarchy such that the quantum
effects only play a role near the flat direction of the
potential. Since the two approaches work in different
patterns of couplings, we will analyze radiative CSISB
in the two scenarios separately. But before that, it is more
illustrative to start from the general way to deal with
radiative CSISB in the general situations, which applies to
cases with more than two fields.

1. General strategy for multifield potential

To study the radiative symmetry breaking of the model,
we should start from the effective potential for the three
classical scalar fields ϕ⃗cl ¼ ðhcl; scl; XclÞ for ReH0, S, and
X; for simplicity, the subscript will be dropped. However, to
our purpose, the DM field is supposed to develop no VEV,
which effectively reduces the three-dimension field space
to two dimensions.1 Then, the tree-level effective potential
is directly read from the tree-level potential Eq. (2.2),

Vð0Þðh; sÞ ¼ 1

4
λh4 þ 1

4
λss4 þ

1

4
λhsh2s2: ð2:4Þ

As the simplest two-scalar system, this potential is shared
by a variety of models, despite of different triggers. The
tree-level potential does not contain any explicit mass scale,
so its minimum must be located at the origin.
As long as the quantum correction does not change the

potential in the X direction significantly, this assumption is
correct. For example, we can let λhx, λsx be a positive
parameter or let λx ≫ λs, which makes potential in the X
direction dominate by the tree-level CSI potential.
To study if the quantum effects could realize CSISB, we

incorporate the one-loop corrections to Vð0Þ, which are
encoded in the CW potential,

Vð1Þðh; sÞ ¼ 1

64π2
X
a

namaðh; sÞ4
�
log

maðh; sÞ2
μ2

− Ca

�
;

ð2:5Þ

where μ is the renomalization scale. Index a runs over all
particles coupling to the classical backgrounds, and the
species a contains internal degrees of freedom na,
concretely,

nW ¼ 6; nZ ¼ 3; nh ¼ 1; nGSB ¼ 3;

nt ¼ −12; ns ¼ 1; nX ¼ 1: ð2:6Þ
The subscripts successively denote the W=Z boson, Higgs
boson, Goldstone bosons (GSBs), top quark in the SM, and
the scalon, trigger/DM beyond the SM. Ca are constants,
and in the MS scheme, Ca ¼ 5

6
for a spin-1 field, while

Ca ¼ 3
2
for a spin-0 or spin-1=2 field. Note that if the

radiative symmetry breaking involves large couplings
questionable in perturbativity one should apply the renorm-
alization group (RG) approach to improve the one-loop
CW potential.
Let us turn to the key ingredients in the CW potential, the

background field–dependent masses ma. Most of them
have simple analytical expressions,

m2
GSB ¼ λh2 þ 1

2
λhss2; m2

X ¼ λhx
2

h2 þ λsx
2
s2

m2
W ¼ g2

4
h2; m2

Z ¼ g2 þ g02

4
h2; m2

t ¼
y2t
2
h2;

ð2:7Þ
where g and g0 are the gauge couplings for SUð2ÞL ×Uð1ÞY
and yt is the top quark Yukawa coupling. The three GSB
modes in the SM will cause the gauge-dependent issue for
the effective potential, but this issue is not of concern at
least in the vacuum, because there mGSB ¼ 0 and therefore
they do not contribute to the effective potential. A con-
sistent treatment may need a new gauge [37,38]; see a
recent work employing this new gauge [39]. The SM
physical Higgs boson mixes with the scalon, having mass
squared matrix

M2
h−s ¼

 
m2

hh m2
hs

m2
hs m2

ss

!
¼
 

6λh2þλhss2

2
λhshs

λhshs
λhsh2þ6λss2

2

!
: ð2:8Þ

The eigenvalues of M2
h−s are given by

m2
ϕ� ¼ 1

2

h
TrM2

h−s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrM2

h−sÞ2 − 4DetM2
h−s

q i
; ð2:9Þ

and the lighter one ϕ− is massless in the Gilender-Weinberg
scenario.
In principle, to determine if the model realizes radiative

CSISB, one can use brute force to search the ground state of

1One way to prevent X from developing a VEV may be
requiring λhx > 0, since we will find that the viable parameter to
make S develop a VEV is λhs < 0. But this is merely a sufficient
condition, and we propose another way to guarantee the vanish-
ing VEV for X. Anyway, in the scale invariance (SI) model, a
field setting at the origin is generic while away from the origin
needs more attention.
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the general Vð0Þ þ Vð1Þ without special structure; the
vacuum is labeled by the VEVof the classical backgrounds
ðvh; vsÞ. But in practice, this approach is useful only in the
context of numerical studies [15,39]. In some scenarios,
discussed subsequently, the general potential can be
reduced to the one-dimensional case where one can develop
analytical understanding in the radiative CSISB.
After finding the vacuum, the particle spectra of the

Higgs-scalon system can be obtained from the mass
squared matrix Eq. (2.8) with ðh; sÞ replaced by ðvh; vsÞ.
But it just gives the leading-order result. This matrix
receives substantial quantum corrections. In our studies,
due to the large separation between the CSISB scale and
weak scale, the corrections mainly come from the trigger-
DM coupling, so it is sufficient to just incorporate the
loop correction to the scalon mass element. Quantum
corrections may obviously modify the tree-level masses
and mixing. It has immediate implications to the physics
that are sensitive to the mixing angle, for instance, DM-
nucleon recoil. The spectra are characterized by the
presence of another light CP-even Higgs boson different
than the SM-like Higgs boson hSM, corresponding to the
pseudo-GSB (pGSB) of the spontaneously breaking of
anomalous CSI. Nevertheless, it is not bound to be the
lighter one, and in principle, hSM can be identified either
with the heavier one ϕþ or the lighter one ϕ−.

2. Higgs portal scenario by the CW approach

Let us first consider the scenario characterized by
0 < −λhs ≪ 1. Then, it is justified to switch the Higgs
portal coupling λsh and study radiative CSISB just in the
dark sector, which just contains the scalon S and the trigger
X described by the following potential,

VDS ¼
λs
4
S4 þ λsx

4
S2X2 þ λx

4
X4; ð2:10Þ

X should have no VEV, servicing as a spin-0 similarity
to the gauge trigger in the original CW mechanism. One
may ask why S instead of X, which actually has similar
couplings to S, is selected out as the scalon field, and
in Appendix A, we give a short comment. Anyway, to
study CSISB, the model is reduced to one single field
case, and the tree-level potential of the scalon field

is Vð0Þ
s ðsÞ ¼ 1

4
λss4.

Although not very necessary, we adopt the RG improved
potential to incorporate quantum effects. This approach
helps us determine the vacuum reliable in the perturbative
region radiatively and also to manifest the difference
between a spin-0 and a gauge trigger. In general, the
renormalization group equation (RGE) improved effective
potential takes the form of [40]

Vð1Þ
s ðsÞ ¼ 1

4
λsðtsÞGðtsÞs4: ð2:11Þ

The quantum effects encoded in the wave function factor
GðtsÞ ¼ exp ½R ts0 dt0γsðt0ÞÞ� merely give a subleading con-
tribution: ts ¼ log s

μ0
with μ0 the renormalization scale. As a

matter of fact, here, this contribution vanishes because of
the coincidentally vanishing one-loop anomalous dimen-
sion of the scalon field, γsðtÞ ¼ 0.2 The major quantum
effects are encoded in the running coupling λsðtsÞ, which is
the solution of a set of coupled RGEs, whose beta functions
are (in the MS scheme) given by

βλs ¼
9

8π2
λ2s þ

1

32π2
λ2sx;

βλsx ¼
1

4π2
λ2sx þ

3

8π2
λsλsx þ

3

8π2
λxλsx;

βλx ¼
9

8π2
λ2x þ

1

32π2
λ2sx: ð2:12Þ

Other contributions are suppressed by λ2hs ≪ 1 in the Higgs
portal limit.
The dark sector (2.10) is different than the scalar QED

where the trigger-scalaon coupling, namely, the gauge
coupling, is the only parameter in the trigger sector, and
the corresponding RGEs admit an analytical solution. But
Eq. (2.12) involves not only trigger-scalon coupling λsx but
also an additional coupling, the trigger/DM self-interaction
λx. Moreover, the β function of the trigger-scalon coupling
receives a cross term λsλsx, which is absent in the scalar
QED system. Consequently, Eq. (2.12) no longer has an
analytic solution. In Appendix A, we approximate the
above RGEs to the λs − λsx system, thus admitting an
analytical solution.
Fortunately, determination of the condition for radiative

CSISB dðVð1Þ
s ðsÞÞ=ds ¼ 0 does not need to solve RGEs.

Taking μ0 at the vacuum vs, the extremum condition is
translated to an equation between βλs , γs if present and λs at
ts ¼ 0:

ðβλs þ 4λsðtsÞÞjts¼0 ¼ 0 ⇒ λsð0Þ þ
1

128π2
λsxð0Þ2

þ 9

32π2
λsð0Þ2 ¼ 0: ð2:13Þ

It is the phenomenon of dimensional transmutation; the
scale vs is traded with a relation between dimensionless
couplings. λsð0Þ should be very small, thus the λsð0Þ2 term
negligible, leading to the relation between scalon self-
coupling and trigger-scalon coupling at ts ¼ 0,

λsð0Þ ≈ −
1

128π2
λsxð0Þ2: ð2:14Þ

2It is understood by such a fact: The one-loop correction to the
two-point function of s merely receives contributions from the
bubble diagrams, a result of the Z0

2 symmetry.
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It reproduces the well-known tree-loop hierarchy, but it is
λtree ∼ λ2loop rather than λ

4
loop in a scalar QED theory. Turning

on the Higgs portal coupling leads to EWSB, which does
not proceed radiatively, but as in the usual SM via a
negative mass parameter, μ2h ¼ −λhsv2s=2. It is an accidental
result of the negative Higgs portal coupling between the
scalon and SM Higgs doublet. The resulting weak scale is
expressed as

vh ¼
ffiffiffiffiffi
μ2h
λ

r
¼

ffiffiffiffiffiffiffiffiffi
−λhs
2λ

r
vs; ð2:15Þ

fixed to be vh ¼ 246 GeV.
After pinning down the vacuum, now we present the

spectra. The heavy trigger or DM mass squared is
m2

X ≈ 1
2
λsxv2s . In the strict Higgs portal limit, there is no

mixing between the SM Higgs boson and scalon. Then,
the former gets mass as usual in the SM, while the latter as a
pGSB gains a mass purely from quantum effects,

m2
s ¼

d2

ds2
½Vð1Þ

s ðsÞ�s¼vs ¼ bXv2s ; ð2:16Þ

with bX ≈ 1
32π2

λsxð0Þ2, the main part of βλs . But the Higgs
portal coupling generates a small mixing between them,
and we should calculate the spectra from the mass squared
matrix (2.8), with m2

ss → m2
ss þ bXv2s capturing the dom-

inant quantum effect. Usually, ms is a good approximation
to the actual scalon mass even after taking into account the
small mixing effect.

3. Flat region by Gildener-Weinberg approach

Let us move to the scenario characterized by Vð0ÞðϕiÞ ≫
Vð1ÞðϕiÞ, and then quantum corrections numerically do not
matter except for the places in the field space where
Vð0Þ ≈ 0. In the CSI models, the valley or flat direction
is such a kind of place. It is determined by the nontrivial
solution to the extremum equation dVð0Þ=dϕijμGW ¼ 0,
which, specific to our model, is given by

λh2 þ 1

2
λhss2 ¼ 0; λss2 þ

1

2
λhsh2 ¼ 0: ð2:17Þ

Their solution is denoted as ϕN⃗, corresponding to lines of
degenerate local minimum (thus flat), which points to a
definite direction N⃗ in the filed space, but leaving the
modulus ϕ free. Equation (2.17) admits nonzero solutions
only for a special relation (flat direction relation) among the
dimensionless couplings,

h2

s2
¼ −

1

2

λhs
λ

¼ −2
λs
λhs

⇒ λhs ¼ −2
ffiffiffiffiffiffi
λλs

p
< 0: ð2:18Þ

The flat direction relation can be regarded as a renormal-
ization condition at the Gildener-Weinberg scale μGW.

