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By considering radiative corrections of up to 3rd-loop order, Ritus and Narozhny conjectured that the
proper expansion parameter for QED in a strong constant crossed field is g ¼ αχ2=3, where the dynamical

quantum parameter χ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFpÞ2

p
=m3 combines the particle momentum p with the external field

strength tensor F. Here we present and discuss the first nonperturbative result in this context, the resummed
bubble-type polarization corrections to the electron self-energy in a constant crossed field. Our analysis
confirms the relevance of the scaling parameter g to the enhancement of bubble-type radiative corrections.
This parameter actually represents the characteristic value of the ratio of the 1-loop polarization bubble to
the photon virtuality. After an all-order resummation we identify and discuss two contributions to the self-
energy with different formation regions and asymptotic behavior for g ≫ 1. Whereas the breakdown of
perturbation theory occurs already for g≳ 1, the leading-order result remains dominant until the asymptotic
regime g ≫ 1 is reached. However, the latter is specific to processes like elastic scattering or photon
emission and does not have to remain true for general higher-order QED processes.

DOI: 10.1103/PhysRevD.102.053005

I. INTRODUCTION

Strong electromagnetic fields show up in atomic physics
[1] (including heavy ion collisions [2] and passage of
ultrarelativistic particles through crystals [3]), astrophysics
of compact objects [4], at the interaction point of future
lepton colliders [5], and during the interaction of high-power
lasers with matter [6]. A strong field is often well described
by a coherent state that is not significantly altered by the
quantum processes which it facilitates. This justifies the
strong field approximation, which originated in the works of
Furry [7], Sokolov and Ternov [8], and Keldysh [9].
Accordingly, one neglects quantum fluctuations and back-
reactions on the field itself, and treats the field as an external,
i.e., given, classical one. However, its impact on the quantum
processes in question is taken into account exactly.

A very important case is a constant crossed field (CCF),
for which both field invariants are zero (E ·H ¼ 0 and
E ¼ H). This “instantaneous” approximation is robust in
many situations involving ultrarelativistic particles [10].
Already in the very first considerations of the basic QED
processes of photon emission and pair photoproduction it
was observed that asymptotically, for χ ≫ 1, the proba-
bilities scale as g ¼ αχ2=3 in a CCF, where1 α ¼ e2=4π is
the fine structure constant [11]. The so called dynamical

quantum parameter χ ¼ ðe=m3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

q
measures the

rest-frame field strength in units of the Schwinger critical
field F0 ¼ m2=e [11]. Later, the same scaling was also
found for the one-loop polarization [12] and mass [13]
radiative corrections, related by the optical theorem to the
probability rates for pair production and photon emission,
respectively.
After the consideration of radiative corrections up to 3rd

loop order, it was conjectured that g might replace α as
an effective expansion parameter for QED in a strong
CCF [10,14–18]. Nowadays, this supposition is known as
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the Ritus-Narozhny conjecture [19]. Radiative corrections,
which have been calculated for a CCF, are shown in Table I.
Note that the 2nd and 3rd loop contributions containing
vertex corrections are missing, as they have not been
calculated yet. However, they were believed to be sublead-
ing [17,18] (the results presented in [20] seem to contradict
this assumption and should therefore be reconsidered).
Even though the leading-order results [see diagrams (1a)
and (1b)] already indicate the importance of g for the
overall scaling of radiative corrections, it is not clear from
the outset that this parameter also determines the impor-
tance of higher-order contributions and thus the breakdown
of perturbation theory.
To determine the effective expansion parameter, which

governs the breakdown of perturbation theory, one has to
examine the ratio between the (nþ 1)th and the nth loop
order. For the mass operator (right column in Table I)
and n ¼ 2 this ratio is ð3gÞ=ð2bÞ ∼ g ¼ αχ2=3. Narozhny
conjectured that the same scaling will hold at all higher
loop orders n > 2 [18]. The previously considered ratios
ð2bÞ=ð1bÞ ∼ αχ1=3 log χ for the mass operator and ð3cÞ=
ð2aÞ ∼ αχ1=3 log χ for the polarization operator initially
caused some confusion about the correct expansion param-
eter [14,17]. The current interpretation is that these findings
represent exceptions at the beginning of the expansion.
Note that for the polarization operator these ratios are
upshifted by one loop order with respect to those for the
mass operator, as the polarization operator contains an extra
fermion loop. It is therefore believed that g also represents
the effective expansion parameter of the polarization
operator starting from 4th-loop order, yet to be accurately
calculated. The Ritus-Narozhny conjecture, as formulated

in a final form in the paper2 [18], states that for χ ≫ 1:
(i) the radiation probability and radiative corrections are
enhanced by powers of χ; (ii) the ratio of the dominant
contributions to the (nþ 1)th and the nth orders of
perturbation theory scales proportional to g—in this sense
g represents the effective expansion parameter for pertur-
bation theory in a strong CCF; (iii) the corrections growing
as the highest power of g at each order of the perturbative
expansion are those accommodating the maximal number
of successive polarization loop insertions (bubbles) as
shown in Fig. 1.
Note that this is in sharp contrast to ordinary (field-free)

QED, where the expansion parameter α is small and the
effect of higher-order vacuum polarization corrections, after
renormalization, is a logarithmic growth of the effective
charge. As a result, polarization effects remain small for all
reasonable energies, i.e., below the electroweak unifica-
tion scale.
A situation which, at first glance, might appear very

similar to a supercritical CCF, but which is actually quali-
tatively different, is the case of an electron/positron
occupying the lowest Landau level (LLL) in a supercritical
magnetic field [23,24]. In this case the applicability of
dimensional reduction facilitates nonperturbative calcula-
tions, which have been carried out in the context of
spontaneous chiral symmetry breaking (see e.g., [25]).
The Ritus-Narozhny conjecture, however, applies to an
ultrarelativistic electron/positron, which has quasiclassical

TABLE I. Known asymptotic scaling for radiative corrections in a CCF to the polarization operator (left) and the mass operator (right).
For each diagram the row specifies the χ ≫ 1 asymptotic behavior together with the corresponding source. The dominant scaling in χ is
highlighted in bold for each loop order.

1 loop
(1a) αχ 2=3 [12] (1b) αχ 2=3 [13]

2 loops
(2a) α2χ 2=3 log χ [16] (2b) α2χ log χ [14,21]

(2c) α2χ2=3 log χ [15]

3 loops
(3a) α3χ2=3 log χ [17] (3d) α3χ2=3 log2 χ [17]

(3b) α3χ2=3 log χ [17] (3e) α3χ4=3 [17]

(3c) α3χ log2 χ [18] (3f) α3χ log2 χ [18]

(3g) α3χ 5=3 [18]

2In fact, the assertions forming the conjecture are scattered
along the concluding part of the paper [18]; here we combine
them all together.

A. A. MIRONOV, S. MEUREN, and A.M. FEDOTOV PHYS. REV. D 102, 053005 (2020)

053005-2



trajectories [26–28]. Thus, it effectively occupies very
high Landau levels. Nevertheless, the LLL case can be
mapped heuristically to the CCF case. To this end we note
that for the ground Landau energy level εLLL ∝

ffiffiffiffiffiffiffiffiffiffiffi
B=F0

p
[29], the corresponding value χ ≃ ðB=F0Þ × ðεLLL=mÞ ≃
ðB=F0Þ3=2 effectively maps into g ≃ αB=F0 (c.f. [30]). As
to be expected, the two situations also exhibit qualitative
differences. For example, the one-loop mass operator is
only enhanced in a CCF [13,14], not in a supercritical
magnetic field [31].
Whereas supercritical magnetic fields are encountered in

astrophysics, most researchers regarded a proof of the
Ritus-Narozhny conjecture as an academic exercise with
no practical relevance. This perspective has changed only
recently, after realistic experimental proposals to probe the
regime g≳ 1 were suggested. In particular, it was demon-
strated that the value g ≃ 1 can be attained by mitigation of
rapid radiation losses in beam-beam collisions at a near-
future lepton collider [32]. Alternatively, electrons could be
collided with strong optical laser pulses at oblique inci-
dence [33] or head-on with strong attosecond pulses
generated by reflection of high-power optical laser pulses
from a solid target [34]. Their passing through solid targets,
which are irradiated from the back with ultraintense laser
pulses, represents another suggested setup [35], as well as
the channeling of multi-TeV electrons/positrons in aligned
crystals [36].
It is obvious that a CCF can be only approximately

realized in practice. According to recent discussions (see,
e.g., [37–39] and the references therein) the locally con-
stant field approximation (LCFA) is valid for describing
scattering of ultrarelativistic particles in a strong subcritical
(F ≪ F0) slowly varying field under the conditions a0 ≫ 1

and a0 ≫ χ1=3, where a0 ¼ eFτ=m is the classical non-
linearity parameter. Here F and τ are the typical field
strength and field variation length/time, respectively. These
conditions ensure that the typical formation scale for
strong-field processes like photon emission, pair produc-
tion or elastic scattering is smaller than the scale over which
the field changes significantly. Under these conditions the
results derived for a CCF are applicable [32]. Whereas the
importance of the former condition (a0 ≫ 1) was realized
and stated explicitly already in the initial publications on
this topic (see, e.g., [10,11]), the necessity of the latter
condition (a0 ≫ χ1=3) was not widely known (previous
works commonly implied χ ≲ 1), see [40], though. This is
illustrated in Fig. 2, where the domain of validity of the

