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Motivated by TT̄, we introduce and study a wide class of solvable deformations of quantum-mechanical
theories. These deformations map the Hamiltonian to a function of itself. We solve these theories by
computing all finite-temperature correlation functions of the deformed theory in terms of the correlators of
the undeformed theory. Applications to AdS=CFT, Sachdev-Ye-Kitaev, and the Schwarzian theory are
considered. We write down the deformed Schwarzian action for an arbitrary Hamiltonian deformation and
find that the maximal Lyapunov exponent is unchanged.
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I. INTRODUCTION

Calculable deformations of well-understood physical
systems form the basis of much of theoretical physics.
Often we have a simple theory with a handful of exact
analytic solutions, and we try to learn about more diverse
physical phenomena by deforming away from these special
cases. A famous example is the three-body problem, where
one tries to deform away from the Keplerian ellipses
governing planetary motion to account for the influence
of a third body. This approach was successful enough to
predict the existence of Neptune in the 1800s.
Deforming away from well-understood systems is often

also implemented in quantum field theory. We start from a
theory which we can solve exactly, such as free particles,
and introduce weak interactions. This framework is robust
enough to explain phenomena ranging from the anomalous
magnetic moment of the electron to structure formation in
the early universe.
Much of the recent progress in quantum field theory,

however, has been spurred by exact nonperturbative tech-
niques. In this paper we will introduce and study an infinite
class of nonperturbative deformations to quantum field
theories that can be solved exactly. These deformations
map the Hamiltonian to a function of itself, H → fðHÞ. In
spacetime dimensions d > 1, such deformations generi-
cally lead to nonlocal theories that break Lorentz

invariance. This suggests considering the case d ¼ 1,
i.e., ordinary quantum mechanics. As discussed in [1,2],
this case is particularly well suited to capture features of
emergent spacetime due to the rich infrared.
The integrability of these deformations relies crucially

on the Hamiltonian being independent of time, so that
it is a conserved charge. The class of deformations can be
enlarged to mix in other conserved charges that appear
in the theory being considered, as long as we pick a
mutually commuting set. For example, we could deform
the Hamiltonian of the hydrogen atom by a function
fðH;L2; LzÞ. In this paper we will focus on functions of
the Hamiltonian only, although many of the techniques
discussed can be extended to the case with additional
conserved charges. We will point out appropriate general-
izations along the way.
An important feature of these deformations is that the

energy spectrum of the deformed theory is known in terms
of the energy spectrum of the undeformed theory,
Ei → fðEiÞ. The other crucial feature is that the eigenvec-
tors of the new and deformed Hamiltonian coincide (we
will return to this point shortly). These two facts can be
used in conjunction to write down formulas for the
correlation functions of the deformed theory in terms of
the correlation functions of the undeformed theory, which
we will come to in the next section.
We now clarify the claim that the eigenvectors of the

deformed and undeformed Hamiltonians coincide. What is
obviously true is that eigenvectors of H remain eigenvec-
tors of fðHÞ. For a finite-dimensional system, this is
sufficient to guarantee diagonalization of fðHÞ by the
eigenvectors of H, thus giving us the complete set of
eigenvectors. This is true for arbitrary fðHÞ. For theories
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with an infinite-dimensional Hilbert space, like the simple
harmonic oscillator, fðHÞ can have new eigenvectors in
general. To deal with this, we restrict to functions fðHÞ that
have an expansion parameter λ with fðHÞ → H as λ → 0.
This means fðHÞ can be interpreted as a deformation of our
original system. Then we require, even if we work non-
perturbatively in λ, that physical observables (and hence
our eigenvectors) are analytic around λ ¼ 0. This will
enforce that the original eigenvectors are chosen. Dual
to this picture is that of the Schrödinger equation for our
deformed theory. Assuming we begin with a theory with
canonical kinetic terms, our deformations do not induce
higher derivative terms, although they do introduce higher
powers of the kinetic term. This will in turn induce higher
spatial derivatives in the Schrödinger equation, and our rule
will imply additional boundary conditions that are chosen
to restrict to the wave functions of the theory defined by H.
This gives a perfectly well-defined model with computable
observables. As a close analogy, one can consider Dirac’s
classical theory of an electron in a background electro-
magnetic field [3]. He wrote down an equation for the
worldline of the particle that involved the third time
derivative of its position, and to exclude unphysical states
he imposed a future boundary condition (analogous to our
spatial boundary condition to obtain the physical wave
functions). Later, Bhabha pointed out that the unphysical
solutions have a singular expansion in the electric charge e
and eliminated them by demanding smoothness as e → 0
[4]. This is precisely what we do. In some instances, for
example (2.2), we will restrict to strictly monotonic fðHÞ to
ensure the existence of f−1ðHÞ. This lets us avoid eigen-
value crossing.
The paper is organized as follows: In Sec. II, we will

present formulas for the correlation functions of the
deformed theory in terms of the correlation functions
of the undeformed theory. These formulas are integrals
of the undeformed correlator against products of a
kernel Kðβ; β0Þ, which is defined so that e−βfðEÞ ¼R
dβ0Kðβ; β0Þe−β0E. A closed-form expression for the

kernel is only available for special deformations (including
the 1d TT̄ deformation introduced in [2] following [5,6]),
but it is straightforward to compute numerically in the
more general case. Some closed-form kernels are
presented in Appendix A, and some numerical calcula-
tions in a case without closed-form kernels are presented
in Appendix B.
In Sec. III, we will interpret these deformations in the

context of AdS=CFT and show that they correspond to a
new boundary value problem in the bulk, which keeps fixed
some combination of the metric and extrinsic curvature. For
the 1d TT̄ deformation, we show that the mixed boundary
conditions at infinity can be reinterpreted as Dirichlet
boundary conditions at some finite radius upon using the
bulk equations of motion, as was shown in one higher
dimension in [7].

Section IV is devoted to the Sachdev-Ye-Kitaev (SYK)
model. We start by deforming the SYK model and consider
both the 1d TT̄ deformation and the fðHÞ ¼ H þ λH2

deformation with λ ∼ 1=N. After introducing the usual
collective fields G and Σ, we find that the solutions of
the Schwinger–Dyson equations are changed by a renorm-
alization J → JðλÞ. In the case where we shift the SYK
ground state energy to zero before deforming the theory,
the renormalization is trivial and the solutions remain
unchanged. In a non-’t Hooft limit with λ finite as
N → ∞, the effective action approach becomes difficult,
but we can still obtain expressions for the deformed
quantities using the integral transforms of Sec. II.
We also consider first disorder averaging SYK and

then deforming the resulting theory. This sequence of
performing the disorder average first lets us solve for an
arbitrary fðHÞ deformation. We find that the solution to the
deformed Schwinger–Dyson equations is again given as a
renormalization J → JðλiÞ of the undeformed solutions,
where λi are the deformation parameters in fðHÞ. Again,
when the ground state energy is shifted to zero, the
deformation has no effect.
In Sec. V, we consider the Schwarzian and related

theories and compute their deformed partition functions
under a class of fðHÞ deformations in closed form. We also
discuss arbitrary fðHÞ deformations of the Schwarzian
theory and are able to write down the deformed Schwarzian
action explicitly. Upon computing fluctuations around the
saddle of these theories and the out-of-time-order correlator
(OTOC), we find that the Lyapunov exponent remains
maximal.

II. CORRELATION FUNCTIONS

In this section we show how to calculate correlation
functions in the deformed theory from correlation functions
in the undeformed theory. We will start by reviewing and
expanding the analysis of [2], which just involves the
thermal partition function. After that we move on to various
correlators, building up slowly to n-point correlators.