3

Now, the flat direction is expressed as the following:

�
h

s

�
¼ ϕN⃗ ¼ ϕ

�
cos α

sin α

�
¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ
1
2 þ λ

1
2
s

q �
λ
1
4
s

λ
1
4

�
: ð2:19Þ

In particular, we are interested in small mixing α → π=2,
and therefore Eq. (2.18) implies the hierarchy

0 < λs ≪ −λhs ≪ λ: ð2:20Þ

Like in the Higgs portal scenario, again we need a very
small and moreover negative λhs, but the underlying
reasons are not the same.
The radiative correction will lift the flat direction and

create a local minimum at some ϕ. To see this, we rewrite
the tree-level effective potential (2.4) plus the radiative
correction along the flat direction in terms of ϕ, i.e.,
reducing the potential to the one-dimensional case,

Vð0Þ þ Vð1ÞðϕN⃗Þ ¼ Aϕ4 þ Bϕ4 log
ϕ2

μ2GW
; ð2:21Þ

where A and B are dimensionless loop functions defined as

A ¼ 1

64π2
X
a

namaðN⃗Þ4½logmaðN⃗Þ2 − Ca�;

B ¼ 1

64π2
X
a

namaðN⃗Þ4; ð2:22Þ

which only depend on the tree-level couplings. As
expected, the tree-level potential vanishes along the flat
direction. By finding the extremum of Vð0Þ þ Vð1ÞðϕN⃗Þ, we
know that the modulus is fixed to be at the position related
to the Gildener-Weinberg scale as

log
hϕi2
μ2GW

¼ −
1

2
−
A
B
: ð2:23Þ

The weak scale and the scalon scale, respectively, are given
by vh ¼ hϕi cos α ¼ 246 GeV and vs ¼ hϕi sin α.
Using the flat direction relation, we are ready to show

that the Higgs-scalon mass squared matrix (2.8) presents
the GSB (or the consequence of flat direction), mhϕ− ¼ 0.

3Gildener proved that flat direction relation is feasible via
choosing μGW in the RGE [36]: starting from a potential without a
valley at a generic scale, it can flow to the one with a valley at
μGW. Hence, the flat direction relation does not require fine-
tuning of couplings. However, this procedure works only for the
couplings not far off the flat direction relation; otherwise, RGEs
fail in driving the couplings to satisfy the flat direction relation at
some scale.
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And quantum corrections add a new piece 8Bhϕi2 sin2 α to
the m2

ss element. In the small mixing limit α → π=2, it is
just the mass squared of the pGSB (as a reminder, pGSB is
not necessary ϕ−). Then, to guarantee that the extremum
is a minimum, B > 0 is required, and it means

6m4
W þ 3m4

Z þm4
h þm4

X − 12m4
t > 0; ð2:24Þ

which yields the lower bound on DM mass,
mX > 316.48 GeV. Since α → π=2, the main component
of pGSB comes from the singlet, while the SM Higgs
boson takes up the dominant fraction of the SM-like Higgs
boson hSM, whose mass squared neglecting a small shift
from loop is well approximated by

m2
hSM

≈ TrðM2
h−sÞ ¼

�
3λþ λhs

2

�
v2h þ

�
3λs þ

λhs
2

�
v2s

¼ ð2λ − λhsÞv2h: ð2:25Þ

Since λhs ≪ λ, the above expression basically is the same
as the one predicted in the SM. The Higgs-scalon mixing
angle θ coincides with α at tree level, but it may be
subjected to strong radiative correction, in particular when
8Bhϕi2 is close to m2

hSM
.

III. SCALAR DARK MATTER VIA THE
SCALON PORTAL

In this section, we focus on the other face of the trigger,
the DM candidate. It mainly interacts with the scalon field
(hence, scalon portal), which is supposed to determine the
DM relic density. Its correct value Ωh2 ≃ 0.12 limits the
scale of CSISB. Moreover, the scalon-SM Higgs boson
mixing is subjected to constraints from the null DM direct
detention results. In a word, the trigger being a DM has
strong impacts on radiative CSISB.
First of all, we collect the relevant terms for the DM

dynamics. We introduce a more illustrative notation to label
the eigenstates of M2

h−s. Let OðθÞ be the orthogonal matrix
that diagonalizes the fullM2

h−s, and its mass eigenstates ϕ�
are renamed as Hi ¼ ðhSM;SÞ, related to the flavor states
via

hSM ¼ cos θhþ sin θs; S ¼ cos θs − sin θh: ð3:1Þ

Note that hSM can be identified with ϕþ or ϕ−, depending
on the relative size of diagonal elements of M2

h−s at loop
level. Then, the relevant interactions in the mass basis are
collected in the Lagrangian

−LX ¼ 1

4
X2S2 þ Ai

2
X2Hi þ

λij
4
X2HiHj þ

yiqffiffiffi
2

p Hiq̄q;

ð3:2Þ

where Ai ¼ λhxvhO1i þ λsxvsO2i and yiq ¼ yqO1i, with O
specified in Eq. (3.1).

A. DM relic density via freeze-out: CSIPT scale
not far above TeV

If X is the unique DM component, we have to guarantee
that its relic density is correctly produced. Assuming an
ordinary thermal history for X, its relic density is deter-
mined by the usual freeze-out dynamics, which requires
that X should have an annihilation cross section times the
relative velocity at the freeze-out epoch hσvi ≃ 1 pb.
The complete list of DM annihilation channels is long,

for instance, into the various SM species via the Higgs
portal and also into a pair of scalons. But it is well known
that DM direct detection, discussed in the following
subsection, compels us to consider a very small coupling
between X and the SM Higgs doublet. Being subdominant
of the SM Higgs portal greatly simplifies the dynamics of
DM at the early Universe, and the dominant annihilation
channel of DM is XX → SS. It has a cross section times
velocity4

hσXXvi ≃
λ2sx
64π

1

m2
X
¼ 0.89 pb ×

�
λsx
2.0

��
3 TeV
vs

�
2

; ð3:3Þ

where we have taken the limit mX ≫ mS . It is seen that the
scale of vs cannot be very high confronting the perturbative
bound on λsx < π, which in turn means that if the DM is
able to gain the correct relic density, its mass cannot
exceed 4.4 TeV.
A long comment deserves attention. The ordinary freeze-

out dynamics of DM may be violated by supercooling
CSIPT (discussed in a later section). Before the CSIPT, all
particles including DM are massless, so DM is tightly
coupled to the plasma. DM just gains mass after CSIPT.
But if it is strongly supercooled, it is possible that the phase
transition (PT) completion temperature T� < Tf ∼mX=20
with Tf the estimation on the decoupling temperature of
normal DM. This means that DM number density is not
frozen at Tf but at T�, when DM gains a heavy mass much
above the plasma temperature of approximately T�, thus
failing to enter the new plasma inside the bubble, which
expands to occupy the space dwelling in the metalstable
vacuum. However, if the freeze-out dynamics indeed fails is
a complicated question. One reason is that the reheating
after CSIPT probably will heat the Universe to a very high
temperature and therefore DM may be thermalized again.
A solid discussion is beyond the scope of this work, and
we leave this very interesting topic to a specific publica-
tion. Here, we just assume that the ordinary freeze-out
still works.

4As noticed in Refs. [4,6], for a fermionic DM, the common
mass and annihilation dynamics from a single interaction can
make the above estimation independent on λsx.
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B. DM direct detection bounds

The DM-nucleon elastic scattering is mediated by the
Higgs bosonsHi, and they can be integrated out, generating
the effective operators between DM and quarks, aqX2q̄q
with

aq ¼
yqffiffiffi
2

p Ai

2
O1i

1

m2
Hi

¼ mq

X
i

�
λhxO2

1i

2m2
Hi

þ vs
vh

λsxO1iO2i

2m2
Hi

�
;

ð3:4Þ

where the first and second are the contributions from the
Higgs portal and scalon portal, respectively. Then, the DM-
nucleon elastic scattering cross section is σSI ¼ 4

π μ
2
pf2p

[41], with

fp ¼ mp

2mX

X
q

aq
mq

fðpÞTq
; ð3:5Þ

where μp ≈mp is the reduced mass and fðpÞTq
encode the

nuclear factors. The direct detection upper bounds strongly
limit the size of AiO1i=m2

Hi
. In particular, the usual SM

Higgs portal coupling λhx must be highly suppressed. So,
we can just retain the scalon portal contribution in fp, to
derive

fp ≈ λsx
mp

8mX

vs
vh

sin 2θ

�
1

m2
hSM

−
1

m2
S

�
Δp

≈
ffiffiffiffiffiffi
λsx

p

2
ffiffiffi
2

p mp

vs
sin 2θ

�
1

m2
hSM

−
1

m2
S

�
Δp; ð3:6Þ

where, to get the final expression for fp, we have used

Δp ¼Pq¼u;d;s f
ðpÞ
Tq

þPq¼t;b;d f
ðpÞ
Tq

≈ 0.35 and m2
X ≈

λsxv2s=2 as a result of the DM mass genesis from CSISB.
There are several limits of special attention in studying

the DM direct detection bound. First is the degenerate limit
mhSM ≈mS, which leads to a cancellation in the scalon
portal contribution to aq, manifest in Eq. (3.6)5; hence, a
relatively larger mixing angle is tolerated, given a sub-
stantial degeneracy. But note that the Higgs portal con-
tribution does not show cancellation. Second is the heavy
scalon limit m2

S ≫ m2
hSM

, and then its contribution is
suppressed compared to the SM Higgs boson. In other
words, the scalon portal effectively becomes the SM Higgs
portal, and one cannot rely on a heavy scalon to suppress
σSI. It holds, of course, assuming that m2

S and θ are totally

independent. The third is the opposite limit with
m2

S ≪ m2
hSM

, which requires a small mixing angle to avoid
the direct detection bound. To be more specific, considering
a TeV scale DM, then we have the upper bound on the
mixing angle,

sin θ ≲ 0.07 ×

�
mS

100 GeV

��
mX

1 TeV

��
σupperSI

10−9 pb

�
1=2

×

�
0.35
Δp

�
GeV−1 ð3:7Þ

where we have used the estimation m2
S ∼ 10−2λ2sxv2s , but it

may show a sizable deviation by virtue of the mixing effect.
In any case, heaviness helps to alleviate the stringent direct
detection bound on the scalar DM [42].

C. Interplay between DM and radiative CSISB:
Numerical results

Now, we numerically demonstrate the implications of the
DM trigger to radiative CSISB, to figure out the viable
parameter space giving both successful CSISB and DM. As
argued, the Higgs portal coupling λhx plays no dynamics
roles, and moreover should be irrelevantly small, thus
simply set to 10−3. Then, there are four parameters λh,
λs, λhs, and λsx relevant to DM or/and CSISB. However,
only one is free because of the three additional require-
ments for the correct weak scale, Higgs boson mass, and
DM relic density. The single free parameter makes the
parameter exploration become easy. It is further restricted
by two constraints: one is from the current LHC Higgs data,
which sets the upper bound on the SM Higgs and scalon
mixing angle j sin θj < 0.44 [39], and the other one is from
DM direct detection experiments such as XENON1T and
PandaXII [43], which sets an upper bound on σSI for a
given DM mass.

