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We present in this work a study of tree-dominated charmless three-body decays of B mesons,
B− → KþK−π− and B− → πþπ−π−, within the factorization approach. The main results are: (i) There
are two distinct sources of nonresonant contributions: one arises from the b → u tree transition and the other
from the nonresonant matrix element of scalar densities hM1M2jq̄1q2j0iNR. It turns out that even for tree-
dominated three-body decays, dominant nonresonant contributions originate from the penguin diagram rather
than from the b → u tree process, as implied by the large nonresonant component observed recently in the
π−Kþ system which accounts for one third of the B− → KþK−π− rate. (ii) The calculated branching fraction
of B− → f2ð1270Þπ− → KþK−π− is smaller than the LHCb by a factor of ∼7 in its central value, but the
predicted BðB− → f2ð1270Þπ− → πþπ−π−Þ is consistent with the data. Branching fractions of B− →
f2ð1270Þπ− extracted from the LHCb measurements of these two processes also differ by a factor of seven!
Therefore, it is likely that the f2ð1270Þ contribution to B− → KþK−π− is largely overestimated
experimentally. Including 1=mb power corrections from penguin annihilation inferred from QCD factori-
zation (QCDF), a sizable CP asymmetry of 25% in the f2ð1270Þ component agrees with experiment. (iii) A
fraction of 5% for the ρð1450Þ component in B− → πþπ−π− is in accordance with the theoretical expectation.
However, a large fraction of 30% inB− → KþK−π− is entirely unexpected. This issue needs to be clarified in
the future. (iv) We study final-state ππ ↔ KK̄ rescattering and find that the rescattering contributions to both
B− → KþK−π− and B− → πþπ−π− seem to be overestimated experimentally by a factor 4. (v) Using the
QCDF expression for the B− → σ=f0ð500Þπ− amplitude to study the decay B− → σπ− → πþπ−π−, the
resultant branching fraction and CP violation of 15% agree with experiment. (vi) CP asymmetry for the
dominant quasi-two-body decay mode B− → ρ0π− was found by the LHCb to be consistent with zero in all
three S-wave models. In the QCDF approach, 1=mb power corrections, namely, penguin annihilation and
hard spectator interactions contribute destructively to ACPðB− → ρ0π−Þ to render it consistent with zero.
(vii) A significantCP asymmetry has been seen in the ρ0ð770Þ region for positive- and negative-helicity angle
cosines. Considering the low πþπ− invariant mass region of the Bþ → πþπþπ− Dalitz plot of CP
asymmetries divided into four zones, the pattern of CP violation in each zone is well described by the
interference between ρð770Þ and σð500Þ as well as the nonresonant background.
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I. INTRODUCTION

In 2013 and 2014 LHCb has measured direct CP
violation in charmless three-body decays of B mesons
[1–3] and found evidence of inclusive integrated CP
asymmetries Aincl

CP in Bþ → πþπþπ− (4.2σ), Bþ →
KþKþK− (4.3σ) and Bþ → KþK−πþ (5.6σ) and a 2.8σ
signal of CP violation in Bþ → Kþπþπ−. The study of

three-body decays allows to measure the distribution of CP
asymmetry in the Dalitz plot. Hence, the Dalitz-plot
analysis of ACP distributions can reveal very rich infor-
mation about CP violation. Besides the integrated CP
asymmetry, local asymmetry varies in magnitude and sign
from region to region. Indeed, LHCb has also observed
large asymmetries in localized regions of phase space, such
as the low invariant mass region and the rescattering
regions of mπþπ− or mKþK− between 1.0 and 1.5 GeV.
Recently LHCb has analyzed the decay amplitudes

of Bþ → πþπ−πþ and Bþ → KþK−πþ decays in the
Dalitz plot [4–6]. Previously, the only amplitude analysis
available at B factories was performed by BABAR for
Bþ → πþπ−πþ [7]. In the LHCb analysis of the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 053006 (2020)

2470-0010=2020=102(5)=053006(26) 053006-1 Published by the American Physical Society

https://orcid.org/0000-0002-4508-483X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.053006&domain=pdf&date_stamp=2020-09-15
https://doi.org/10.1103/PhysRevD.102.053006
https://doi.org/10.1103/PhysRevD.102.053006
https://doi.org/10.1103/PhysRevD.102.053006
https://doi.org/10.1103/PhysRevD.102.053006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


B� → π�KþK− decay amplitudes, three contributions
were considered in the π�K∓ system, namely,
K�ð892Þ and K�

0ð1430Þ resonances plus a nonresonant
contribution, and four contributions in the KþK− system:
ρ0ð1450Þ, f2ð1270Þ, ϕð1020Þ and an amplitude account-
ing for the ππ ↔ KK̄ rescattering [4]. The largest
contribution with a fit fraction of 32% comes the
nonresonant amplitude in the π�K∓ system. A surprise
comes from the quasi-two-body decay Bþ → ρð1450Þπþ
which accounts for 31% of the KþK−πþ decays. This
seems to imply an enormously large coupling of ρð1450Þ
with KþK−. Another very interesting feature of this
analysis is that almost all the observed CP asymmetry in
this channel is observed in the rescattering amplitude,
which is the largest CP violation effect observed from a
single amplitude.

The LHCb analysis of the B− → πþπ−π− decay ampli-
tude [5,6] showed some highlights: (i) Instead of a large
nonresonant S-wave contribution observed by BABAR [7],
the isobar model S-wave amplitude was presented by the
LHCb as the coherent sum of contributions from the σ [i.e.,
f0ð500Þ] meson and a ππ ↔ KK̄ rescattering amplitude
within the mass range 1.0 < mπþπ− < 1.5 GeV. A signifi-
cant CP violation of 15% in Bþ → σπþ and a large CP
asymmetry of order 45% in the rescattering amplitude were
found by LHCb. (ii) CP asymmetries for B� → π�πþπ−
were measured in both low and high invariant-masss
regions, see Fig. 1. The peak in the low-mlow region around
1.3 GeV is due to the resonance f2ð1270Þ. Indeed, the
mode with f2ð1270Þ exhibited a CP violation of 40%. It is
very interesting to notice a large CP asymmetry also
observed in the high-mhigh region. (iii) CP violation in

FIG. 2. The difference of NB− and NBþ , the number of B− and Bþ events respectively, for B� → π�πþπ− measured in the low-mlow
region for (a) cos θhel > 0 and (b) cos θhel < 0 with the helicity angle θhel being defined in Fig. 3. This plot is taken from [6].

FIG. 1. CP asymmetries for B� → π�πþπ− measured in the low invariant-masss mðπþπ−Þlow region (left panel) and high invariant-
masssmðπþπ−Þhigh region (right panel) in three different models for S-wave: the isobar model, the K-matrix model and the quasi-model-
independent analysis. This plot is taken from [6].
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the quasi-two-body decay Bþ → ρ0ð770Þπþ is measured to
be consistent with zero in all three different S-wave
approaches, contrary to the existing model calculations.
Nevertheless, a significant CP asymmetry in the ρ0 region
can be seen in Fig. 2 where the data are separated by the sign
of the value of cos θhel with θhel being the helicity angle,
evaluated in the πþπ− rest frame, between the pion with
opposite charge to the B and the third pion from the B decay
(see Fig. 3). This feature which was already noticed
previously in [2] indicates that CP violation close to the
ρð770Þ resonance is proportional to ðm2

ρ −m2
lowÞ cos θhel.

Hence, CP asymmetry in the ρð770Þ region arises from the
interference between the ρð770Þ and S-wave contributions.
The interference pattern observed in Fig. 2 will be destroyed
by the CP violation in Bþ → ρ0ð770Þπþ because it is
proportional to cos2 θhel. This is again an indication of
nearly vanishing ACPðBþ → ρ0πþÞ.
We have explored three-body B decays in [8–10] under

the factorization approximation. In this work we shall update
the analysis of three-body decays Bþ → πþπ−πþ and B− →
KþK−πþ as the LHCb has presented the new amplitude
analyses of them. Attention will be paid to integrated and
regional CP violation. We take the factorization approxi-
mation as a working hypothesis rather than a first-principles
starting point as factorization has not been proved for three-
body B decays. Unlike the two-body case, to date we still do
not have QCD-inspired theories for hadronic three-body
decays, though attempts along the framework of pQCD and
QCDF have been made in the past [11–13].
The layout of the present paper is as follows. In Sec. II

we discuss the 3-body decay B− → π−KþK− and take into
account the intermediate state contributions from K�ð892Þ

and K�
0ð1430Þ, ρ0ð1450Þ, f2ð1270Þ, and ϕð1020Þ, a non-

resonant amplitude and an amplitude accounting for the
ππ ↔ KK̄ rescattering. In Sec. III we focus on B− →
π−πþπ− decays. Since a clear CP violation is seen in three
places as discussed before, we shall address these three
sources of CP asymmetries. Attention is paid to the nearly
vanishing CP violation in the quasi-two-body decay B− →
ρ0π− and CP violation induced by the interference between
S- and P-wave amplitudes. Section IV comes to our
conclusions. Input parameters for this work are summa-
rized in the Appendix A. Appendix B is devoted to the
flavor operators api used in this study. Since there are some
confusions in the literature concerning the final-state
rescattering formula, we shall go through the relevant
derivations in Appendix C.

II. B� → π�K +K − DECAYS

The charmless 3-body decays B− → π−KþK− has been
studied at B factories by BABAR [14] and Belle [15] only
for its branching fraction and direct CP asymmetry. On the
theoretical side, this three-body decay mode was analyzed
in [8–10] in which contributions from K�ð892Þ, K�

0ð1430Þ,
f0ð980Þ and a nonresonant amplitude were considered. The
recent LHCb amplitude analysis takes into account a total
of seven contributions: K�ð892Þ and K�

0ð1430Þ, ρ0ð1450Þ,
f2ð1270Þ, ϕð1020Þ, a nonresonant amplitude and an
amplitude accounting for the ππ ↔ KK̄ rescattering. The
results of the Dalitz plot analysis are shown in Table I [4].
The phases of B� decay amplitudes shown in the table
include both weak and strong phases. Nonresonant con-
tributions from both π�K∓ and KþK− systems account for
almost half of B� → π�KþK− rates. A very interesting
feature is that the recattering amplitude, acting in the region
0.95 < mKþK− < 1.42 GeV, produced a large and negative
CP asymmetry of ð−66� 4� 2Þ%, which is the largestCP
violation effect observed from a single amplitude.
The explicit expression of the factorizable tree-domi-

nated B− → π−ðp1ÞKþðp2ÞK−ðp3Þ decay amplitude can
be found in Eq. (5.1) of [9]. It can be decomposed as the
coherent sum of resonant contributions together with the
nonresonant background

A ¼
X
R

AR þ ANR: ð2:1Þ

FIG. 3. The angle θ between the momenta of the two π− pions
measured in the rest frame of the dipion system in the decay
B− → π−ðp1Þπþðp2Þπ−ðp3Þ. It is related to the helicity angle θhel
defined by the LHCb through the relation θ þ θhel ¼ π.

TABLE I. Experimental results of the Dalitz plot fit for B� → π�KþK− decays taken from [4].

Contribution Fit fraction (%) ACPð%Þ Bþ phase (°) B− phase (°)

K�ð890Þ0 7.5� 0.6� 0.5 12.3� 8.7� 4.5 0 (fixed) 0 (fixed)
K�

0ð1430Þ0 4.5� 0.7� 1.2 10.4� 14.9� 8.8 −176� 10� 16 136� 11� 21

NR(π�K∓Þ 32.3� 1.5� 4.1 −10.7� 5.3� 3.5 −138� 7� 5 166� 6� 5

ρð1450Þ0 30.7� 1.2� 0.9 −10.9� 4.4� 2.4 −175� 10� 15 140� 13� 20

f2ð1270Þ 7.5� 0.8� 0.7 26.7� 10.2� 4.8 −106� 11� 10 −128� 11� 14
Rescattering 16.4� 0.8� 1.0 −66.4� 3.8� 1.9 −56� 12� 18 −81� 14� 15
ϕð1020Þ 0.3� 0.1� 0.1 9.8� 43.6� 26.6 −52� 23� 32 107� 33� 41
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The resonant AR and nonresonant ANR amplitudes are
referred to the decay processes with and without resonant
contributions, respectively. Specifically, the resonant
amplitude is related to the quasi-two-body decay process
which is commonly described by the relativistic Breit-
Wigner line shape model, while the rest (at the amplitude
level) is ascribed to the nonresonant contribution. In
general, the nonresonant signal originates from “direct”
three-body B decays. Taking B− → KþK−π− as an exam-
ple, the nonresonant contributions in our framework based
on factorization arise from the nonresonant components
of the 3-body matrix element hKþK−jðV − AÞμjB−i and the
2-body matrix element of scalar density hKþπ−jd̄sj0i.
Resonant contributions come from the resonant compo-
nents of the above-mentioned 3-body and 2-body matrix
elements. In addition, hKþK−jðV − AÞμj0i is also governed
by resonant contributions. The presence of the nonresonant
hKþπ−jd̄sj0iNR term induced by the penguin transition was
first noticed by us together with A. Soni [8].
Experimentally, it is difficult to measure nonresonant

contributions as the interference between the nonresonant
and quasi-two-body amplitudes renders it difficult to
disentangle these two distinct contributions and extract
the nonresonant one. While both BABAR and Belle have
adopted the parametrization

ANR¼c12eiϕ12e−αs
2
12 þc13eiϕ13e−αs

2
13 þc23eiϕ23e−αs

2
23 ð2:2Þ

to describe the nonresonant three-body B decays, they
differ in the analysis of nonresonant component in the
Kπ S-wave. By contrast, LHCb did not address this issue
much. In the recent LHCb analysis of B� → πþπ−π� and
KþK−π� decays, only the nonresonant contribution in
the π�K∓ system has been studied by the LHCb in terms
of a simple single-pole form factor of the type ð1þ
m2

π�K∓=Λ2Þ−1 [4]. In the experimental analysis, it is also
difficult to distinguish between the S-wave nonresonant
background and the resonant state. For example, a large
nonresonant πþπ− S-wave contribution observed by
BABAR in Bþ → πþπ−πþ decays [7] was presented by
the LHCb as the coherent sum of contributions of the σ and
a πþπ− ↔ KþK− rescattering amplitude.