A. Thermal partition function

The deformed partition function can be written as

ZðβÞλ ¼
Z

∞

−∞
dE e−βfðEÞρðEÞ ¼

Z
∞

−∞
dE e−βEρλðEÞ; ð2:1Þ

for which we immediately have

ρλðEÞ ¼ ρðf−1ðEÞÞ df
−1ðEÞ
dE

: ð2:2Þ

Here we are assuming a strictly monotonic fðHÞ so that
it is invertible. The deformed partition function can be
written as an integral transform of the undeformed partition
function by introducing a kernel defined as
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Kfðβ; β0Þ ¼
1

2πi

Z
C0

dEe−βfðEÞþβ0E ð2:3Þ

for some contour C0. This gives

e−βfðEÞ ¼
Z
C
dβ0e−β0EKfðβ; β0Þ ⇒ ZðβÞλ

¼
Z
C
dβ0Zðβ0ÞKfðβ; β0Þ: ð2:4Þ

We can give a simple expression for this kernel in a few
cases:

fðHÞ ¼ 1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λH

p
Þ ⇒

Kfðβ; β0Þ ¼
β

β03=2
ffiffiffiffiffiffiffiffiffiffiffi
−8πλ

p exp
�ðβ − β0Þ2

8β0λ

�
ð2:5Þ

fðHÞ ¼ H − 2λH2 ⇒

Kfðβ; β0Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
8πλβ

p exp

�
−
ðβ0 − βÞ2

8λβ

�
ð2:6Þ

for λ < 0. These deformations are inverses of one other.
The contour C of the first deformation runs from 0 to ∞,
and so the second one has a contour along the full
imaginary axis with a small positive real part for con-
vergence. The first deformation was proposed in [2] as the
one-dimensional version of the TT̄ deformation. We will
consider various other deformations with explicit kernels in
Appendix A. Even without closed-form kernels, we can use
(2.3) to compute the kernel numerically. A simple example
is provided in Appendix B.
Besides integral transformations we can also introduce a

differential operator whose action on the undeformed
partition function gives the deformed partition function:

ZðβÞλ ¼
�X∞

i¼0

βið−fð−∂βÞ − ∂βÞi
i!

�
ZðβÞ≕DfðβÞZðβÞ:

ð2:7Þ

Each −∂β acts by bringing down a factor of Ej from
each Boltzmann factor, which is then manipulated into
−fðEjÞ þ Ej and re-exponentiated, i.e., DfðβÞe−βEj ¼
e−βfðEjÞ. Notice, however, that the series in (2.7) is
generically asymptotic and serves as a formal expression
for the deformation. We will, therefore, focus on the
integral transforms as our method of implementing the
deformation.

1. Additional conserved charges and the
grand canonical ensemble

The case where the deformation depends on additional
conserved charges can be treated similarly, as long as all

the additional conserved charges are mutually commuting.
Let us consider the grand canonical ensemble with
some chemical potentials μi turned on. The integral kernel
will be a function of these additional potentials,
Kfðβ; β0; μi; μ0iÞ, and the integral will be over β0, μ0i.
Its role is still to transform Boltzmann factors

e−βðE−
P

i
μiQiÞ → e−βðfðE;QiÞ−

P
i
μiQiÞ.

2. One-point functions

At the next level of complexity is a one-point function.
Recall that we are not in a conformal theory so this need not
vanish even at zero temperature. The operator can be placed
at the origin by time-translation invariance. The finite-
temperature expectation value is given asX

i

e−βfðEiÞhEijOjEii: ð2:8Þ

Notice that the expectation value hEijOjEii is the same
between the deformed and undeformed theories since the
eigenvectors jEii are unchanged under a deformation
H → fðHÞ. This is true as long as we keep fixed the
operator O.1 This means that the same integral and differ-
ential transforms for the partition function apply to this
case. The zero-temperature expectation value is simply
h0jOj0i and is unchanged between the two theories. Note
that our one-point functions are normalized such that for O
being the identity operator, the one-point function is equal
to the thermal partition function. In what follows we will
continue to consider unnormalized correlation functions,
which can be normalized by dividing by the deformed
thermal partition function.

B. General correlation functions

We will start with the vacuum two-point function as a
simple illustrative example. In the undeformed theory this
can be written as

hOðτÞOð0Þi ¼
X
i

e−Eiτjh0jOjEiij2; ð2:9Þ

where we will assume the ground state energy is zero and
take τ > 0. The deformed correlator can be obtained by
simply replacing the exponential by e−fðEiÞτ since the
energy eigenvectors do not change under the deformation.
As we saw in the previous subsection, such a change in
exponential can be accomplished in two ways, either by an
integral transform or by a differential operator. In fact, since
we are again only changing a single exponential, the
transformation from the undeformed to deformed quantity

1We are stressing this since if one tookO to be the Hamiltonian
H, then we would have to be careful when computing correlators
since what we call the Hamiltonian changes when we deform
the theory.
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is the same as for the partition function and one-point
function.
Now we consider n-point thermal correlators. Time

ordering for simplicity, with τ1 > � � � > τn−1 > 0, we have

C0ðβ; fτigÞ ¼
Z

dE1hE1jOðτ1Þ � � �Oðτn−1ÞOð0ÞjE1ie−βE1

¼
Z Yn

i¼1

dEihE1jOjE2i � � � hEnjOjE1i

× exp

�
−
Xn−1
i¼0

βiEiþ1

�
; ð2:10Þ

where βi ¼ τi − τiþ1 for i ¼ 0;…; n − 2, τ0 ¼ β and
βn−1 ¼ τn−1.
As long as there is a kernel to transform the partition

function ZðβÞλ ¼
R
dβ0Kfðβ; β0ÞZðβ0Þ, we can transform

the exponentials in (2.10) using that kernel:

Cλðβ; fτigÞ ¼
Z �Yn−1

i¼0

dβ0iKfðβi; β0iÞ
�
C0ðβ; fτigÞ: ð2:11Þ

Again, these correlators can be canonically normalized by
dividing by ZλðβÞ. The formulas we derived here can also
be applied to situations where there are additional con-
served charges, with the only difference being the form of
the differential operator and kernel. It is interesting to apply
these formulas to seed Hamiltonians that are themselves
integrable. Theories from undergraduate quantum mechan-
ics, such as the harmonic oscillator or hydrogen atom, form
a particularly fun set of examples, but there are also infinite
classes of fancier Hamiltonians one could play with. These
include, for example, supersymmetric partner Hamiltonians
of exactly solvable systems [8], or Hamiltonians of the
formH ¼ 2 coshpþ VðxÞ for arbitrary potential VðxÞ [9].
As a simple application, let us consider correlators in the

undeformed theory that have a definite scaling behavior, for
example, in conformal quantum mechanics [10,11],

hOðτÞOð0Þi ¼ 1

τ2Δ
: ð2:12Þ

The deformed correlator, in the case of the 1d TT̄
deformation (2.5), is given by

hOðτÞOð0Þiλ ¼ τ−2Δþ1=2 e
−τ=ð4λÞK2Δþ1=2ð− τ

4λÞffiffiffiffiffiffiffiffiffiffiffi
−2πλ

p : ð2:13Þ

For Δ ¼ −1=2 and Δ ¼ 0, the initial propagators are those
of the free scalar and free fermion, respectively. In those
cases (and only those cases) the deformed correlator is
identical to the undeformed one. For the free fermion, this
is simply because H ¼ 0, and the deformation, therefore,
does not do anything. For the free scalar, it is a property of

the worldline action resulting from the deformation (see
section 3.2 of [2]), which is related to the representation of
a free scalar in a d-dimensional free scalar quantum field
theory in terms of a worldline scalar.
For Δ > 0 the deformed correlator in the ultraviolet

behaves as

hOðτÞOð0Þiλ ¼
ð−8λÞ2Δ
τ4Δ

Γð2Δþ 1=2Þffiffiffi
π

p as τ → 0:

ð2:14Þ

The coincident divergence is still present in these correla-
tors, but its nature is different due to the irrelevant
deformation. The doubling of the conformal dimension
at short times is the same as τ → τ2. This can be understood
since small τ corresponds to large energies, which in the
deformed theory goes as

ffiffiffiffi
E

p
, with E the original energy.

Analogously, the quadratic deformation (2.6) will halve the
dimension Δ. The evolution of correlation functions under
the 2d TT̄ deformation was studied in [12].

C. Dispersion relation

In this subsection we explore a different method of
relating the deformed and undeformed two-point functions
in Lorentzian signature.
We work with the time-ordered Lorentzian vacuum two-

point function,

GðtÞ ¼ ih0jψðtÞψð0ÞθðtÞ � ψð0ÞψðtÞθð−tÞj0i: ð2:15Þ

Note that ψ may be bosonic or fermionic. Without loss of
generality we assume the ground state energy to be zero. In
frequency space the retarded propagator, which is the first
term in (2.15), is a sum of simple poles positioned at the
energy eigenvalues of the system,

F ½GR�ðωÞ ¼
X
n

jcnj2
�

1

fðEnÞ − ω − iϵ

�
; ð2:16Þ

where cn ≔ h0jψ jni. The only effect of our deformation
H → fðHÞ is to move the position of the poles. Therefore,
all we need to find the propagator in the deformed theory
are the positions of the poles and their residues in the
undeformed theory. This is captured nicely by the spectral
density, which is the imaginary part of the retarded
propagator,

ImF ½GR
0 �ðωÞ ¼ π

X
n

jcnj2δðω − EnÞ: ð2:17Þ

Using this we write a dispersion relation for the retarded
propagator in terms of the spectral density of the unde-
formed theory
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F ½GR�ðωÞ ¼ 1

π

Z
∞

0

dω̄
ImF ½GR

0 �ðω̄Þ
fðω̄Þ − ω − iϵ

: ð2:18Þ

As a simple check, consider the retarded propagator of a
free massless fermion:

F ½GR
0 �ðωÞ ¼

1

2

1

−ω − iϵ
: ð2:19Þ

This is unaffected by arbitrary fðHÞ deformations as it
should be since H ¼ 0 for the undeformed theory.