LCFA is indicated in blue and the location of the non-
perturbative regime is hatched in red. Recent rigorous
considerations of the 1-loop mass and polarization oper-
ators in a strong pulsed field [41,42] explicitly demon-
strated that in the high-energy limit, with field strength and
duration kept fixed (given a0), the scalings observed in
a CCF no longer apply. Instead of a power law enhance-
ment only a logarithmic scaling with χ is observed. This
becomes obvious in Fig. 2. For fixed field strength and
duration (given a0) the high energy limit means a motion
rightwards along a horizontal line. This inevitably implies
that the domain of validity of the LCFAwill be left. In fact,
the effective charge exhibits a logarithmic dependence on
the field strength parameter χ even in a pure CCF [43].
However, as we will show below, this is irrelevant to the
Ritus-Narozhny conjecture, which focuses on the scaling of
the effective masses.
Here we revisit the Ritus-Narozhny conjecture and

present the first all-order resummation of the bubble-type
polarization corrections to the electron self-energy shown
in Fig. 1. According to the Ritus-Narozhny conjecture this
should be the dominating contribution to the cumulative
higher-order radiative corrections for g≳ 1. Note that a
similar resummation of the 1-loop radiative corrections to
external electron and photon lines in a laser field was
previously discussed in [44,45], see also [46] for more
details. Our consideration not only confirms the importance
of the parameter g for such kind of corrections, but also
provides further insights into its nature and importance.

FIG. 1. Bubble-type polarization corrections to the electron mass operator (double lines denote the dressed electron propagators in a
constant crossed field [22]). The corresponding exact photon propagator, obtained after resummation of the Dyson series with account
for the 1-loop polarization operator, is referred to as the bubble-chain dressed photon propagator throughout the paper.

FIG. 2. Overview of the two most important parameters ðχ; a0Þ
characterizing the interaction of a relativistic particle with a
strong subcritical (F ≪ F0) field. The domain of validity of the
locally constant field approximation (LCFA) a0 ≫ maxf1; χ1=3g
is indicated in blue, and the subdomain of the nonperturbative
regime g ¼ αχ2=3 ≳ 1 is hatched in red.
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The rest of the paper is organized as follows. After
introducing our notation and technical preliminaries in
Sec. II, we discuss how the parameter g emerges in bubble
diagrams in Sec. III A. Next, in Sec. III B, we present an
approximation which facilitates their all-order analytic
resummation and identify two qualitatively different con-
tributions, one associated with photon emission and
another one related to trident pair production. Their explicit
evaluation for χ ≫ 1 is finalized in Sec. IV. A detailed
summary and further discussion of our results and their
implications are presented in Sec. V. To keep our presen-
tation succinct, we summarize the main properties of the
1-loop polarization operator in a CCF in the Appendix.

II. BUBBLE-TYPE POLARIZATION
CORRECTIONS TO THE MASS OPERATOR

IN A CONSTANT CROSSED FIELD

In this paper we focus on studying the bubble-type
polarization corrections to the electron self-energy in a
CCF (see Fig. 1), or, more precisely, to the on-shell elastic
electron scattering amplitude TsðpÞ ¼ −MðχÞ=ð2p0Þ,
where the invariant amplitude MðχÞ≡ ūp;λMup;λ depends
on the dynamical parameter χ. HereM is the mass operator
of an electron and up;λ is a free Dirac spinor characterizing
the electron spin state.
In the Ritus Ep-representation [10,13,14] the correction

to the mass operator in a CCF depicted in Fig. 1 reads

−iMðp0; pÞ ¼
Z

d4xd4x0Ep0 ðx0ÞðieγμÞ

× Scðx0; xÞðieγνÞEpðxÞDc
μνðx0; xÞ

¼
Z

d4l
ð2πÞ4

d4q
ð2πÞ4 Γ

μðl;p0; qÞ

×
ið=qþmÞ

q2 −m2 þ i0
Γνð−l; q; pÞDc

μνðlÞ: ð1Þ

Here Sc denotes the tree-level dressed electron propagator
and Dc is the bubble-chain dressed photon propagator [12]
attached to the electron line in Fig. 1. The 4-momenta of the
virtual photon and electron in the outer loop are denoted by
lμ and qμ, respectively, q ¼ γμqμ, and EpðxÞ is a matrix
solution to the Dirac equation in a CCF, which reduces to
the unity matrix if the field is switched off adiabatically
[13]. Furthermore,

Γμðl;p; qÞ ¼
Z

d4xe−ilxEpðxÞðieγμÞEqðxÞ ð2Þ

is called dressed vertex [14,47], where Dirac conjugation of
a matrix Ep ¼ γ0E†

pγ0 is denoted by a bar. For the sake of
clarity Eq. (1) is written in two different ways: the right-
hand side of the upper line is written in a coordinate
representation, whereas the lower line expresses the

electron propagator in the Ep-representation and the photon
propagator in the momentum representation.
The bubble-chain dressed photon propagator in a CCF

reads [10,12,14]

Dc
μνðlÞ ¼ D0ðl2; χlÞgμν þ

X2
i¼1

Diðl2; χlÞϵðiÞμ ðlÞϵðiÞν ðlÞ; ð3Þ

where χl ¼ ðe=m3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνlνÞ2

q
is the dynamical quantum

parameter of the virtual photon, ϵð1Þμ ðlÞ ¼ eFμνlν=ðm3χlÞ
and ϵð2Þμ ðlÞ ¼ eF⋆

μνlν=ðm3χlÞ are the normalized field-
induced transverse 4-vectors, and F⋆

μν ¼ ð1=2ÞεμνλσFλσ is
the dual field strength tensor. The longitudinal component
in Eq. (3) is given by

D0ðl2; χlÞ ¼
−iZ

l2 þ i0
; ð4Þ

and differs from the field-free one only by a finite factor
Zðl2; χlÞ [see Eq. (A7)], whereas the transverse components

D1;2ðl2; χlÞ ¼
iZ2Π1;2

ðl2 þ i0Þðl2 − ZΠ1;2Þ
¼ −iZ

l2 þ i0
−

−iZ
l2 − ZΠ1;2

; ð5Þ

exhibit additional poles corresponding to two effective
photon masses (one for each transverse photon polarization
state). They are determined by the renormalized eigenval-
ues Π1;2ðl2; χlÞ of the polarization operator [see Eq. (A2)].
Overall, the only effect of the factor Zðl2; χlÞ is to intro-

duce an effective coupling α ↦ αeffðl2; χlÞ ¼ Zðl2; χlÞα
(cf. [43]). However, Z remains very close to unity for all
reasonable values of l2 and χl. Therefore, we will ignore
this logarithmic correction by setting Z ≈ 1 and αeff ≈ α
from now on. Further details are given in the Appendix.
In the following we will simplify the expression obtained

by combining Eqs. (1)–(5). The part of the calculation
which closely follows Ref. [14] will only be outlined. Since
EpðxÞ differs from a plane wave e−ipx only by a factor
depending on φ ¼ kx (kμ is directed along the Poynting
4-vector of the CCF, its normalization is arbitrary), the
dressed vertex [see Eq. (2)] in a CCF can be written in the
following way:

Γμðl;p; qÞ ¼
Z

∞

−∞
dνδð4Þðp − q − l − νkÞΓ̃μðν;p; qÞ; ð6Þ

where νkμ is the energy-momentum transferred to the
external field. Γ̃μðν;p; qÞ can be expressed in terms of
the Airy function [48]

AiðtÞ ¼ 1

2π

Z
∞

−∞
dσ e−iðtσþσ3=3Þ: ð7Þ
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Due to the transversality of a CCF the dressed vertex
remains invariant under translations of its arguments p
and q by 4-vectors proportional to kμ. The 4-dimensional
δ-function, shown explicitly in Eq. (6), expresses energy-
momentum conservation with the external CCF included
[14]. Due to the presence of two such δ-functions in Eq. (1)
(one from each dressed vertex) p0 can actually differ from p
only by a 4-vector proportional to kμ. Hence we can apply
the replacement Γ̃μð−ν0;p0; qÞ ↦ Γ̃μð−ν0;p; qÞ. Then, one
of the two 4-dimensional δ-functions in Eq. (1) removes the
integration over d4q, after which only 6 integrations
remain: over d4l, dν and dν0.
It is convenient to apply the following changes of vari-

ables: lμ ↦ fl2; u; ρ; ρ̃g and ν ↦ μ, where u ¼ χl=χq, χq is
the dynamical quantum parameter of the electron in the

outer loop, ρ ¼ pμϵð1Þμ ðlÞ=m, ρ̃ ¼ pμϵð2Þμ ðlÞ=m. Note that
μ ¼ q2 −m2 and l2 have the meaning of the electron and
photon virtualities in the loop, respectively. After these
substitutions the integrals over ρ and ν0 are trivial, and the
remaining 4-dimensional δ-function provides the diagonality
of the mass operator in the Ep-representation, Mðp0; pÞ ¼
ð2πÞ4δð4Þðp0 − pÞMðpÞ. This diagonality is expected due to
the translational symmetry of the CCF, asMðp0; pÞ is gauge
invariant. Even though we sum only a subclass of diagrams,
Mðp0; pÞ is indeed gauge invariant, as the bubble-chain
dressed photon propagator is transverse. Finally, the variable
ρ̃ can be integrated out by employing the formula