A. Resonant contributions

In general, the intermediate vector, scalar and tensor
resonances all can contribute to the three-body matrix
element hP1P2jJμjBi, while only the scalar resonance
contributes to hP1P2jSj0i. Effects of intermediate reso-
nances are described as a coherent sum of Breit-Wigner
expressions. More precisely,1

hKþðp2ÞK−ðp3ÞjðūbÞV−AjB−iR ¼
X
i

gVi→KþK−

s23 −m2
Vi
þ imVi

ΓVi

X
pol

ε� · ðp2 − p3ÞhVijðūbÞV−AjB−i

þ
X
i

gf0i→KþK−

s23 −m2
f0i

þ imf0iΓf0i

hf0ijðūbÞV−AjB−i

þ
X
i

gf2i→KþK−

s23 −m2
f2i

þ imf2iΓf2i

X
pol

ε�μνp
μ
2p

ν
3hf2ijðūbÞV−AjB−i;

hKþðp2ÞK−ðp3Þjq̄γμqj0iR ¼
X
i

gVi→KþK−

s23 −m2
Vi
þ imVi

ΓVi

X
pol

ε� · ðp2 − p3ÞhVijq̄γμqj0i;

hπ−ðp1ÞKþðp2Þjðd̄sÞV−Aj0iR ¼
X
i

gK
�0
i →Kþπ−

s12 −m2
K�

i
þ imK�

i
ΓK�

i

X
pol

ε� · ðp1 − p2ÞhK�0
i jðd̄sÞV−Aj0i

þ
X
i

gK
�0
0i→Kþπ−

s12 −m2
K�

0i
þ imK�

0i
ΓK�

0i

hK�0
0i jðd̄sÞV−Aj0i;

hKþðp2ÞK−ðp3Þjd̄dj0iR ¼
X
i

gf0i→KþK−

s23 −m2
f0i

þ imf0iΓf0i

hf0ijd̄dj0i;

hπ−ðp1ÞKþðp2Þjd̄sj0iR ¼
X
i

gK
�
0i→Kþπ−

s12 −m2
K�

0i
þ imK�

0i
ΓK�

0i

hK�0
0i jd̄sj0i; ð2:3Þ

1In [9,10] an additional minus sign was wrongly put in the Breit-Wigner propagator of the scalar resonance.
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where ðq̄1q2ÞV−A ¼ q̄1γμð1 − γ5Þq2. In practice, we shall
only keep the leading resonances Vi ¼ ϕð1020Þ; ρð1450Þ,
f0i ¼ f0ð980Þ, f2i ¼ f2ð1270Þ, K�

i ¼ K�ð892Þ, and
K�

0i ¼ K�
0ð1430Þ. We shall follow [16] for the definition

of B → P and B → V transition form factors, [17] for form

factors in B → S transitions and [18] for B → T transition
form factors.2

In the following we show the amplitudes from various
resonances:
(1) K�; K�

0:

AK�;K�
0
¼

�
FBK
1 ðs12ÞFKπ

1 ðs12Þ
�
s23 − s13 −

ðm2
B −m2

KÞðm2
K −m2

πÞ
s12

�

þ FBK
0 ðs12ÞFKπ

0 ðs12Þ
ðm2

B −m2
KÞðm2

K −m2
πÞ

s12

��
ap4 −

1

2
ap10

�

þm2
B −m2

K

mb −ms
FBK
0 ðs12ÞmK�

0
f̄K�

0
RK�

0
ðs12Þð−2ap6 þ ap8 Þ; ð2:4Þ

where

RK�
0
ðsÞ ¼ 1

s −m2
K�

0
þ imK�

0
ΓK�

0

;

FKπ
1 ðsÞ ¼ fK�mK�gK

�→Kþπ−

s −m2
K� þ imK�ΓK�

;

FKπ
0 ðsÞ ¼ FKπ

1 ðsÞ − fK�
0
gK

�
0
→Kþπ−RK�

0
ðsÞ s

m2
K −m2

π
: ð2:5Þ

Notice two different types of the decay constant for K�
0: fK�

0

and f̄K�
0
. They are defined by hK�

0ðpÞjðd̄sÞV−Aj0i ¼ ifK�
0
pμ

and hK�
0jd̄sj0i ¼ mK�

0
f̄K�

0
, respectively.

(2) f0ð980Þ
It has the similar expression as the amplitude of

B− → σ=f0ð500Þπ− → πþπ−π− as will be discussed
in detail in the next section. Here we write down the
amplitude

Af0ð980Þ ¼
gf0→KþK−

s23 −m2
f0
þ imf0Γf0

�
XðBf0;πÞðm2

πÞ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �f0π

þ X̄ðBπ;f0Þ
�
a2δpu þ 2ðap3 þ ap5 Þ þ

1

2
ðap7 þ ap9 Þ þ ap4 −

1

2
ap10 −

�
ap6 −

1

2
ap8

�
r̄f0χ

�
πf0

�
; ð2:6Þ

where

XðBf0;πÞ ¼ −fπðm2
B − s23ÞFBfu

0

0 ðm2
πÞ;

X̄ðBπ;f0Þ ¼ f̄df0ðm2
B −m2

πÞFBπ
0 ðs23Þ; ð2:7Þ

and

rπχðμÞ ¼
2m2

π

mbðμÞðmu þmdÞðμÞ
;

r̄f0χ ðμÞ ¼ 2mf0

mbðμÞ
: ð2:8Þ

The order of the arguments of the api ðM1M2Þ coefficients is
dictated by the subscript M1M2 given in Eq. (2.6). The

superscript u of the form factor F
Bfu

0

0 reminds us that it is the
uū quark content that gets involved in the B to f0 form
factor transition. Likewise, the superscript d of the scalar
decay constant f̄df0 refers to the d quark component of the
f0ð980Þ.
(3) ϕð1020Þ

Aϕð1020Þ ¼ −
mϕfϕgϕ→KþK−

s23 −m2
ϕ þ imϕΓϕ

ðs12 − s13ÞFBπ
1 ðs23Þ

×

�
a3 þ a5 −

1

2
ða7 þ a9Þ

�
: ð2:9Þ

Since contributions from the matrix elements
hϕjðūbÞV−AjB−i and hKþK−jðq̄qÞV−Aj0i with q¼ u,
d to the ϕ production are very suppressed, their
effects will not be taken into account.

2The B → T transition form factors defined in [18,19] are
different by a factor of i. We shall use the former as they
are consistent with the normalization of B → S transition
given in [17].
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(4) ρð1450Þ
Aρð1450Þ ¼ −

1ffiffiffi
2

p gρ
0→KþK−

s23 −m2
ρ0 þ imρ0Γρ0

ðs12 − s13Þ
�
fπ
2

�
2mρ0A

Bρ0
0 ðm2

πÞ

þ
�
mB −mρ0 −

m2
B − s23

mB þmρ0

�
ABρ0
2 ðm2

πÞ
�
½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �

þmρ0fρ0FBπ
1 ðs23Þ

�
a2δpu − ap4 þ

3

2
ða7 þ a9Þ þ

1

2
ap10

��
; ð2:10Þ

with ρ0 ¼ ρð1450Þ, where use of the relation

2mVABV
3 ðq2Þ ¼ ðmB þmVÞABV

1 ðq2Þ − ðmB −mVÞABV
2 ðq2Þ
ð2:11Þ

has been made.
(5) f2ð1270Þ

Af2ð1270Þ ¼
1ffiffiffi
2

p 2mf2

mB

fπgf2→KþK−

s23 −m2
f2
þ imf2Γf2

× ε�μνðλÞp2μp3νεαβðλÞpα
Bp

β
1A

Bf2
0 ðm2

πÞ
× ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �:

ð2:12Þ

In the approach of QCD factorization (QCDF) [20],
the decay amplitude of B− → f2ð1270Þπ− receives
an additional contribution proportional to (see
Eq. (B.8) of [19])

ff2F
Bπ
1 ðm2

f2
Þ
�
a2δpuþ2ðap3 þap5 Þþap4

þrf2χ ap6 þ
1

2
ðap7 þap9 Þ−

1

2
ðap10þrf2χ ap8 Þ

�
: ð2:13Þ

The reader is referred to [19] for the definition of the
decay constant ff2 and the chiral factor rf2χ . As
stressed in [19], the factorizable amplitude
hf2jJμj0ihπ−jJ0μjB−i vanishes in the factorization
approach as the tensor meson cannot be produced
through the V − A or tensor current. Nevertheless,
beyond the factorization approximation, contribu-
tions proportional to the decay constant ff2 can be
produced from vertex, penguin and spectator-scat-
tering corrections.

Using the relation

X
λ

ϵμνðλÞϵ�ρσðλÞ ¼
1

2
MμρMνσ þ

1

2
MμσMνρ −

1

3
MμνMρσ;

ð2:14Þ

with Mμν ¼ gμν − PμPν=m2
f2

and P ¼ p2 þ p3, it is
straightforward to show that [21]

X
λ

ε�μνðλÞεαβðλÞp2μp3νpα
Bp

β
1 ¼

1

3
ðjp⃗1jjp⃗2jÞ2 − ðp⃗1 · p⃗2Þ2;

ð2:15Þ

with

jp⃗1j ¼
�ðm2

B −m2
π − s23Þ2

4s23
−m2

π

�
1=2

;

jp⃗2j ¼ jp⃗3j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s23 − 4m2

K

q
; ð2:16Þ

and

p⃗1 · p⃗2 ¼
1

4
ðs13 − s12Þ; ð2:17Þ

where p⃗1 and p⃗2 are the momenta of the π−ðp1Þ and
Kþðp2Þ measured in the rest frame of the dikaon Kþðp2Þ
and K−ðp3Þ. However, the predicted CP asymmetry is of
order −0.01 which is wrong in sign and magnitude
compared to experiment, especially a large CP violation
of 40% observed in the decay B− → π−f2ð1270Þ →
π−πþπ−. We thus follow the QCDF calculation in [19]
to include 1=mb power corrections arising from penguin
annihilation (see Eq. (B.8) in [19]). This amounts to adding
the penguin annihilation contributions βp2δpu þ βp3 þ βp3;EW
to the ½…� term in Eq. (2.12). Therefore, the amplitude
Af2ð1270Þ reads

Af2ð1270Þ ¼
ffiffiffi
2

p mf2

mB

fπgf2→KþK−

s23 −m2
f2
þ imf2Γf2

× ABf2
0 ðm2

πÞ
�
1

3
ðjp⃗1jjp⃗2jÞ2 − ðp⃗1 · p⃗2Þ2

�

× ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ
þ βp2δpu þ βp3 þ βp3;EW�: ð2:18Þ

Numerically, we shall follow [19] to use

βp2 ðf2πÞ ¼ 0.023 − i0.011;

ðβp3 þ βp3;EWÞðf2πÞ ¼ −0.047þ i0.053: ð2:19Þ

It should be remarked that the angular momentum
distribution for the vector or tensor intermediate state is
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not put by hand. It will come out automatically in the
factorization approach. For example, the decay amplitude
of ρð1450Þ or ϕ production contains a term ðs12 − s13Þ
which is proportional to p⃗1 · p⃗2 ¼ jp1jjp2j cos θ12 [see
Eq. (2.17)]. Likewise, the angular distribution of a tensor
meson decaying into two spin-zero particles is governed by
ð3 cos2 θ12 − 1Þ [cf. Eq. (2.15)]. In general, the angular
momentum distribution is described by the Legendre
polynomial PJðcos θÞ.

B. Nonresonant contributions

The nonresonant contributions arise from the 3-body
matrix element hKþðp2ÞK−ðp3ÞjðūbÞV−AjB−iNR in the
KþK− system and the 2-body matrix element of scalar
density hπ−ðp1ÞKþðp2Þjd̄sj0iNR in the π−Kþ system. The
nonresonant contribution to the three-body matrix element
can be parametrized in terms of four unknown form factors.
The general expression of the nonresonant amplitude in the
KþK− system induced from the b → u tree transition reads

AHMChPT
NR

≡ hKþðp2ÞK−ðp3ÞjðūbÞV−AjB−iNRhπ−ðp1Þjðd̄uÞV−Aj0i

¼ −
fπ
2
½2m2

πrþ ðm2
B − s23 −m2

πÞωþ þ ðs12 − s13Þω−�;
ð2:20Þ

where the form factors r and ω� can be calculated using
heavy meson chiral perturbation theory (HMChPT)
[22,23]. However, HMChPT is applicable only when the
two scalars Kþ and K− in B → KþK− transition are soft.
Indeed, the predicted nonresonant rate, of order 33 × 10−6

in branching fraction, based on HMChPTwill be one order
of magnitude larger than the world average of the total
branching fraction ∼5.2 × 10−6. Hence, we shall assume
the momentum dependence of nonresonant amplitudes in
an exponential form [8]

AKþK−

NR ¼ AHMChPT
NR e−αNRpB·ðp2þp3Þ

× ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �; ð2:21Þ

in analog to Eq. (2.2), so that the HMChPT results are
recovered in the soft meson limit p2, p3 → 0. For the
parameter αNR we shall use αNR ¼ 0.160 GeV−2.3

The extrapolation from the soft meson limit where
HMChPT is applicable to the physical kinematic region
through Eq. (2.21) is our main ansatz for the tree

nonresonant amplitude. In the literature, similar B → ππ
form factors in B → πππ decays have been studied exten-
sively [24–30]. In the kinematic regime where the dipion
state has a large energy and a low invariant mass, B̄0 →
πþπ0 form factors have been studied using QCD light-cone
sum rules with B-meson distribution amplitudes [28–30].
The interference of ρð770Þ with the excited ρ resonances
such as ρð1450Þ and ρð1750Þ are regarded as effective
“nonresonant” contributions. At low recoil (low q2) and
small dipion invariant mass, form factors for the pion-pion
system have been treated in dispersion theory [25]. One can
match dispersion theory with HMChPT to fix the sub-
traction constant and access the low-energy-region physics.
In this work we will not use the results from light-cone sum
rules or dispersion theory as the nonresonant contributions
there are not specified separately and explicitly. It is worth
mentioning that form factors at large dipion invariant
masses can be calculated in QCD factorization [27].
Neglecting possible resonant effects at large ππ invariant
mass, QCD factorization provides a direct calculation of
nonresonant contributions.
The nonresonant contribution in the π−Kþ system is

given by

Aπ−Kþ
NR ¼ hK−ðp3Þjs̄bjB−ihπ−ðp1Þ

× Kþðp2Þjd̄sj0iNRð−2ap6 þ ap8 Þ

¼ m2
B −m2

K

mb −ms
FBK
0 ðs12Þhπ−ðp1Þ

× Kþðp2Þjd̄sj0iNRð−2ap6 þ ap8 Þ; ð2:22Þ

where the nonresonant matrix element of scalar density has
the expression [9,10]

hπ−ðp1ÞKþðp2Þjd̄sj0iNR ¼ σNRe−αs12
�
1 − 4

m2
K −m2

π

s12

�
;

ð2:23Þ

with4

σNR ¼ eiϕπK ð4.74þ0.25
−0.29Þ GeV; α ¼ 0.069 GeV−2;

ð2:24Þ

where the phase ϕπK will be specified later. As stressed in
[10], the nonresonant signal in the π−Kþ system is
governed by the nonresonant component of the matrix

3The parameter αNR ¼ 0.081þ0.015
−0.009 GeV−2 used in [9,10] was

originally constrained from the BABAR’s measurement of the
nonresonant contribution to B− → πþπ−π− [7]. However, a
substantial part of the nonresonant amplitude is now replaced
by the scalar σ meson in the LHCb analysis based on the isobar
model. This leads to a larger αNR.