III. AdS=CFT

A. Deformations as mixed boundary conditions

In the context of AdS=CFT, it is simpler to work with
the deformations at the level of the action. We begin
with a general set of deformations where we deform the
Lagrangian by some function of the stress tensor and
the metric

S → Sþ
Z

dτ
ffiffiffi
γ

p
MðTττ; γττÞ: ð3:1Þ

We assume that the deformation depends on a parameter
λ such that M → 0 as λ → 0. There may be other dimen-
sionful couplings λi. In AdS=CFT we often think of
multitrace deformations that involve just the operator,
but in this case we are also mixing in the source.
In the undeformed theory, the variation of the action is

δS ¼ 1

2

Z
dτ

ffiffiffi
γ

p
Tττδγ

ττ: ð3:2Þ

This piece comes from the Gibbons-Hawking-York boun-
dary term.2 The bulk term vanishes on the equations of
motion. Dirichlet boundary conditions on the metric make
this boundary term vanish too, leading to a well-defined
variational principle. When we add the multitrace defor-
mation to the one-dimensional action, we have to include it
as a boundary term in the bulk theory. This leads to a new
term in the variation of the action,

δS ¼ 1

2

Z
dτ

ffiffiffi
γ

p ��
Tττ −

M
γττ

þ 2
∂M
∂γττ

�
δγττ þ 2

∂M
∂Tττ

δTττ

�
:

ð3:3Þ

We want to rewrite this in terms of a new operator
gðγττ; TττÞ and its source fðγττ; TττÞ,

δS ¼ 1

2

Z
dτ g−1=2fδg: ð3:4Þ

From this expression we can read off the new bulk
boundary condition necessary for a well-posed variational
problem. The deformation changes the boundary condition
from holding γττ fixed to holding gðγττ; TττÞ fixed.
To find f and g, we solve

g−1=2f
∂g
∂γττ ¼

ffiffiffi
γ

p �
Tττ −

M
γττ

þ 2
∂M
∂γττ

�
;

g−1=2f
∂g
∂Tττ

¼ 2
ffiffiffi
γ

p ∂M
∂Tττ

: ð3:5Þ

These may have several solutions; we make the additional
restriction that f → Tττ and g → γττ as λ → 0.

B. f(T) deformations

Let us consider deformations that are just a function of
the trace of the stress tensor T ≔ Tττγ

ττ and one parameter
λ. For solutions to the variation of the action, we take the
ansatz

fðγττ; TττÞ ¼ TττFðTÞ; gðγττ; TττÞ ¼ γττGðTÞ: ð3:6Þ

These satisfy the restriction on solutions we made if FðTÞ,
GðTÞ → 1 as λ → 0. With this ansatz, the above partial
differential equations reduce to an ordinary differential
equation (ODE) and an algebraic equation:

∂T logGðTÞ ¼
2∂TMλ

T −Mλ
;

ffiffiffiffiffiffiffiffiffiffiffi
GðTÞ

p
FðTÞ ¼ 1 −

Mλ

T
:

ð3:7Þ

The solution is found by integration subject to the boundary
condition specified above.
ConsiderMλðTÞ ¼ λT2 as an example. The first equation

in (3.7) has a divergence at λT ¼ 1, so we cannot integrate
it beyond that. Notice that T is like the Hamiltonian and
thus a positive operator so that this divergence only occurs
for λ > 0. The solution is

fðγττ; TττÞ ¼ Tττð1 − λTÞ3; gðγττ; TττÞ ¼ γττð1 − λTÞ−4:
ð3:8Þ

The variational problem is modified from fixing the
boundary metric to fixing a combination of the boundary
metric and boundary stress tensor, gðγττ; TττÞ.

C. Jackiw-Teitelboim gravity at finite cutoff

Now we discuss the deformation derived in [2], which
was proposed to correspond to a finite Dirichlet cutoff in
AdS2. To show that mixed boundary conditions that infinity

2Further boundary terms—like the cosmological constant
counterterm—can also be added. Such λ-independent terms will
simply serve to modify our boundary conditions in the λ → 0
limit as discussed at the end of this subsection. In particular, this
means that (3.7) will remain true with T → T̃ ¼ T − α for
boundary term −

R
dτ

ffiffiffi
γ

p
α.
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correspond to Dirichlet conditions at finite cutoff, we will
eventually need to use the bulk equations of motion. Since
we will go on shell, for convenience we will consider a
deformation that is equivalent on shell,

Mλ ¼ −2λOT: ð3:9Þ

Because of the appearance of the operator O, we need to
generalize the above discussion to include the bulk dilaton.
We will add the term (3.9) perturbatively to the existing

action, which can be the boundary action found after
flowing with respect to the same deformation for some
amount. Our task is now to find the deformed metric,
dilaton, stress tensor, and OðλÞ such thatZ

dτ
ffiffiffiffiffiffiffiffi
γðλÞ

p �
1

2
TττðλÞδγττðλÞ þOðλÞδΦbðλÞ

�

¼
Z

dτ
ffiffiffi
γ

p �
1

2
Tττδγ

ττ þOδΦb

�
− 2δ

�Z
dτλ

ffiffiffi
γ

p
OT

�
;

ð3:10Þ

whereΦb refers to the boundary value of the bulk dilaton. It
is easily checked that

γττðλÞ ¼ γττð1þ 2λOÞ2; ΦbðλÞ ¼ Φb − 2λT;

TττðλÞ ¼ Tττð1þ 2λOÞ2; OðλÞ ¼ O
1þ 2λO

; ð3:11Þ

form a solution for the deformed quantities.
Note that the starting operator is the same as the

deformed one,

OT
ffiffiffi
γ

p ¼ OðλÞTðλÞ
ffiffiffiffiffiffiffiffi
γðλÞ

p
; ð3:12Þ

thus the above solutions are correct to all orders in λ. This
solution can also be found by analyzing a first order flow as
in [7].

1. Bulk analysis

To show the equivalence of (3.11) to Dirichlet boundary
conditions at a finite radial position, we need to relate the
quantities above to bulk gravitational variables and use the
equations of motion. For JT gravity, these variables are
the metric gμν, dilatonΦ, the trace of the extrinsic curvature
K (of the radial slice), and the normal derivative (to the
radial slice) ∂nΦ. Let us work in the Fefferman–Graham
gauge [13],

ds2 ¼ dr2

r2
þ r2γττðr; τÞdτ2: ð3:13Þ

The conformal boundary is at r → ∞. AdS2 boundary

conditions require limr→∞ γττðr; τÞ ¼ γð0Þττ ðτÞ. In vacuum
AdS3 we know that the Fefferman–Graham expansion

truncates at order 1=r4 [14]. Since JT gravity is a dimen-
sional reduction of Einstein gravity in AdS3, the expansion
also truncates at order 1=r4 in this case. The constraint

R ¼ −2 determines γð4Þττ in terms of γð0Þττ and γð2Þττ , and
we have

γττðr; τÞ ¼ γð0Þττ ðτÞ
�
1þ 1

2r2
γð2Þττ ðτÞ
γð0Þττ ðτÞ

�2

: ð3:14Þ

The dilaton can be written as

Φðr; τÞ ¼ r

�
Φð0ÞðτÞ þΦð1ÞðτÞ

r2

�
; ð3:15Þ

with ΦðiÞðτÞ determined in terms of γττ through the metric
equation of motion.
Here γð0Þττ is the field theory metric, andΦð0Þ is the source

for the operator dual to the dilaton. From the renormalized
on-shell action,

SE ¼ −
1

2κ2

Z
M
d2x

ffiffiffi
g

p
ΦðR − 2Þ − 1

κ2

Z
∂M

ΦðK − 1Þ;

ð3:16Þ

the stress tensor and operator O are obtained by taking
functional derivatives with respect to their sources, Φð0Þ ¼
limr→∞ Φ=r and γð0Þττ ¼ limr→∞ gττ=r2. Explicitly,