1. Higgs portal scenario

We first investigate the allowed parameter space in the
Higgs portal scenario, where λsx is chosen as the free
parameter. We find that, even taking into account the large
quantum effect, the heavier eigenstate ϕþ in Eq. (2.9)
cannot be identified with the SM-like Higgs boson. Let
us briefly explain the reasons. To satisfy the conditions
mϕþ ¼ 125 GeV and the correct DM relic density via
Eq. (3.3), the viable region is 0 < λsx < 1.04. However,
one meets m2

ϕ−
< 0 for λsx < 0.33 and j sin θj > 0.44 for

0.33 < λsx < 1.04. So, we have to identify the SM-like
Higgs boson with the lighter one ϕ−. Then, for a given λsx,
the solution of the equation mϕ−

¼ 125 GeV as a function
of λhs has two branches. One branch requires a large Higgs-
scalon coupling λhs > λsx. But recall that the Higgs portal
limit requires a small λhs, so this branch is unacceptable,
whereas the other branch λhs < λsx gives successful

5This cancellation is not accident and not novel [4]. However,
in the usual cases where all Higgs bosons gain masses from a
tree-level potential, being more degenerate means the system is
more mixed. In the SI setup, the scalon gets mass just at quantum
level, allowing degeneracy without a large mixing angle.
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phenomenology if λsx is in the region 1.09 < λsx < π, with
the upper bound for the sake of perturbativity. The
condition j sin θj < 0.44 further shrinks the feasible param-
eter region to 1.16 < λsx < π.
Now, we add the stringent bound from DM direct

detection. This scenario, by definition, should give a fairly
small mixing angle. In the right panel of Fig. 1, we plot the
profile of the scalon, on themS − sin 2θ plane. One can see
that j sin θj≲Oð10−1Þ as long as the scalon mass is not
very close tomhSM , which is good for evading the DM direct
detection bound for a relatively heavy scalon, hence DM.
This is just what the left panel of Fig. 1 shows; DM with
mass mX ≳ 1.78 TeV is still allowed, corresponding to
λsx ≳ 1.26 and a scalon with mass mS ≳ 160 GeV. In
summary, in the Higgs portal scenario, the allowed param-
eter space lies in the interval

1.26 < λsx < π: ð3:8Þ

Moreover, the resulting scalon, the clear prediction of the
CSI models, tends to be heavy and slightly mixed with

the SM Higgs boson and thus is difficult to probe at
the LHC.

2. Gildener-Weinberg scenario

Next, we study the Gildener-Weinberg scenario, where
again λsx is chosen as the free parameter. Then, we add
the constraints step by step. First of all, the condition
for a stable vacuum, namely, B > 0 sets the lower bound
λsx > 0.23. Next, to identify the 125 GeV SM-like Higgs
boson with ϕ− or ϕþ, λsx > 1.08 or λsx < 1.08 is found.
Finally, the upper bound on themixing angle j sin 2θj < 0.79
selects two regions 0.07 < λsx < 0.99 or 1.13 < λsx < π.
These constraints still allow a wide parameter space:

(i) 0.23 < λsx < 0.99, where hSM is identified with the
heavier one ϕþ and DM mass is in the region
325 GeV < mX < 1400 GeV.

(ii) 1.13 < λsx < π, where hSM is the lighter one, ϕ−,
and DM mass is in the region 1598 GeV <
mX < 4442 GeV.

But σSI may be not sufficiently suppressed, and consequently
the DM direct detection significantly shrinks the viable

FIG. 1. Left: the surviving parameter space under the DM direct detection bound (black line) in the Higgs portal limit. Right: profile of
scalon in the mS − j sin 2θj plane for 0.46 < λsx < π.

FIG. 2. Left: the surviving parameter space under the DM direct detection bound in the Gildener-Weinberg scenario. Middle: the zoom
region showing cancellation. Right: profile of the scalon in the mS − j sin 2θj plane. The gray shaded region is excluded by Higgs data.
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regions; see Fig. 2. The relatively light DM region has been
excluded except for the narrow trough, which shows subtle
cancellation as discussed below Eq. (3.5).
Only the relatively heavy DM mass region mX >

1.56 TeV survives, which indicates λsx > 1.03 and
mS > 117 GeV. The scalon in the Gildener-Weinberg
scenario is relatively light and moreover has a larger
mixing angle, so it has better prospect at the LHC.

IV. SUPERCOOLING CSI PHASE TRANSITION

Having studied CSI radiatively breaking at zero temper-
ature, in this section, we go back to the early Universe with
high temperature, where CSI is recovered. Of interest, it is
found that the transition from the CSI phase to its broken
phase is first order, usually characterized by a large
supercooling [18–26].

A. Effective potential from finite-temperature
correction

Cosmic PT is based on the finite-temperature effect.
When the background fields couple to a bath of plasma, its
potential receives temperature-dependent corrections from
the thermal fluctuations of the plasma. The leading-order
finite-temperature correction takes the form [40]

Vð1Þ
T ðϕ; TÞ ¼ T4

2π2

� X
a∈boson

naJBðxaÞ þ
X

a∈fermion

naJFðxaÞ
�
;

ð4:1Þ

with xa ¼ maðϕÞ=T. The formalism applies to ϕ with
multicomponents. Like Eq. (2.5), the index a should run
all heavy particles that couple to the backgrounds, e.g., top
quark and DM whose masses are given in Eqs. (2.7) and
(2.9). When working in the Higgs portal scenario, we only
need to include DM and scalon because other particles are
massless at the stage of CSIPT. In particular, the absence of
Higgs VEV simplifies the masses of scalon and DM to be

m2
s ¼ bXs2; m2

X ¼ λsx
2
s2: ð4:2Þ

We will use those mass and potentials in following
discussion.
In Eq. (4.1), JB and JF are the thermal functions for

bosons and fermions, and they, respectively, are given by

JB=FðyÞ ¼
Z

∞

0

dxx2 log ð1 ∓ e
ffiffiffiffiffiffiffiffiffi
x2þy2

p
Þ: ð4:3Þ

In the y2 ≪ 1 limit, the above integrals admit the high-
temperature expansion, up to the quartic terms, taking the
forms [40]

JBðyÞ ≃ −
π4

24
þ π2

12
y2 þ π

6
y3 −

1

32
y4 log

y2

ab
þOðy4Þ

JFðyÞ ≃
7π4

360
−
π2

24
y2 −

1

32
y4 log

y2

af
þOðy4Þ; ð4:4Þ

with log ab ≈ 5.4 and log af ≈ 2.6. One should be cautious
about high-temperature expansion in the PT with a large
supercooling, where PT is completed at a very low T and
thus y2 ≪ 1 does not hold. But this approximation is still
adopted in some of the literature to analyze such a kind of
PT, just retaining the quadratic terms. We will come back to
this point in Sec. IV D, where we argue how the expansion
may still work.
The one-loop effective potential may be insufficient to

describe PT. According to the principle that symmetry
should be restored at high temperature, the ordinary
perturbative expansion in terms of coupling must break
down at high temperature [44,45], e.g., around or above the
critical temperature Tc. To improve the expansion so as to
make the analysis valid at high T, one should sum the high-
order diagrams which consist of the quadratically divergent
loops on the top of the one-loop self-energy diagram for the
spin-0 particles. This procedure yields a thermal correction
to their masses,

M2
aðϕ; TÞ ¼ m2

aðϕÞ þ ΠaðTÞ; ð4:5Þ

with ΠaðTÞ specific to our model given by

ΠhðTÞ ¼ ΠGSB ¼ λ

4
T2 þ λhs þ λhx

24
T2

þ 3g2 þ g02

16
T2 þ y2t

4
T2;

ΠsðTÞ ¼
λs
4
T2 þ λhs þ λsx

24
T2;

ΠXðTÞ ¼
λx
4
T2 þ λhx þ λsx

24
T2; ð4:6Þ

and also the longitudinal components of the gauge bosons

ΠWL
ðTÞ ¼ 11

6
g2T2; ΠZL

ðTÞ ≈ 11

6
ðg2 þ g02ÞT2: ð4:7Þ

We have neglected γL, which is not important numerically.
Daisy resummation generates the Daisy term in the
effective potential [46,47],

VDðϕ; TÞ ¼ −
T
12π

X
a∈boson

nað½maðϕÞ2 þΠaðTÞ�32 −maðϕÞ3Þ;

ð4:8Þ

where a runs over the spin-0 fields and the longitudinal
components of the gauge bosons that appear in Eqs. (4.6)
and (4.7) with nWL

¼ 2; gZL
¼ 1.
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B. Bubble nucleation rate

According to the work of Coleman and Callan [48], first-
order PT proceeds via the bubble nucleation of the true
vacuum. The bubble nucleation rate per volume and per
time ΓðTÞ, due to thermal fluctuations, is given by [49]

Γ ≈ AT4e−
S3ðTÞ
T ; ð4:9Þ

where A is supposed to be at order 1. S3 is the Oð3Þ
symmetric three-dimensional Euclidean action

S3ðTÞ ¼ 4π

Z
∞

0

R2dR

�
1

2

�
dϕ
dR

�
2

þ Veffðϕ; TÞ
�
; ð4:10Þ

with R ¼ x⃗2 and Veffðϕ; TÞ ¼ Vð0ÞðϕÞ þ Vð1ÞðϕÞ þ
Vð1Þ
T ðϕ; TÞ þ VDðϕ; TÞ the total effective potential. ϕðRÞ

is the bounce solution satisfying the Euclidean equation
of motion

d2ϕ
dR2

þ 2

R
dϕ
dR

¼ V 0
eff ; ð4:11Þ

with the boundary conditions limR→∞ ϕðRÞ ¼ 0 (the false
vacuum position) and dϕðRÞ

dR jR→0 ¼ 0. The bounce solution
connects the true vacuum and the false vacuum, with phase
interface; namely, the bubble wall localized at R ¼ 0 and R
denotes the distance to the wall. The region R > 0ð< 0Þ is
in the symmetric (broken) phase.
Denote S3ðTÞ=T as SðTÞ hereafter. Finding SðTÞ or

essentially the bounce solution is the basis to discuss
PT and also the gravitational wave; however, it heavily
relies on the numerical codes, e.g., the PYTHON program
CosmoTransition [50]. We will assess the Gildener-Weinberg
approach at T ≠ 0 and Witten’s analytical approximation
specific to CSIPT.