4The value of the parameter σNR given in [8] was determined at
the scale μ ¼ m̄b=2. In this work, we will confine ourselves to the
renormalization scale μ ¼ m̄bðm̄bÞ ¼ 4.18 GeV, see also Ap-
pendix B. In our previous work [9,10] we employed the BABAR
measurement α ¼ ð0.14� 0.02Þ GeV−2 [31]. In order to fit to the
nonresonant rate in the π−Kþ system, the value of α is reduced by
a factor of 2.
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element of scalar density. Owing to the exponential
suppression factor e−αs12, the nonresonant contribution
manifests in the low invariant mass regions. Note that in
the LHCb analysis, the nonresonant amplitude is para-
metrized in terms of a simple single-pole form factor of the
type ð1þm2

π�K∓=Λ2Þ−1 with Λ ∼ 1 GeV. We prefer to use
the exponential form for nonresonant amplitudes.

C. Final-state rescattering

CP asymmetries (integrated or regional) measured by the
LHCb are positive for h−πþπ− and negative for h−KþK−

with h ¼ π or K. The former usually has a larger CP
asymmetry in magnitude than the latter. This has led to the
conjecture that πþπ− ↔ KþK− rescattering may play an
important role in the generation of the strong phase differ-
ence needed for such a violation to occur [3]. The CPT
theorem requires that ΔΓFSI

λ ≡ ΓðB → λÞFSI − ΓðB̄ → λ̄ÞFSI
be vanished when summing over all the possible states
allowed by final-state interactions; that is,

P
λ ΔΓFSI

λ ¼ 0.
However, in the LHCb analysis, only the two channels α ¼
πþπ−P− and β ¼ KþK−P− (P ¼ π, K) in B− decays are
assumed to be strongly coupled through final-state inter-
actions with the third meson P being treated as a bachelor or
a spectator. It follows that ΔΓFSI

β ¼ −ΔΓFSI
α . It was found

that final-state rescattering of πþπ− ↔ KþK− dominates the
asymmetry in the mass region between 1 and 1.5 GeV. In
reality, the consideration of only rescattering between πþπ−

and KþK− in the S-wave configuration is too restrictive and
simplified [32]. For example, πþπ− is allowed to rescatter
into KþK− with charge neutral multipion states.
Nevertheless, below we shall follow the work of [33] (also
the same framework adapted in [34]) to describe the inelastic
ππ ↔ KK̄ rescattering process and consider this final-state
rescattering effect on inclusive and local CP violation.
Neglecting possible interactions with the third meson

under the so-called “2þ 1” assumption, the S-wave
πþπ− ↔ KþK− rescattering through final-state inter-
actions is described by [35,36]5

�
AðB−→πþπ−P−Þ
AðB−→KþK−P−Þ

�FSI

S-wave

¼S1=2
�

AðB−→πþπ−P−Þ
AðB−→KþK−P−Þ

�
S-wave

ð2:25Þ

with P ¼ π, K. The unitary S matrix reads

S¼
�

ηe2iδππ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1−η2

p
eiðδππþδKK̄Þ

i
ffiffiffiffiffiffiffiffiffiffiffiffi
1−η2

p
eiðδππþδKK̄Þ ηe2iδKK̄

�
; ð2:26Þ

where the inelasticity parameter ηðsÞ is given by [33]

ηðsÞ ¼ 1 −
�
ϵ1

k2
s1=2

þ ϵ2
k22
s

�
M02 − s

s
; ð2:27Þ

with

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

KðπÞ
q

2
ð2:28Þ

for rescattering to a pair of kaons (pions). The ππ phase
shift has the expression

δππðsÞ ¼
1

2
cos−1

�
cot2½δππðsÞ� − 1

cot2½δππðsÞ� þ 1

�
; ð2:29Þ

with

cot½δππðsÞ� ¼ c0
ðs −M2

sÞðM2
f − sÞ

M2
fs

1=2

jk2j
k22

: ð2:30Þ

We shall assume that δKK̄ ≈ δππ in the rescattering region.
We have shown in [10] that the matrix S1=2 can be
expressed as

S1=2 ¼ eiδππ
�

cosϕ=2 i sinϕ=2

i sinϕ=2 cosϕ=2

�
; ð2:31Þ

with

ϕ ¼ tan−1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

: ð2:32Þ

For numerical calculations we shall use the parameters
given in Eqs. (2.15b’) and (2.16) of [33], namely
M0¼1.5GeV, Ms ¼ 0.92GeV, Mf ¼ 1.32GeV, ϵ1 ¼ 2.4,
ϵ2 ¼ −5.5, and c0 ¼ 1.3.
The rescattering amplitude reads from Eqs. (2.25) and

(2.31) to be

AðB− → KþK−π−Þrescattering
¼ eiδππ ½cosðϕ=2ÞAðB− → KþK−π−ÞS-wave
þ i sinðϕ=2ÞAðB− → πþπ−π−ÞS-wave�: ð2:33Þ

The S-wave amplitudes involved in rescattering are
given by

AðB− → KþK−π−ÞS-wave ¼ AKþK−

NR þ Af0ð980Þ;

AðB− → πþπ−π−ÞS-wave ¼ Aπþπ−
NR þ Aσð500Þ: ð2:34Þ

The nonresonant amplitude Aπþπ−
NR and the amplitude with

the scalar resonance σð500Þ will be discussed in Sec. III.

5This is different from our previous treatment in [10] in one
aspect, namely, only the S-wave ππ and KK̄ amplitudes will
undergo final-state rescattering.
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Equation (2.25) is sometimes expressed in the literature
in terms of the S matrix instead of S1=2. For example,
writing the decay amplitude as A� ¼ Aλ þ Bλe�iγ, it has
been shown in [34] that the lowest-order (LO) effect due to
FSI in the decay amplitude is given by (see Eq. (18) of [34])

A�
LO ¼ A0λ þ e�iγB0λ þ i

X
λ0
tλ0;λðA0λ0 þ e�iγB0λ0 Þ

→
X
λ0
Sλ;λ0 ðA0λ0 þ e�iγB0λ0 Þ; ð2:35Þ

where use of Sij ¼ Sji has been made. However, the reader
can check that the above amplitude does not satisfy Eq. (12)
of [34] up to the leading order in tλ0;λ, namely,

Aλ þ e∓iγBλ ¼ χhχλðAλ þ e�iγBλÞ�
þ iχhχλ

X
λ0
tλ0;λðAλ0 þ e�iγBλ0 Þ�; ð2:36Þ

with the relations A0λ ¼ χhχλA�
0λ and B0λ ¼ χhχλB�

0λ. The
correct answer should read

A�
LO ¼ A0λ þ e�iγB0λ þ

i
2

X
λ0
tλ;λ0 ðA0λ0 þ e�iγB0λ0 Þ

→
X
λ0
S1=2λ;λ0 ðA0λ0 þ e�iγB0λ0 Þ: ð2:37Þ

Hence, Eq. (2.25) gives the correct description of πþπ− ↔
KþK− final-state rescattering.6 However, the LHCb

analysis of ππ ↔ KK̄ rescattering is based on the model
described in [34,39].

D. Numerical results and discussions

The total decay amplitude of B− → π−KþK− now reads

AðB−→π−KþK−Þ

¼GFffiffiffi
2

p
X
p¼u;c

λpðAK�ð892Þ þAK�
0
ð1430Þ þAf0ð980Þ þAϕð1020Þ

þAρð1450Þ þAf2ð1270Þ þAπ−Kþ
NR þAKþK−

NR þArescatteringÞ;
ð2:38Þ

with λp ≡ VpbV�
pd.

The strong coupling constants such as gK
�0→π−Kþ

and
gf0ð980Þ→KþK−

; � � � etc., are determined from the measured
partial widths through the relations7

ΓS→P1P2
¼ pc

8πm2
S
g2S→P1P2

;

ΓV→P1P2
¼ p3

c

6πm2
V
g2V→P1P2

;

ΓT→P1P2
¼ p5

c

60πm2
T
g2T→P1P2

; ð2:39Þ

for scalar, vector and tensor mesons, respectively, where pc
is the c.m. momentum. Numerically, they are given by

jgρð770Þ→πþπ− j ¼ 6.00; jgK�ð892Þ→Kþπ− j ¼ 4.59;

jgϕ→KþK− j ¼ 4.54; jgω→πþπ− j ¼ 0.18;

jgf0ð980Þ→πþπ− j ¼ 1.33þ0.29
−0.26 GeV; jgf0ð980Þ→KþK− j ¼ 3.70 GeV;

jgK�
0
ð1430Þ→Kþπ− j ¼ 3.84 GeV; jgσ→πþπ− j ¼ 2.76 GeV;

jgf2ð1270Þ→πþπ− j ¼ 18.56 GeV−1; jgf2ð1270Þ→KþK− j ¼ 11.11 GeV−1; ð2:40Þ

6In Eq. (2.25) we have used the factorized amplitude Afac in
the place of A0λ0 þ e�iγB0λ0 . They are, however, not exactly the
same. In fact, we are using a time evolution picture [37,38] and
the rescattering of ππ → KK̄ happens at a much later stage of
time-evolution. The full amplitude should read A ¼ S1=2A0 with
A0 being free from any strong phase, and the S-matrix S1=2

corresponds to a time-evolution operator Uð∞; 0Þ [37] (see
Appendix C for details). Then we separate the time-evolution
operator into Uð∞; 0Þ ¼ Uð∞; τÞUðτ; 0Þ with τ being short
enough to treat quarks and gluons as good degrees of freedom.
Consequently, the strong phase in Uðτ; 0ÞA0 can be calculated in
the factorization approach giving Afac ¼ Uðτ; 0ÞA0 [35,38].
Hence, the full amplitude becomes A ¼ Uð∞; τÞAfac, which
corresponds to Eq. (2.25) with ππ → KK̄ rescattering contained
in Uð∞; τÞ ¼ S1=2.