O ¼ 1ffiffiffiffiffiffiffi
γð0Þ

p δSE
δΦð0Þ ¼ − lim

r→∞

r2

κ2
ðK − 1Þ; ð3:17Þ

Tττ ¼ −
2ffiffiffiffiffiffiffi
γð0Þ

p δSE
δγð0Þττ

¼ − lim
r→∞

gττ
κ2r

ð1 − nr∂rÞΦ: ð3:18Þ

To take the limit for O, we first rewrite K by taking the
divergence of the normal vector nμ ¼ rδrμ. This leads to

O ¼ 1

κ2
γð2Þττ

γð0Þττ

; ð3:19Þ

while for the stress tensor Tττ, using (3.15), we find

Tττ ¼ −
2Φð1ÞðτÞγð0Þττ

κ2
: ð3:20Þ

2. Dirichlet boundary condition at finite radius

We can now find what boundary condition the −2λOT
deformation imposes on the gravitational quantities. The
quantities to be held fixed are given in the first line of
(3.11). Upon translating to their gravitational duals using
(3.19) and (3.20), we find that we want to keep the
following fixed:
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γττðλÞ ¼ γð0Þττ

�
1þ 2λ

κ2
γð2Þττ ðτÞ
γð0Þττ ðτÞ

�2

; ΦðλÞ ¼ Φð0Þ þ 4λ

κ2
Φð1Þ:

ð3:21Þ

One can also write down expressions for Tττ and O in the
deformed theory. Comparing (3.21) to the Fefferman–
Graham expansions (3.14) and (3.15) (upon performing
the usual rescaling of the dilaton to go back to bulk
variables [2,15]), we see that this particular boundary
condition corresponds to a Dirichlet boundary condition
at finite cutoff r ¼ rc, provided we identify

4λ

κ2
¼ 1

r2c
ð3:22Þ

with λ > 0. This is precisely the dictionary advocated
in [2].
What about the deformation written purely in terms of T

as in [2]? Naively, this only sets up Dirichlet boundary
conditions for the metric since the dilaton is not involved
in the deformation. But as we saw above, to show the
equivalence with a finite Dirichlet cutoff we had to go on
shell. Going on shell means the metric and dilaton are
mixed, so this form of the deformation will also correspond
to Dirichlet boundary conditions for the dilaton at some
finite radius. Much of the analysis of [2] was done in a
different gauge withΦð1Þ ¼ 0 but nontrivial radial lapse grr.
So the analysis above should be done in that gauge,
although the end result will be the same.

IV. SACHDEV-YE-KITAEV MODEL

It is natural to consider the application of the techniques
developed above to particular quantum-mechanical theo-
ries, like the harmonic oscillator or the hydrogen atom.
Here we will consider a different theory, the SYK model.
The undeformed SYK Hamiltonian is [16,17]

H ¼ iq=2
X
ij

Ji1���iqψ i1 � � �ψ iq ; ð4:1Þ

where Ji1���iq is drawn from a random Gaussian distribution
with zero mean, but variance

hJ2i1���iqi ¼
J2ðq − 1Þ!

Nq−1 : ð4:2Þ

The notation Ji1���iq is rather cumbersome, and so in what
follows we will abbreviate it with JA where A is a
multi-index.
We will consider the SYK model with a shift in the

Hamiltonian H − E0 for some constant E0. The SYK
model has a negative ground state energy, so we can tune
E0 to normalize the ground state energy to zero, which we
have been assuming in previous sections. A constant shift

has a trivial effect on the undeformed theory, however, once
we deform the Hamiltonian to a function of itself, this
choice becomes important and gives inequivalent deformed
theories.
We consider two ways of deforming the SYK model. We

can either disorder average then deform the Hamiltonian, or
vice versa. We begin by deforming the microscopic SYK
Hamiltonian and then disorder averaging it. For general
functions of the Hamiltonian it is not possible to integrate
over couplings in the disorder average. It can be done for
simple deformations like fðHÞ ¼ H þ λH2 and the 1d TT̄
deformation. The second situation amounts to first doing
the disorder average and then deforming it. In this case we
can define a Hamiltonian of the disorder averaged theory
and consider general deformations fðHÞ. While deforming
and then disorder averaging provides a microscopic picture
of the physics, we can treat many more deformations if we
disorder average and then deform, and we will see that the
physics of the two cases where we understand them is
similar.
The integral transforms of Sec. II can be applied to the

SYK model as long as we normalize the vacuum energy to
zero. Picking a ’t Hooft-like scaling, where λ ∼ N−1, we can
immediately see that the vacuum two-point function, which
scales as N0, will be unchanged. This is because the kernel
localizes to a delta function as λ → 0. In this case, since
the kernel is being multiplied by an object with no
N-dependence, scaling λ ∼ N−1 and taking N → ∞ is
sufficient to localize the kernel to a delta function. We
will corroborate this expectation below with explicit
computations of the vacuum two-point function obtained
from an effective action of collective fields.

A. Deforming before averaging:
quadratic deformation

In this section, we derive the effective action of the
deformed theory when we first deform and then dis-
order average. We will consider the deformation fðHÞ ¼
ðH − E0Þ þ λðH − E0Þ2, where E0 is some constant shift to
the undeformed theory. First, we compute the annealed
disorder average, which is obtained by treating the random
coupling JA as a scalar with a two-point function whose
nonzero part is given by (4.2). To get the disorder averaged
partition function we integrate over JA:

hZiJ ∼
Z

dJA exp

�
−

Nq−1

2J2ðq − 1Þ! J
2
A

�
ZðJAÞ: ð4:3Þ

The deformed Hamiltonian is

Hλ ¼
�X

A

JAψ
q
AðτÞ − E0

�
þ λ

�X
A
JAψ

q
AðτÞ − E0

�
2

:

ð4:4Þ
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Note that if multi-indices A and B have any index in
common, then ψ2q

AB ¼ 0 as the square of a Grassmann
variable is zero.
We are now ready to compute theG, Σ effective action of

this deformed theory. Just like the undeformed theory, this
is done by disorder averaging over the couplings, inserting
a resolution of identity involving the bilocal field Gðτ; τ0Þ,
and finally integrating out the fermionic field ψ . We drop
the constant factor −E0 þ λE2

0 in the action and omit the
explicit time dependence of the fermions to simplify
notation. The disorder averaged partition function then
reads,

hZiJ ¼
Z

Dψ
Y
A

dJA exp

�
−
1

2

X
i

Z
ψ i∂τψ i

−
X
B;C

�
1

2hJ2i δB;C þ λ

Z
ψ2q
BC

�
JBJC

− ð1 − 2λE0Þ
X
B

JB

Z
ψq
B

�
: ð4:5Þ

Just like the undeformed SYK model, at this stage we have
a Gaussian integral in the couplings JA. This is a conse-
quence of the H þ λH2 deformation being quadratic; the
integral is not Gaussian for more general deformations.
Unlike undeformed SYK, the determinant prefactor arising
from the Gaussian integral is not a constant. The prefactor
depends on ψ , so it needs to be exponentiated and included
in the action:

hZiJ ¼
Z

Dψ exp

�
−
1

2

X
i

Z
ψ i∂τψ i −

1

2
Tr logð1þ YÞ

þ 1

2
ð1 − 2λE0Þ2hJ2iTr½ð1þ YÞ−1X�

�
; ð4:6Þ

where

XAB ≔
Z

ψq
A

Z
ψq
B YAB ≔ 2λhJ2i

Z
ψ2q
AB: ð4:7Þ

One way to proceed is to expand logð1þ YÞ in powers of
Y, and ð1þ YÞ−1X in powers of YnX, then take the trace.