Z
∞

−∞
dρ̃Ai2ðaþ ρ̃2Þ ¼ 1

2
Ai1ð22=3aÞ; ð8Þ

where

Ai1ðtÞ ¼
Z

∞

t
AiðxÞdx ¼ −i

2π

Z
∞

−∞

dσ
σ − i0

e−iðtσþσ3=3Þ ð9Þ

is the Aspnes function, see Sec. 3.5.2 and Eq. (3.105) in [48].
Note that the dimensionless integration variable σ in Eq. (9),
arising after application of Eq. (8), is proportional to the
phase formation interval of the outer loop. After these
simplifications, the final expression contains three integra-
tions: over u and the virtualities l2 and μ. In addition, several
integrations are “hidden” in the definition of the Airy
functions and in the final form of the bubble-chain dressed
photon propagator [see Eqs. (3), (5), and (A2)].
After substituting the mass operator into the invariant

amplitude MðχÞ≡ ūp;λMðpÞup;λ, where up;λ is the free
Dirac spinor, p2 ¼ m2, and λ indicates a spin state, and
evaluating the resulting spinor matrix elements, it is natural
to split M into two terms,

MðχÞ ¼ Mð0ÞðχÞ þ δMðχÞ; ð10Þ

where

Mð0ÞðχÞ ¼ αm2

2π2

Z
∞

−∞

du
ð1þ uÞ2

Z
∞

−∞
dl2

Z
∞

−∞

dμ
μþ i0

D0ðl2; χlÞ

×

�
Ai1ðtÞ þ

u2 þ 2uþ 2

1þ u

�
χ

u

�
2=3

Ai0ðtÞ− 2γs
ð1þ uÞ

�
u
χ

�
2=3

AiðtÞ
�
; ð11Þ

t ¼
�
u
χ

�
2=3

�
1þ 1þ u

u2
l2

m2
þ 1þ u

u
μ

m2

�
; ð12Þ

χl ¼
uχ

1þ u
; ð13Þ

corresponds to the 1-loop contribution (i.e., it contains no
vacuum polarization insertions, see the first diagram in
Fig. 1). This leading-order result has already been calcu-
lated and discussed by Ritus [14]. The (not necessarily
small) modifications induced by vacuum polarization are
denoted as δMðχÞ. Here γs ¼ −eF⋆

μνpμsν=2m3 and sν ¼
ūp;λγνγ5up;λ=2m is the electron spin 4-vector [29,46].
Note that the mass operator needs to be renormalized

before physically meaningful quantities can be inferred.
According to the standard procedure, this is done succes-
sively by proceeding from inner to outer loops. However, if
one employs the renormalized polarization operator from
the beginning, only the outer (photon) loop remains to be
renormalized. This is achieved by adding and subtracting

the field-free amplitude MðF ¼ 0Þ, which is renormalized
in the standard way and vanishes on-shell [14]. In case of
Mð0ÞðχÞ this implies that we have to replace the function
Ai1ðtÞ in Eq. (11) with

AiðrenÞ1 ðtÞ ¼ −i
2π

Z
∞

−∞

dσ
σ
e−itσðe−iσ3=3 − 1Þ: ð14Þ

In the following we assume this replacement inMð0ÞðχÞ by
default without explicitly changing our notation. After
renormalization, Mð0Þ exhibits the following asymptotic
scaling for χ ≫ 1 [see Eq. (72) in Ref. [14] and Table I,
diagram (1b)]:

Mð0Þðχ ≫ 1Þ ≈ e−iπ=3
28

ffiffiffi
36

p

27
Γ
�
2

3

�
αχ2=3m2

≃ 0.843ð1 − i
ffiffiffi
3

p
Þαχ2=3m2; ð15Þ

where ΓðζÞ is the Euler Γ-function.
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The nontrivial contribution δMðχÞ ¼ δM1ðχÞ þ δM2ðχÞ in Eq. (10) is given by

δM1;2ðχÞ ¼ −
αm2

ð2πÞ2
Z

∞

−∞

du
ð1þ uÞ2

Z
∞

−∞
dl2

Z
∞

−∞

dμ
μþ i0

D1;2ðl2; χlÞ

×

��
1þ l2

m2

u2 þ 2uþ 2

2u2

�
Ai1ðtÞ þ

�
u2 þ 2uþ 2

1þ u
� 1

��
χ

u

�
2=3

Ai0ðtÞ − 2γs

�
1

1þ u
� 1

��
u
χ

�
2=3

AiðtÞ
�
;

ð16Þ

where t and χl are defined in Eqs. (12) and (13),
respectively. Unlike Mð0Þ, these terms vanish as the field
is turned off; hence they remain unaffected by renormal-
ization. Apart from the spin-dependent terms, which we
write here explicitly, our expression in Eq. (16) is equiv-
alent to Eq. (42) in [18], where the factor Z was also set to
unity.3

So far we have mainly followed [14]. From now on,
however, we will proceed differently than in the existing
literature [14–18], which now applied a perturbative
expansion

Π1;2ðl2; χlÞ
l2 − Π1;2ðl2; χlÞ

¼
X∞
r¼1

�
Π1;2ðl2; χlÞ
l2 þ i0

�
r

; ð17Þ

in Eq. (5), where the r-th term corresponds to a diagram
with rþ 1 loops, including r vacuum polarization bubbles
(see Fig. 1). Here, after reviewing and generalizing this
approach, we carry out a nonperturbative calculation and
derive the large-χ asymptotic scaling of the whole ampli-
tude given in Eq. (16). In order to achieve these goals, we
process the outer integrals in a different order than in
Refs. [14,18].

III. ANALYSIS AND ALL-ORDER RESUMMATION
OF THE BUBBLE-TYPE RADIATIVE

CORRECTIONS

A. All-order perturbative analysis

Previous derivations [14,18] of the elastic scattering
amplitude were based on a perturbative truncation of the
expansion in Eq. (17) for r ≤ 2. This approach provides
some qualitative insights into the scaling of each order of
perturbation theory at 1 ≪ χ ≲ α−3=2.
The rth term of the D1;2 expansion given in Eq. (17)

corresponds to r polarization loop insertions. In order to
identify the leading-order scaling for such contributions to
Eq. (16), we estimate the order of magnitude of each term.
The expression under the integral over u rapidly falls off for

u≳ 1 (i.e., if χl of the photon exceeds χq of the electron in
the outer loop); hence for the sake of an order-of-magnitude
estimate we can restrict integration to u ≲ 1 and drop u in
the integrand where possible. As we will see shortly, the
effective values of u can be small. Therefore, we retain the
dependence on u in all factors blowing up at u → 0. This,
together with Eq. (7), allows us to approximate (up to a
complex numerical coefficient) the term containing Ai0ðtÞ
in Eq. (16) as

MðrÞ
Ai0 ∼ αm2

Z
du

Z
dσ σ

�
χ

u

�
2=3

e−iσðu=χÞ2=3−iσ3=3

×
Z

dl2e−il
2τ

l2 þ i0

�
Πðl2; χlÞ
l2 þ i0

�
r Z dμe−iμs

μþ i0
; ð18Þ

where χl ≃ uχ [see Eq. (13)], Πðl2; χlÞ is either Π1 or Π2

[see Eq. (A2)]. Furthermore,

s ¼ sðσ; uÞ ¼ σ

m2

�
u
χ

�
2=3 ð1þ uÞ

u
; ð19Þ

τ ¼ τðσ; uÞ ¼ σ

m2

�
u
χ

�
2=3 ð1þ uÞ

u2
¼ s

u
; ð20Þ

have dimension of inverse mass squared and are propor-
tional to the proper times of the electron and photon in the
outer loop, respectively. The meaning of Eqs. (19) and (20)
is that both s and τ are proportional to the phase formation
interval σ of the outer loop. Note that even though Eq. (11)
differs from (16), in our approximation the structure of its
term containing Ai0ðtÞ is the same as in Eq. (18) with r ¼ 0,
hence we consider r ≥ 0 in what follows.
By applying a dimension-based argument [namely, by

assuming μ, dμ ∼ μeff and l2, dl2 ∼ ðl2Þeff ] the integrals
over the virtualities μ and l2 are estimated by

R
dμe−iμs=

ðμþ i0Þ ∼ 1 and

Z
dl2

l2 þ i0

�
Πðl2; χlÞ
l2 þ i0

�
r

e−il
2τ ∼

�
Πððl2Þeff ; χlÞ

ðl2Þeff

�
r

; ð21Þ

where the effective scales of the virtualities are
established by

3According to our investigation the extra overall factor 1=jχj
present in [18] is a typo. As we discuss in the next section, the
extra terms proportional to μ inside the coefficients of the Airy
and Aspnes functions in Eq. (42) of [18] actually vanish after
integration.
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μeff ¼
1

s
≃
m2χ2=3u1=3

σ
; ð22Þ

ðl2Þeff ¼
1

τ
≃
m2χ2=3u4=3

σ
: ð23Þ

As explained above, the integration range over u is
effectively restricted from above by u ≲ 1. Similarly, the σ3

term in the exponential can be effectively replaced with
imposing the restriction σ ≲ 1. With this, the remaining
term in the exponential ∼σðu=χÞ2=3 ¼ Oðχ−2=3Þ ≪ 1 and
can be neglected. The restrictions of the remaining inte-
gration variables u and σ from below follow from the fall-
off of Π1;2ðl2; χlÞ for χl ∼ uχ ≲ 1 and for l2 ≳m2χ2=3l (see
Figs. 7 and 8 in the Appendix, respectively). Note that
Π1;2ðl2; χlÞ, as a function of l2, decays exponentially to the
left of the origin and exhibits a power law decay at the same
scale as it oscillates to the right. Therefore we effectively
have u≳ 1=χ and, in virtue of Eq. (23), σ ≳ u2=3. Inside this
range, we can estimate Πðl2; χlÞ ≃ αm2χ2=3l [see Eq. (A10)
in the Appendix], and hence [see Eq. (23)]

Πððl2Þeff ; χlÞ
ðl2Þeff

∼
ασ

u2=3
: ð24Þ

By substituting Eq. (24) into Eq. (21) and the latter into
(18), we obtain

MðrÞ
Ai0 ∼ αrþ1m2χ2=3

Z
1

χ−1

du

u2ðrþ1Þ=3

Z
1

u2=3
dσ σrþ1: ð25Þ

Here, for any r ≥ 0, the integral over σ is ∼1, being formed
at σ ∼ σeff ¼ 1. However, the integral over u behaves
differently for r ¼ 0 and r ≥ 1.