1. Multifield: Tunneling along the flat direction
versus full tunneling

In the Gildener-Weinberg approach dealing with radia-
tive symmetry breaking in the multifield space at T ¼ 0,
analysis is done around the valley of the potential, while the
calculation of finite-temperature correction is also imple-
mented along the flat direction [see Eq. (B1)], which means
that we are assuming that thermal tunneling between the
vacua is along this direction. However, a strong quantum
correction, present in the case of a larger coupling, may
strongly distort the shape of the valley, and therefore we
may wonder if the actual tunneling still follows the flat
direction. To that end, we study a few example points
without considering any phenomenological constraints,
and the results are shown in Fig. 3. Two cases of flat
direction are presented: one is along h ¼ s, while the other
one is along h ¼ s=

ffiffiffi
3

p
. From the left panels, one can see

that, when λsx becomes sufficiently large, which enhances

quantum correction, the tunneling path begins to signifi-
cantly deviate away from the flat direction. Note that for a
given λsx quantum correction leads to a larger deviation for
the case with a larger s, because the correction mainly
comes from the trigger-s coupling. In fact, given that s ≫ h
holds during tunneling, the multifield problem effectively is
reduced to the single-field problem in the sense of
calculating SðTÞ.
However, SðTÞ is not very sensitive to the tunneling path

but sensitive to the position of the escaping point. To show
this, we calculate SðTÞ for λsx ¼ 1.2, 2.0, and 3.14, using
both the Gildener-Weinberg approach, where tunneling
faithfully tracks the flat direction, and the multifield full
tunneling, where tunneling is along the actual trajectory,
to get

SðT ¼ 10 GeVÞ ¼ 387ð335Þ; 139ð138Þ; and 50ð62Þ;
ð4:12Þ

respectively; values in the brackets are for the full tunnel-
ing. Analysis on the variation of SðTÞ with λsx will be given
in Sec. IV D. The above examples indicate that the differ-
ence between the two ways is mild, typically below 20%.
Moreover, it seems that the degree of difference has no
simple correlation with the degree of path deviation. In
summary, tracking the tree-level flat direction still provides
an acceptable approximation to study PT, even facing a
relatively strong quantum correction. This conclusion is
further supported by a realistic example in Fig. 4, and its
first diagram is a comparison between SðTÞ from two
approaches in a wide region of temperature.

2. Single field: The modified Witten approximation

If the CSIPT involves only one scalar field, the Witten
approximation is usually adopted to estimate SðTÞ at the
very low T region [24], for instance, in the conformal local
B − L model [51]. Witten observed that for very low T the
field contributing to tunneling extends to ϕ ∼ T=λ with λ
denoting the coupling between ϕ and trigger.6 This fact
allows one to take high-temperature expansion to derive the
tunneling potential merely describing the tunneling proc-
ess; it is approximated to be

Vtunðϕ; TÞ ¼
m2

effðTÞ
2

ϕ2 þ λeffðTÞ
4

ϕ4; ð4:13Þ

where m2
effðTÞ is the effective mass in high-temperature

expansion and λeffðTÞ is negative at low T. The vacuum
decay of such a potential has been studied in Ref. [52],
giving an analytical expression of

6One may prove this directly from the one-loop effective
potential, by finding its zero points, with one at the origin of the
metastable vacuum and the other one at the escaping point.
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FIG. 4. Left panel: comparison of SðTÞ between the calculation along the flat direction (top) and along the actual path (bottom).
Middle panel: the tunneling path in the s − h space. Right panel: the tunneling path in the R − ϕ space. The parameter set is λsx ¼ 1.2,
λh ¼ 0.1273, λs ¼ 0.000025, and vs ¼ 2076 GeV.

FIG. 3. In this diagram α is the flat direction; all fields values are terminated around the escaping points, after which the particle follow
the classical path and thus does not contribute to tunneling. Then, setting T=10 GeV, we find the solution of tunneling problem with
parameter λh ¼ 0.13, λhx ¼ 0.001 λx ¼ 0.2 and vh ¼ 246 GeV. Other parameter is shown in this diagram or calculated by Gildener-
Weinberg method.
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SðTÞ ≈ −18.897
meffðTÞ
TλeffðTÞ

: ð4:14Þ

Nevertheless, the Witten approximation scheme just
gives an estimation on SðTÞ at very low T, and it is not
good in the sense of precision. Here are two reasons:

(i) First, in the original treatment, only the quadratic
term is kept in the high-temperature expansion. In
particular, the cubic term ϕ3, which plays an
important role in the shape of the barrier, is simply
dropped; on the other hand, keeping this term, one
cannot write the tunneling potential in the form of
Eq. (4.13). Such over simplification gives rise to a
significant deviation to the complete result. If one
includes the Daisy term (it is not included in the
Witten’s paper either), it will exactly cancel that ϕ3

term but leave the cubic term of the thermally
corrected trigger mass.

(ii) Second, the crucial negative quartic coupling is not
unique because it is derived by a rough argument
rather from the first principle: around the escaping
point ϕ ∼ T=λ, the logarithmic term in the CW
potential log ϕ

μ ¼ ln T
m þ ln λϕ

T ∼ ln T
m < 0, where m ≃

λμ is the physical mass of the trigger. The drop of the
ln λϕ

T term is justified in the very small ϕ ≪ T region,
because the quartic term is irrelevant. But obviously,
one has some degree of arbitrariness to split log ϕ

μ.
Actually, a similar expression can be derived if we
keep terms up to the quartic term in the high-
temperature expansion. This quartic term and the
quartic term in the CW potential have similar
coefficients, and they combine to form

log
abT2

ϕ2
þ log

ϕ2

μ2
¼ log

abT2

μ2
: ð4:15Þ

So, the negative quartic coupling is derived without
turning to ϕ ∼ T=λ.

In the above discussions, we actually modify the Witten
approximation, maintaining the high-temperature expan-
sion (to quartic terms) but giving up the formula (4.14).
To be more specific, we apply the modified Witten

approximation to our model in the hidden CW scenario,
only taking into account the DM field X. First of all, high-
temperature expansion indeed works well. In Fig. 5, the
blue dotted line denotes the numerical result of the
complete potential, and it coincides well with the line
(not plotted explicitly) for the potential in high-temperature
expansion. Then, we derive the tunneling potential from the
high-temperature expansion,

V tunðϕ; TÞ ¼
1

4
λsϕ

4 þ 1

64π2
m4

XðϕÞ
�
log

abT2

μ2
−
3

2

�

þm2
XðϕÞT2

24
−
M3

Xðϕ; TÞT
12π

: ð4:16Þ

Asmentioned before, the termM3
Xðϕ; TÞ ≈ ðλsx=2Þ3=2ðϕ2 þ

T2=12Þ3=2 hampers the direct use of Witten’s formula.
Hence, we further expand it in terms of ϕ=T, up to the
quadratic term, and then the tunneling potential takes the
form of Eq. (4.13) with

m2
effðTÞ ¼

m2
XðTÞ
12

−
m2

XðTÞ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6λs þ λsx

24

r
;

λeffðTÞ ¼ λs þ
λ2sx
64π2

�
log

abT2

μ2
−
3

2

�
: ð4:17Þ

To check if this approximation works well, we compare the
resulting SðTÞ by Witten’s formula with the complete
numerical results, to find that it is a poor approximation;
see Fig. 5. This inaccuracy is owing to the fact that the
expansion ϕ=T ∼Oð1Þ is multiplied by a large factor
12λsx ≫ 1. Therefore, we draw the conclusion that
Witten’s formula does not give a precise estimation on SðTÞ.
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Numerical Result of

Witten's Approximation

Witten's Approximation

Witten's Approximation

with Expand Daisy Term

FIG. 5. Various Witten approximations versus the numerical results: the numerical results for the full potential (bottom dotted line) and
for the tunneling potential from the original Witten approximation (dotted green line), which indeed is almost the same as its analytical
result (top line) and Witten’s approximation for the potential after expanding the Daisy term as in Eq. (4.17) (gray solid line).
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3. Multilfield: Possible generalized Witten’s argument

Maybe the essence of theWitten argument is not the poor
formula for estimating SðTÞ but the observation that high-
temperature expansion is a good approximation to encode
the tunneling dynamics far below the critical temperature.
More concretely, the barrier, in particular, the escaping
point, just extends over the small field region, and thus the
quantum tunneling path merely tracks small fields, whereas
the large fields, where the ground state is located, are
irrelevant. This fact, along with the CSI, confers the
legitimacy of the high-temperature expansion at very low
temperature, for example, Fig. 6.
The original argument is for the single field, and we

conjecture that it may also apply to the multifield case. But
it is difficult to prove it explicitly since, unlike the one-
dimensional case, the escaping points now are located in a
hypersurface in the n-dimensional field space and we are
incapable of pinning down the exact point at which the
tunneling ends. Moreover, the scale of fields varies widely
on the escaping hypersurface, which renders the failure of

the simple conclusion that the tunneling process just
involves fields extending to T=λ. But we conjecture it is
true. A support is from the left panel of Fig. 7, where the
contours are the equipotential lines of our model, and the
thick black line with zero potential energy is the escaping
line. Its interaction with the straight line, the tunneling path,
is the actual escaping point. Thus, as our conjecture, the
tunneling is through the small field region and ends at the
small field, and thenWitten’s argument is supposed to hold.
Even if the above generalization is true, to compute

SðTÞ, we still have to rely on the numerical codes. Our
discussions help to clarify what is the correct way of using
the high-temperature expansion in CSIPT; some authors
merely keep the quadratic terms of T, but it does not give
good enough numerical results; more details can be found
in Appendix. B. To have a sufficiently good result, we need
to expand the finite-temperature potential to the quartic
terms. In the right panel of Fig. 7, we show the quality of
high-temperature expansion in this scheme, measured by
δSðTÞ=SðTÞ: the difference between the SðTÞ calculated
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FIG. 6. The difference between the generalized Witten argument and complete potential is very small; at very low temperature, they
nearly overlap with each other. So, gravitational signal from them would also overlap.
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FIG. 7. Left panel: contours of equipotential lines of the model and the tunneling path (straight line). Right panel: the relative error of
SðTÞ for high-temperature expansion.
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using the complete potential and the expanded one, nor-
malized by the complete result. We can see that the quality
is steadily improved as temperature decreases, contrast to
the behavior of normal high-temperature expansion.

C. CSIPT in a hot bath or in the vacuum?

As a consequence of very strong supercooling CSIPT,
the early Universe experienced a very short stage of a
vacuum-dominated era and thus a short period of little
inflation. CSIPT may be completed during this epoch rather
than the usual radiation-dominated (RD) era, and then
we should reconsider the condition of CSIPT completion,
which was recently stressed by the authors of Ref. [26,53].
This is not very new, and the discussion is reminiscent of
the old inflation idea proposed by Guth [54], but here the
little inflation will be ended by thermal instead of quantum
tunneling.

1. Little inflation

In the scenario of supercooling PT, the Universe was
confined in the false vacuum until the PT completion
temperature T�, which lies much below the critical temper-
ature Tc. In this vacuum, the nonvanishing vacuum energy
density ρ0 is nearly a constant (we will come back to this
point soon later), so it may begin to exceed the radiation
energy density ρrðTÞ ¼ π2

30
g�T4 at some lower temperature

TV ≃ ð30g�ρ0=π2Þ1=4, where g� ∼ 100 is the relativistic
degrees of freedom in the false vacuum plasma.
ρ0 is determined by the potential energy of the false

vacuum. The effective scalar potential has T dependence,
and therefore in principle ρ0 also depends on T. However,
since we are interested in the region near T�, which is low
due to supercooling, the finite-temperature effect becomes
fairly weak. Roughly speaking, this effect merely reshapes
the potential near the origin (the small field region),
maintaining the local minimum; it does not significantly
change the ground state (the relatively large field region).
So, it is a good approximation to calculate the vacuum
energy from the effective energy at T ¼ 0

7:

ρ0 ¼ Vð1Þ
0 ð0; TnÞ − Vð1Þ

0 ðhϕi; TnÞ ¼
1

2
Bhϕi4: ð4:18Þ

It is for the Gildener-Weinberg scenario, and a similar result
can be derived in the Higgs portal scenario. As a result of
CSI, its scale is mainly determined by the position of the
ground state. Then, TV is estimated to be

TV ≃
�
15

π2
B
g�

�1
4

vϕ: ð4:19Þ

The prefactor is about 0.1 for a normal loop function
B ∼ 10−2, and moreover we are considering vϕ at the TeV
scale, so typically TV ∼ 100 GeV.
After the Universe energy density is dominated by

vacuum energy, the size of the Universe grows exponen-
tially by means of inflation,

aðtÞ ¼ aVeHVðt−tVÞ; ð4:20Þ

where HV ≈ ρ1=20 =ð ffiffiffi
3

p
MPlÞ is the Hubble parameter during

the vacuum-dominated era; tV and aV are the time and scale
factor at TV , respectively. As in the inflation, we denote the
Hubble times of 1=HV as the e-folding number N:
tN − tV ¼ N=HV . Here, we consider the inflation with a
smaller N of a few, thus the little inflation. The temperature
of the radiation drops exponentially, TðtÞ ¼ TVe−HVðt−tVÞ,
and for TV ∼ 100 GeV, the Universe cools down to the sub-
GeV after about N ∼ 6 Hubble times. If the CSIPT fails to
complete before it, the QCD chiral PT will terminate
inflation around this temperature [55]. In this paper, we
focus on the case in which CSIPT is capable of ending
inflation.8 In the following, we investigate the condition for
a successful CSIPT.