7There is some confusion in the literature concerned with the
relation between the width and coupling for the tensor meson. For
example, it was expressed as ΓT→P1P2

¼ αTP1P2

p5
c

60πm2
T
g2T→P1P2

[40], where the factor of αTP1P2
takes into account the average

over spin of the initial state and sum over final isospin states with
averaging over initial isospin states, while the relation ΓT→P1P2

¼
p5
c

15πm2
T
g2T→P1P2

was used in [41,42]. It turns out that the narrow

width approximation, for instance, ΓðBþ → f2πþ → πþπ−πþÞ ¼
ΓðBþ → f2πþÞBðf2 → πþπ−Þ is respected if the tensor coupling
and width satisfy the relation given in Eq. (2.39).
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where we have used Γðf0ð980Þ → πþπ−Þ ¼
ð34.2þ13.9þ8.8

−11.8−2.5 Þ MeV [43], mσ ¼ 563 MeV and Γσ ¼
350 MeV obtained in the isobar model fit by the LHCb
[6]. Note that the strong coupling constant is determined up
to a strong phase ambiguity, for example, the strong
coupling gσ→πþπ− has the expression

gσ→πþπ− ¼ jgσ→πþπ− jeiϕσ : ð2:41Þ

Below we will use this freedom of the strong phase ϕσ to
accommodate a large negative CP asymmetry through
πþπ− → KþK− rescattering.
As for the ρð1450Þ meson, there is no any experimental

information for its decays toKþK− and πþπ− except for the
ratio

Rρð1450Þ ≡ Bðρð1450Þ0 → KþK−Þ
Bðρð1450Þ0 → πþπ−Þ

¼ 0.307� 0.084� 0.082; ð2:42Þ

measured by BABAR through the decay J=ψ → hþh−π0
[44]. Nevertheless, we can use the measured fractions of
B− → ρð1450Þπ− → πþπ−π− and KþK−π− by LHCb and
the partial widths of B− → πþπ−π− and B− → KþK−π− to
extract the strong couplings. Assuming the same
B–ρð1450Þ transition form factors as that of B–ρð770Þ
ones, we obtain

gρð1450Þ→KþK− ¼ 5.40; gρð1450Þ→πþπ− ¼ 2.31: ð2:43Þ

Contrary to the naive expectation, ρð1450Þ couples more
strongly to KþK− than πþπ−. This is not consistent with
the BABAR’s measurement given in Eq. (2.42). Since

Rρð1450Þ ¼
�
gρð1450Þ→KþK−

gρð1450Þ→πþπ−

�
2
�m2

ρð1450Þ−4m2
K

m2
ρð1450Þ−4m2

π

�3=2

; ð2:44Þ

it follows that gρð1450Þ→KþK−
=gρð1450Þ→πþπ− ≈ 0.85, in sharp

contrast to Eq. (2.43).
As we will see in the next section, the decay B− →

ρð1450Þ0π− → πþπ−π− is well described by the pQCD
approach. Hence, the issue has to do with the enormously
large coupling of ρð1450Þ with KK̄. Indeed, a recent study
in [45] showed that the pQCD prediction for the branching
fraction of Bþ → πþρð1450Þ0 → πþKþK− is about 18
times smaller than experiment. Note that both BABAR
and Belle used to see a broad scalar resonance fXð1500Þ in
B → KþKþK−, KþK−KS, and KþK−πþ decays at ener-
gies around 1.5 GeV. However, the nature of fXð1500Þ is
not clear as it cannot be identified with the well known
scaler meson f0ð1500Þ. An angular-momentum analysis of
the above-mentioned three channels by BABAR [46]
showed that the fXð1500Þ state is not a single scalar
resonance, but instead can be described by the sum of
the well-established resonances f0ð1500Þ, f0ð1710Þ and
f02ð1525Þ. Since ρð1450Þ is very board with a width 400�
60 MeV [47], a broad vector resonance ρXð1500Þ instead
of the scalar one fXð1500Þ is an interesting possibility to
describe the broad resonance observed at energies
∼1.5 GeV in B → KKK and KK̄π decays.
The calculated branching fractions of resonant and

nonresonant contributions to B− → π−KþK− are summa-
rized in Table II. The theoretical errors arise from the
uncertainties in (i) form factors and the strange quark mass
ms, (ii) the unitarity angle γ and (iii) the parameter σNR [see
Eq. (2.24)] which governs the nonresonant matrix elements
of scalar densities.

TABLE II. Branching fractions (in units of 10−6) and CP violation of various contributions to B� → π�KþK− decays. The
experimental branching fraction of each contribution is inferred from the measured fit fraction [4] together with the world average
BðB� → π�KþK−Þ ¼ ð5.24� 0.42Þ × 10−6 [48], for example, BðB− → K�ð890Þ0K− → Kþπ−K−Þ ¼ ð0.39� 0.05Þ × 10−6. For
rescattering contributions, we consider two cases for the S-wave ππ → KK̄ transition amplitudes: Eq. (2.51) for case (i) and
Eq. (2.52) for case (ii).

Contribution Bexpt Btheory ðACPÞexptð%Þ ðACPÞtheoryð%Þ
K�ð890Þ0 0.39� 0.05 0.23þ0.04

−0.04 12.3� 9.8 −23.7þ0.2
−0.2

K�
0ð1430Þ0 0.23� 0.08 0.71þ0.13

−0.12 10.4� 17.3 −19.9þ0.1
−0.1

ρð1450Þ0 1.61� 0.15 Fit −10.9� 5.0 11.4þ0.3
−0.4

f2ð1270Þ 0.39� 0.06 0.05þ0.01
−0.01 26.7� 11.3 24.9þ0.1

−0.1
ϕð1020Þ 0.016� 0.008 0.0079þ0.0019

−0.0017 9.8� 51.1 0
f0ð980Þ … 0.19þ0.03

−0.03 … 15.1þ0.4
−0.5

NRðπ�K∓Þ 1.69� 0.27 1.68þ0.43
−0.39 −10.7� 6.4 −17.8þ0.1

−0.1
NRðKþK−Þ … 0.14þ0.05

−0.06 … −2.89þ0.02
−0.02

Rescattering 0.85� 0.10 (i) 0.75þ0.21
−0.18 −66.4� 4.2 Fit

(ii) 0.20þ0.06
−0.05 −66.4� 4.2 Fit
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1. ϕð1020Þ production
The ϕð1020Þ production proceeds through the b → d

penguin diagram. Its signature is very small due to the
smallness of the penguin coefficients a3;5;7;9, see Eq. (2.25).
Indeed, the branching fraction of the quasi-two-body decay
B− → ϕπ− is expected to be very small, of order 4.3 × 10−8

[49]. It is induced mainly from B− → ωπ− followed by
a small ω − ϕ mixing. A recent pQCD calculation y
ields BðB−→ϕð1020Þπþ→KþK−π−Þ¼ð3.59�1.17�
1.87�0.34Þ×10−9 [50], to be compared with ours
ð7.9þ1.9

−1.7Þ × 10−9.

2. K�
0ð1430Þ contribution

We see from Table II that the K�
0ð1430Þ0 contribution to

B− → KþK−π− is larger than experiment by a factor of 3.
Under the narrow width approximation

BðB → RP3 → P1P2P3Þ ¼ BðB → RP3ÞBðR → P1P2Þ;
ð2:45Þ

the branching fraction8

BðB− → K�
0ð1430Þ0K−Þ ¼ ð0.38� 0.12� 0.05Þ × 10−6

ð2:46Þ

is obtained by the PDG [47]. This mode has been studied in
both pQCD and QCDF approaches with the predictions

BðB− → K�
0ð1430Þ0K−Þ × 106 ¼ 1.2þ0.2þ0.1þ0.1þ0.2

−0.1−0.1−0.1−0.2 ðS1Þ;
2.2þ0.6þ0.2þ0.4þ0.5

−0.4−0.2−0.1−0.4 ðS2Þ; ð2:47Þ

in pQCD [51] and

BðB− → K�
0ð1430Þ0K−Þ × 107 ¼ 23.71þ6.67þ6.73þ2.61

−5.60−4.61−3.64 ðS1Þ;
33.70þ10.33þ5.52þ3.37

−8.47−4.82−3.94 ðS2Þ; ð2:48Þ

in QCDF [52], where S1 and S2 denote two different
scenarios for the quark content of the scalar meson. All
scalar mesons are made of qq̄ quarks in scenario 1, while in
scenario 2 the scalar mesons above 1 GeVare lowest-lying
qq̄ scalar states and the light scalar mesons are four-quark
states. As discussed in [53,54], scenario 2 is preferable.
It appears that the current theoretical predictions for
BðB− → K�

0ð1430Þ0K−Þ are too large compared to experi-
ment. This issue needs to be resolved. It is interesting to
notice that the predicted K�

0π rates in B → Kππ decays are
usually smaller than the results obtained by BABAR and
Belle, see Table VI of [9]. For example, the calculated
branching fraction of K̄�0

0 ð1430Þπ− in B− → K−πþπ− is
smaller than the BABAR measurement by a factor of two
and the Belle result by a factor of three. As discussed in
detail in [9], BABAR and Belle have different definitions for
the K�

0ð1430Þ and nonresonant components.

3. f 2ð1270Þ
The calculated branching fraction for f2ð1270Þ is

smaller than experiment by a factor of ∼7 in its central

value. We have used the form factor ABf2ð1270Þ
0 ð0Þ ¼ 0.13�

0.02 derived from large energy effective theory (see Table II
of [19]). Notice that the same form factor leads to a
prediction of BðB− → f2ð1270Þπ− → πþπ−π−Þ consistent
with the experimental value (see Table VI). Using the
narrow width approximation (2.45) and the branching
fractions of f2ð1270Þ [47]

Bðf2ð1270Þ → KþK−Þ ¼ 1

2
× ð0.046þ0.005

−0.004Þ;

Bðf2ð1270Þ → πþπ−Þ ¼ 2

3
× ð0.842þ0.029

−0.009Þ; ð2:49Þ

it is straightforward to obtain

BðB− → f2ð1270Þπ−Þ ¼
� ð17.1� 3.2Þ × 10−6 from B− → f2ð1270Þπ− → KþK−π−

ð2.4� 0.5Þ × 10−6 from B− → f2ð1270Þπ− → πþπ−π−;
ð2:50Þ

where the rates of B− → f2ð1270Þπ− → KþK−π− and
B− → f2ð1270Þπ− → πþπ−π− are shown in Tables II
and VI, respectively. Evidently, BðB− → f2ð1270Þπ−Þ
extracted from two different processes differs by a factor
of seven. This implies that the f2ð1270Þ contribution to

B− → KþK−π− is probably largely overestimated exper-
imentally. Indeed, B− → f2ð1270Þπ− is predicted to have
the branching fraction of ð2.7þ1.4

−1.2Þ × 10−6 in the QCDF
approach [19]. This issue needs to be clarified in the Run II
experiment. (iv) The predicted CP asymmetry of 25% in
the f2ð1270Þ component agrees with the measured value,
though the experimental signature for CP violation is only
2.4σ. Nevertheless, a large CP asymmetry is clearly
observed in the process of B− → f2ð1270Þπ− → πþπ−π−
to be discussed in Sec. III.

8Since K�
0ð1430Þwith a width 270� 80 MeV is not so narrow,

the narrow width approximation is not fully justified and
presumably finite-width effects need to be taken into account
to extract the branching fraction of B− → K�

0ð1430Þ0K−.
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4. Nonresonant contributions

Although the nonresonant contribution in the KþK−

system was not considered by the LHCb, our calculation
shown in Table II indicates that it is very suppressed
relative to the nonresonant one in the π−Kþ system.
This is contrary to the previous expectation that the
dominant nonresonant contributions for tree-dominated
three-body decays arise from the b → u tree transition
rather than from the penguin amplitude process. We
have identified the nonresonant contribution in the
π�K∓ system with the matrix element of scalar density
hπ−Kþjd̄sj0iNR. The values of the NR parameters αNR, σNR
and α in Eqs. (2.21) and (2.24) have been modified in
this work.

5. CP violation via rescattering

From Eqs. (2.33) and (2.34), the S-wave πþπ− → KþK−

transition amplitude reads

ieiδππ sinðϕ=2ÞðAπþπ−
NR þ AσÞ: ð2:51Þ

Recall that the phase ϕσ of the coupling gσ→πþπ− is
unknown [see Eq. (2.41)]. By varying ϕσ or the relative
phase between Aσ and Aπþπþ

NR , we find that a large CP
asymmetry of −66% can be accommodated at ϕσ ≈ 134°.
The branching fraction is ð0.20þ0.06

−0.05Þ × 10−6 as shown in

Table II. Since the LHCb analysis of ππ ↔ KK̄ rescattering
is based on the model described in [34,39], the S-wave
transition amplitude in this case is given by

ie2iδππ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
ðAπþπ−

NR þ AσÞ: ð2:52Þ
The observed CP asymmetry is fitted with the same phase
ϕσ ¼ 134°, but the corresponding branching fraction
becomes ð0.75þ0.21

−0.18Þ × 10−6. This is consistent with the
experimental value of ð0.85� 0.10Þ × 10−6. Note that the
calculated rate for rescattering differs by a factor of ∼4 as
the transition amplitude is different by a factor of two to
the leading order of tλ;λ0 [see Eqs. (2.35) and (2.37)].
Nevertheless, we have stressed in passing that one should
use Eq. (2.25) to describe ππ ↔ KK̄ final-state rescattering.
Therefore, the branching fraction of the rescattering con-
tribution seems to be overestimated by the LHCb by a factor
of 4.

6. Inclusive and local CP asymmetries

The inclusive CP asymmetryAincl
CP in B− → KþK−π− has

been measured at B factories and LHCb with the results:
0.00� 0.10� 0.03 by BABAR [14], ð−17.0� 7.3� 1.7Þ%
by Belle [15] and ð−12.3� 1.7� 1.2� 0.7Þ% by LHCb
[2]. The world average is Aincl

CP ¼ −0.122� 0.021 [48].
Regional CP asymmetries were also measured by Belle and
LHCb. The LHCb measurements read [2]

Alow
CP ¼ ð−64.8� 7.0� 1.3� 0.7Þ% for mKþK− < 1.22 GeV;

Aresc
CP ¼ ð−32.8� 2.8� 2.9� 0.7Þ% in 1.0 < mKþK− < 1.5 GeV; ð2:53Þ

while Belle found [15]

Alocal
CP ¼

�−0.90� 0.17� 0.04; 0.8<mKþK− < 1.1 GeV;

−0.16� 0.10� 0.01; 1.1<mKþK− < 1.5 GeV;

ð2:54Þ
and hence a 4.8σ evidence of a negative CP asymmetry in
the region mKK̄ < 1.1 GeV. Note that Belle and LHCb
results for local CP violation are consistent with each other.
In Table III we show the calculated inclusive and

regional CP asymmetries in the presence of final-state

rescattering of S-wave πþπ− to KþK− and compare with
experiment. Consider the phase ϕπK of the matrix element
hπ−Kþjd̄sj0iNR defined in Eq. (2.23). If ϕπK is set to zero,
the predicted CP asymmetries Aresc

CP and Alow
CP will be

positive, while experimentally they are negative. At first
sight, this appears to be a surprise in view of a large and
negative CP violation coming from rescattering. However,
since the branching fraction of πþπ− → KþK− transition is
very small, of order 0.2 × 10−6, its effect can be easily
washed out by the presence of various resonances. Indeed,
in our previous work [9,10] we have considered the case

TABLE III. Direct CP asymmetries (in %) and branching fractions of B� → π�KþK− decays with the superscripts denoting “incl,”
“resc,” and “low” for CP asymmetries measured in full phase space, in the rescattering regions with 1.0 < mKþK− < 1.5 GeV and in the
low invariant mass region where mKþK− < 1.22 GeV, respectively. We consider two cases for the phase of the matrix element
hπ−Kþjd̄sj0iNR: (i) ϕπK ¼ 0 and (ii) ϕπK ¼ 250°. Data are taken from [2] for Alow

CP , [3] for A
resc
CP , [48] for A

incl
CP and BðB− → π−KþK−Þ.