For r ¼ 0 (no bubbles) the value of the integral over u in
Eq. (25) is formed atu ∼ ueff ¼ 1. Thus, assumingdu ∼ ueff ,
we obtain Mð0Þ ∼m2g and a loop formation scale
mτeff ∼ 1=ðmχ2=3Þ, which are in agreement with Eq. (15)
and [32].
In contrast, for r ≥ 1, u shows up in the denominator of

the integrand in Eq. (25) in the power 2ð1þ rÞ=3 ≥ 1. This
means that the integrand rapidly falls off on this scale and
the integral in u is actually formed around the lower limit
u ∼ 1=χ ≪ 1. Therefore, we obtain4

Mðr≥1Þ
Ai0 ∼m2

grþ1

χ1=3
; g ¼ αχ2=3: ð26Þ

This clarifies that for r ≥ 1 the effective value of the photon
virtuality is small, ðl2Þeff=m2 ∼ 1=χ2=3 ≪ 1, and the loop
formation scale is different, mτeff ∼ χ2=3=m.
So far we have only considered the terms ∝Ai0ðtÞ. Let us

now discuss the other contributions in Eqs. (11) and (16).
Obviously, in both of them the terms containing Ai1ðtÞ are
estimated the same way as above by Eq. (18), with the
only replacement σðχ=uÞ2=3 ↦ 1=σ in the preexponential
factor of the integrand for Eq. (11) and σðχ=uÞ2=3 ↦
l2=ðm2u2σÞ ∼ ðχ=uÞ2=3=σ2 for Eq. (16). Then it is easy
to see that in the case r ¼ 0, for which as before σ, u ∼ 1,

no enhancement by powers of χ occurs, henceMð0Þ
Ai1

can be

neglected against Mð0Þ
Ai0 for χ ≫ 1. For r ≥ 1 we obtain,

instead of Eq. (25),

TABLE II. Summary of the scales for the perturbative and resummed bubble-type mass corrections.

Perturbative (1 ≪ χ ≪ α−3=2) Resummed (αχ2=3 ≳ 1)

Mð0Þ Mð1Þ Mðr≥2Þ δMðIÞ δMðIIÞ δMðIIIÞ

Scaling [m2] αχ2=3 α2χ log χ αrþ1χð2rþ1Þ=3 α2 α3=2χ2=3 α2χ logðα−3=2Þ
Dominant contribution Mð0Þ

Ai0 Mð1Þ
Ai1

MðrÞ
Ai0 ∼MðrÞ

Ai1
� � � � � � � � �

σ 1 χ−2=3 1 1 1 ðαχ2=3Þ−1
u 1 χ−1 χ−1 1 α3=2 χ−1

χl ∼ uχa χ 1 1 χ α3=2χ 1
τ ∼ σ=ðm2χ2=3u4=3Þb [m−2] χ−2=3 1 χ2=3 χ−2=3 α−2χ−2=3 α−1

τ=τð1Þeff
1 1 χ2=3 1 α−1 α−1

l2 ∼ τ−1 [m2] χ2=3 1 χ−2=3 χ2=3 α2χ2=3 α
s ¼ uτc [m−2] χ−2=3 χ−1 χ−1=3 χ−2=3 α−1=2χ−2=3 α−1χ−1

μ ∼ s−1 [m2] χ2=3 χ χ1=3 χ2=3 α1=2χ2=3 αχ

Πðl2; χlÞ=l2 ∼ ασ=u2=3d α α αχ2=3 α 1 1
aSee Eq. (13).
bSee Eq. (20).
cSee Eq. (19).
dSee Eq. (24).

4Though our reasoning is almost similar to the one given in
Ref. [18], we emphasize several important aspects which are
missing there, in particular regarding the composition of the
parameter g and the origin of the overall suppression of higher
orders in elastic scattering.
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Mðr≥1Þ
Ai1

∼ αrþ1m2χ2=3
Z

1

χ−1

du

u2ðrþ1Þ=3

Z
1

u2=3
dσ σr−2: ð27Þ

For r ≥ 2 the estimates follow the same derivation as in
Eq. (25) and the scaling agrees with Eq. (26). However, for
r ¼ 1, the integral over σ is formed at small σ ∼ χ−2=3,
which results in an additional factor log χ [cf. (2b) in
Table I].
In fact, the calculation to this order was accurately

considered in Ref. [14]. For χ ≫ 1 the result is given by
Eq. (76) therein, which, in our notation and up to the
accuracy we adopt, can be represented as

Mð1Þ ≃ −
13g2m2

18π
ffiffiffi
3

p
χ1=3

�
π

2
þ i

�
ln

χ

2
ffiffiffi
3

p − C −
142

39

��
; ð28Þ

where C is the Euler constant.
Finally, the terms containing AiðtÞ in Eq. (11) and (16)

can be estimated by replacing in the integrand of Eq. (18)
σðχ=uÞ2=3 ↦ γsðu=χÞ2=3. Then it turns out that σ ∼ 1 for all
r ≥ 0, but u ∼ 1 for r ¼ 0, 1, 2 and u ∼ χ−1 for r ≥ 3.

Furthermore, by estimating γs ∼ χ, we obtain, MðrÞ
Ai ≃

αrþ1m2χ1=3 for r ≤ 2 and MðrÞ
Ai ≃m2grþ1=χ2 for r ≥ 3.

This proves that the spin-dependent contributions also get
enhanced at higher orders. However, as implied in [14,18],
they still remain subleading at all orders for χ ≫ 1.
To summarize, we have reproduced the asymptotic

scalings of the diagrams (1b), (2b) and (3g) in Table I.
Moreover, the above analysis extends these results to all
orders, thereby establishing this aspect of the Ritus-
Narozhny conjecture. The findings of this section for the
scales of the leading-order perturbative contributions are
collected in the first three columns of Table II. In the
following we will compare them to the scaling naturally
arising after the all-order resummation.
Before proceeding, however, we would like to point out a

few important insights. The scalings of the corrections at all
orders (apart from the log χ-factor occurring solely for r ¼
1 as discussed above) are consistent with a direct estimate
MðrÞ ≃ αs−1ðΠ=l2Þr based on Fig. 1, where the factors Π
and α come from each bubble and the two remaining
vertices, s−1 and l−2 correspond to the electron and photon
propagators, respectively (with the specific appropriate
choice of all the scales for given r ≥ 0). Hence it is clear
that for r ≥ 2 the scaling parameter g naturally originates as
the ratio of the polarization operator eigenvalues to the
characteristic value of the photon virtuality in Eq. (24).
However, in the special lowest-order cases r ¼ 0 and r ¼ 1
this ratio acquires the standard field-free QED value α.
This, however, is accompanied with a variation of the loop
formation scales for r ≤ 2, which become uniform only for
r ≥ 2. The latter includes a modification of either the
characteristic values of u (equivalently, χl) or σ, or even an
alteration of the dominant contribution, and explains the

anomalous ratio ∼αχ1=3 log χ of the two-loop and the one-
loop mass corrections mentioned in the introduction. In
effect, however, the latter ratio becomes uniform already for
r ≥ 1, as, disregarding the log χ-factor, the corrections at
these orders are all estimated by Eq. (26). As compared to
Mð0Þ, the resulting scaling contains an extra factor χ−1=3.
Due to the presence of this extra factor in higher-loop

diagrams one has to distinguish between the critical value
g ∼ 1, for which all higher-order terms become of the same
order and the perturbative expansion breaks down, and the
regime g ≫ 1, where higher-order terms become compa-
rable to the 1-loop contributionMð0Þ and thus substantially
modify the total amplitude. This was nicely rephrased in
[49], by observing that for χ ¼ α−3=2 (i.e., g ¼ 1), the
bubble-type corrections (2b) and (3g) in Table I are both
suppressed with respect to (1b) by the same factor

ffiffiffi
α

p
,

whereas for larger values of χ, e.g., for χ ∼ α−2, they are
growing with r and hence may compete with (1b). As we
have shown here, the same happens for the higher-order
(r ≥ 3) corrections as well.