This gives two expansions with an infinite number of terms.
Each term is a product of fermionic fields, which can be
replaced with powers of the bilocal field Gλðτ; τ0Þ. The
result for the effective action is

I½Gλ;Σλ�
N

¼ − log Pfð∂τ −ΣλÞ þ
1

2

Z
dτdτ0Σλðτ; τ0ÞGλðτ; τ0Þ

þ 1

2

X∞
n¼2

ð−2λNJ2=qÞn
nN

Z
Gqðτ1; τ2Þ…Gqðτn; τ1Þ

−
1

2

J2ð1− 2λE0Þ2
q

X∞
n¼0

�
−
2λNJ2

q

�
n

×
Z

dτ1…dτnþ2Gqðτ1; τ2Þ…Gqðτnþ1; τnþ2Þ:

ð4:8Þ

We will now scale λ ∼ 1=N. Keeping λ order one will be
discussed momentarily. The two infinite sums have a
simple diagrammatic interpretation. Each term in each of
the sums is represented by a chain diagram containing n
links with each link containing q edges. In the first sum the
chain closes into a loop, in the other it does not. Since
λ ∼ 1=N, the first sum in (4.8) is subleading, whereas the
second remains finite.
The Schwinger–Dyson equations are obtained from the

deformed action by taking functional derivatives with
respect to G and Σ. The Σ equation is unchanged from
the undeformed theory and still arises from a geometric
sum of 1PI diagrams,

δðτÞ ¼ ∂τGðτÞ −
Z

dτ0Gðτ − τ0ÞΣðτ0Þ: ð4:9Þ

Diagrammatically, taking a functional derivative of the
action with respect to G to calculate the self-energy
removes a single propagator from each diagram in the
two infinite families of open and closed chain diagrams.
The resulting diagrams contributing at leading order are
depicted in Fig. 1.
Assuming translation invariance of Gðτ; τ0Þ, the second

of the infinite sums can be written as powers of
R
dτGqðτÞ

and resummed. The end result for the self-energy has a
perfectly well-behaved N → ∞ limit,

FIG. 1. Leading order diagrams that contribute to Σðτ; τ0Þ when λ ∼ 1=N. Unlabelled vertices are integrated over. Chains formed of
links are made of q vertices. Each additional link in the chain adds a factor of λN. The aqua blue dashed line indicates the disorder
average.
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Σðτ;τ0Þ ¼
�

1−2λE0

1þ 2λNJ2
q

R
dτ00Gqðτ00Þ

�
2

J2Gq−1ðτ;τ0Þ: ð4:10Þ

This equation is identical to the undeformed case, except
for a renormalization of the coupling. The solution G must
have the same functional form as G0 with a renormalized
J → JðλÞ. (There is a self-consistency relation since JðλÞ
depends onG, which depends on JðλÞ. We will address this
in Sec. IV C.) One can check, by plugging the ansatz
GðJτÞ ¼ G0ðJðλÞτÞ into the Schwinger–Dyson equations
and tuning E0 to the vacuum energy, that the only
consistent solution is JðλÞ ¼ J at zero temperature. So
the vacuum correlator is unchanged. At finite temperature
the solution will change.
The invariance of the vacuum two-point function was

explained at the beginning of this section from the point of
view of the integral transforms of Sec. II. Let us look at an
explicit example, the large-q vacuum two-point function of
SYK (τ > 0),

G0ðτÞ ¼
1

2

1

ð1þ J τÞ2=q ; J ≔
ffiffiffi
q

p
J

2
q−1
2

: ð4:11Þ

Applying the integral transform (2.6) gives the two-point
function,

GðτÞ ¼ 1

2

1

ð2J 2λτÞ1=q U
�
1

q
;
1

2
;
ð1þ J τÞ2
4λJ 2τ

�
; ð4:12Þ

where U is the confluent hypergeometric function of the
second kind. For λ ∼ N−1 and smaller, GðτÞ ¼ G0ðτÞ at
leading order. This agrees with what we found from the
effective action: the deformation has no effect on the two-
point function when λ ∼ N−1.
Interestingly, the above two-point function remains finite

when λ ∼Oð1Þ. This is not special to large q. As neither
the SYK correlation functions nor the integral transforms
have any explicit dependence on N, neither do the
deformed correlation functions. Keeping λ finite as
N → ∞ is especially interesting and in other contexts
corresponds to an M-theory limit (see e.g., [18] for some
field theory calculations in such a limit). These limits are
much harder to study than standard ’t Hooft type limits and
often require supersymmetry to compute certain observ-
ables, but in our case the integral transforms from Sec. II
can easily handle such a limit. It would be interesting to
reproduce these correlators from an effective action point of
view, the way we have done for λ ∼ N−1.

B. Deforming before averaging: 1d TT̄ deformation

More general deformations will introduce higher powers
of the disorder, rendering the disorder integral impossible
to perform. However, for the 1d TT̄ deformation we can
employ a trick. Call the starting Hamiltonian H0. The
deformed Hamiltonian and (Euclidean) Lagrangian are

HðλÞ ¼ 1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λðH0 − E0Þ

p
Þ; ð4:13Þ

LEðλÞ ¼ ψ i∂τψ i þ
1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λðH0 − E0Þ

p
Þ: ð4:14Þ

At this stage it is hard to do the disorder averaging sinceH0

appears inside the root. But we can linearize the appearance
ofH0 at the expense of introducing another field, which can
be interpreted as an einbein. This is similar to the Polyakov
trick for rewriting the Nambu–Goto action, and we have

SEðλÞ ¼
Z

dτe

�
e−1

1

2
ψ i∂τψ i −

1

8λ
ð1− e−1Þ2 þH0 −E0

�
:

ð4:15Þ

Integrating out e by picking the positive root (einbeins need
be positive) gives us the action in (4.13). The reason this
was possible is that the potential in (4.13) is a root of a
quadratic equation:

HðλÞ þH0 − E0 − 2λHðλÞ2 ¼ 0: ð4:16Þ

We can, therefore, write an action

SEðλÞ ¼
Z

dτ

�
1

2
ψ i∂τψ i þX − eðX −H0 þE0 − 2λX2Þ

�
;

ð4:17Þ

where we introduced a field X and a Lagrange multiplier e
enforcing the quadratic constraint, which will identify
X ¼ HðλÞ. For λ < 0, restricting to positive X picks out
the appropriate root of the quadratic constraint. Integrating
out X puts the action in the form (4.15) where we can
interpret e as an einbein. Notice that this action is exactly
our worldline gravity action found in [2] in static gauge.
Using this action, we can perform the disorder average

easily. Let us consider the SYK theory as our initial
Hamiltonian. The disorder averaged action is then

SEðλ; eÞ ¼
Z

dτ

�
ψ i∂τψ i −

e
8λ

ð1 − e−1Þ2 − eE0

�

−
N
2q

Z
dτdτ0J2eðτÞeðτ0ÞGðτ; τ0Þq: ð4:18Þ

The path integral over einbeins can be thought of as making
J dynamical, i.e., J2eðτÞeðτ0Þ → Jðτ; τ0Þ2. Notice that again
we need to scale λ → λ=N in order to have a ’t Hooft large
N limit. From here we can introduce the bilocal field Σ and
integrate out the fermions. The Schwinger–Dyson equa-
tions for G and Σ take the usual form, but now with J2

replaced by J2eðτÞeðτ0Þ. The e-equation of motion takes
the form
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e−2 − 1

8λ
−
J2

q

Z
dτeðτÞGðτ; τ0Þq − E0

N
¼ 0: ð4:19Þ

Since fðHÞ deformations do not break any symmetries of
the original theory, we will insist on translationally sym-
metric solutions. This means eðτÞ is independent of τ and
can be pulled out of the above integrals. As a result, the
solutions for G and Σ will remain the same, but now have a
renormalized J → Je, similar to what we found previously.
The only thing we need to know now is the integral of Gq,
which by dimensional analysis takes the form c=ðJeÞ for
some constant c. We, therefore, find

e−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λ

�
E0

N
þ cJ

q

�s
ð4:20Þ

as a solution to (4.19). Notice that when E0 is set to equal
the vacuum energy of the undeformed theory −cNJ=q, we
find e ¼ 1, so there is no change in the deformed correlator
G. This is consistent with the general argument in the
beginning of this section using the integral transform of
Sec. II. Note that we can again apply the integral transforms
[in this case (2.5)] and obtain results for the deformed two-
point function for λ ∼Oð1Þ.