2. Condition for CSIPT completion

Despite of the difficulty of getting an analytical expres-
sion for ΓðTÞ, practically, it is sufficient to be aware of a
fact like the following; in general, ΓðTÞ monotonically
decreases with T since SðTÞ increases with T. Therefore,
the integration involving ΓðTÞ is supposed to be dominated
by the lower bound (in some sense, insensitive to UV).
Then, one has the useful approximationZ

Tc

T
ΓðT 0ÞT 0n−4dT 0 ≈

Z
Tc

T
Ae−β0T

0
T 0ndT 0

≈ Aβ−n−10 e−SðT0ÞΓðnþ 1; β0TÞ; ð4:21Þ

where we have expanded SðTÞ around some temperature
T0: SðTÞ ¼ SðT0Þ þ β0ðT − T0Þ þ…, retaining only the
linear term. Note that β0 ≡ dSðTÞ=dTjT0

> 0. This treat-
ment works very well for T sufficiently close to T0 and
also Tc ≫ T ∼ T0. As a matter of fact, we will study
SðT0Þ ∼Oð10Þ, so it always works.
When does the bubbles of true vacuum overwhelmingly

occupy the space of false vacuum? We label this temper-
ature (time) as TnðtnÞ, known as the bubble nucleation
temperature (time). In the RD epoch, the criterion is that at
TnðtnÞ a single bubble is nucleated within one Hubble
horizon volume,

7The true vacuum energy should be fine-tuned to be zero by
adding a constant to the potential, which is the usual cosmo-
logical constant problem. This constant is not dimensionless, thus
explicitly breaking CSI. We do not have an approach to reconcile
CSI with it in this paper. 8Baryon asymmetry may be an issue if N is very large.

ZHAOFENG KANG and JIANG ZHU PHYS. REV. D 102, 053011 (2020)

053011-14



Nn ¼
Z

tn

tc

dt
ΓðtÞ
HðtÞ3

¼ A
Z

Tc

Tn

dT
T5

ð3M2
PlÞ2
�

30

π2g�

�
2

e−SðTÞ ∼ 1: ð4:22Þ

To perform the integration over temperature, which is
more convenient in PT, we have utilized the expansion

rate in the RD epoch, HðTÞ2 ¼ π2g�
30

T4=ð3M2
PlÞ with MPl ¼

2.43 × 1018 GeV and also the time-temperature relation

dt=dT ¼ −1=ðHTÞ: ð4:23Þ

It holds for the Universe evolving adiabatically, true both in
the radiation- and vacuum-dominated eras considered in
this paper. Then, following Eq. (4.21), the condition (4.22)
is translated to the well-known equation

SðTnÞ ≃ 2 logð3M2
Pl=T

2
nÞ þ 2 log

15ffiffiffi
6

p
π2g�

þ log fRðxÞ ∼ 140; ð4:24Þ

where fRðxÞ ¼ −6þ 2x − x2 þ x3 þ x4exEiðxÞ with x≡
βnTn ∼Oð1Þ in our samples of numerical calculations.
But SðTnÞ ∼ 140 significantly overestimates the required

value of SðTnÞ in the vacuum-dominated epoch. Estimates
Eq. (4.22) in this epoch where H ¼ HV , the condition
Eq. (4.24) turns out to be

SðTnÞ ≃ 2 logð3M2
Pl=T

2
nÞ þ 2 logT4

n=ρ0 þ log fVðxÞ;
ð4:25Þ

with fVðxÞ ¼ ð6þ 6xþ 3x2 þ x3Þ=x4. It is similar to the
usual nucleation condition (4.24), but the term 2 log ρ0,
originating in vacuum dominance, brings a significant
numerical difference; now, typically SðTnÞ ∼ 70. The con-
crete value of βn, found to be approximately GeV−1 for a
wide region of temperature in our model [which indicates
that SðTÞ is almost linear in T], is almost irrelevant in
calculating SðTnÞ.
The above bubble nucleation condition does not reflect

the progress of PT, so one may develop a more apparent
criterion via PðtÞ, the probability of a space point staying
in the false vacuum [56]. The criterion PðtÞ≲ 70% is
usually used to fulfill percolation in the three-dimensional
Euclidean space.9 PðtÞ ¼ e−IðtÞ with IðtÞ the expected
volume of true-vacuum bubbles per unit volume of space
at time t [57], explicitly

IðtÞ ¼
Z

t

tc

dt0Γðt0Þaðt0Þ3Vðt; t0Þ; Vðt; t0Þ ¼ 4π

3
rðt; t0Þ3;

ð4:26Þ

with

rðt; t0Þ ¼
Z

t

t0
vwðt00Þ

dt00

aðt00Þ ð4:27Þ

being the comoving radius of the bubble nucleated at t0
expanding with a velocity vw until t. However, PðTÞ alone
may be insufficient to judge whether the phase transition is
completed: In the vacuum dominated era, the PðTÞ can be
arbitrarily small but PT is never completed because of the
inflation of the false vacuum [58].
In such a case, a better condition for successful PT

completion is obtained by finding the time Te since which
the physical volume of the false vacuum VfðTÞ ¼
aðTÞ3PðTÞ commences shrinking [56]. It leads to the
following condition:

1

VfðtÞ
dVfðtÞ
dt

¼ 3HðtÞ− dIðtÞ
dt

¼HðTÞ
�
3þ T

dIðTÞ
dT

�
≤ 0:

ð4:28Þ

For further analysis, we should pursue an approximation to
IðtÞ. Because the bubble is very energetic in the very strong
PT, it is safe to take vwðtÞ ≈ 1. Then, utilizing Eq. (4.21)
and working in the vacuum-dominated era, one can get10

IðTÞ ≈ A
8π

β40H
4
V
exp ½−SðT0Þ − β0ðT − T0Þ�: ð4:29Þ

Now, saturating the equality (4.28) and taking advantage of
Eq. (4.29) yields the equation 3 − TeβeIðTeÞ ¼ 0, or more
concretely the PT completion condition

3 −
8πe−SðTeÞTe

β3eH4
V

¼ 0 ⇒ SðTeÞ ¼ 2 log
3M2

Pl

T2
e

þ 2 log
T4
e

ρ0
þ log

8π

3x3
: ð4:30Þ

It is almost identical to Eq. (4.25) except for the last term
that is subdominant; actually, the difference is just a few for
a widely changing x. Therefore, the difference is not sizable
no matter which criteria are used to measure the completion
of PT.
The real implication of the latter criterion is that it forces

VfðTeÞ to reach a maximum at Te, and thus the second term
of its Taylor expansion

9Successful bubble percolation is required to make the space
homogeneous; namely, the bubbles do not form finite clusters. It
is a more strict condition for PT completion.

10In the RD era, IRDðTÞ ≈ π
18HRðTÞ4 ΓðTÞFðβ0TÞ with FðxÞ ¼

ðx3 þ 12x2 þ 36xþ 24ÞxexEið−xÞ þ x3 þ 11x2 þ 26xþ 6 > 0.
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VfðTÞ ¼ VfðTeÞ

×

�
1þ ðT − TeÞ2

2

�
3=T2 −

d2I
dT2

�
jT¼Te

þ � � �
�

ð4:31Þ

should have a negative coefficient at Te. It contains two
competitive pieces. One is from the curvature of PðTÞ,
generating the native piece −d2I=dT2jT¼Te

¼ −β2eIðTeÞ ¼
−3βe=Te < 0. The other one is from volume expansion a3,
generating the positive piece 3=T2

e. The two pieces add up
to a negative coefficient imposing a lower bound on the PT
completion temperature, Te > 3=βe. It is more convenient
to rewrite the condition in terms of β̃ that will be defined in
Eq. (5.2):

Teβe ¼ β̃ > 3: ð4:32Þ

By contrast, if PT completes in the RD era, there is no such
kind of bound because ð3=T2 − dI2=dT2ÞjTe

¼ 3=T2
eF ðxÞ

with F ðxÞ definitely negative.

D. Numerical results

The above discussions did not offer a way to judge the
period in which CSIPT happened, and here is our pro-
cedure. First, we calculate SðTÞ and next assume
the RD era to determine Tn via SðTÞ ≃ 140. If, indeed,
the ratio αn ≡ ρ0=ρrðTÞ at T ¼ Tn is smaller than 1, then
the assumption is justified. Otherwise, CSIPT should be
completed in the vacuum-dominance era, and finally we
take the criterion SðTÞ ≃ 70 to determine Tn. This is a

simplified procedure, and we refer to Ref. [26] for a more
accurate treatment using iteration. In general, their differ-
ence is not significant except for the subtle case where αn is
close to 1, and hence the era has comparable radiation and
vacuum energy density. As a consequence, either criterion
works well. We will go back to this point in a later concrete
example.
Now, we present the numerical results of CSIPT. We

choose a few benchmarks points, which satisfy all the
phenomenological constraints and requirements from radi-
ative CSISB and DM discussed before; the condition (4.32)
is also imposed. Then, only one free parameter λsx is left
except for the irrelevant (to those phenomenologies) ones
λx and λhx. In Table I, we show the benchmarks points in the
Gildener-Weinberg scenario. One can see that Tn increases
with λsx, which is traced back to the decreasing SðTÞ,
explicit in Eq. (4.12); in simple terms, the larger quantum
(also thermal) correction benefits thermal tunneling. This
behavior is explained by the narrower of the barrier, i.e., the
shorter escaping path,11 with the increasing λsx; one can
find its evidence in Fig. 3. Note that to make Tn lie above
the QCD chiral symmetry breaking scale λsx should be
sufficiently large, for instance, λsx ≳ 1.44 in the Gildener-
Weinberg scenario.
The observed Tn − λsx behavior has immediate impli-

cations to CSIPT thus gravitational wave, and we can
clearly see this from the table. Among the eight bench-
marks, A, B, C, D, and G have a relatively small λsx ≲ 2.0,

TABLE I. Benchmark points in the Gildener-Weinberg scenario.

vs=GeV λ λs λx λhx λsx α β̃ Tn=GeV T�=GeV

A 2400 0.1277 0.000014 0.2 10−3 1.44 3.9 � 108 11.3 1.01 616
B 2449 0.1278 0.000013 0.2 10−3 1.50 6.6 � 107 9.84 1.65 646
C 2683 0.1280 0.000009 0.2 10−3 1.80 59805 14.36 11.40 796
D 2828 0.1281 0.000007 0.2 10−3 2.00 2301 17.16 28.60 896
E 2966 0.1282 0.000006 0.2 10−3 2.20 0.37 94.73 278.63 996
F 3535 0.1285 0.000003 0.2 10−3 3.14 0.004 198.07 750.85 1475
G 2449 0.1278 0.000013 1.2 10−3 1.50 370801 10.00 6.02 720

TABLE II. Benchmark points in the Higgs portal scenario.

vs=GeV λ λs λhs λsx αn β̃ Tn=GeV T�=GeV

a 2245 0.1304 −0.00110 −0.00286 1.38 3.0 � 108 10.72 1.05 576
b 2449 0.1299 −0.00119 −0.00262 1.50 1.4 � 107 14.75 2.43 688
c 2683 0.1294 −0.00142 −0.00218 1.80 16213 16.59 15.80 829
d 2828 0.1293 −0.00158 −0.00196 2.00 0.78 82.49 28.60 923
e 2966 0.1292 −0.00174 −0.00178 2.20 0.30 99.90 293.83 1018
f 3535 0.1291 −0.00249 −0.00124 3.14 0.003 203.46 753.56 1473

11Although not shown here, we find that at the same time the
barrier becomes shallower, which brings an opposite effect to
SðTÞ, but it is supposed to be subdominant to the former effect.
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and the corresponding CSIPTs were completed in the
vacuum dominated period. They give a very large αn,
characterizing strong supercooling. By contrast, CSIPTs of
E and F, which have a relatively larger λsx ≳ 2.2, were
completed in the RD era and give a suppressed αn.
Therefore, the heavier DM region may be characterized
by less vacuum energy release. This is not good news since
the heavier DM region is just the region which tends to go
beyond the sensitivity of DM direct detection experiments.
We also display the benchmarks for the Higgs portal

scenario in Table II, to find that the two scenarios share a
fairly similar feature of CSIPT, provided that the values of
λsx are close. It is not surprising since CSIPTs in both
scenarios are dominated by the singlet scalar, whose
quantum corrections dominantly come from the DM field.