B. All-order resummation at αχ 2=3 ≳ 1

After the qualitative discussion of the perturbative
scaling in the previous section we now present a quanti-
tative analysis in the nonperturbative regime αχ2=3 ≳ 1. In
principle, this could be done by an all-order resummation
of the perturbative bubble-type contributions MðrÞ. Such
a procedure, however, is hardly implementable, as the
numerical coefficient ofMðrÞ is defined by nested integrals
and their overall number grows substantially at higher
orders. Therefore, it is more practical to evaluate Eq. (16)
directly. In essence, our calculation is fully equivalent to a
Borel summation [50] of the all-order bubble-type dia-
grams in Fig. 1.
We proceed by employing the integral representations

for the Airy (7) and the Aspnes function (9), and changing
the order of integration by considering first the integrals
over the virtualities μ and l2. Then the integral over μ
reduces to the textbook form

Z
∞

−∞
dμ

e−iμs

μþ i0
¼ −2πiθðResÞ; ð29Þ

where θ is the Heaviside step function. Here we treat the
parameter s complex-valued if u is negative. Note that any
contribution to the coefficients of the Airy and Aspnes
functions in Eq. (16), which is linear in μ (cf. Ref. [18]),
vanishes at this point. To show this we note that

Z
∞

−∞
dμ

μe−iμs

μþ i0
¼ 2πδðsÞ: ð30Þ

Hence such terms do not contribute after the integration
over σ is carried out (more details are given below).
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Next we consider the integral over l2, which is more
involved, but can be suitably approximated. After sub-
stituting Eq. (5) into Eq. (16) we obtain two kinds of
integrals5

JðiÞ1;2ðτ; χlÞ ¼
Z

∞

−∞
dl2

�
l2

m2
; 1

�

×
Πiðl2; χlÞe−il2τ

ðl2 þ i0Þ½l2 − Πiðl2; χlÞ�
; ð31Þ

where Πiðl2; χlÞ is either Π1 or Π2 [see Eq. (A2)]. Note that
the components of the polarization operator admit a one-
sided Fourier integral representation

Πiðl2; χlÞ ¼
Z

∞

0

dτ Π̃iðτ; χlÞeil2τ; ð32Þ

where Π̃1;2ðτ; χlÞ are given in Eq. (A12). We combine
Eq. (32) with the complete perturbative expansion given in

Eq. (17) and rewrite JðiÞ1 as

JðiÞ1 ðτ; χlÞ ¼ −
2πi
m2

X∞
n¼0

ð−iÞn
n!

�Ynþ1

a¼1

Z
∞

0

dτaΠ̃iðτa; χlÞ
�

×

�
τ −

Xnþ1

a¼1

τa

�n

θ

�
Reτ −

Xnþ1

a¼1

τa

�
: ð33Þ

Here and below, unless stated otherwise, we consider

explicitly only JðiÞ1 ðτ; χlÞ, implying that JðiÞ2 ðτ; χlÞ is
handled in the same way.
In the following we mainly focus on the asymptotic

region χ ≳ α−3=2 (g≳ 1) and derive an approximation
which is valid in this regime. As we will see further, the
effective value of χl, that corresponds to the dressed photon,
does not necessarily obey the same condition, yet χl ≳ 1.
For χl ≳ 1 the value of the integrals over τa are effectively

accumulated at τa ≲ τð1Þeff ¼ 1=ðm2χ2=3l Þ.
Next, we use an ad hoc approximation, which we will

substantiate below: we neglect τa compared to τ in the
second line of Eq. (33). Then we obtain

JðiÞ1 ðτ; χlÞ ≈ −
2πi
m2

θðReτÞ
X∞
n¼0

ð−iÞn
n!

Πnþ1
i ð0; χlÞτn;

Πið0; χlÞ ¼
Z

∞

0

dτaΠ̃iðτa; χlÞ: ð34Þ

This implies that we can further resum the series to an
exponential. For χl ≳ 1 this simplification is formalized
by the observation that for χ ≫ 1 the values of τ that effec-
tively contribute in all higher (r ≥ 2) order perturbative

contributions are much larger than τð1Þeff , see Table II.

The same is true also after resummation, as in this case
the contribution to the outer integrals is dominated by [see
Eq. (A8)]

τ ∼ τeff ¼ Π−1
i ð0; χlÞ ∼ τð1Þeff =α ≫ τð1Þeff : ð35Þ

However, we have to be careful and should in addition

ensure that JðiÞ1 ðτ; χlÞ vanish at τ → 0, which can be seen
from Eq. (33). This property is important, otherwise we
would introduce an artificial divergence in the integral over
σ in the term containing Ai1ðtÞ. Motivated by this reasoning
we come to the following approximation:

JðiÞ1 ðτ; χlÞ ≈ −2πiθðReτ − τð1Þeff Þ
Πið0; χlÞ

m2
e−iΠið0;χlÞτ: ð36Þ

Furthermore, we write

JðiÞ2 ðτ; χlÞ ≈ −2πiθðReτ − τð1Þeff Þ½e−iΠið0;χlÞτ − 1�; ð37Þ

where, unlike for JðiÞ1 , the insertion of the θ-function is no
more mandatory. For the sake of uniformity, however, we

include it also for JðiÞ2 , as the modification doesn’t change
the asymptotic limit χ → ∞.
The approximations given in Eqs. (36) and (37) are

crucial for the analytical derivation of the nonperturbative
asymptotic expansion. Therefore, we have verified their
validity numerically by comparing Eq. (36) with an exact

evaluation of Jð1Þ1 ðτ; χlÞ based on the definition [see

FIG. 3. A test of the approximation given in Eq. (36) for

Jð1Þ1 ðτ; χlÞ (dashed lines) against its direct numerical evaluation
(solid lines) shown in a double-logarithmic scale for χl ¼ 10, 102,
103 and 104 (the inset shows the same in a linear scale for
χl ¼ 104). The dashed vertical line corresponds to the value

τ ¼ τð1Þeff .
5Note that the subscripts 1,2 correspond to the two different

values given in curly brackets.
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Eq. (31)]. The result is shown in Fig. 3, where we scaled
the axes such that the graph converges in the limit
χl → ∞. The numerical calculation clearly demonstrates
that the approximation given in Eq. (36) is in excellent
quantitative agreement with the exact expression for

τ ≫ τð1Þeff . Moreover, it ensures, due to the insertion of

the Heaviside step function, that Jð1Þ1 ðτ; χlÞ vanishes at
τ → 0. Finally, we would like to point out that the graph

in Fig. 3 has a log-log scale. Therefore, the region τ ≲ τð1Þeff ,
where the approximation is poor, doesn’t contribute sig-
nificantly to a well-behaved integral over the full range of τ.
After evaluating the integrals over dμ and dl2 one

encounters the following product of Heaviside step

functions [see Eqs. (29), (36), and (37)], which can be
transformed into

θðResÞθðReτ − τð1Þeff Þ ¼ θðuÞθðσ − σ0ðuÞÞ;
σ0ðuÞ ¼ ½u2=ð1þ uÞ�1=3: ð38Þ

Finally, after applying the derived approximations to
Eq. (16), we obtain the resummed amplitude δM valid at
χ ≫ 1. It is convenient to split it into three parts:

δMiðχÞ ¼ δMðIÞ
i ðχÞ þ δMðIIÞ

i ðχÞ þ δMðIIIÞ
i ðχÞ; ð39Þ

where i ¼ 1, 2 and

δMðIÞ
1;2ðχÞ ¼

αm2

2π

Z
∞

0

du
ð1þ uÞ2

Z
∞

σ0ðuÞ

dσ
σ
e−iσ

3=3−iσðu=χÞ2=3 ½e−igσφ1;2ðuÞ − 1�; ð40Þ

δMðIIÞ
1;2 ðχÞ ¼

αm2

2π

Z
∞

0

du
ð1þ uÞ2

�
χ

u

�
2=3

�
u2 þ 2uþ 2

1þ u
� 1

�Z
∞

σ0ðuÞ
dσ σe−iσ

3=3−iσðu=χÞ2=3 ½e−igσφ1;2ðuÞ − 1�; ð41Þ

δMðIIIÞ
1;2 ðχÞ ¼ αgm2

4π

Z
∞

0

du
ð1þ uÞ2

�
χ

u

�
2=3 u2 þ 2uþ 2

1þ u
φ1;2ðuÞ

Z
∞

σ0ðuÞ

dσ
σ
e−iσ

3=3−iσðu=χÞ2=3e−igσφ1;2ðuÞ; ð42Þ

where δMðIÞ and δMðIIIÞ originate in the term initially con-
taining Ai1ðtÞ and δMðIIÞ in the term containing Ai0ðtÞ.
Here we introduced the abbreviations φiðuÞ ¼ ð1þ uÞ ×
πiðχlÞ=ðχuÞ4=3 and πiðχlÞ ¼ Πiðl2 ¼ 0; χlÞ=ðαm2Þ. Nota-
bly, at this stage the on-shell eigenvalues of the polarization
operator in a CCF Π1;2ðl2 ¼ 0; χlÞ are exponentiated. As
we show below, this results in a modification of the
formation scales and asymptotic behavior of the contribu-
tions δMðII;IIIÞ (though not of δMðIÞ) in the nonperturbative
regime αχ2=3 ≳ 1.

IV. ASYMPTOTIC BEHAVIOR
OF δM FOR αχ 2=3 ≫ 1

Next we determine the high-χ asymptotic behavior of
each contribution to δM given in Eqs. (40), (41) and (42).
It turns out that they exhibit different formation regions,
which implies that each contribution also has a different
physical interpretation.