Aincl
CP Aresc

CP Alow
CP Bð10−6Þ

Theory with ϕπK ¼ 0 −0.7þ0.9
−0.7 13.8þ1.3

−1.2 15.9þ1.1
−1.0 4.46þ0.95

−0.85
Theory with ϕπK ¼ 250° −21.9þ1.3

−1.0 −28.6þ0.3
−0.1 −51.1þ1.6

−1.1 5.21þ1.14
−1.02

Expt −12.3� 2.1 −32.8� 4.1 −64.8� 7.2 5.24� 0.42
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with ϕπK ¼ ð5=4Þπ. As shown in Table III, the agreement
between theory and experiment is greatly improved for
ϕπK ≈ 250°. It should be stressed that although CP viola-
tion produced by rescattering alone is quite large, of order
−66%, the regional CP asymmetry Aresc

CP will not be the
same as the latter does receive contributions from other
resonances.

III. B� → π�π +π − DECAYS

As mentioned in the Introduction, BABAR has carried out
the amplitude analysis of B− → πþπ−π− before [7]. The
nonresonant S-wave fraction was measured to be
ð34.9� 4.2þ8.0

−4.5Þ%. In the recent LHCb analysis [5,6],
the S-wave component of B− → πþπ−π− was studied using
three different approaches: the isobar model, the K-matrix
model, and a quasi-model-independent (QMI) binned
approach. In the isobar model, the S-wave amplitude
was presented by LHCb as a coherent sum of the σ meson
contribution and a ππ ↔ KK̄ rescattering amplitude in the
mass range 1.0 < mπþπ− < 1.5 GeV. The fit fraction of the
S-wave is about 25% and predominated by the σ resonance
(see Table IV). A large and positive CP asymmetry of 45%
was found in the rescattering amplitude of B− → πþπ−π−,
while the corresponding CP violation in B− → KþK−π−

was of order −0.66.
Contrary to the decay B− → KþK−π− where CP viola-

tion is observed only in the rescattering amplitude, a clear
CP asymmetry was seen in the B− → πþπ−π− decay in the
following places: (i) the S-wave amplitude at values of
mπþπ− below the mass of the ρð770Þ resonance, see the left
panel of Fig. 1, (ii) the f2ð1270Þ contribution, see Fig. 1 at

values of mπþπ− in the f2ð1270Þ mass region, and (iii) the
interference between S- and P-waves which is clearly
visible in Fig. 2 where the data are split according to
the sign of cos θhel. In the isobar model, the S-wave
amplitude is predominated by the σ meson. Hence, a
significant CP violation of 15% in B− → σπ− is implied
in this model. The significance of CP violation in B− →
f2ð1270Þπ− was found to be 20σ, 15σ and 14σ for the
isobar, K-matrix and QMI approaches, respectively.
Therefore, CP asymmetry in the f2ð1270Þ component
was firmly established. As for the significance of CP
violation in the interference between S- and P-waves
exceeds 25σ in all the S-wave models.
In contrast to the above-mentionedCP -violating observ-

ables, CP asymmetry for the dominant quasi-two-body
decay mode B− → ρ0π− was found to be consistent with
zero in all three S-wave approaches (see Table V), which
was already noticed by the LHCb previously in 2014 [3].
However, all the existing theoretical predictions lead to a
negative CP asymmetry ranging from −7% to −45%. This
is a long-standing puzzle [10]. In this section, we will
discuss the observed CP violation in various modes and
address the CP puzzle with B− → ρ0π−.

A. Resonant contributions

The explicit expression of the factorizable tree-domi-
nated B− → π−ðp1Þπþðp2Þπ−ðp3Þ decay amplitude can be
found in Eq. (2.4) of [9]. Amplitudes from various
resonances are listed below:
(1) ρð770Þ0; ρð1450Þ0

Aρð770;1450Þ0 ¼ −
1ffiffiffi
2

p gρi→πþπ−

s23 −m2
ρi þ imρiΓρi

ðs12 − s13Þ
�
fπ
2

�
2mρiA

Bρi
0 ðm2

πÞ

þ
�
mB −mρi −

m2
B − s23

mB þmρi

�
ABρi
2 ðm2

πÞ
�
½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �

þmρifρiF
Bπ
1 ðs23Þ

�
a2δpu − ap4 þ

3

2
ða7 þ a9Þ þ

1

2
ap10

��
þ ðs23 ↔ s12Þ; ð3:1Þ

TABLE IV. Experimental results of the Dalitz plot fit for B� → π�πþπ− decays analyzed in the isobar model [5,6].

Contribution Fit fraction (%) ACPð%Þ Bþ phase (°) B− phase (°)

ρð770Þ0 55.5� 0.6� 2.5 0.7� 1.1� 1.6 … …
ωð782Þ 0.50� 0.03� 0.05 −4.8� 6.5� 3.8 −19� 6� 1 8� 6� 1
f2ð1270Þ 9.0� 0.3� 1.5 46.8� 6.1� 4.7 5� 3� 12 53� 2� 12

ρð1450Þ0 5.2� 0.3� 1.9 −12.9� 3.3� 35.9 127� 4� 21 154� 4� 6

ρ3ð1690Þ0 0.5� 0.1� 0.3 −80.1� 11.4� 25.3 −26� 7� 14 −47� 18� 25

S-wave 25.4� 0.5� 3.6 14.4� 1.8� 2.1 … …
Rescattering 1.4� 0.1� 0.5 44.7� 8.6� 17.3 −35� 6� 10 −4� 4� 25
σ 25.2� 0.5� 5.0 16.0� 1.7� 2.2 115� 2� 14 179� 1� 95
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with ρi ¼ ρð770Þ0; ρð1450Þ0. Since there are two identical π− mesons π−ðp1Þ and π−ðp3Þ in this decay, one should take into
account the identical particle effects. As a result, a factor of 1

2
should be put in the decay rate.

(2) ωð782Þ

Aωð782Þ ¼ −
1ffiffiffi
2

p gω→πþπ−

s23 −m2
ω þ imωΓω

ðs12 − s13Þ
�
fπ
2

�
2mωABω

0 ðm2
πÞ

þ
�
mB −mω −

m2
B − s23

mB þmω

�
ABω
2 ðm2

πÞ
�
½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �

þmωfωFBπ
1 ðs23Þ

�
a2δpu þ 2ða3 þ a5Þ þ ap4 þ

1

2
ða7 þ a9 − ap10Þ

��
þ ðs23 ↔ s12Þ: ð3:2Þ

The strong decay of ωð892Þ to πþπ− is isospin-violating and it can occur through ρ–ω mixing. In this work we shall
use the measured rate of ω → πþπ− to fix the coupling of ω with ππ.

(3) f2ð1270Þ

Af2ð1270Þ ¼
ffiffiffi
2

p mf2

mB

fπgf2→πþπ−

s23 −m2
f2
þ imf2Γf2

ABf2
0 ðm2

πÞ
�
1

3
ðjp⃗1jjp⃗2jÞ2 − ðp⃗1 · p⃗2Þ2

�

× ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ þ βp2δpu þ βp3 þ βp3;EW� þ ðs23 ↔ s12Þ; ð3:3Þ

where jp⃗1j has the same expression as that in Eq. (2.16), but jp⃗2j and jp⃗3j are replaced by 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s23 − 4m2

π

p
.

(4) σ=f0ð500Þ

Aσ ¼
gσ→πþπ−

s23 −m2
σ þ imσΓσ

�
−fπðm2

B − s23ÞFBσu
0 ðm2

πÞ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �

þ mσ

mb −md
f̄dσðm2

B −m2
πÞFBπ

0 ðs23Þð−2ap6 þ ap8 Þ
�
þ ðs23 ↔ s12Þ: ð3:4Þ

In the approach of QCD factorization [53,54], the decay amplitude of B− → σπ− has the expression

AðB− → σπ−Þ ¼ GFffiffiffi
2

p
X
p¼u;c

λp

�
½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �σπXðBσ;πÞ

þ
�
a2δpu þ 2ðap3 þ ap5 Þ þ

1

2
ðap7 þ ap9 Þ þ ap4 −

1

2
ap10 −

�
ap6 −

1

2
ap8

�
r̄σχ

�
πσ

X̄ðBπ;σÞ

− fBfπf̄uσ ½δpub2ðπσÞ þ b3ðπσÞ þ b3;EWðπσÞ þ ðπσ → σπÞ�
�
; ð3:5Þ

where

XðBσ;πÞ ¼ −fπðm2
B −m2

σÞFBσu
0 ðm2

πÞ; X̄ðBπ;σÞ ¼ f̄σðm2
B −m2

πÞFBπ
0 ðm2

σÞ; ð3:6Þ

and r̄σχðμÞ ¼ 2mσ=mbðμÞ. The order of the arguments of the api ðM1M2Þ and biðM1M2Þ coefficients is dictated by the
subscriptM1M2 given in Eq. (3.5). Note that api ðπσÞ can be numerically very different from api ðσπÞ except for ap6;8.
Comparing Eqs. (3.4) and (3.5), we see that the expressions inside f� � �g are identical except that some terms are
missing in Eq. (3.4). Those missing terms arise from vertex corrections, hard spectator interactions and penguin
contractions. These subtitles are beyond the simple factorization approach adapted here.

TABLE V. CP asymmetries in the quasi-two-body decay B− → ρ0ð770Þπ− measured by the LHCb for each S-
wave approach [5,6].

Isobar K-matrix QMI

ρð770Þ0 0.7� 1.1� 0.6� 1.5 4.2� 1.5� 2.6� 5.8 4.4� 1.7� 2.3� 1.6
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Since the naive amplitude given by Eq. (3.4) leads to a negative CP asymmetry −0.015, while experimentally
ACPðσπ−Þ ¼ ð16.0� 2.8Þ%, we shall follow QCDF to keep those terms missing in the σ-emission amplitude,

Aσ ¼
gσ→πþπ−

s23 −m2
σ þ imσΓσ

�
−fπðm2

B − s23ÞFBσu
0 ðm2

πÞ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �σπ

þ f̄dσðm2
B −m2

πÞFBπ
0 ðs23Þ

�
a2δpu þ 2ðap3 þ ap5 Þ þ

1

2
ðap7 þ ap9 Þ þ ap4 −

1

2
ap10 −

�
ap6 −

1

2
ap8

�
r̄σχ

�
πσ

�
þ ðs23 ↔ s12Þ:

ð3:7Þ

The numerical values of the flavor operators api ðM1M2Þ for M1M2 ¼ σπ and πσ at the scale μ ¼ m̄bðm̄bÞ are exhibited in
Appendix B. It is clear that api ðπσÞ and api ðσπÞ can be very different numerically except for ap6;8.
(5) f0ð980Þ

It is straightforward to write down the amplitude for the resonance f0ð980Þ in analog to that of f0ð500Þ=σ:

Af0ð980Þ ¼
gf0→πþπ−

s23 −m2
f0
þ imf0Γf0

�
XðBf0;πÞðm2

πÞ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �f0π

þ X̄ðBπ;f0Þ
�
a2δpu þ 2ðap3 þ ap5 Þ þ

1

2
ðap7 þ ap9 Þ þ ap4 −

1

2
ap10 −

�
ap6 −

1

2
ap8

�
r̄f0χ

�
πf0

�
þ ðs23 ↔ s12Þ; ð3:8Þ

with XðBf0;πÞ and X̄ðBπ;f0Þ being given by Eq. (2.7).

B. Nonresonant contributions

Just as the decay B− → π−KþK− , the nonresonant
amplitude in the πþπ− system coming from the current-
induced process through the b → u transition reads

ANR
current−ind ¼ AHMChPT

current−inde
−αNRpB·ðp2þp3Þ

× ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �; ð3:9Þ

with

AHMChPT
current−ind ¼ −

fπ
2
½2m2

πrþ ðm2
B − s23 −m2

πÞωþ

þ ðs12 − s13Þω−� þ ðs23 ↔ s12Þ: ð3:10Þ

Besides the current-induced one, an additional nonresonant
contribution can also arise from the penguin amplitude

ANR
penguin ¼ hπ−jd̄bjB−ihπþπ−jd̄dj0iNRð−2ap6 þ ap8 Þ ð3:11Þ

through the nonresonant matrix element of scalar density
hπþπ−jd̄dj0iNR. In our previous work, we have argued that
this nonresonant background from the penguin amplitude is
suppressed by the smallness of the penguin Wilson
coefficients a6 and a8. This is no longer true in view of
the very large nonresonant contribution in the π−Kþ system
of the decay B− → KþK−π−. The nonresonant amplitude

Aπþπ−
NR ¼ ANR

current−ind þ ANR
penguin ð3:12Þ

is the one we used in Eq. (2.34) for describing final-state
πþπ− → KþK− rescattering.

C. Final-state rescattering

The rescattering amplitude reads from Eq. (2.25) to be

AðB− → πþπ−π−Þrescattering
¼ eiδππ ½cosðϕ=2ÞAðB− → πþπ−π−ÞS-wave
þ i sinðϕ=2ÞAðB− → KþK−π−ÞS-wave�; ð3:13Þ

where the relevant S-wave amplitudes AðB− →
πþπ−π−ÞS-wave and AðB− → KþK−π−ÞS-wave are given
in Eq. (2.34).

D. Numerical results and discussions

Using the input parameters summarized in
Appendixes A and B and the amplitudes given in
Sec. III A, we show the calculated results in Table VI.
In the following we shall discuss each contribution in order.

1. Nonresonant component

Although nonresonant contributions were not specified
in the LHCb analysis, the theoretical calculations are
similar to that of B− → KþK−π−. We find that the
nonresonant background denoted by NRðπþπ−Þ in
Table VI constitutes about 14% of the B− → πþπ−π− rate
and is dominated by the matrix element of scalar density
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hπþπ−jd̄dj0i. This together the σ resonance accounts for
35% of the total rate. Indeed, the nonresonant fraction was
found to be 35% in the earlier BABARmeasurement [7]. As
discussed in Sec. II D 5, a large and negative CP asym-
metry in the rescattering amplitude of B− → π−KþK−

cannot be accommodated unless the amplitude Aσ inter-
feres with Aπþπ−

NR .