V. ABUNDANT GRAVITATIONAL
WAVE (GW) FROM CSIPT

In the last section, we have shown that CSIPT, due to the
vanishing quadratic term of the scalon, is first order and
moreover characterized by significant supercooling for the
not very heavy trigger. So, the bubble collisions near the
end of CSIPT stimulate abundant emission of GW, which
may be hunted by eLISA, Tianqin, etc. From the DM direct
detection bounds shown in Figs. 1 and 2, it is seen that the
multi-TeV DM region is buried underneath the neutrino
floor, and consequently it cannot be probed by the DM
direct detection experiments. Fortunately, the GW signal
opens a window to probe this region.
In estimating the GW spectra, there are two critical

parameters which characterize first-order PT, namely, the α
and β̃ parameters defined as

α≡ Δϵ
ρr

����
T¼Tn

; Δϵ ¼ ρ0 þ T
d
dT

½Veffðϕ0; TÞ − Veffð0; TÞ�;

ð5:1Þ

β̃≡ −
1

H
dSðtÞ
dt

����
t¼tn

¼ Tn
dSðTÞ
dT

����
T¼Tn

: ð5:2Þ

α denotes the latent heat release Δϵ normalized by the
energy density of radiation during PT. It receives two
contributions, but in the strong supercooling PT, it is
obviously dominated by ρ0, the vacuum energy difference
defined in Eq. (4.18), while β̃−1 ∼ τPT=τH denotes the time
scale of PT duration, normalized by the Hubble timescale
τH ∼ 1=H at tn. The GW amplitude is enhanced by the
larger α and β̃−1. Their values have been listed in the
previous tables.
One may obtain an overall picture about β̃−1. The typical

behavior of SðTÞ is plotted in Fig. 5, which leads us to
the observation: In the relatively high temperature region
SðTÞ is almost linear in T, with a slope ∼Oð0.5Þ GeV−1,
and the slope just slowly increases as T decreases; however,

the slope sharply increases when T drops below certain
temperature. Thereby, if CSIPT is completed at a higher Tn,
one has β̃ ∼Oð0.5ÞTn=GeV; otherwise, it may be enhanced
by orders of magnitude. This observation roughly explains
the pattern of β̃ in Tables I and II.

A. GW sources

According to the present understanding of the GW
emission during PT proceeding via the thermal bubble
nucleation, there are three sources after bubble collision
at Tn:

(i) Bubble collision: Before the bubble wall reaching
the terminal velocity, almost all of the vacuum
energy (or latent heat) will be transformed into
the kinetic energy of the bubble wall. If the bubble
wall is expanding in the vacuum, it runs away, that is
to say, it keeps accelerating until bubble collision.
Even expanding in a plasma, the bubble was still
believed to run away in the strongly supercooling PT
with

α > α∞ ≡ ΔPLO

ρR
≈

30

24π2

P
acaΔm2

aðϕnÞ
g�T2

n

∼ 10−2
�
ϕn

Tn

�
2

: ð5:3Þ

Nevertheless, recently, it was found that the friction
on the wall at the next-to leading order is propor-
tional to the Lorentz factor of the wall, ΔPNLO ∝ γ
[59]. It is able to balance the wall when γ → γeq, thus
stopping runaway. Then, the energy stored in the
bubble is still negligible (namely, the fraction of
latent heat transferred to bubble collision κcol ≪ 1),
provided that α does not become extremely large
[26], far larger than the α considered in this paper.
So, the GW source as usual is from the bulk motion
of the plasma.

(ii) Sound wave: The first bulk motion is the sound
wave propagating in the plasma after percolation
happens. The fraction of latent heat that goes into the
fluid motion is estimated to be [60]

κsw ≈ αð0.73þ 0.083
ffiffiffi
α

p þ αÞ−1 ⟶α≫1
1: ð5:4Þ

The GW peak frequency at Tn is not well understood
and is fsw;� ¼ 2ð8πÞ1=3=½ ffiffiffi3p ðvw − csÞR�� with R�
the average bubble separation at collision and the
speed of sound in the plasma cs ¼ 1=

ffiffiffi
3

p
. In the

exponential approximation of SðTÞ, it is related to
the typical timescale of PT: R� ¼ ð8πÞ1=3vw=βn.
Redshifting to today, the observed peak is fsw ¼
fsw;�a0=aðTnÞ and parametrized as [26,61]
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fsw ¼ 1.65 × 10−5
�

Tn

100 GeV

��
g�
100

�1
6

×
3.4

ðvw − csÞH�R�
Hz

¼ 2.75 × 10−5 β̃

vw

�
Tn

100 GeV

��
g�
100

�1
6

Hz

ð5:5Þ

The GW spectrum of the sound wave is [26,62]

h2ΩswðfÞ ¼ 6.35 × 10−6ðH�R�ÞðH�τswÞ

×

�
κswα

1þ α

�
2
�
100

g

�1
3

vwSswðfÞ; ð5:6Þ

SswðfÞ ¼ ðf=fswÞ3
�

7

4þ 3ðf=fswÞ2
�7

2

; ð5:7Þ

where τsw is the duration of the sound wave source,
defined as H�τsw ¼ min½1; H�R�=Uf� with Uf the
root-mean-square fluid velocity [63]

Uf ≃
ffiffiffi
3

p

2

�
αð1 − κcolÞ

1þ αð1 − κcolÞ
κsw

�
1=2

⟶
α≫1

ffiffiffi
3

p

2
: ð5:8Þ

Strong supercooling enhances Uf, which in turn
leads to H�R�=Uf ¼ 2vw=ð

ffiffiffi
3

p
β̃Þ≲ 0.08 ≪ 1 then

τswH� ≪ 1, rendering the sound wave source con-
siderably suppressed. So, in this case, the GW from
the sound wave becomes

h2ΩswðfÞ ¼ 6.3 × 10−5
1

β̃2

�
κswα

1þ α

�
2
�
100

g

�1
3

× v2wSswðfÞ: ð5:9Þ

For α ≫ 1, the GW enhancement by strong super-
cooling is saturated because the explicit α depend-
ence in the spectrum is canceled. Then, the GW
spectrum is characterized by the single parameter β̃.

(iii) Magnetic hydrodynamics (MHD) turbulence: When
the sound wave period ends and the fluid flow
becomes nonlinear, percolation generates another
fluid bulk motion, the MHD turbulence. If the sound
wave period could last over at least one Hubble
timescale, then it is supposed to have a suppressed

efficiency factor κturb ∼ 0.05κsw [63]. However, as
shown above, τsw ≪ 1=H�, and then κturb may be
significantly enhanced. But a part of the remaining
energy of the bulk fluid motion, namely, the part not
consumed by the sound speed wave, can convert into
heat, so the quantitative enhancement is unknown
yet. Here, we follow Ref. [26], assuming that all of
the energy transfers to turbulence, giving rise to the
GW spectrum [64]

h2ΩturbðfÞ ¼ 3.3 × 10−4
1

β̃

�
1 −

2ð8πÞ1=3vwffiffiffi
3

p
β̃

�

×

�
κswα

1þ α

�3
2

�
100

g

�1
3

vwSturbðfÞ;

ð5:10Þ
with the shape function

SturbðfÞ ¼
ðf=fturbÞ3

½1þ ðf=ftrubÞ�113 ð1þ 8πf=hÞ ; ð5:11Þ

which, compared to SswðfÞ, shows a moderately
large suppression of approximately Oð10Þ in the
high-frequency region. The peak frequency is sim-
ilar to that of the sound wave source [26]:

fturb ¼ 1.65 × 10−5
�

Tn

100 GeV

��
g�
100

�1
6

×
3.9

ðvw − csÞH�R�
Hz

¼ 3.15 × 10−5 β̃

vw

�
Tn

100 GeV

��
g�
100

�1
6

Hz

ð5:12Þ
We have to stress that all of these “data-driven” expressions
are reliable only for a weaker phase transition α≲ 0.1. For
very large α, thus ultra relativistic bubbles, they are far
beyond the ability of the current numerical simulation.
Recently, there are works toward analytical understanding
of the GW in this limiting situation [65].

B. Prospects of the GW signal

Now, we have collected all the ingredients to demon-
strate the tentative prospects of GW signatures of CSIPT by
the DM. For an example, in Fig. 8, we show the GW spectra

TABLE III. A subtle case of CSIPT completion criterion.

vs=GeV λ λs λx λhx λsx α β̃ Tn=GeV T�=GeV

Radiation 2828 0.1281 0.000007 0.2 10−3 2.00 1.04 77.76 196.11 896
Mixing 2828 0.1281 0.000007 0.2 10−3 2.00 4.10 56.42 139.15 896
Vacuum 2828 0.1281 0.000007 0.2 10−3 2.00 2301 17.16 28.60 896
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of the benchmarks given in Table I, for the GW scenario. The
sensitivity curves for TianQin and LISA [66,67] are plotted
as the boundaries of the shaded regions. Only the spectra of
two limiting benchmarks lie below the sensitivity curves.
One is F, which has a quite large λsx and hence the resulting
bubble nucleation is very effective. As a consequence, the
supercooling is weakened, giving rise to a relatively small
α ∼ 10−2. The other one is A, which by contrast has a quite
small λsx, leading to a very low Tn ∼ 1 GeV, thus a low peak
frequency of approximately 10−6 Hz.
Additionally, it is of interest to notice that the DM self-

interaction coupling λx, which basically is an irrelevant
parameter in the zero-temperature physics, can affect CSIPT
through theDaisy term, i.e.,ΠX ∝ λxT2; see Eq. (4.6). For an
illustration,we set upBandGdiffering only in λx. Increasing
λx, like increasing λsx, helps to lift the bubble nucleation rate,
thus giving a higher Tn. Because α is already very large and
its dependence in the spectra has been cancelled, then the
spectra of B, whose Tn is lower then a lower peak frequency,
tends to move beyond the sensitivity region.
We end with a comment on the subtle case α ∼ 1,

which is ambiguous to determine the era when CSIPT is
completed. We show an example point using two different