C. Deforming after averaging

In this subsection, wewill consider deformations of SYK
after performing the disorder average. This is a slightly
unusual thing to do, but the physics of the resulting system
is similar to deforming first and then disorder averaging.
We start with the following undeformed action, where we
shift by a constant to accommodate the case of subtracting
the vacuum energy:

SE ¼
Z

dτ

�
1

2
ψ i∂τψ i

− iq
ðq − 1Þ!J2
2Nq−1

Z
dτ0 ψAðτÞψAðτ0Þ −

E0

2

�
; ð4:21Þ

where ψAðτÞ ¼ ψ iðτÞ � � �ψ iqðτÞ as before. We will return to
this factor of 1=2 in the E0 shift momentarily. Written in
this form, the Hamiltonian (generator of τ translations) is

H ¼ −iq
ðq − 1Þ!J2
2Nq−1

Z
dτ0ψAðτÞψAðτ0Þ −

E0

2
: ð4:22Þ

To keep a conventional large-N limit, we consider defor-
mations of the form

H → NfðH=NÞ: ð4:23Þ

It is straightforward to introduce the collective variables G
and Σ in the usual way, giving a deformed action

SE;λ ¼ N

�
− log Pfð∂τ − ΣÞ

þ 1

2

Z
dτ

�Z
dτ0Σðτ; τ0ÞGðτ; τ0Þ þ 2fðH=NÞ

��
;

ð4:24Þ

with

H ¼ −
J2N
2q

Z
dτ0 Gðτ; τ0Þq − E0

2
: ð4:25Þ

Now we understand the factor of 1=2 since if we tune E0 to
equal the vacuum energy of the undeformed theory, we see
that this Hamiltonian is bounded below by zero due to the
relation NJ2

q

R
dτGq

0 ¼ −E0 in the undeformed theory. The
energy defined this way differs by a factor of two from
computing −∂β logZ; this difference is unimportant.
The Schwinger–Dyson equations areZ
dτ0Gðτ; τ0ÞΣðτ0; τ00Þ − ∂τGðτ; τ00Þ ¼ −δðτ − τ00Þ; ð4:26Þ

Σðτ; τ0Þ − f0ðH=NÞJ2Gq−1ðτ; τ0Þ ¼ 0: ð4:27Þ

Solving the second equation for Σ and plugging into the
first equation, gives

J2f0ðH=NÞ
Z

dτ0Gðτ; τ0ÞGðτ0; τ00Þq−1 − ∂τGðτ; τ00Þ

¼ −δðτ − τ00Þ: ð4:28Þ

This equation seems rather difficult to solve because
of all the

R
Gq factors that can appear in f0ðH=NÞ, but

it is formally the same as the undeformed equations if we
identify

JðλÞ2 ¼ J2f0ðH=NÞ: ð4:29Þ

Our proposed solution to the Schwinger–Dyson
equations is

Gðτ; τ0Þ ¼ G0ðτ; τ0; JðλÞÞ; ð4:30Þ

wherewe take the undeformed correlator andmap J → JðλÞ.
Note that JðλÞ is given by the solution to (4.29), which is
smoothly connected to J. Equation (4.29) as written is a self-
consistency relation since JðλÞ depends on H, which
depends on G, which depends on JðλÞ, although we will
see below how it can be recast as an algebraic relation for
which we should expect solutions.
This equation can be simplified. With our ansatz for the

deformed two-point function (4.30), assuming zero temper-
ature, and using dimensional analysis fixes
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Z
dτGq

0ðτ; JðλÞÞ ¼
c

JðλÞ : ð4:31Þ

Note that c is some dimensionless constant, which depends
on q. Our equation to solve (4.29) for the renormalized JðλÞ
then becomes

JðλÞ2 ¼ J2f0
�
−

J2c
2qJðλÞ −

E0

2N

�
: ð4:32Þ

This is an algebraic relation for JðλÞ. Note that if we tune
E0 to the vacuum energy of the undeformed theory, then
the undeformed correlator—without any renormalization
of J—serves as a solution to the deformed equations of
motion. This is because the undeformed correlator satis-
fies N J2

q

R
dτGq

0 ¼ −E0.
Now that we know the general picture, let us consider

some examples where we can find the deformed correlators
explicitly.

1. An example: q = 2 SYK

Let us consider the 1d TT̄ deformation fðxÞ ¼
ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8λx
p Þ=ð4λÞ. We know already that replacing J

with JðλÞ is a solution to the deformed Schwinger–Dyson
equations, so the only thing left to do is find JðλÞ by solving
(4.32). To do so, we first need to calculate the constant of
proportionality c in (4.31). Our ansatz for the deformed
propagator is given in terms of the undeformed q ¼ 2
propagator,

GðτÞ ¼ G0ðτ; JðλÞÞ ¼ sgnðτÞ
Z

π

0

dθ
π
cos2 θe−2JðλÞjτj sin θ:

ð4:33Þ

To find c, we calculateZ
dτGqðτÞ ¼ −

∂τGðτÞjτ→0þ

JðλÞ2 ¼ 4

3πJðλÞ ð4:34Þ

giving c ¼ 4=3π. The first equality above follows from the
Schwinger–Dyson equations. The equation to solve for
JðλÞ is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λJ2

3πJðλÞ

s
¼ J2

JðλÞ2 ; ð4:35Þ

where we set E0 ¼ 0. There are four solutions, and JðλÞ is
fixed by demanding Jð0Þ ¼ J.
We can study the density of states to see what happens to

the IR and UV for both λ > 0 and λ < 0. The density of
states is simply the Wigner semicircle [19], but now with a
λ-dependent J:

ρðEÞ ¼ 1

JðλÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
E

2JðλÞ
�

2

s
: ð4:36Þ

The IR value is 1=JðλÞ, and the UVone is 2JðλÞ. It turns out
that for λ > 0, JðλÞ decreases as a function of λ, and so the
density of states becomes more and more peaked. The
deformed correlator will then approach its UV form. For
λ < 0, the situation is reversed. The density of states
becomes more spread and the correlator approaches its
IR form. The generalization to other values of q is
straightforward once c is known.

V. SCHWARZIAN THEORY

We can also consider the application of our formulas to
the Schwarzian limit of the SYK model. This is the case
where we understand the bulk dual, which is just JT gravity
in AdS2 with Dirichlet conditions for the dilaton and the
metric at the AdS boundary. As discussed in Sec. III, our
deformations are changing the boundary conditions of the
metric. The simplicity of the bulk theory on a disk topology
leads to the calculability of higher genus corrections and a
random matrix interpretation of the boundary theory [20].
As discussed in [21], there are two pieces of data needed
to determine the random matrix model. The first is the
symmetry class of matrices that one integrates over in the
integral, which is set by the bulk theory. In the case of JT
gravity on orientable surfaces, one has a gaussian unitary
ensemble-like matrix theory. Let us stick to this case for
simplicity. The other piece of data is the potential, which is
determined by the spectral curve, which in turn is deter-
mined by ρ0ðEÞ in ZðβÞ ¼ R

dEe−βEρ0ðEÞ, where ZðβÞ is
computed with a disk topology. Given the simple closed-
form expression (2.2) for the change in ρ0ðEÞ, we can
compute the new spectral curve, which determines (implic-
itly) the potential of the matrix integral. As the symmetry
class we integrate over remains fixed, we have all the data
needed for the new matrix model. In certain cases we can
even compute the new partition function. For example,
consider the 1d TT̄ deformation. The JT and super-JT
theory have the following disk partition function and ρ0ðEÞ:

ZJTðβÞ ¼
1

4
ffiffiffi
π

p
β3=2

eπ
2=β; ρ0ðEÞ ¼

sinhð2π ffiffiffiffi
E

p Þ
4π2

ð5:1Þ

ZSJT ¼
ffiffiffiffiffiffi
2

πβ

s
eπ

2=β; ρ0ðEÞ ¼
ffiffiffi
2

p
coshð2π ffiffiffiffi

E
p Þ

π
ffiffiffiffi
E

p ð5:2Þ

where we used the normalization of [21]. Let us denote
these partition functions collectively as ZnðβÞ ¼ an

βn e
bn=β,

where n ¼ 3=2; 1=2 refer to the JT and super-JT partition
functions, respectively. Upon deformation, using the kernel
(A2), we get
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ZnðβÞλ ¼ an

�
c2

β2 þ 8bnλ

�2nþ1
4

×
β exp ð− c1β

4λ ÞKnþ1=2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2β2þc28bnλ

p
4λ

�
ffiffiffiffiffiffiffiffiffiffiffi
−2πλ

p : ð5:3Þ

The density of states for n ¼ 3=2, which corresponds to the
case of JT gravity, becomes

ρλðEÞ ¼
1

4π2
ðc1 − 4EλÞ sinh

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − ðc1 − 4λEÞ2

8λ

r �
:

ð5:4Þ

While the computation of these partition functions is not
strictly necessary for determining the potential of the new
matrix integral, which is just a function of ρλðEÞ, it suggests
that the bulk path integrals can be carried out and checked
against the random matrix predictions.
We can also transform what is known as the “trumpet”

partition function [20], or the partition function of the
γ-Schwarzian [22]. This is the path integral of a Schwarzian
action over diffðS1Þ=Uð1Þ. The partition function is similar
to the JT supergravity partition function in that the prefactor
is β−1=2 instead of β−3=2 [23]. We get the partition function
Z1=2, but now with an ¼ 1=

ffiffiffiffiffiffi
4π

p
and bn ¼ −γ2=4, instead

of the super-JT values.
Another theory with a matrix integral interpretation is the

ð2; pÞ minimal string theory, which has

ρ0ðEÞ ¼
1

4π2
sinh

�
p
2
arccosh

�
1þ 8π2E

p2

��
: ð5:5Þ

This gives the density of eigenvalues of the JT theory
as p → ∞ at fixed E. Using (2.2), one can engineer a
deformation fðHÞ that turns the spectral curve for JT
gravity into that of the ð2; pÞ minimal string theory. The
theories, however, are different: while the fðHÞ deforma-
tion is purely a change of boundary conditions of JT
gravity, the minimal string theory has different bulk degrees
of freedom.