2. ωð782Þ
Since the ωð782Þ is very narrow in its width, the

factorization relation for three-body decay under the
narrow width approximation is expected to be valid

BðB−→ωπ−→πþπ−π−Þ¼BðB−→ωπ−ÞBðω→πþπ−Þ:
ð3:14Þ

Using the world average BðB− → ωπ−Þ ¼ ð6.9� 0.5Þ ×
10−6 [47] and the branching fraction Bðω → πþπ−Þ ¼
ð1.53� 0.06Þ% [47], it is expected that BðB− → ωπ− →
πþπ−π−Þ ¼ ð0.106� 0.009Þ × 10−6. This is consistent
with both theory and the LHCb measurement.

3. f 2ð1270Þ
The calculated branching fraction and CP asymmetry of

25% for the process B− → f2ð1270Þπ− → πþπ−π− are in
accordance with experiment. Recall that the previous
measurement by BABAR yields ACPðB−→ f2ð1270Þπ−Þ¼
0.41�0.25 [7]. CP asymmetry of ð46.8� 7.7Þ% in the
f2ð1270Þ contribution was finally firmly established by
the LHCb. We have shown in Eq. (2.50) two very different
results of BðB− → f2ð1270Þπ−Þ extracted from two
different processes B− → f2ð1270Þπ− → KþK−π− and
B− → f2ð1270Þπ− → πþπ−π−. From the latter process,
BABAR’s measurement yields BðB− → f2ð1270Þπ−Þ ¼
ð1.60þ0.67þ0.02

−0.44−0.06 Þ × 10−6 [47]. This is consistent with the

result of BðB− → f2ð1270Þπ−Þ ¼ ð2.4� 0.5Þ × 10−6

inferred from the LHCb [cf. Eq. (2.50)].

4. ρð1450Þ
By considering the P-wave time-like electromagnetic

form factor Fπ for the charged pions πþπ− in the region
of ρð1450Þ extracted from the available experimental
data, the authors of [55] have studied the decay B− →
ρð1450Þ0π− → πþπ−π− within the pQCD approach. The
result BðB− → ρð1450Þ0π− → πþπ−π−Þ ¼ ð8.15þ1.46

−1.32Þ ×
10−7 agrees well with the measured value of
ð7.9� 1.1Þ × 10−7. However, when this approach is gen-
eralized to the P-wave time-like form factor FK for the
charged kaons KþK−, it appears that the calculated rate for
B− → ρð1450Þ0π− → KþK−π− is too small compared to
experiment [45]. This issue with ρð1450Þ → KþK− needs
to be resolved in the future.

5. σ=f 0ð500Þ
Using mσ ¼ 563 MeV, Γσ ¼ 350 MeV, the decay con-

stants and form factors given in Appendix A, the decay
amplitude presented in Eq. (3.7) and the flavor operators
api ðM1M2Þ forM1M2 ¼ σπ and πσ shown in Table IX, the
resulant branching fraction BðB− → σπ− → πþπ−π−Þ ¼
ð3.15þ0.52

−0.48Þ × 10−6 and the CP asymmetry ACPðσπ−Þ ¼
ð14.9þ0.5

−0.6Þ% are in good agreement with experiment
(cf. Table VI). Since σ is very broad, its finite width effect
which has been considered in [56] could be quite important.

6. CP violation via rescattering

The S-wave KþK− → πþπ− transition amplitude reads
from Eqs. (3.13) and (2.34) to be

ieiδππ sinðϕ=2ÞðAKþK−

NR þ AKþK−

f0ð980ÞÞ: ð3:15Þ

TABLE VI. Branching fractions (in units of 10−6) and CP violation in various contributions to B� → π�πþπ− decays. Experimental
results are taken from the isobar model analysis [5,6]. The experimental branching fraction of each mode is inferred from the measured
fit fraction [5,6] together with BðB� → π�πþπ−Þ ¼ ð15.2� 1.4Þ × 10−6 [7]. For rescattering contributions, we consider two cases for
the S-wave KK̄ → ππ transition amplitudes: Eq. (3.15) for case (i) and Eq. (3.16) for case (ii).

Contribution Bexpt Btheory ðACPÞexptð%Þ ðACPÞtheoryð%Þ
ρð770Þ0 8.44� 0.87 7.67þ1.62

−1.47 0.7� 1.9 11.5þ0.3
−0.4

ωð782Þ 0.076� 0.011 0.103þ0.024
−0.021 −4.8� 7.5 −14.0þ0.1

−0.1
f0ð980Þ … 0.13þ0.02

−0.02 … 14.7þ0.4
−0.5

f2ð1270Þ 1.37� 0.26 1.09þ0.32
−0.28 46.8� 7.7 24.9þ0.1

−0.1
ρð1450Þ0 0.79� 0.11 Fit −12.9� 36.1 11.2þ0.3

−0.4
ρ3ð1690Þ0 0.076� 0.031 … −80.1� 27.7 …
σð500Þ 3.83� 0.84 3.15þ0.52

−0.48 16.0� 2.8 14.9þ0.5
−0.6

NRðπþπ−Þ … 2.26þ0.72
−0.61 … 48.4þ11.4

−13.8
Rescattering 0.21� 0.08 (i) 0.22þ0.03

−0.03 44.7� 19.3 16.3þ0.8
−0.9

(ii) 0.05þ0.01
−0.01 44.7� 19.3 16.3þ0.8

−0.9
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Since both nonresonant contribution in the KþK− system
and the f0ð980Þ contribution to B− → KþK−π− have not
been studied by the LHCb yet, we have to rely on the
theoretical evaluation of these two amplitudes. The LHCb
measurement of the rescattering contribution to B− →
πþπ−π− corresponds to the following transition amplitude

ie2iδππ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
ðAKþK−

NR þ AKþK−

f0ð980ÞÞ: ð3:16Þ

Here we shall adapt a strategy different from that in the
decay B− → πþπ−π−. We first vary the phase of the
f0ð980ÞKþK− coupling to fit the “measured” branching
fraction and then figure out the CP asymmetry induced by
rescattering. It turns out at ϕf0ð980Þ ≈ 20°, the phase of

gf0ð980Þ→KþK−
, the KþK− → πþπ− transition amplitude

(3.16) yields BðrescatteringÞ ¼ ð0.22� 0.03Þ × 10−6 and
a CP asymmetry of ð16.3þ0.8

−0.9Þ% (see Table VI). For
the transition amplitude of Eq. (3.15), the branching
fraction becomes smaller by a factor of 4, namely,
ð0.05� 0.01Þ × 10−6. Therefore, the branching fraction
of the rescattering contribution seems to be overestimated
experimentally by a factor of ∼4.

7. Inclusive and local CP asymmetries

In Table VII we show inclusive and regional CP
asymmetries in B� → π�πþπ− decays. The calculated
Aincl

CP and Aresc
CP are too large compared to experiment.

For a consideration of ρ–ω mixing effect on local CP
violation, see [57].

8. CP asymmetry induced by interference

Before proceeding to discuss the CP asymmetry induced
by interference, we follow [34] to define the quantity θ
being the angle between the pions with the same-sign
charge. For example, in B− → π−πþπ− decay, it is the angle
between the momenta of the two π− pions measured in the
rest frame of the dipion system (i.e., the resonance). This
angle is related to the helicity angle θhel defined by the
LHCb [6] through the relation θhel þ θ ¼ π (see Fig. 3).
Hence, cos θhel ¼ − cos θ.
Consider the decay B− → π−ðp1Þπþðp2Þπ−ðp3Þ and

define s23 ¼ ðp2 þ p3Þ2 ¼ m2
πþπ−low. The angular distribu-

tion of the vector resonance is governed by the term s12 −
s13 [see, for example, Eq. (3.1)]. From Eq. (2.17) we have

s12 − s13 ¼ −4p⃗1 · p⃗2 ¼ −4jp⃗1jjp⃗2j cos θhel
¼ 4p⃗1 · p⃗3 ¼ 4jp⃗1jjp⃗3j cos θ ð3:17Þ

in the rest frame of πþðp2Þ and π−ðp3Þ. As noticed in
passing, jp⃗1j has the same expression as that in Eq. (2.16),
but jp⃗2j and jp⃗3j are replaced by 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s23 − 4m2

π

p
.

Furthermore, it follows from Eq. (3.17) that cos θ can be
expressed as a function of s12 and s23

cos θ ¼ aðs23Þs12 þ bðs23Þ; ð3:18Þ

with [34]

aðsÞ ¼ 1

ðs − 4m2
πÞ1=2ððm

2
B−m

2
π−sÞ2

4s −m2
πÞ1=2

;

bðsÞ ¼ −
m2

B þ 3m2
π − s

2ðs − 4m2
πÞ1=2ððm

2
B−m

2
π−sÞ2

4s −m2
πÞ1=2

: ð3:19Þ

For CP violation induced by the interference between
different resonances, let us consider the low πþπ− invariant
mass region of the Dalitz plot which is divided into four
zones as shown in Fig. 4. The vertical line dividing zones I
and III from zones II and IV is at the ρð770Þmass, while the
horizontal line separating zones I and II from zones III and
IV is at the position where cos θ ¼ 0, corresponding to
s12 ¼ −b=a. The cosine of the angle θ varies from −1 to 0
in zones III and IV, corresponding to ðs12Þmin ¼ −ð1þ
bÞ=a and s12 ¼ −b=a, respectively. Likewise, The cosine
of the angle θ varies from 0 to 1 in zones I and II,
corresponding to s12 ¼ −b=a and ðs12Þmax ¼ ð1 − bÞ=a,
respectively. Hence,

I; II∶
Z

1

0

cos θd cos θ ¼
Z ðs12Þmax

−b=a
ðas12 þ bÞds12 ¼

1

2
;

III; IV∶
Z

0

−1
cos θd cos θ ¼

Z
−b=a

ðs12Þmin

ðas12 þ bÞds12 ¼ −
1

2
:

ð3:20Þ

In short, zones I and II are delimited by cos θ > 0 or
cos θhel < 0, while zones III and IV are delimited by
cos θ < 0 or cos θhel > 0.
The difference in the number of B− and Bþ events

measured in the low-mlow region for (a) cos θ < 0 (or
cos θhel > 0) and (b) cos θ > 0 (or cos θhel < 0) is depicted
in Fig. 2. In Fig. 2(a) we see thatACP which is proportional
to NB− − NBþ is negative below the ρð770Þ mass (zone III)
and positive above it (zone IV) with a zero at mlow ¼ mρ,
while in Fig. 2(b) ACP is positive below the ρð770Þ mass
(zone I) and negative above it (zone II). The sum of CP
asymmetries of cos θ > 0 and cos θ < 0 gives rise to the
CP violation shown in the left panel of Fig. 1. It is clear that
CP asymmetry at mlow below the ρ mass is of order 20%,

TABLE VII. Same as Table III except for B� → π�πþπ−
decays.

Aincl
CP Aresc

CP Alow
CP Bð10−6Þ

Theory 28.2þ0.3
−0.5 42.4þ0.3

−0.8 45.5þ1.9
−2.4 20.4þ4.5

−3.9
Expt 5.8� 2.4 17.2� 2.7 58.4� 9.7 15.2� 1.4
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which is the sum of zone I and zone III. From Fig. 4
it is evident that the local CP asymmetry is largest in
zone I. Indeed, LHCb has measured Alow

CP ðπþπ−π−Þ to be
0.584� 0.082� 0.027� 0.007 in the region specified by
m2

π−π−low < 0.4 GeV2 and m2
πþπ−high > 15 GeV2 [2].

In [34] the CP asymmetry of the B− → πþπ−π− decay in
the low-mass region with s23 < 1 GeV2 shown in Fig. 2 is
described by the interference between the ρ and the
nonresonant amplitude and the interference between the
ρð770Þ and f0ð980Þ mesons. Writing

A� ≡ Aρ
� þ ANR

� ¼ cρ�F
BW
ρ cos θ þ cNR� ; ð3:21Þ

for the Bþ and B− decays, where FBW
ρ is the Breit-Wigner

propagator of the ρð770Þ

FBW
ρ ðs23Þ ¼

1

s23 −m2
ρ þ imρΓρ

; ð3:22Þ

it follows that CP asymmetry has the expression

ACP ∝ ðjcρ−j2− jcρþj2ÞjFBW
ρ ðs23Þj2 cosθ2þðjcNR− j2− jcNRþ j2Þ

þ 2Reðc�ρ− cNR− − c�ρþ cNRþ ÞjFBW
ρ ðs23Þj2ðs23−m2

ρÞcosθ
þ 2Imðc�ρ− cNR− − c�ρþ cNRþ ÞjFBW

ρ ðs23Þj2mρΓρ cosθ:

ð3:23Þ

The terms ðs23 −m2
ρÞ cos θ and mρΓρ arise from the

imaginary and real parts, respectively, of the Breit-
Wigner propagator FBW

ρ . It was argued in [34] that the
first two terms violate the CPT constraint locally and will
be set to zero. Assuming cρ� and cNR� are complex constants,
the parameters Reðc�ρ− cNR− − c�ρþ cNRþ Þ and Imðc�ρ− cNR− −
c�ρþ cNRþ Þ were obtained in [34] by fitting them to the data.
The observed interference pattern in the ρ region is mainly
described by the ðs23 −m2

ρÞ cos θ term.
Instead of fitting the unknown parameters to the data, we

would like to predict the interference pattern in our
approach. Since the fit fraction of the broad scalar meson
σ is about 25% in the isobar model, it is natural to consider
the interference between the ρð770Þ and σð500Þmesons (or
the broad S-wave in the other models)

Γρ−σðs23Þ ¼
1

ð2πÞ332m3
B

G2
F

2

1

2

Z
−b=a

ðs12Þmin

2½ReðAρÞReðAσÞ þ ImðAρÞImðAσÞ�ds12 for cos θ < 0;

Γρ−σðs23Þ ¼
1

ð2πÞ332m3
B

G2
F

2

1

2

Z ðs12Þmax

−b=a
2½ReðAρÞReðAσÞ þ ImðAρÞImðAσÞ�ds12 for cos θ > 0; ð3:24Þ

where the identical particle effect has been taken care of by
the factor of 1=2, and the amplitudes Aρð770Þ and Aσ are
given by Eqs. (3.1) and (3.7), respectively. The rate
asymmetry ΔΓρ−σ ≡ ΓB−→π−πþπ− − ΓBþ→πþπþπ− due to the
ρð770Þ and σ interference is shown in Figs. 5(a) and 5(b)
for cos θ < 0 and cos θ > 0, respectively. It is evident that
the sign of CP asymmetry is flipped below and above the
ρð770Þ peak and that the interference term is proportional
to cos θ. Our calculation indicates that CP asymmetry is
positive in zones I and IV, negative in zones II and III, in

agreement with the data (see Fig. 2). The interference
between ρ and the nonresonant amplitude exhibits a similar
feature. This interference effect is included in Figs. 5(c) and
5(d) with the rate asymmetry ΔΓρ−σ;ρ−NR. Note that CP
violation no longer vanishes exactly at s23 ¼ m2

ρ due to the
contributions from the imaginary part of FBW

ρ . In short, the
rate asymmetry depicted in Fig. 2 is the first observation of
CP violation mediated by interference between resonances
with significance exceeding 25σ, though it vanishes in the
ρð770Þ region when integrating over the angle.