A. Contribution δMðIÞ

In Eq. (40) it is convenient to change the order of
integration in the following way:Z

∞

0

du
Z

∞

σ0

dσ… ¼
Z

∞

0

dσ
Z

u0ðσÞ

0

du…;

u0ðσÞ ¼
σ3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ6

4
þ σ3

r
: ð43Þ

Effectively, the integrals are formed around σ ≃ σeff ¼ 1
and u ≃ ueff ¼ 1 (to be justified a posteriori). This implies
that χl ≈ uχ ∼ χ ≫ 1 [see Eq. (13)] and thus πiðχlÞ≃Kiχ

2=3
l ,

where Ki are numerical coefficients defined in the
Appendix [see Eq. (A9)].
In virtue of the above we can neglect σðu=χÞ2=3 ¼

Oðχ−2=3Þ and retain only the first nonvanishing term of
the expansion in the small argument gσφiðuÞ ≃ αKi ≪ 1 of
the exponential. Thus, we obtain

δMðIÞ
i ðχÞ ≃ −CðIÞKiα

2m2; i ¼ 1; 2; ð44Þ

where the coefficient

CðIÞ ¼ i
2π

Z
∞

0

dσ e−iσ
3=3

Z
u0ðσÞ

0

du

u2=3ð1þ uÞ5=3
≈ 0.256þ 0.325i ð45Þ

is easily evaluated numerically. Note that the formation
regions assumed above become transparent in Eq. (45).
The resulting contribution δMðIÞ ¼ P

2
i¼1 δM

ðIÞ
i ¼

Oðα2Þ contains no enhancement for χ ≫ 1. Notably, the
expansion of the exponential in gσφiðuÞ, which we showed
can be truncated in this case, coincides with a perturbative
expansion, and the final contribution to δM is subleading.
This is also confirmed by an inspection of the scales of
δMðIÞ (see Table II), which coincide with the scales of the
leading-order perturbative contribution δMð0Þ.
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As we will discuss below, there are good reasons in favor
of only two physically different nonperturbative contribu-
tions. From this perspective δMðIÞ should be combined and
considered jointly with δMðIIIÞ. This is confirmed by the
fact that, unlike δMðII;IIIÞ, δMðIÞ cannot be estimated as
α=s. It is also worth pointing out that τeff ≃ 1=ðm2χ2=3l Þ
implies that the approximations in Eqs. (36), (37) are
actually not sufficient for an accurate calculation of δMðIÞ.
However, as we have shown, δMðIÞ is subdominant;
therefore we do not investigate it any further.

B. Contribution δMðIIÞ

Next we consider Eq. (41). It is again convenient to
interchange the order of integration using Eq. (43). This
time, the resulting integral is formed around σ ≃ σeff ¼ 1,
but in contrast to δMðIÞ, around the smaller value u ≃
ueff ¼ α3=2 ≪ 1 (cf. the discussion in Sec. III A). Assuming
g ¼ αχ2=3 ≫ 1, this still implies χl ≈ uχ ≃ g3=2 ≫ 1 [see
Eq. (13)] and thus, as for δMðIÞ, πiðχlÞ ≃ Kiχ

2=3
l . The

approximations given in Eqs. (36), (37) are valid, since

τeff ≃ τðσeff ; ueffÞ ≃
1

αgm2
≫ τð1Þeff ; ð46Þ

where τðσ; uÞ is defined in Eq. (20). As for δMðIÞ, it is
possible to neglect the term σðu=χÞ2=3 ¼ Oðαχ−2=3Þ in the
exponential.
Furthermore, we neglect u due to ueff ≪ 1 wherever

possible and replace the upper limit of the du-integral by
infinity,

δMðIIÞ
1;2 ≈

ð2� 1Þαχ2=3m2

2π

Z
∞

0

dσ σe−iσ
3=3

×
Z

∞

0

du

u2=3
ðe−iK1;2ασ=u2=3 − 1Þ: ð47Þ

To simplify this expression even further we note that

Z
∞

0

du

u2=3
ðe−iζ=u2=3 − 1Þ ¼ 3ei

5π
4

ffiffiffiffiffi
πζ

p
; ð48Þ

Z
∞

0

dσ σ3=2e−iσ
3=3 ¼ e−i

5π
123−

1
6Γ
�
5

6

�
; ð49Þ

where ζ ¼ K1;2ασ. Finally, we obtain

δMðIIÞ ¼
X2
i¼1

δMðIIÞ
i

≃ ei
5π
6
35=6

2
ffiffiffi
π

p Γ
�
5

6

�
ð3

ffiffiffiffiffiffi
K1

p
þ

ffiffiffiffiffiffi
K2

p
Þα3=2χ2=3m2

≈ ð−0.995þ 1.72iÞα3=2χ2=3m2: ð50Þ

The integrals in Eqs. (48) and (49) are obviously formed at
the scales u ≃ ζ3=2 ≃ α3=2 and σ ≃ 1.
A numerical comparison between the exact [see

Eq. (41)] and the asymptotic [see Eq. (50)] expression is
shown in the upper panel of Fig. 4. One can see that the
asymptotics [see Eq. (50)] is indeed eventually achieved,
though for extremely high values χ ≳ 106 corresponding to
g ∼ 100. Notably, Eq. (50) overestimates the exact result for
smaller χ. The error is particularly large for the real part,
which changes sign at χ ≃ 8 × 103.
The obtained scales characterizing the correction δMðIIÞ

are listed in Table II. One can notice that they have the same
dependence on χ as the scales forMð0Þ, but incorporate the
coupling α differently. We will further comment on this
difference in Sec. V.

C. Contribution δMðIIIÞ

Finally, we consider the last contribution in Eq. (42).
Here it is convenient to keep the integration order but
change the integration variables from u to χl ¼ uχ=ð1þ uÞ
and from σ to σ̃ ¼ σ=σ0ðuÞ. Assuming u ≃ ueff ≪ 1 (to be
confirmed a posteriori) we neglect u where possible, in
particular the term σðu=χÞ2=3. Thus, we obtain

δMðIIIÞ
i ≈

α2m2χ

2π

Z
∞

0

dχl
χ2l

πiðχlÞ

×
Z

∞

1

dσ̃
σ̃
e−iðχl=χÞ

2σ̃3=3−iασ̃πiðχlÞ=χ2=3l : ð51Þ

In virtue of πiðχl ≫ 1Þ ≃ Kiχ
2=3
l , the integrals are effec-

tively truncated from above at χl ≃ ðχlÞeff ¼ 1 and σ̃ ≃ α−1

FIG. 4. Dependence of the resummed bubble-type mass cor-
rection on χ (the corresponding value for g is given on the upper
axis): asymptotic expressions (50), (55) for χ ≫ 1 (dashed lines)
vs direct numerical evaluation of Eqs. (41), (42) (solid lines).
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for αχ2=3 ≫ 1. This implies that ueff ¼ χ−1 ≪ 1 [as initially
assumed, cf. the prerequisites to Eq. (26)] and σeff ¼
ðαχ2=3Þ−1 ≪ 1. Therefore, our approximations given in
Eqs. (36), (37) are justified as

τeff ≃ τðσeff ; ueffÞ ≃
1

αm2
≫ τð1Þeff : ð52Þ

Moreover, it is also possible to neglect the first term
Oðg−3Þ in the exponential in Eq. (51). As a result, we
find that

δMðIIIÞ
i ≃ CðIIIÞ

i α2χm2; ð53Þ

where the numerical factors CðIIIÞ
i are given by

CðIIIÞ
1;2 ¼ 1

2π

Z
∞

0

dχl
χ2l

π1;2ðχlÞE1ðiαπ1;2ðχlÞ=χ2=3l Þ

≈
�−0.0395 − 0.472i;

−0.0634 − 0.703i:
ð54Þ

Here E1ðζÞ ¼
R∞
1 dt e−ζt=t is the exponential integral.

Correspondingly,

δMðIIIÞ ¼
X2
i¼1

δMðIIIÞ
i ¼ −ð0.103þ 1.18iÞα2χm2: ð55Þ

A numerical comparison between the asymptotic result
in Eq. (55) and the exact expression in Eq. (42) is shown in
the lower panel of Fig. 4. Similar as for δMðIIÞ, the
asymptotic result becomes reliable for χ ∼ 106 (g ∼ 100).
However, unlike for δMðIIÞ, it represents a good order-of-
magnitude estimate even for smaller χ.
The scales for the correction δMðIIIÞ are collected in the

last column of Table II and depend on χ mostly in the same
way asMð1Þ, but incorporate the coupling α differently. We
observed the same in the previous section by comparing
δMðIIÞ to Mð0Þ. Here, however, the difference in the
scalings given in Eqs. (55) and (28) is less obvious and
deserves a more detailed discussion. Both are proportional
to α2χ, but the coefficient in Eq. (28) contains log χ,
whereas the coefficient in Eq. (55) rather contains α ¼
gχ−2=3 in a quite complicated form, see Eq. (54). In
particular, at the point χ ≃ α−3=2, we have

Mð1Þðg ≃ 1Þ ≈ −ð0.208þ 0.255iÞα2χm2; ð56Þ

which should be compared with Eq. (55). Furthermore, by
approximating E1ðζÞ ≈ − ln ζ − C and evaluating the inte-
gral over χl in Eq. (54), with accounting for Eqs. (A2) and
(A5), we obtain

δMðIIIÞ −Mð1Þ ≈ i
13m2g2ðln g − C̃ðIIIÞÞ

12π
ffiffiffi
3

p
χ1=3

; ð57Þ

where we introduced the constant C̃ðIIIÞ ≈ 4.65þ 0.530i.
This difference demonstrates the effect of resumming the
perturbative higher order corrections with r ≥ 2 for g ≫ 1.
We reflected this symbolically in the top right cell of
Table II.