A. General deformations and chaos

Another interesting aspect of the Schwarzian theory to
consider is its maximally chaotic behavior. We expect that
the Lyapunov exponent does not change since the deformed
theory still has the SLð2;RÞ symmetries and no enhanced
symmetry. This means that the pole structure of the
momentum space correlator of fluctuations around the
saddle point, in particular the poles at frequencies �1,
remains the same. The pole structure is directly related to
the Lyapunov exponent through an analytic continuation,
so the Lyapunov exponent should not change.

Let us now verify this by explicit computation. Along the
way we will see that we are able to write down an action for
the deformed Schwarzian theory for an arbitrary fðHÞ
deformation to the Hamiltonian.
Consider the Hamiltonian of the Schwarzian theory,

H ¼ p2
2q

2
2

2C
þ C

2
q22 þ p1q2; ð5:6Þ

where we introduced two momenta p1, p2 as was done in
[2] and C ¼ Φr=ð8πGÞ. Let us now consider a general
deformation H → fðHÞ with invertible f. We would now
like to Legendre transform back to a Lagrangian, find the
saddle points, and compute the two-point function of the
fluctuations around the saddle point. For the Legendre
transformation we will also need _f to be invertible. Due to
the linear appearance of p1 in the undeformed Hamiltonian,
we can invert Hamilton’s equations to solve for pi in terms
of qi, q0i for an arbitrary deformation fðHÞ up to the
restrictions mentioned above. The deformed Euclidean
Lagrangian takes the form

LEðλÞ ¼
C
2

eϕ

τ0
ðϕ02 − τ02Þ þ fð _f−1ðe−ϕτ0ÞÞ

− e−ϕτ0 _f−1ðe−ϕτ0Þ; ð5:7Þ

where we introduced q1 ¼ τ and q2 ¼ eϕ and performed
the required analytic continuation to Euclidean signature as
in [2]. Here _fðxÞ ¼ ∂xfðxÞ and 0 ¼ ∂u. This action is the
sum of the original action3 and a piece involving the
deformation.
It is not hard to find saddle points of this action. The only

nontrivial saddle point is the one for ϕ since τðuÞ ¼ u
should remain a saddle in the deformed theory. We solve
the ϕ equation of motion by considering an ansatz eϕ ¼ b,
which leaves us with the constraint

b2C − 2 _f−1ð1=bÞ ¼ 0: ð5:8Þ

Since fðHÞ ¼ H þ λkH2 þ � � � for small λ and some con-
stant k, one is always guaranteed a solution that connects
smoothly to the undeformed solution, b ¼ 1 − Ckλþ � � �.
Let us expand the action (5.7) around this solution by
writing τðuÞ ¼ uþ εðuÞ, eϕ ¼ beηðuÞ with ε; η 2π-periodic.
Ignoring the constant piece, we find

SEðλÞ ¼
C

2GfðbÞ
Z

2π

0

duð−ε0ðuÞ2 þ 2ε0ðuÞηðuÞ

− ηðuÞ2 þ bGfðbÞðη0ðuÞ2 − ηðuÞ2ÞÞ ð5:9Þ

3As λ → 0, fðHÞ ≈H þ λkH2 þ � � �, for which the second and
third term in (5.7) become −ðe−ϕτ0 − 1Þ2=ð4kλÞ. This enforces
the constraint eϕ ¼ τ0 at λ ¼ 0, which makes the first term equal
to the undeformed Schwarzian.
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with GfðbÞ ¼ Cb2f̈ð _f−1ð1=bÞÞ. We can now easily extract
the ε propagator in momentum space in the usual way:

hεðuÞεð0Þi ¼ 1

2πCb

X
n≠0;�1

1 − bGfðbÞðn2 − 1Þ
n2ðn2 − 1Þ einu:

ð5:10Þ

The poles at n ¼ 0;�1 from the undeformed case are still
present. These poles come from the unbroken SLð2;RÞ
gauge symmetry, and so we should not sum over n ¼ 0;�1.
The sum above can be evaluated by writing it as a contour
integral and deforming the contour so that it only encircles
the poles at n ¼ 0;�1. This leads to

hεðuÞεð0Þi ¼ 1

2πCb

�
1 − ð1þ bGfðbÞÞ

�
π2

3
− πuþ u2

2

�

þ
�
5

2
þ 2bGfðbÞ

�
cos uþ ðu − πÞ sin u

�
ð5:11Þ

for 0 < u < 2π, which is then periodically repeated. At late
Lorentzian times, this has a piece that grows as e2πt=β. Thus,
it is expected that for generic SLð2;RÞ invariant couplings
to matter this mode will lead to a four-point matter OTOC,
which is maximally chaotic. For example, consider the
coupling often used in the case of the undeformed

Schwarzian, which gives an on-shell action Son-shell ∼R
dudu0½ τ0ðuÞτ0ðu0Þ

ðτðuÞ−τðu0ÞÞ2�
ΔχðuÞχðu0Þ for a source χ of an operator

of dimension Δ. Then, by the usual procedure (see e.g.
[24]), the matter four-point function is given in terms
of the ε two-point function. Analytically continuing and
going to late time shows that the Lyapunov exponent is
unchanged while the scrambling time changes according
to GfðbÞ.
The Lyapunov exponent was found to be unchanged

under the 1d TT̄ deformation in [2] and the 2d TT̄
deformation in [25].
Let us make one final remark. As discussed already,

the action (5.7) breaks into two pieces, with the first term
being the Schwarzian action. It is tempting to interpret
the rest of the expression as a coupling to a form of 1d
gravity. For the 1d TT̄ deformation, upon replacing eϕ with
e−1τ0, we recover the worldline gravity theory of [2] in
static gauge. The form (5.7) may provide a clue to more
general worldline gravity definitions for more general
deformations.

VI. DISCUSSION

In this section we would like to discuss some further
potential applications and speculations.

A. Worldline gravity picture for correlators

In [2], we proposed a formulation of the 1d TT̄ defor-
mation (3.10) in terms of worldline gravity. By coupling the
undeformed theory to a theory of one-dimensional gravity
and performing the path integral over all fields, we showed
that the thermal partition function is precisely reproduced.
This is analogous to the description of the TT̄ deformation
of two-dimensional theories as coupling to JT gravity or 2d
non-critical string theory [26–28].
How about correlation functions? In this paper we have

given integral transform expressions for general correlation
functions, so it is natural to try to generalize the worldline
gravity picture to capture correlation functions as well. In
fact, the integrals over the kernels that transform the
correlation functions look similar to vertex operator inte-
grals over the world sheet in string theory, except in this
case they would come with a measure for the integration
provided by the kernel. So for a thermal two-point function
we would want something likeZ

DeDXDΦ
VolðDiffÞ e

−S½e;X;λ�−S0½e;Φ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gravitational path integral

Z
edτ0Kðτ; τ0ÞOðτ0ÞOð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vertex op integral over world graph

:

ð6:1Þ

This would also delocalize the operators an amount set by λ,
fitting with a gravitational interpretation of the theory. But
something like this does not immediately follow from our
integral transforms since the kernels are integrated against
the correlator itself, not the operators. This means that
part of the path integral—the part over the fields Φ of the
original theory—needs to be performed before the kernel
can be integrated over. A more involved procedure,
potentially by dressing the operators of the undeformed
theory with the operator X of the gravitational theory,
seems required.
Another way to proceed is as follows. Recall that the 1d

gravity action is given as

S ¼ −
1

8λ

Z
β0

0

dτeðe−1 _X − 1Þ2: ð6:2Þ

Instead of taking periodic boundary conditions on X, as is
necessary for the thermal partition function, one could
consider Dirichlet boundary conditions Xð0Þ ¼ X1 and
Xðβ0Þ ¼ X2. The closed worldline thus becomes an open
one with “boundary” states jX1i and jX2i at its ends. This is
similar to the D-brane boundary condition proposed for TT̄
deformed 2d conformal field theory (CFTs) in [28]. The
path integral we then wish to compute is a transition
amplitude:

GðX1; X2Þ ¼
Z

Xðβ0Þ¼X2

Xð0Þ¼X1

DeDXDΦ
VolðDiffÞ e

−S½e;X;λ�−S0½e;Φ�: ð6:3Þ
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The explicit computation is analogous to the one presented
in [2] and can be shown to not quite yield the correct
integral transform we presented in Sec. II. Furthermore,
taking the λ → 0 limit does not yield an observable in the
undeformed theory, even though in the deformed theory
(i.e., the worldline) it is a perfectly well-defined observable.
Finally, the fieldsΦ of the initial theory have not made their
appearance in G.
To interpret our results in Sec. II in terms of a transition

amplitude, we therefore need to alter the path integral (6.3).
The operator insertions are straightforward to deal with; the
tricky part is to change the integral transform. To see how it
should be changed, it is convenient to Fourier transform the
integral transform (2.5) for the correlator G to momentum
space. It can then be seen that the integral transform can be
obtained from the transition amplitude (6.3) by certain
insertions of momentum p. This looks like an unnatural
observable from the worldline perspective and was engi-
neered to give the answer we wanted. We leave a detailed
study of correlation functions from the worldline gravity
perspective to future work.