FIG. 4. The low πþπ− invariant mass region of the Bþ →
πþπþπ− Dalitz plot of CP asymmetries divided into four zones.
This plot is taken from [58].
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9. CP violation in B− → ρ0π −

As noticed in passing, CP asymmetry for the quasi-two-
body decay B− → ρ0π− was found by LHCb to be
consistent with zero in all three S-wave approaches
(cf. Table V).9 Indeed, if this quasi-two-body CP asym-
metry is nonzero, it will destroy the interference pattern
observed in Fig. 2, see the first term in Eq. (3.23). However,
the existing theoretical predictions based on QCD factori-
zation (QCDF) [49,59], perturbative QCD (pQCD) [60],
soft-collinear effective theory (SCET) [61], topological
diagram approach (TDA) [62] and factorization-assisted
topological-amplitude (FAT) approach [63] all lead to a
negativeCP asymmetry for B− → ρ0π−, ranging from−7%
to −45% (see Table VIII).
It has been argued in [64] that in B → PV decays with

mV < 1 GeV, for example, V ¼ ρð770Þ or K�ð892Þ, CP
asymmetry induced from a short-distance mechanism is
suppressed by the CPT constraint. Under the 2þ 1

approximation that the resonances produced in heavy
meson decays do not interact with the third particle, there
do not exist other states which can be connected to ππ or
πK through final-state interactions. Hence, the absence of
final-state interactions implies the impossibility to observe
CP asymmetry in those processes. However, if we take this
argument seriously to explain the approximately vanishing
CP asymmetry in Bþ → ρ0πþ, it will be at odd with the CP
violation seen in other PV modeds. For example, CP
violation in the decay B0 → K�þπ− with ACP ¼ −0.308�
0.062 was clearly observed by the LHCb [65]. Therefore, it
appears that the smallness of ACPðBþ → ρ0πþÞ has noth-
ing to do with the CPT constraint.
As elucidated in [66], the nearly vanishing CP violation

in B− → ρ0π− is understandable in the QCD factorization
approach. There are two kinds of 1=mb corrections in
QCDF: penguin annihilation to the penguin amplitude and
hard spectator interactions to the flavor operator a2. Power
corrections in QCDF often involve endpoint divergences
which are parametrized in terms of the parameters ρA, ϕA
for penguin annihilation and ρH, ϕH for hard spectator
interactions (see Eq. (B4) in Appendix B). In the heavy

(a) (b)

(c) (d)

FIG. 5. The rate asymmetry ΔΓ in units of Γ ¼ 1=τðB�Þ for B� → π�πþπ− in the low-mlow region induced by the interference
between ρð770Þ and the σ meson for (a) cos θ < 0 or cos θhel > 0 and (b) cos θ > 0 or cos θhel < 0. The interference between ρð770Þ and
the nonresonant amplitude is added to (a) and (b) and shown in (c) and (d), respectively.

9There was a measurement of ACPðρ0π−Þ by BABAR with the
result 0.18� 0.07þ0.05

−0.15 from a Dalitz plot analysis of B− →
πþπ−π− [7].
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quark limit,ACPðρ0π−Þ is of order 6.3%. Power corrections
induced from hard spectator interactions will push it up
further, say ACPðρ0π−Þ ∼ 15%, whereas penguin annihila-
tion will pull it to the opposite direction (see Table III
of [66]). Owing to the destructive contributions from these
two different 1=mb power corrections, a nearly vanishing
ACPðρ0π−Þ can be accommodated in QCDF. For
example,Bðρ0π−Þ≈8.4×10−6 andACPðρ0π−Þ≈ð−0.7þ5.4

−4.5Þ%
are obtained with ðρH;ρiA;ρfAÞ¼ð3.15;3.08;0.83Þ and
ðϕH;ϕi

A;ϕ
f
AÞ¼ð−113°;−145°;−36°Þ [66], while experi-

mentally Bðρ0π−Þ¼ð8.3þ1.2
−1.3Þ×10−6 [48] andACPðρ0π−Þ ¼

ð0.7� 1.9Þ% in the isobar model.

10. CP violation at high mhigh

An inspection of Fig. 1 for CP asymmetries measured in
the high invariant-masss region, the peak in the high-mhigh

region could be ascribed to the χc0ð1PÞ resonance with a
mass 3414.71� 0.30 MeV and a width 10.8� 0.6 MeV.
As stressed in [67], although LHCb has not yet found the
contribution from the B− → π−χc0 amplitude in B− →
πþπ−π− decay, the Mirandizing distribution for Run I data
has already shown a clear and huge CP asymmetry around
the χc0 invariant mass. We also see from Fig. 1 that CP
asymmetry in the high-mhigh region changes sign at around
4 GeV, near the DD̄ threshold. In analog to the ππ ↔ KK̄
rescattering in the low mass region, final-state rescattering
DD̄ → PP̄ could provide the strong phases necessary for
CP violation in the high-mhigh region [67,68]. However, we
will not address this issue in this work.

IV. CONCLUSIONS

We have presented in this work a study of charmless
three-body decays of B mesons B− → KþK−π− and B− →
πþπ−π− based on the factorization approach. Our main
results are:

(i) There are two distinct sources of nonresonant con-
tributions: one arises from the b → u tree transition
and the other from the nonresonant matrix element
of scalar densities hM1M2jq̄1q2j0iNR. It turns out
that even for tree-dominated three-body decays B →
πππ and KK̄π, nonresonant contributions are domi-
nated by the penguin mechanism rather than
by the b → u tree process, as implied by the large
nonresonant component observed in the π−Kþ
system which accounts for one third of the B− →
KþK−π− rate. We have identified the nonresonant

contribution to the π−Kþ system with the matrix
element hπ−Kþjd̄sj0iNR.

(ii) The calculated branching fraction of B− →
f2ð1270Þπ− → KþK−π− is smaller than experiment
by a factor of ∼7 in its central value. Nevertheless,
the same form factor for B → f2ð1270Þ transition
leads to a prediction of BðB− → f2ð1270Þπ− →
πþπ−π−Þ in agreement with the experimental value.
Branching fractions of B− → f2ð1270Þπ− extracted
from the measured rates of B− → f2ð1270Þπ− →
KþK−π− and B− → f2ð1270Þπ− → πþπ−π− by the
LHCb also differ by a factor of seven. This together
with the theoretical predictions of BðB− →
f2ð1270Þπ−Þ leads us to conjecture that the
f2ð1270Þ contribution to B− → KþK−π− is largely
overestimated experimentally. This needs to be
clarified in the Run II experiment. Including 1=mb
power corrections from penguin annihilation in-
ferred from QCDF, a sizable CP asymmetry of
32% in the f2ð1270Þ component are in accordance
with the LHCb measurement.

(iii) A fraction of 5% for the ρð1450Þ component in
B− → πþπ−π− is in accordance with the theoretical
expectation. However, a large fraction of 30% in
B− → KþK−π− is entirely unexpected. If this fea-
ture is confirmed in the future, it is likely that the
broad vector resonance ρð1450Þmay play the role of
the s-called fXð1500Þ broad resonance observed in
B → KKK and KK̄π decays.

(iv) The contribution of K�
0ð1430Þ0 to B− → KþK−π−

was found to be too large by a factor of 3 when
confronted with experiment. The current theoretical
predictions based on both QCDF and pQCD for
BðB− → K�

0ð1430Þ0K−Þ are also too large compared
to experiment. This issue needs to be resolved.

(v) By varying the relative phase between Aσ and Aπþπþ
NR ,

we find that a large and negative CP asymmetry of
−66% through the S-wave πþπ− → KþK− rescat-
tering can be accommodated at ϕσ ≈ 134°. However,
the predicted branching fraction is less than the
LHCb value by a factor of 4! This is ascribed to the
fact that one should use Eq. (2.25) to describe ππ ↔
KK̄ final-state rescattering. By the same token, the
branching fraction of the rescattering contribution to
B− → πþπ−π− also seems to be overestimated ex-
perimentally by a factor of 4.

(vi) Using the QCDF expression of the B− → σπ−

amplitude to compute B− → σπ− → πþπ−π−, the
resultant CP violation of 15% and branching frac-
tion agree with experiment.

TABLE VIII. Theoretical predictions of CP violation (in %) for the B− → ρ0π− decay in various approaches.

QCDF [49] QCDF [59] pQCD [60] SCET [61] TDA [62] FAT [63]

−9.8þ3.4þ11.4
−2.6−10.2 −6.7þ0.2þ3.2

−0.2−3.7 −27.5þ2.3þ0.9
−3.1−1.0 � 1.4� 0.9 −19.2þ15.5þ1.7

−13.4−1.9 −23.9� 8.4 −45� 4
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(vii) CP asymmetry for the dominant quasi-two-body
decay mode B− → ρ0π− was found by the LHCb to
be consistent with zero in all three S-wave models.
In the QCD factorization approach, the 1=mb power
corrections, namely penguin annihilation and hard
spectator interactions, contribute destructively to
ACPðB− → ρ0π−Þ to render it consistent with zero.

(viii) While CP violation in B− → ρ0π− is consistent with
zero, a significant CP asymmetry has been seen in
the ρ0ð770Þ region where the data are separated by
the sign of the value of cos θ with θ being the angle
between the pions with the same-sign charge. Con-
sidering the low πþπ− invariant mass region of the
Bþ → πþπþπ− Dalitz plot of CP asymmetries
divided into four zones as depicted in Fig. 4, we
have predicated the sign of CP violation in each
zone correctly which arises from the interference
between the ρð770Þ and σ as well as the nonresonant
background.
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APPENDIX A: INPUT PARAMETERS

Many of the input parameters for the decay constants of
pseudoscalar and vector mesons and form factors for B →
P;V transitions can be found in [49] where uncertainties in
form factors are shown. The reader is referred to [53] for
decay constants and form factors related to scalar mesons.
For reader’s convenience, we list the scalar decay constants
relevant to this work

f̄f0 ¼ 460; f̄uσ ¼ 350; f̄K�
0
ð1430Þ ¼ 550; ðA1Þ

defined at μ ¼ 1 GeV and expressed in units of MeV. The
vector decay constant of K�

0ð1430Þ is related to the scalar
one via

fK�
0
¼ msðμÞ −mqðμÞ

mK�
0

f̄K�
0
: ðA2Þ

The form factors used in this work are

FBπ
0 ð0Þ ¼ 0.25� 0.03; FBK

0 ð0Þ ¼ 0.35� 0.04;

ABρ
0 ð0Þ ¼ 0.303� 0.029; ABω

0 ð0Þ ¼ 0.281� 0.030;

ABf2
0 ð0Þ ¼ 0.13� 0.02; FBσuð0Þ ¼ 0.25� 0.02;

ABρ
2 ð0Þ ¼ 0.221� 0.023; ABω

2 ð0Þ ¼ 0.198� 0.023:

ðA3Þ

The B → f2ð1270Þ transition form factor taken from [19] is
evaluated using large energy effective theory, while the
form factors for B → V transition are from [69]. There is an
updated light-cone sum-rule analysis of B → V transition
form factors in [70] in which one has

ABρ
0 ð0Þ ¼ 0.356� 0.042; ABω

0 ð0Þ ¼ 0.328� 0.048:

ðA4Þ

However, we will not use this new analysis in this study
for two reasons. First, it will lead to too large B− → ρ0π−

and B− → ωπ− rates compared to experiment. Second,
the parameters ðρA;ϕAÞ and ðρH;ϕHÞ, which govern 1=mb
power corrections from penguin annihilation and hard
spectator interactions, respectively, have been extracted
from the data using B → V from factors given by [69], see
Appendix B below.
Note that for the σ meson, the Clebsch-Gordon coef-

ficient 1=
ffiffiffi
2

p
is already included in f̄uσ and FBσu

0 . For the
f0ð980Þ, one needs to multiple a factor of sin θ=

ffiffiffi
2

p
to get

its decay constant and form factor, for example, f̄uf0ð980Þ ¼
f̄f0ð980Þ sin θ=

ffiffiffi
2

p
with the mixing angle θ ≈ 20°.

For the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements, we use the updated Wolfenstein parameters
A ¼ 0.8235, λ ¼ 0.224837, ρ̄ ¼ 0.1569 and η̄ ¼ 0.3499
[71]. The corresponding CKM angles are sin 2β ¼
0.7083þ0.0127

−0.0098 and γ ¼ ð65.80þ0.94
−1.29Þ° [71].