V. SUMMARY AND DISCUSSION

After a detailed analysis of radiative corrections in a CCF
of up to 3rd-loop order [12–18], Ritus and Narozhny
conjectured that in the strong-field regime χ ≫ 1 the
expansion parameter of QED perturbation theory in a
CCF is g ¼ αχ2=3. Recent suggestions [32–36] how this
regime could be reached experimentally renewed the
interest in this old but so far unsolved problem of quantum
field theory.
The parameter g appears already in the leading-order

1-loop calculation of the correction to the electron mass
Mð0Þ ¼ OðgÞ [14], and its importance was substantiated
further in Ref. [18] by comparing the leading contributions
in 2nd and 3rd loop order [see diagrams (2b) and (3g) in
Table I]. This analysis suggested that g might be the
relevant expansion parameter, i.e., that an all-order non-
perturbative resummation becomes necessary in the regime
g≳ 1. In order to elucidate the Ritus-Narozhny conjecture,
we have considered here the high-χ asymptotic behavior of
a certain class of radiative corrections to the electron mass
beyond 3 loops, namely the bubble-type corrections to the
mass operator shown in Fig. 1.
The calculation of polarization corrections in a CCF

naturally introduces an effective charge αeffðl2; χlÞ ¼
Zðl2; χlÞα. It depends both on the photon virtuality l2

and the effective field strength χl (which also scales with
the energy of the participating photon). Its dependence on
χl turns out to be logarithmic, as one might expect based on
the logarithmic effective charge obtained in field-free QED
[43]. However, a strong difference with respect to field-free
QED is observed, for example, in the scaling of the mass
correction MðχÞ itself.
Our findings are summarized in Table II. The formation

scales of the leading (rþ 1)-loop mass correction MðrÞ
with r ≥ 1 bubble insertions differ from the scales for r ¼ 0
(no bubbles) and perturbatively are defined by the con-
dition that the polarization operator eigenvalues are not
suppressed. In particular, for χ ≫ 1, the photon virtuality at
higher loop orders, which contains polarization insertions,
is much smaller and the associated spatiotemporal exten-
sion is much larger than for a loop without such insertions
at all.
According to our analysis, the leading (rþ 1)-loop mass

correction scales as MðrÞ ¼ Oðχ−1=3grþ1Þ in a CCF. This
is precisely what is asserted in the Ritus-Narozhny
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conjecture, hence proves it for higher orders r ≥ 3 not
considered previously. Notably, the parameter g ¼ αχ2=3

originates for r ≥ 2 from the ratio of the field-induced
polarization operator eigenvalue to the photon virtuality l2,
evaluated at their typical scales [see Eq. (24)]. The two
lowest-order cases r ¼ 0 (no bubbles) and r ¼ 1 (single
bubble) are special, in particular with respect to their scales.
In effect, however, as compared to the above scaling,
Mð0Þ ¼ OðgÞ doesn’t acquire the factor χ−1=3, whereas
Mð1Þ acquires just an extra factor log χ. The additional
factor χ−1=3, arising at higher orders r ≥ 1 due to a
modification of the loop formation scale, explains the
puzzling anomalous ratio of the 2nd to the 1st loop result
[see (1b), (2b) in Table I and Sec. III A]. It is worth
stressing that all higher-order bubble-type contributions
become of the same order for g ∼ 1. This unambiguously
manifests a breakdown of perturbation theory, even if the
higher-order contributions remain smaller than the leading-
order 1-loop prediction. Therefore, one has to carry out an
all-order resummation of such bubble-type contributions
for g≳ 1.
Here, we study the mass correction MðχÞ in the regime

g≳ 1 (see Sec. II for the exact definition). The following
decomposition is convenient:

MðχÞ ¼ Mð0ÞðχÞ þ δM; ð58Þ

δM ¼ δMðIÞðχÞ þ δMðIIÞðχÞ þ δMðIIIÞðχÞ; ð59Þ

where Mð0ÞðχÞ [see Eq. (11)] is the leading-order pertur-
bative result and δM [see Eqs. (10), (16), and (39)] has
been determined by resumming all polarization corrections
with r ≥ 1 bubbles, see Fig. 1 and Eq. (3). Its splitting [as in
Eq. (59)] is stipulated by the composition of the integrand
in Eq. (16), namely the terms δMðIÞ and δMðIIIÞ correspond
to the first term in the integrand, whereas δMðIIÞ corre-
sponds to the second one. It is convenient to evaluate them
separately.
Notably, the integrand of our nonperturbative result

given in Eq. (39) includes the polarization operator eigen-
values in the exponentials. It turns out that δMðIÞ can be
neglected (see Sec. IVA) and that the dominant contribu-
tions originate from δMðIIÞ (see Sec. IV B) and δMðIIIÞ (see
Sec. IV C). For them, unlike for δMðIÞ, the effective
formation scales arising during integration, are modified
with respect to the perturbative case by involving the

coupling α. This manifests another aspect of the non-
perturbativity of our results. In particular, the effective
value of the photon virtuality here corresponds to the
bubble-chain dressed photon mass shell, see the last row of
Table II. More generally, the scales of δMðIIÞ depend on χ
in the same way as the scales of Mð0Þ. However, the
spatiotemporal scales are amplified by inverse powers of α
and the energy-momentum scales are reduced accordingly.
This is consistent with the modification of the perturbative
scales at higher orders r ≥ 2, which has been mentioned
above. The same correspondence is observed by comparing
the scales of δMðIIIÞ with the scales of Mð1Þ.
The importance of our analysis of the formation scales is

confirmed by the fact that the asymptotic scalings of δMðIIÞ

and δMðIIIÞ at g ≫ 1 [see Eqs. (50) and (55)] can be both
understood in a uniform way, as δM ∼ α=s with the appro-
priate choices of s (see Table II). They can be alternatively
represented in terms of other pairs of the three parameters g,
α and χ, related by our definition g ¼ αχ2=3,

δMðIIÞ ¼ Oð ffiffiffi
α

p
gÞ ¼ Oðχ−1=3g3=2Þ;

δMðIIIÞ ¼ Oð ffiffiffi
α

p
g3=2Þ ¼ Oðχ−1=3g2Þ: ð60Þ

This result confirms that the parameter g ¼ αχ2=3 deter-
mines the scaling of radiative corrections even in the regime
g≳ 1, where perturbation theory is no longer valid. It is
worth noting that a nonanalytic dependence on the coupling
[e.g., a half-integer power in case of δMðIIÞ or involving a
logarithm in case of δMðIIIÞ −Mð1Þ, as implied in
Eq. (57)], shows that our result is nonperturbative, as it
cannot be represented by a power series in the coupling.
As the formation regions differ for δMðIIÞ [see Eq. (50)]

and δMðIIIÞ [see Eq. (55)], their physical interpretation
should differ as well. According to the optical theorem
radiative corrections are closely related to the total prob-
abilities of associated branching processes [29]. The
imaginary part of the mass operator determines the electron
lifetime inside a background field [13–16,44]. The electron
state can either decay by emitting a photon or by directly
producing an electron-positron pair (trident process). Both
processes are qualitatively different, in particular with
respect to their associated observables, and are obtained
by two types of cuts shown in Fig. 5.
Based on their scaling with χ we have to associate δMðIIÞ

with photon emission and δMðIIIÞ with trident pair

FIG. 5. The cuts of the bubble diagram for corrections to photon emission (left) and to trident pair production (center). Right:
additional dressing due to electron mass corrections.
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production, which exhibit the same scaling as the contri-
butions (1b) and (2b) in Table I. This identification is
supported by the abnormal and normal signs of the
imaginary parts of the corrections δMðIIÞ and δMðIIIÞ,
respectively. The fact that the probability of being in a one-
particle state must decay and cannot increase with time
determines the allowed total sign of the imaginary part.
Therefore, δMðIIÞ must be a correction to the leading-order
result Mð0Þ, which clearly describes photon emission. The
contribution δMðIIIÞ, however, has the right sign and
describes a decay process which requires at least two
interactions, i.e., trident pair production. To leading order
the latter process is described6 by Mð1Þ [14,21,51] and the
nonperturbative correction to it is asymptotically given
by Eq. (57).
The real and imaginary parts of the on-shell mass

operator are shown in Fig. 6. The solid yellow line
Mð0ÞðχÞ þ δMðIIÞðχÞ and the dash-dot blue line Mð0ÞðχÞ
demonstrate the impact of polarization effects on photon
emission. In the asymptotic region (g ≫ 1) nonperturbative
effects are responsible for a

ffiffiffi
α

p
≃ 10% reduction of both

the real and the imaginary part of the invariant amplitude.