PT completion criteria in Table III. Following the crude rule
in Sec. IVD, we find that α is very close to 1 using the RD
criterion SðTÞ ≃ 140. It indicates that the Universe is
transiting from the RD to the vacuum-dominance era, so
it should not be a very precise criterion. Then, we also
calculate CSIPT taking the vacuum-dominance criterion, and
one can see the sharp difference between the resulting PT
parameters: Tn jumps from 196.1 GeV to 28.6 GeV, and as a
consequence, the GW spectra significantly shifts to the IR
frequency region, i.e., from the gray line to the black line in
Fig. 9. The actual CSIPT completion condition is neither
SðTÞ ≃ 140 nor SðTÞ ≃ 70 but some value between them,
and thus the actual GW spectrum should be located between
the two spectra. Unlike in the two limits, in this case, maybe
there is no simple condition of SðTÞ to judge if the CSIPT is
completed, but numerically, we can find the condition by
using the complete Freedman equation HðTÞ2 ¼ ½ρrðTÞ þ
ρ0ðTÞ�=ð3M2

plÞ in the condition like Eq. (4.22). Then, for the
given parameters, it is found that SðTÞ ≈ 118, between the
two limiting values as expected. The resulting accurate PT
parameters are shown in Table III, the line labeled as
“Mixing.” One can see that they are not very different than

FIG. 8. Detecting prospects of the (total) gravitational wave spectra of the benchmark points listed in Table I, corresponding to the
Gildener-Weinberg scenario. For comparison, in the top panel, we include the GW sources from the sound wave and the usual MHD
turbulence without enhancement from the shorter duration of the sound wave, while in the bottom panel, we assume that the turbulence
is maximally enhanced, which significantly lifts the amplitude at the higher-frequency region.
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those obtained in the RD limit. The blue line in Fig. 9 shows
the corresponding GW spectrum.

VI. CONCLUSIONS

The origin of the weak scale is a fundamental question in
the SM. One attractive idea is imposing scale invariance on
the classical Lagrangian of some extension to SM, and then a
scale is generated at the quantum level due to the anomaly of
CSI. But the realistic CSI extension to the SM needs a
bosonic trigger, which is assigned to the scalar DM X in this
paper. This scenario establishes a direct connection between
DM and scale genesis. To accommodate successful DM
phenomenologies, the radiative CSISB scale should be
approximately OðTeVÞ, which means that the GW from
CSIPT, with the tendency of a large supercooling, can leave
signals at the GW detectors such as LISA and Tianqin. Our
analysis of GW signal is based on the usual approach.
Recently, Refs. [68,69] presented a substantially improved
analysis, which is based on the novel peak-integrated
sensitivity curves designed specifically for the GW from
the strong first-order PT. If applied, it may enhance detective
prospect of our model.
Besides the overall physical picture, we pay great

attention to several aspects of techniques that are com-
monly used despite not being very well understood,
summarized in the following:

(i) In Sec. IV B 1, which is based on Gildener-Weinberg
scenario,wediscuss if the strongquantumcorrections
could give rise to a significant difference between two
analysis methods of CSIPT, which respectively are
based on tunneling along the tree-level at direction
and full tunneling. Our numerical examples indicate
that the tunneling path may be changed but the
resulting difference in SðTÞ is tolerable for normal
couplings.

(ii) In Sec. IV B 1, we estimate the quality of Witten’s
formula, which is frequently used to calculate the
nucleation rate in CSIPT, for the one-field case, and

find that it is not a very good approximation, owing
to the neglect of cubic term in high-temperature
expansion. We stress that the essence of Witten’s
approximation is the observation of validity of high-
temperature expansion (to the quartic term) for
CSIPT at very low temperature. Furthermore, we
argue that it may also apply to the multifield case.

(iii) In Sec. IV C 2, we analyzed the completion con-
dition for CSIPT with a very strong supercooling,
which may cause CSIPT completion to occur in the
vacuum-dominated era rather than the ordinary RD
era. We derive the analytical conditions for SðTÞ in
both cases, taking various criteria.

We are not content with these studies; for instance, a
reliable condition for CSIPT in some subtle cases still
requires further study.
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APPENDIX A: ANALYTICAL SOLUTIONS
TO RGEs

In this Appendix, we pursue an analytical approximation
to Eq. (2.12), which consists of three coupled RGEs. We
impose the following hierarchy:

λsx ≫ λx ≫ λs: ðA1Þ

This hierarchy is reasonable. First, λx ≫ λs explains why
radiative correction drives the S rather than X away from
the origin. That is to say, this hierarchy guarantees the
stability of DM field X. Next, λsx ≫ λs is the usual
condition for radiative symmetry breaking. Third, since
λsx is already relatively large, a smaller λx is good for

FIG. 9. The gravitational wave spectra from Table III, a subtle case to judge the CSIPT completion era, thus using both criteria for
comparison. We display all three sources for the gravitational wave.
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perturbativity.12 With the above hierarchy, RGEs in
Eq. (2.12) are reduced to a situation similar to scalar
QED at the leading order of λx=λsx. Then, the solution takes
the form of [1]

λsxðtÞ ¼
λsxð0Þ

1 − λsxð0Þ
8π2

t
;

λsðtÞ ¼
b
2a

λsxðtÞ þ
X
a
λsxðtÞ tan

�
X
b
log

λsxðtÞ
π

þ A

�
;

ðA2Þ

where t ¼ log μ
μ0
with μ0 is the renormalization scale; A ¼

arctan a½λsð0Þ− b
2aλsxð0Þ�

Xλsxð0Þ − X
b log

λsxð0Þ
π with X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ac − b2

4

q
in

which the constants a ¼ 27
2π, b ¼ 1

4π, c ¼ 9
8π.

APPENDIX B: THE FAILURE OF COMMON
HIGH-TEMPERATURE EXPANSION

In this Appendix, we give an example to show that in
analyzing CSIPT the usual high-temperature expansion
keeping only the quadratic term [34,70] may lead to a
sizable error in calculating SðTÞ. We consider the Gildener-
Weinberg scenario of our model, and the effective potential
in the high-temperature expansion to the quadratic term is
given by

VHTðϕ; TÞ ¼ V0ðϕÞ þ Vð1Þ
0 ðϕÞ þ CT2ϕ2;

C ¼ 1

12hϕi ðm
2
ϕ1
ðn⃗Þ þm2

Xðn⃗Þ þ 6m2
Wðn⃗Þ

þ 3m2
Zðn⃗Þ þ 6m2

t ðn⃗ÞÞ: ðB1Þ

Our numerical example is the point E in Table I. Using
VTH, we obtain that the CSIPT completion temperature is
18 GeV, in the vacuum-dominated era. By contrast, the
CSIPT is found to be completed in the RD era, at 278 GeV,
if we use the complete effective potential. Therefore, the
wrongly used high temperature may lead to dramatic
difference in CSIPT.

[1] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888
(1973).

[2] W. A. Bardeen, Report No. FERMILAB-CONF-95-391-T;
Report No. C95-08-27.3, 1995.

[3] T. Hur, D. W. Jung, P. Ko, and J. Y. Lee, Phys. Lett. B 696,
262 (2011).

[4] J. Guo, Z. Kang, P. Ko, and Y. Orikasa, Phys. Rev. D 91,
115017 (2015).

[5] J. Guo and Z. Kang, Nucl. Phys. B898, 415 (2015).
[6] Z. Kang, Eur. Phys. J. C 75, 471 (2015); Phys. Lett. B 751,

201 (2015).
[7] Y. Ametani, M. Aoki, H. Goto, and J. Kubo, Phys. Rev. D

91, 115007 (2015).
[8] H. Ishida, S. Matsuzaki, and Y. Yamaguchi, Prog. Theor.

Exp. Phys. 2017, 103B01 (2017).
[9] T. Hambye, A. Strumia, and D. Teresi, J. High Energy Phys.

08 (2018) 188.
[10] C. Guo, S. Y. Guo, and Y. Liao, Chin. Phys. C 43, 103102

(2019).
[11] L. Bian, W. Cheng, H. K. Guo, and Y. Zhang, arXiv:1907

.13589.
[12] D.W. Jung, J. Lee, and S. H. Nam, Phys. Lett. B 797,

134823 (2019).
[13] A. Karam and K. Tamvakis, Phys. Rev. D 92, 075010

(2015).
[14] V. Brdar, A. J. Helmboldt, and J. Kubo, J. Cosmol. As-

tropart. Phys. 02 (2019) 021.

[15] L. Chataignier, T. Prokopec, M. G. Schmidt, and B.
Świeżewska, J. High Energy Phys. 08 (2018) 083.

[16] E. Gildener and S. Weinberg, Phys. Rev. D 13, 3333
(1976).

[17] R. Hempfling, Phys. Lett. B 379, 153 (1996); K. A.
Meissner and H. Nicolai, Phys. Lett. B 648, 312 (2007);
W.-F. Chang, J. N. Ng, and J. M. S. Wu, Phys. Rev. D 75,
115016 (2007); C. Englert, J. Jaeckel, V. V. Khoze, and M.
Spannowsky, J. High Energy Phys. 04 (2013) 060.

[18] C. W. Chiang and E. Senaha, Phys. Lett. B 774, 489 (2017).
[19] V. Brdar, A. J. Helmboldt, and M. Lindner, J. High Energy

Phys. 12 (2019) 158.
[20] M. Aoki and J. Kubo, J. Cosmol. Astropart. Phys. 04 (2020)

001.
[21] A. Mohamadnejad, Eur. Phys. J. C 80, 197 (2020).
[22] C. Marzo, L. Marzola, and V. Vaskonen, Eur. Phys. J. C 79,

601 (2019).
[23] J. Kubo and M. Yamada, J. Cosmol. Astropart. Phys. 12

(2016) 001.
[24] E. Witten, Nucl. Phys. B177, 477 (1981).
[25] T. Prokopec, J. Rezacek, and B. wieewska, J. Cosmol.

Astropart. Phys. 02 (2019) 009.
[26] J. Ellis, M. Lewicki, J. M. No, and V. Vaskonen, J. Cosmol.

Astropart. Phys. 06 (2019) 024.
[27] R. Hempfling, Phys. Lett. B 379, 153 (1996); W.-F. Chang,

J. N. Ng, and J. M. S. Wu, Phys. Rev. D 75, 115016 (2007);
S. Iso, N. Okada, and Y. Orikasa, Phys. Rev. D 80, 115007

12In principle, we have no compelling arguments to exclude
the opposite pattern λx ≫ λsx. Actually, it is of interest to explore
if radiative symmetry breaking can be driven by a large DM self-
interaction λx, basically a two-loop effect on λs. Such a scenario
has not been discussed yet.