Among the quarks, the strange quark gives the major
theoretical uncertainty to the decay amplitude. Hence, we
will only consider the uncertainty in the strange quark mass
given by msð2 GeVÞ ¼ 92.0� 1.1 MeV [72].

APPENDIX B: FLAVOR OPERATORS

In our previous works [8–10], we have employed the
values of the flavor operators api given in [8] at the
renormalization scale μ ¼ m̄b=2 ¼ 2.1 GeV. Since then,
there is a substantial progress in the determination of 1=mb
power corrections to api . In the QCD factorization
approach, flavor operators have the expressions [20,73]

api ðM1M2Þ ¼
�
ci þ

ci�1

Nc

�
NiðM2Þ þ

ci�1

Nc

CFαs
4π

×
�
ViðM2Þ þ

4π2

Nc
HiðM1M2Þ

�
þ Pp

i ðM2Þ;

ðB1Þ

where i ¼ 1;…; 10, the upper (lower) signs apply when i
is odd (even), ci are the Wilson coefficients, CF ¼
ðN2

c − 1Þ=ð2NcÞ with Nc ¼ 3, M2 is the emitted meson
and M1 shares the same spectator quark with the B meson.
The quantities ViðM2Þ account for vertex corrections,
HiðM1M2Þ for hard spectator interactions with a hard
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gluon exchange between the emitted meson and the
spectator quark of the B meson and Pp

i ðM2Þ for penguin
contractions.
In the QCD factorization approach, there are two kinds

of 1=mb corrections: penguin annihilation to the penguin
amplitude and hard spectator interactions to a2:

P ¼ PSD þ 1=mbcorrections

∝ ½λuðau4 þ rPχ au6Þ þ λcðac4 þ rPχ ac6Þ� þ λuβ
u
3 þ λcβ

c
3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

penguin annihilation

;

ðB2Þ

and

a2ðM1M2Þ ¼ c2 þ
c1
Nc

þ c1
Nc

CFαs
4π

×

�
V2ðM2Þ þ

4π2

Nc
H2ðM1M2Þ

�
: ðB3Þ

Power corrections in QCDF often involve endpoint diver-
gences. We shall follow [20] to model the endpoint
divergence X ≡ R

1
0 dx=ð1 − xÞ in the penguin annihilation

and hard spectator scattering diagrams as

Xi;f
A ¼ ln

�
mB

Λh

�
ð1þ ρi;fA eiϕ

i;f
A Þ;

XH ¼ ln

�
mB

Λh

�
ð1þ ρHeiϕHÞ; ðB4Þ

with Λh being a typical hadronic scale of 0.5 GeV, where
the superscripts “i” and “f” refer to gluon emission from
the initial and final-state quarks, respectively. A fit of the
four parameters ðρi;fA ;ϕi;f

A Þ with the first order approxima-
tion of ρH ≈ ρiA and ϕH ≈ ϕi

A to the B → PP and PV data
yields [59,74]

ðρiA; ρfAÞPP ¼ ð2.98þ1.12
−0.86 ; 1.18

þ0.20
−0.23Þ;

ðϕi
A;ϕ

f
AÞPP ¼ ð−105þ34

−24 ;−40
þ11
−8 Þ°; ðB5Þ

and

ðρiA; ρfAÞPV ¼ ð2.87þ0.66
−1.95 ; 0.91

þ0.12
−0.13Þ;

ðϕi
A;ϕ

f
AÞPV ¼ ð−145þ14

−21 ;−37
þ10
−9 Þ°: ðB6Þ

In general, the difference between api ðM2M1Þ and
api ðM1M2Þ is small for the quasi-two-body decays B →
PV except for ap6;8. Using Eq. (B6) as an input for 1=mb

power corrections and taking the averages of api ðPVÞ and
api ðVPÞ (except for ap6;8), we have

a1 ≈ 0.988� 0.102i; a2 ≈ 0.183 − 0.348i; a3 ≈ −0.0023þ 0.0174i; a5 ≈ 0.00644 − 0.0231i;

au4 ≈ −0.025 − 0.021i; ac4 ≈ −0.030 − 0.012i; au6 ≈ −0.042 − 0.014i; ac6 ≈ −0.045 − 0.005i;

a7 ≈ ð−0.5þ 2.7iÞ × 10−4; au8 ≈ ð5.2 − 1.0iÞ × 10−4; ac8 ≈ ð5.0 − 0.5iÞ × 10−4;

a9 ≈ ð−8.9 − 0.9iÞ × 10−3; au10 ≈ ð−1.45þ 3.12iÞ × 10−3; ac10 ≈ ð−1.51þ 3.17iÞ × 10−3; ðB7Þ

at the renormalization scale μ ¼ m̄bðm̄bÞ ¼ 4.18 GeV, where the values of ap6;8 are forM1M2 ¼ VP. ForM1M2 ¼ PV we
should use

au6ðPVÞ ≈ −0.010 − 0.015i; ac6ðPVÞ ≈ −0.013 − 0.006i;

au8ðPVÞ ≈ −ð8.9þ 8.5iÞ × 10−5; ac8ðPVÞ ≈ −ð10.7þ 3.7iÞ × 10−4: ðB8Þ

There are two different sources for the strong phases of api :
(i) vertex corrections, hard spectator interactions and
penguin contractions which are perturbatively calculable
in the QCD factorization approach [20] and (ii) 1=mb
power corrections.
Note that the parameter NiðMÞ in Eq. (B1) vanishes ifM

is a tensor meson or a vector meson with i ¼ 6, 8, or a
neutral scalar meson such as σ; f0 and a00 with i ≠ 6, 8.
Otherwise, it is equal to one. Consequently, the flavor

operators given in Eqs. (B7) and (B8) are not applicable to
the quasi-two-body decays B → SP (S ¼ σ or f0) for two
reasons. First, NiðσÞ ¼ 0 means that api ðPσÞ do not receive
factorizable contributions except for i ¼ 6, 8. Second,
light-cone distribution amplitudes (LCDAs) of scalar and
pseudoscalar mesons have different behavior. While the
symmetric pion LCDA peaks at x ¼ 1=2, the antisymmet-
ric LCDA of the light scalar such as σ peaks at x ¼ 0.25
and 0.75. As a result, api ðσPÞ and api ðPσÞ can be quite
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different except for ap6;8. As an example, numerical values
of the flavor operators api ðM1M2Þ for M1M2 ¼ σπ
and πσ are shown in Table IX. We see that, for instance,
a1ðπσÞ ¼ 0.015 − 0.004i is very different from a1ðσπÞ ¼
0.95þ 0.014i. In practice, we also use the same set of
flavor operators to work out B → f0ð980Þπ decays.

APPENDIX C: FINAL STATE INTERACTIONS

Since there is some confusion in the literature concerning
the rescattering formula, we believe that it will be useful to
go through the relevant derivations. Our discussion follows
Refs. [35,37] closely. The weak Hamiltonian is given by
HW ¼ P

q λqOq, where λq are VqbV�
qd and Oq are four-

quark operators with Wilson coefficients included. From
the time reversal invariance of Oq, it follows that

ðhi; outjOqjB̄iÞ� ¼ ðhi; outjÞ�U†
TUTO�

qU
†
TUT jB̄i�

¼ hi; injOqjB̄i; ðC1Þ

which can be expressed as

ðhi; outjOqjB̄iÞ� ¼
X
k

hi; injk; outihk; outjOqjB̄i

¼
X
k

S†
ikhk; outjOqjB̄i; ðC2Þ

where Sik ≡ hi; outjk; ini denotes the strong interaction
S-matrix element. Note that we have usedUTðjoutðinÞiÞ� ¼
jinðoutÞi to fix the phase convention, which also leads to

S�
ij¼ðhi;outjÞ�U†

TUTðjj;iniÞ� ¼hi; injj;outi¼S�
ji: ðC3Þ

From the following identity

X
k

S†
ikS

1=2
kj ¼ ðS1=2Þ†ij ¼ ðS1=2Þ�ji ¼ ðS1=2Þ�ij; ðC4Þ

where use of Eq. (C3) has been made, it is clear that the
solution of Eq. (C2) is simply [36]

hi; outjOqjB̄i ¼
X
j

S1=2
ij Aq

0j; ðC5Þ

where Aq
0j is a real amplitude. The weak decay amplitude

picks up strong scattering phases [75] and finally we
have [35]

hi; outjHWjB̄i ¼
X
q

hi; outjλqOqjB̄i

¼
X
q;j

S1=2
ij ðλqAq

0jÞ ¼
X
j

S1=2
ij A0j; ðC6Þ

where we have defined A0 ≡P
q λqA

q
0 and, consequently,

it is free of any strong phase.
It will be useful to give an equivalent expression to the

above results in terms of time evolution operator [37]. It is
well known that the so-called “in” and “out” states can be
expressed as

ji; ini ¼ lim
T→∞

UIð0;−TÞji; freei;
ji; outi ¼ lim

T→∞
UIð0; TÞji; freei; ðC7Þ

withUIðt2; t1Þ the time evolution operator in the interaction
picture given by

UIðt2; t1Þ ¼ eiH0t2e−iHðt2−t1Þe−iH0t1

¼ eiH0t2Uðt2; t1Þe−iH0t1 ; ðC8Þ

where H0 is the free Hamiltonian and H is the full
strong Hamiltonian. The time evolution operator satisfies
U†

TU
�
I ðt2;t1ÞUT ¼UIð−t2;−t1Þ and U†

I ðt2;t1Þ¼UIðt1;t2Þ,
as H0 and H are time-invariant and Hermitian.
The amplitude hi; outjOqjB̄i can now be expressed as

hi; outjOqjB̄i ¼ lim
T→∞

hi; freejUIðT; 0ÞOqjB̄i; ðC9Þ

and the previous derivations can all be brought through
parallelly with the help of UTðji; freeiÞ� ¼ ji; freei match-
ing the phase convention and the time invariant properties
of H0 and H. Indeed, from

TABLE IX. Numerical values of the flavor operators api ðM1M2Þ for M1M2 ¼ σπ and πσ at the scale μ ¼ m̄bðm̄bÞ ¼ 4.18 GeV [66].
In this work we use the same set of flavor operators to work out B → f0ð980Þπ decays.

api σπ πσ api σπ πσ

a1 0.95þ 0.014i 0.015 − 0.004i ac6 −0.045 − 0.005i −0.045 − 0.005i
a2 0.33 − 0.080i −0.056þ 0.024i a7 ð−1.8þ 0.3iÞ10−4 ð−4.2þ 1.0iÞ10−5
a3 −0.009þ 0.003i 0.0026 − 0.0008i au8 ð4.8 − 1.0iÞ10−4 ð4.8 − 1.0iÞ10−4
au4 −0.022 − 0.015i 0.062 − 0.013i ac8 ð4.6 − 0.5iÞ10−4 ð4.6 − 0.5iÞ10−4
ac4 −0.027 − 0.006i −0.012 − 0.007i a9 ð−8.6 − 0.1iÞ10−3 ð−1.3þ 0.4iÞ10−4
a5 0.0158 − 0.003i 0.0035 − 0.0009i au10 ð−2.6þ 0.6iÞ10−3 ð8.7 − 3.1iÞ10−4
au6 −0.042 − 0.014i −0.042 − 0.014i ac10 ð−2.6þ 0.7iÞ10−3 ð4.6 − 2.8iÞ10−4
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U†
TU

�
I ðT; 0ÞUT ¼ UIð−T; 0Þ ¼ UIð−T; TÞUIðT; 0Þ

¼ U†
I ðT;−TÞUðT; 0Þ; ðC10Þ

and

Sij≡hi;outjj; ini¼ lim
T→∞

hi;freejUIðT;−TÞjj;freei; ðC11Þ

we have

ð lim
T→∞

hi; freejUIðT; 0ÞOqjB̄iÞ�

¼
X
k

lim
T→∞

hi; freejU†
I ðT;−TÞjk; freei

× hk; freejUIðT; 0ÞOqjB̄i; ðC12Þ

which is equivalent to Eq. (C2). Furthermore, using
Eq. (C8) and the fact that ji; freei and jj; freei are
degenerate eigenstates of H0, we are led to

hi; freejUIðT; 0Þjj; freei ¼ hi; freejUIð0;−TÞjj; freei
¼ hi; freejUIðT=2;−T=2Þjj; freei;

ðC13Þ

which justifies the following definition,

S1=2
ij ≡ lim

T→∞
hi; freejUIðT; 0Þjj; freei; ðC14Þ

and, consequently, with Aq
0j ≡ hj; freejOqjB̄i, we obtain

hi; outjQqjB̄i ¼ lim
T→∞

hi; freejUIðT; 0ÞOqjB̄i

¼
X
j

S1=2
ij hj; freejOqjB̄i

¼
X
j

S1=2
ij Aq

0j; ðC15Þ

which corresponds to Eq. (C5), and Eq. (C6) follows
accordingly. Note that Aq

0j ¼ ðAq
0jÞ� is a consequence of

the phase convention and the time invariant property ofOq.
It is useful to express Eq. (C6) in terms of the full time-

evolution operator,

hi; outjHWjB̄i ¼ lim
T→∞

hi; freejeiH0TUðT; 0ÞHWjB̄i; ðC16Þ

which can be decomposed into (with τ ≳ 0)

hi; outjHWjB̄i ¼
X
j

lim
T→∞

hi; freejeiH0TUðT; τÞe−iH0τjj; freei

× hj; freejeiH0τUðτ; 0ÞHWjB̄i: ðC17Þ

The above expression clearly shows the time evolution
nature of rescattering [38] and the rescattering of ππ → KK̄
is considered to happen at a much later stage of time-
evolution contained in hi; freejeiH0TUðT; τÞe−iH0τjj; freei,
while all the violent and rapid interactions have already
happened and are contained in hj; freejeiH0τUðτ; 0ÞHWjB̄i.
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