1. Coupling to other 1d gravities

In the above and [2], we considered couplings of the
original quantum mechanics to a worldline like (A3). One
might wonder whether there exist other couplings to one-
dimensional gravity that could also be interpreted as a
deformation of the form H → fðHÞ. One obvious candi-
date is a covariant version of the Schwarzian theory, or its
cousin the γ-Schwarzian. For the usual Schwarzian theory,
there does not seem to be a clean interpretation in terms of
H → fðHÞ since it introduces additional prefactors to the
Boltzmann weights. One could interpret these additional
prefactors as changes in the energy eigenstates, hence
bringing us outside the deformations studied here. For
the γ-Schwarzian with the periodicity of the Schwarzian
field fixed to one (or equivalently setting b ¼ 1 in the
trumpet geometry), there are no such additional prefactors,
and its coupling to the initial quantum mechanics can be
interpreted as a deformation sending the original energies E
to

ffiffiffiffi
E

p
.

2. Coupling multiple systems

An interesting application of the more general fðH;QiÞ
deformations discussed in Sec. I, occurs in the case where
the additional charges Qi are Hamiltonians of independent
systems. For example, take n decoupled systems with
Hamiltonians H1;…; Hn. The Hamiltonian of the full
system is H1 þH2 þ � � � þHn. Consider a deformation
to this Hamiltonian of the form H → fðHiÞ. This can
introduce couplings between the independent systems,
although interestingly we still have n conserved charges
corresponding to the original Hamiltonians. A simple
example is n ¼ 2 with fðH1; H2Þ ¼ H1 þH2 þ λH1H2.

In a theory of fermions like SYK, the interaction term will
not introduce higher derivatives. It would be interesting to
explore applications of such couplings, whereby the argu-
ments in this paper the observables are easily calculable. A
natural setup is the context of spin chains, where recent
work has focused on the two-dimensional TT̄ deformation
to the spin chain [29,30].
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APPENDIX A: DEFORMATIONS WITH
EXPLICIT KERNELS

In this appendix we give a few examples for which one
can find explicit kernels Kfðβ; β0Þ. For instance, we can
generalize the 1d TT̄ deformation to

fðHÞ ¼ 1

4λ
ðc1ðλÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðλÞ − 8λH

p
Þ; ðA1Þ

with ciðλÞ arbitrary functions of λ for which the kernel
becomes

Kfðβ; β0Þ ¼
β

β03=2
ffiffiffiffiffiffiffiffiffiffiffi
−8πλ

p

× exp

�ðβ2 − 2c1ðλÞββ0 þ c2ðλÞβ02Þ
8β0λ

�
: ðA2Þ

Here λ < 0. The contour C is again running from 0 to ∞.
These types of deformations arise, for example, when
considering general dilaton gravities at finite cutoff or
the one-dimensional analogue of the Λ2-flow, the Λ1-flow
for which c2 ¼ −1 and c1 set by the choice of counterterm
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action (although the dS2 flow is for λ > 0) [2,31]. For
general ci, this kernel does not have a well-defined limit as
λ → 0. Furthermore, convergence of the integral transform
depends on the sign of c2 (in particular, for ordinary Zðβ0Þ
we need c2 > 0 to have exponential suppression at large
β0). In the cases where the kernel is well defined, it can be
given a worldline gravity interpretation. In particular, the
deformation above leads to a thermal partition function that
can be reproduced by coupling the original theory to a
theory of 1d gravity given by the unit winding sector of

S ¼ −
1

8λ

Z
β0

0

dτeðe−1 _X2 − 2c1 _X þ c2eÞ: ðA3Þ

The explicit steps are exactly analogous to [2].
The inverse of the above deformation can also be found

straightforwardly and gives the kernel

Kfðβ; β0Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
8πλβ

p exp

�
−
β02 − 2c1ðλÞββ0 þ c2ðλÞβ2

8λβ

�
:

ðA4Þ

There are other cases where explicit kernels exist, but it
is not our intention to provide an exhaustive list. A simple
family consists of the deformations fðHÞ ¼ H þ λHn with
n a positive integer. These kernels are defined using a
Fourier transform of e−βfðEÞ and give sums of hyper-
geometric functions. The partition function is obtained
via the inverse Fourier transform, which requires integrat-
ing the undeformed partition function over imaginary
temperatures.
Further explicit kernels can be generated by iteration;

given functions fiðEÞ with known kernels Kfi , one can
carry out integral transforms multiple times to treat defor-
mations of the form f1ðf2ð…fnðEÞÞÞ.

APPENDIX B: NUMERICAL IMPLEMENTATION
OF INTEGRAL TRANSFORMS

In this section we will give a simple numerical appli-
cation of the integral transforms discussed in Sec. II. Say
we have a kernel defined as

e−βfðEÞ ¼
Z

∞

−∞
dβ0e−iβ0EKfðβ; β0Þ; ðB1Þ

so that we can get Kf using a Fourier tranform

Kfðβ; β0Þ ¼
Z

∞

−∞

dE
2π

eiβ
0Ee−βfðEÞ: ðB2Þ

Let us consider the deformation fðHÞ ¼ H þ λðH2 þH4Þ,
for which we do not have a closed-form expression for the
kernel. Numerically computing the kernel gives us Fig. 2.
The partition function of the deformed theory is then

ZλðβÞ ¼
Z

∞−iε

−∞−iε
dβ0Kfðβ; β0ÞZðiβ0Þ; ðB3Þ

with ε > 0 added for convergence. The exact deformed
partition function is given by

ZλðβÞ ¼
X
E

e−βfðEÞ: ðB4Þ

The two are compared in Fig. 3.

APPENDIX C: SYMMETRIES

An important feature of the fðHÞ deformations is that all
conserved charges in the original theory remain conserved
in the deformed theory [2]. Another interesting possibility
to consider is that of enhanced symmetry in the deformed
theory. For invertible fðHÞ, this is not possible because we
can apply our argument that all charges are preserved in the
deformed theory to the deformation f−1ðHÞ.

FIG. 2. Numerically computed kernel Kðβ; β0Þ for the defor-
mation fðHÞ ¼ H þ λðH2 þH4Þ for β ¼ 1 and λ ¼ 0.5.

FIG. 3. Solid orange line: The undeformed partition function
for the simple harmonic oscillator (ω ¼ 1). Solid aqua blue line:
Truncated sum (to 40 terms) of the partition function for the
deformed simple harmonic oscillator for the deformation fðHÞ ¼
H þ λðH2 þH4Þ with λ ¼ 0.5. Dots: Numerically computed
deformed partition function through the integral transform.
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We can also discuss the possibility of spontaneous
symmetry breaking (e.g. in large-N systems). Picking a
strictly monotonic fðHÞ means the symmetry spontane-
ously breaks in the deformed theory, if and only if, it
spontaneously breaks in the undeformed theory. In par-
ticular, the symmetry is not broken if Qjψi ¼ 0 for charge
operator Q and ground state jψi. Since we diagonalize our
deformed system by the same set of eigenstates and pick a
strictly monotonic fðHÞ, the vacuum of the deformed
theory is exactly the vacuum of the undeformed theory,
and it will again be annihilated by the charge operator Q.
The converse can be proven in the same way: take

Qjψi ¼ 0 in the deformed theory, consider the deformation
f−1ðHÞ, and apply the argument from before. In some
instances the conserved charge of the deformed theory may
be written slightly differently. For example, the deformed
Hamiltonian or deformed supercharges are not simply the
H and Qi of the original theory, but in any such case they
can still be written as some function of the charges of the
original theory, so the argument above again applies.
The argument above tells us that we should expect

replica symmetry to be preserved in the deformed SYK
models considered in Sec. IV since it appears to be
preserved in the original SYK model [32–39].
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