SCALE GENESIS BY DARK MATTER AND ITS … PHYS. REV. D 102, 053011 (2020)

053011-21

https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1016/j.physletb.2010.12.047
https://doi.org/10.1016/j.physletb.2010.12.047
https://doi.org/10.1103/PhysRevD.91.115017
https://doi.org/10.1103/PhysRevD.91.115017
https://doi.org/10.1016/j.nuclphysb.2015.07.014
https://doi.org/10.1140/epjc/s10052-015-3702-4
https://doi.org/10.1016/j.physletb.2015.10.031
https://doi.org/10.1016/j.physletb.2015.10.031
https://doi.org/10.1103/PhysRevD.91.115007
https://doi.org/10.1103/PhysRevD.91.115007
https://doi.org/10.1093/ptep/ptx132
https://doi.org/10.1093/ptep/ptx132
https://doi.org/10.1007/JHEP08(2018)188
https://doi.org/10.1007/JHEP08(2018)188
https://doi.org/10.1088/1674-1137/43/10/103102
https://doi.org/10.1088/1674-1137/43/10/103102
https://arXiv.org/abs/1907.13589
https://arXiv.org/abs/1907.13589
https://doi.org/10.1016/j.physletb.2019.134823
https://doi.org/10.1016/j.physletb.2019.134823
https://doi.org/10.1103/PhysRevD.92.075010
https://doi.org/10.1103/PhysRevD.92.075010
https://doi.org/10.1088/1475-7516/2019/02/021
https://doi.org/10.1088/1475-7516/2019/02/021
https://doi.org/10.1007/JHEP08(2018)083
https://doi.org/10.1103/PhysRevD.13.3333
https://doi.org/10.1103/PhysRevD.13.3333
https://doi.org/10.1016/0370-2693(96)00446-7
https://doi.org/10.1016/j.physletb.2007.03.023
https://doi.org/10.1103/PhysRevD.75.115016
https://doi.org/10.1103/PhysRevD.75.115016
https://doi.org/10.1007/JHEP04(2013)060
https://doi.org/10.1016/j.physletb.2017.09.064
https://doi.org/10.1007/JHEP12(2019)158
https://doi.org/10.1007/JHEP12(2019)158
https://doi.org/10.1088/1475-7516/2020/04/001
https://doi.org/10.1088/1475-7516/2020/04/001
https://doi.org/10.1140/epjc/s10052-020-7756-6
https://doi.org/10.1140/epjc/s10052-019-7076-x
https://doi.org/10.1140/epjc/s10052-019-7076-x
https://doi.org/10.1088/1475-7516/2016/12/001
https://doi.org/10.1088/1475-7516/2016/12/001
https://doi.org/10.1016/0550-3213(81)90182-6
https://doi.org/10.1088/1475-7516/2019/02/009
https://doi.org/10.1088/1475-7516/2019/02/009
https://doi.org/10.1088/1475-7516/2019/06/024
https://doi.org/10.1088/1475-7516/2019/06/024
https://doi.org/10.1016/0370-2693(96)00446-7
https://doi.org/10.1103/PhysRevD.75.115016
https://doi.org/10.1103/PhysRevD.80.115007


(2009); M. Holthausen, M. Lindner, and M. A. Schmidt,
Phys. Rev. D 82, 055002 (2010).

[28] S. Yaser Ayazi and A. Mohamadnejad, J. High Energy Phys.
03 (2019) 181.

[29] C. D. Carone and R. Ramos, Phys. Rev. D 88, 055020
(2013).

[30] T. Hambye and A. Strumia, Phys. Rev. D 88, 055022 (2013).
[31] A. Karam and K. Tamvakis, Phys. Rev. D 94, 055004

(2016).
[32] D. Chway, T. H. Jung, H. D. Kim, and R. Dermisek, Phys.

Rev. Lett. 113, 051801 (2014).
[33] A. Farzinnia, H. J. He, and J. Ren, Phys. Lett. B 727, 141

(2013).
[34] P. H. Ghorbani, Phys. Rev. D 98, 115016 (2018).
[35] M. Lindner, S. Schmidt, and J. Smirnov, J. High Energy

Phys. 10 (2014) 177; A. Ahriche, K. L. McDonald, and S.
Nasri, J. High Energy Phys. 02 (2016) 038; T. Nomura, H.
Okada, and Y. Orikasa, Phys. Rev. D 94, 115018 (2016).

[36] E. Gildener, Phys. Rev. D 13, 1025 (1976).
[37] A. Andreassen, W. Frost, and M. D. Schwartz, Phys. Rev. D

91, 016009 (2015).
[38] A. Andreassen, W. Frost, and M. D. Schwartz, Phys. Rev.

Lett. 113, 241801 (2014).
[39] F. Loebbert, J. Miczajka, and J. Plefka, Phys. Rev. D 99,

015026 (2019).
[40] M. Quiros, arXiv:hep-ph/9901312.
[41] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep.

267, 195 (1996).
[42] X. Gao, Z. Kang, and T. Li, J. Cosmol. Astropart. Phys. 01

(2013) 021.
[43] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett.

119, 181301 (2017).
[44] S. Weinberg, Phys. Rev. D 9, 3357 (1974).
[45] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[46] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys.

53, 43 (1981).
[47] D. Curtin, P. Meade, and H. Ramani, Eur. Phys. J. C 78, 787

(2018).
[48] S. Coleman, Phys. Rev. D 15, 2929 (1977); C. G. Callan and

S. Coleman, Phys. Rev. D 16, 1762 (1977).
[49] A. D. Linde, Phys. Lett. 70B, 306 (1977); 100B, 37 (1981);

Nucl. Phys. B216, 421 (1983).
[50] C. L. Wainwright, Comput. Phys. Commun. 183, 2006

(2012).

[51] R. Jinno and M. Takimoto, Phys. Rev. D 95, 015020
(2017).

[52] E. Brczin and G. Parisi, J. Stat. Phys. 19, 269 (1978).
[53] J. Ellis, M. Lewicki, and J. M. No, J. Cosmol. Astropart.

Phys. 04 (2019) 003.
[54] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[55] E. Witten, Nucl. Phys. B177, 477 (1981); S. Iso, P. D.

Serpico, and K. Shimada, Phys. Rev. Lett. 119, 141301
(2017).

[56] M. S. Turner, E. J. Weinberg, and L. M. Widrow, Phys. Rev.
D 46, 2384 (1992).

[57] A. H. Guth and H. Tye, Phys. Rev. Lett. 44, 631 (1980); 44,
963(E) (1980).

[58] A. H. Guth and E. J. Weinberg, Nucl. Phys. B212, 321
(1983).

[59] D. Bodeker and G. D. Moore, J. Cosmol. Astropart. Phys.
05 (2017) 025.

[60] J. R. Espinosa, T. Konstandin, J. M. No, and G. Servant,
J. Cosmol. Astropart. Phys. 06 (2010) 028.

[61] C. Caprini, M. Hindmarsh, S. Huber, T. Konstandin, J.
Kozaczuk, G. Nardini, J. M. No, A. Petiteau, P. Schwaller,
G. Servant, and D. J. Weir, J. Cosmol. Astropart. Phys. 04
(2016) 001.

[62] C. Caprini, M. Chala, G. C. Dorsch, M. Hindmarsh,
S. J. Huber, T. Konstandin, J. Kozaczuk, G. Nardini,
J. M. No, K. Rummukainen, P. Schwaller, G. Servant, A.
Tranberg, and D. J. Weir, J. Cosmol. Astropart. Phys. 03
(2020) 024.

[63] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Phys. Rev. D 92, 123009 (2015).

[64] C. Caprini, R. Durrer, and G. Servant, J. Cosmol. Astropart.
Phys. 12 (2009) 024.

[65] R. Jinno, H. Seong, M. Takimoto, and C. M. Um, J. Cosmol.
Astropart. Phys. 10 (2019) 033.

[66] C. J. Moore, R. H. Cole, and C. P. L. Berry, Classical
Quantum Gravity 32, 015014 (2015).

[67] Y. Lu, Y. Gong, Z. Yi, and F. Zhang, J. Cosmol. Astropart.
Phys. 12 (2019) 031.

[68] T. Alanne, T. Hugle, M. Platscher, and K. Schmitz, J. High
Energy Phys. 03 (2020) 004.

[69] K. Schmitz, arXiv:2002.04615.
[70] L. Marzola, A. Racioppi, and V. Vaskonen, Eur. Phys. J. C

77, 484 (2017).

ZHAOFENG KANG and JIANG ZHU PHYS. REV. D 102, 053011 (2020)

053011-22

https://doi.org/10.1103/PhysRevD.80.115007
https://doi.org/10.1103/PhysRevD.82.055002
https://doi.org/10.1007/JHEP03(2019)181
https://doi.org/10.1007/JHEP03(2019)181
https://doi.org/10.1103/PhysRevD.88.055020
https://doi.org/10.1103/PhysRevD.88.055020
https://doi.org/10.1103/PhysRevD.88.055022
https://doi.org/10.1103/PhysRevD.94.055004
https://doi.org/10.1103/PhysRevD.94.055004
https://doi.org/10.1103/PhysRevLett.113.051801
https://doi.org/10.1103/PhysRevLett.113.051801
https://doi.org/10.1016/j.physletb.2013.09.060
https://doi.org/10.1016/j.physletb.2013.09.060
https://doi.org/10.1103/PhysRevD.98.115016
https://doi.org/10.1007/JHEP10(2014)177
https://doi.org/10.1007/JHEP10(2014)177
https://doi.org/10.1007/JHEP02(2016)038
https://doi.org/10.1103/PhysRevD.94.115018
https://doi.org/10.1103/PhysRevD.13.1025
https://doi.org/10.1103/PhysRevD.91.016009
https://doi.org/10.1103/PhysRevD.91.016009
https://doi.org/10.1103/PhysRevLett.113.241801
https://doi.org/10.1103/PhysRevLett.113.241801
https://doi.org/10.1103/PhysRevD.99.015026
https://doi.org/10.1103/PhysRevD.99.015026
https://arXiv.org/abs/hep-ph/9901312
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1088/1475-7516/2013/01/021
https://doi.org/10.1088/1475-7516/2013/01/021
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevLett.119.181301
https://doi.org/10.1103/PhysRevD.9.3357
https://doi.org/10.1103/PhysRevD.9.3320
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1140/epjc/s10052-018-6268-0
https://doi.org/10.1140/epjc/s10052-018-6268-0
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.16.1762
https://doi.org/10.1016/0370-2693(77)90664-5
https://doi.org/10.1016/0370-2693(81)90281-1
https://doi.org/10.1016/0550-3213(83)90293-6
https://doi.org/10.1016/j.cpc.2012.04.004
https://doi.org/10.1016/j.cpc.2012.04.004
https://doi.org/10.1103/PhysRevD.95.015020
https://doi.org/10.1103/PhysRevD.95.015020
https://doi.org/10.1007/BF01011726
https://doi.org/10.1088/1475-7516/2019/04/003
https://doi.org/10.1088/1475-7516/2019/04/003
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0550-3213(81)90182-6
https://doi.org/10.1103/PhysRevLett.119.141301
https://doi.org/10.1103/PhysRevLett.119.141301
https://doi.org/10.1103/PhysRevD.46.2384
https://doi.org/10.1103/PhysRevD.46.2384
https://doi.org/10.1103/PhysRevLett.44.631
https://doi.org/10.1103/PhysRevLett.44.963.2
https://doi.org/10.1103/PhysRevLett.44.963.2
https://doi.org/10.1016/0550-3213(83)90307-3
https://doi.org/10.1016/0550-3213(83)90307-3
https://doi.org/10.1088/1475-7516/2017/05/025
https://doi.org/10.1088/1475-7516/2017/05/025
https://doi.org/10.1088/1475-7516/2010/06/028
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2020/03/024
https://doi.org/10.1088/1475-7516/2020/03/024
https://doi.org/10.1103/PhysRevD.92.123009
https://doi.org/10.1088/1475-7516/2009/12/024
https://doi.org/10.1088/1475-7516/2009/12/024
https://doi.org/10.1088/1475-7516/2019/10/033
https://doi.org/10.1088/1475-7516/2019/10/033
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/1475-7516/2019/12/031
https://doi.org/10.1088/1475-7516/2019/12/031
https://doi.org/10.1007/JHEP03(2020)004
https://doi.org/10.1007/JHEP03(2020)004
https://arXiv.org/abs/2002.04615
https://doi.org/10.1140/epjc/s10052-017-4996-1
https://doi.org/10.1140/epjc/s10052-017-4996-1