In general, however, the contribution δMðIIIÞðχÞ (solid
green curve) totally dominates and results in a rather
substantial suppression of the real part and an enhancement
of the magnitude of the imaginary part. The region
g ¼ αχ2=3 ≃ 1, which could be accessed experimentally
in the midterm future [32–36], is shown separately in the
insets. The curves have been obtained by a direct numerical
evaluation of the integrals in Eqs. (41) and (42). In this
regime higher-order corrections to photon emission are at
the level of ∼0.1% for the real and ∼1% for the imaginary
part, respectively.
We emphasize that the relative smallness of δMðIIÞ and/

or δMðIIIÞ with respect to Mð0Þ for g ≃ 1 does not imply
that the breakdown of perturbation theory is somehow
shifted to higher values of g. As discussed above, it occurs
when all higher-order corrections become of the same
order, which happens for g ∼ 1. The observed suppression
is specific to processes like elastic scattering or photon
emission. On the other hand, corrections to the trident
process included into δMðIIIÞ, are obviously of the same
order as the process itself at the point of breakdown
g≳ 1 [see Eq. (57) or cf. Eqs. (56) and (55)]. We expect
the same to be true for general higher-order QED pro-
cesses. Therefore, our calculations could be tested exper-
imentally, as the regime g≳ 1 is accessible in the midterm
future [32–36].
Finally, we would like to point out that we only con-

sidered one particular subset of diagrams. Hence, further
studies are necessary before final conclusions can be drawn.
In particular, it should be shown directly that the bubble-type
corrections considered here represent indeed the dominant
contribution in the asymptotic regime. This dominance is
related to an expected suppression of the vertex correction.
Whereas this suppression has been proven rigorously in the
case of a supercritical magnetic field [52], the late work of
the Ritus group on this subject actually questioned this
assumption for a CCF [20]. Therefore, the calculation
presented in [20] should be revisited. Naturally, also the
electron mass corrections should be resummed, see right
panel in Fig. 5. Their relative suppression at 3-loop [see
diagram (3e) in Table I] could be peculiar to this order. The
observed dominance of δMðIIIÞ over δMðIIÞ may indicate
that other corrections (e.g., rainbow diagrams) with higher
multiplicity in the virtual channel are equally or even more
important. Furthermore, the direct evaluation of polarization
corrections to photon emission and trident pair production
would be instructive. Whereas the calculation presented here
reveals how the total probabilities scale, modifications to the
spectra of branching processes are most easily accessible
experimentally.
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Note added.—While revising this manuscript, we have
noticed a new paper [53], which generalizes the results of
Ref. [20] to the plane-wave case. In particular, it confirms
the scalingOðgÞ of the one-loop vertex correction in a CCF
with an on-shell electron and commensurable values of the
electron and photon χ-parameters. This, however, is still
insufficient for proving or disproving the dominance of the
bubble chains, because, as we have seen above, in higher
orders the χ-parameters can be effectively distributed
nonuniformly. Further investigations of the diagrams con-
taining vertex corrections are required to ultimately clarify
this aspect of the Ritus-Narozhny conjecture.

APPENDIX: ONE-LOOP POLARIZATION
OPERATOR IN A CONSTANT CROSSED FIELD

For completeness, we provide the explicit expressions
for the renormalized one-loop polarization operator in a
CCF [10,12,13]

ΠμνðlÞ ¼ Π̂ðl2;χlÞðl2gμν− lμlνÞþ
X2
i¼1

Πiðl2;χlÞϵðiÞμ ðlÞϵðiÞν ðlÞ;

ðA1Þ

where the vectors ϵð1Þμ ðlÞ ¼ eFμνlν=ðm3χlÞ and ϵð2Þμ ðlÞ ¼
eF⋆

μνlν=ðm3χlÞ are the same as in Eq. (3). Its three nontrivial
renormalized eigenvalues read

Π1;2ðl2; χlÞ ¼
4αχ2=3l m2

3π

Z
∞

4

dv

v13=6
vþ 0.5 ∓ 1.5ffiffiffiffiffiffiffiffiffiffiffi

v − 4
p f0ðζÞ;

ðA2Þ

and

l2Π̂ðl2; χlÞ ¼ −l2
4α

π

Z
∞

4

dv

v5=2
ffiffiffiffiffiffiffiffiffiffiffi
v − 4

p

×

�
f1ðζÞ − log

�
1 −

1

v
l2

m2

��
: ðA3Þ

Here

ζ ¼
�
v
χl

�
2=3

�
1 −

l2

vm2

�
; ðA4Þ

is the argument of the Ritus functions

fðζÞ ¼ i
Z

∞

0

dσ e−iðζσþσ3=3Þ;

f1ðζÞ ¼
Z

∞

ζ
dz

�
fðzÞ − 1

z

�
; ðA5Þ

which are defined as in [10], and f0ðζÞ is the derivative of
the former.
When the external field is switched off, Π1;2 vanish and

l2Π̂ is reduced to the well-known expression for the one-
loop polarization operator in field-free QED [54].
We assume the standard renormalization condition that
the expressions in Eqs. (A2), (A3) vanish at l2 ¼ 0 in the
absence of the external field (for χl ¼ 0) [14].
By carrying out a resummation of the Dyson series one

obtains the following expression for the bubble-chain
photon propagator [14]:

Dc
μνðlÞ ¼

−igμν
l2 − l2Π̂

þ
X2
i¼1

iΠi

ðl2 − l2Π̂Þðl2 − l2Π̂ − ΠiÞ
ϵðiÞμ ðlÞϵðiÞν ðlÞ:

ðA6Þ

With the notation

Zðl2; χlÞ ¼
1

1 − Π̂ðl2; χlÞ
ðA7Þ

the propagator Dc
μνðlÞ takes the form given in Eq. (3). In

any diagram the propagator always connects two vertices.
Therefore, the factor Z appears only in combination with α.
Together they compose the effective coupling αeffðl2; χlÞ ¼
Zðl2; χlÞα. We adopt the terminology of Ref. [43], where
the value αeffð0; χlÞ is called the field-dependent effective
charge.
Note that for χl ≫ 1 and for the bare on-shell condition

l2 ¼ 0 we have

Π̂ð0; χlÞ ≃
α

3π
log χ2=3l ;

Πið0; χlÞ ¼ αm2πiðχlÞ;
πiðχlÞ ≃ Kiχ

2=3
l ; ðA8Þ

where
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K1;2 ¼ e−iπ=3
5 ∓ 1

64=3
ffiffiffi
π

p Γ2ð2=3Þ
Γð13=6Þ : ðA9Þ

The dependence of the on-shell expressions given in
Eqs. (A2) and (A3) on χl is shown in Fig. 7. One can
see that the asymptotics given in Eq. (A8) are achieved for
χl ≳ 103 and that Π̂ ¼ Oð10−2Þ for all reasonable values of
χl. Since asymptotically Π̂ðl2; χlÞ ¼ OðαÞ has only a weak
logarithmic dependence on χl and l2, it is possible to
neglect small modifications of the effective charge by
setting Zðl2; χlÞ ≈ 1 and αeff ≈ α throughout the paper.

The off-shell dependence of Π1ðl2; χlÞ on l2=m2χ2=3l is
shown in Fig. 8. One can see that it decays exponentially to
the left of the origin and exhibits a power law decay at the
same scale as it oscillates to the right. The optimal values
are acquired near the bare mass shell (for jl2j≲m2χ2=3l ),
where one can expand Eq. (A2) into powers of the
virtuality l2,

Πiðl2; χlÞ ≈m2αχ2=3l

�
Ki þ Kð1Þ

i
l2

m2χ2=3l

þKð2Þ
i

�
l2

m2χ2=3l

�
2
�
;

ðA10Þ
where

Kð1Þ
i ¼ 13 ∓ 3

18π
;

Kð2Þ
i ¼ eiπ=3

4 ∓ 1

4 · 62=3
ffiffiffi
π

p Γ2ð4=3Þ
Γð17=6Þ : ðA11Þ

Note that the off-shell correction linear in l2 is real. One can
see from Fig. 8 that the asymptotics given in Eq. (A8)
remain a good order-of-magnitude estimate even for jl2j≲
m2χ2=3l .
Finally, in virtue of Eqs. (A2), (A4) and (A5), Πi can be

represented by a one-sided Fourier integral [see Eq. (32)],
where

Π̃1;2ðτ; χlÞ ¼
4α

3π
χ2l τm

6

Z
∞

4

dv

v3=2
vþ 0.5 ∓ 1.5ffiffiffiffiffiffiffiffiffiffiffi

v − 4
p

× e−im
2vðτþm4χ2l τ

3=3Þ; ðA12Þ
and the characteristic values of the variables around
which the integral is formed are obviously v ≃ 1 and τ ≃
min fm−2; m−2χ−2=3l g.

FIG. 8. Dependence on l2 of the real and imaginary parts of the
polarization operator eigenvalue Π1ðl2; χl ¼ 104Þ: asymptotic
expression given in Eq. (A10) (dashed lines) vs direct numerical
evaluation of Eq. (A2) (solid lines). The axes are scaled such that
the curves are stable under changing of χl.

FIG. 7. Dependence on χl (the corresponding value for g is given on the upper axis) of the real (left) and imaginary (center) parts of the
polarization operator eigenvalues Π1;2, evaluated on the bare mass shell l2 ¼ 0, along with the corresponding asymptotics (A8) (insets:
the same dependence on χl magnified in the range near χl ∼ 1). Right: the same dependence for the magnitude of the real and imaginary
parts of Π̂ ¼ 1 − Z−1.
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