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Holography has allowed the exact solution of a small number of largeNc gauge theories. Among these is
anN ¼ 2 gauge theory of quarks interacting withN ¼ 4 gauge fields. The temperature chemical potential
phase diagram for this theory in the presence of a magnetic field is exactly known and shows first and
second order chiral symmetry restoration transitions and a critical point. Here we extend this phase diagram
to imaginary chemical potential to seek structure at small real μ and imaginary μ that help to reconstruct the
large real μ phase structure. We also explore a phenomenologically deformed version of the theory where
the critical point can be moved into the imaginary chemical potential plane. In particular, we observe that
when the transition is second order in these theories, there are naturally two distinct transitions—one for the
onset of density and one for chiral symmetry restoration. In addition, the phase diagram has boundaries of
regions where metastable vacua exist and these boundaries, as well as the phase boundaries, converge at the
critical point. These observations may point to techniques for the study of the QCD critical point either on
the lattice or using heavy ion collision data.
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I. INTRODUCTION

QCD displays a crossover phase transition at finite
temperature (which we will represent by a second order
transition in our massless theory), but it is widely assumed
that the transition with chemical potential is first order.
A critical end point should link the change in transition
order [1]. The position of that critical point is a matter of
considerable speculation but difficult to identify since the
physics is nonperturbative and lattice Monte Carlo tech-
niques are ineffective at large chemical potential ([2] is a
review of attempts to move to finite μ on the lattice).
Using the AdS/CFT correspondence [3,4], a number

of exact solutions of supersymmetric gauge theories have
been found. Solutions also exist for less symmetric,
deformed versions of those theories. Among these is an
N ¼ 2 super Yang Mills theory of a small number of
quarks interacting with N ¼ 4 gauge fields [5]. For the
particular case of introducing a baryon number magnetic
field [6], which breaks the supersymmetry and conformal
symmetry, the phase diagram is precisely known [7] (see
the right-hand side, real chemical potential, μR, part of
Fig 1). At low temperature, T, and density, the preferred

phase is characterized by a chiral symmetry breaking
quark condensate (formally a breaking of Uð1ÞA since
Yukawa terms with the adjoint scalars break the SU(NfÞA
to Uð1ÞA—that Uð1ÞA is a good symmetry at large Nc).
The model does not have confinement. However, it is

possible in QCD that confinement is a property of the pure
glue theory below the IR mass of the quarks induced by
chiral symmetry breaking. Then the chiral transition is the
key dynamics as in the solved model.
In the holographic model, we study the temperature

transition is first order while the transition with chemical
potential is continuous (in fact, it splits into two
continuous transitions one at which the mesons of the
theory melt [8] and density switches on and a second at
which chiral symmetry is restored). There are critical
points for each transition. The theory, though distinct in
detail from QCD, at least has some of the generic
features of interest.
In this paper, we want to take this theory and ask how

clearly, if at all, can we identify the position of the critical
point from the study of the phase diagram at imaginary
chemical potential, μI, low values of real chemical poten-
tial, μR, or from isolated data points as if from heavy ion
collision data. The hope is that by asking these questions in
a solved theory we might generate new ideas that might
apply to QCD.
Our first job is to extend the phase diagram of the theory

to the μI − T plane. We will focus on the massless quark
theory so that second order lines are precise.
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A previous analysis [9] of the D3/D7 system (without a
magnetic field) has concentrated on the Roberge-Weiss
transitions [10] of such theories (see also the holographic
work in [11–13] and most recently [14]). Here the key
physics is that a spurious Uð1ÞB transformation with
parameter α ¼ μIx can remove the chemical potential from
the action. The quark fields are rotated by eiα though so
baryonic operators have a discontinuity in their boundary
conditions around the thermal circle. In the case where the
resulting phase difference is a multiple of 2πT=Nc (with Nc
the number of colors), a gauge transformation that differs
around the thermal circle by an element of the center of the
group can be used to remove μI completely. The μI ¼ 0 and
μI ¼ 2πT=Nc theories are therefore identical. The result is
that there must be first order transitions at

μI=T ¼ ð2kþ 1Þπ=Nc; k ¼ 0; 1; 2.… ð1Þ

At very large Nc, these become very dense and begin
essentially at μI ¼ 0. Our hope here though is that at lower
Nc near, for example, Nc ¼ 3, they become less dense and
pushed out to large μI so they can be neglected.
Nevertheless, we hope that Nc ¼ 3 is close enough to
large Nc that aspects of our analysis remain useful. In
particular, in Fig. 1, the first transition occurs on the line

λ1=4T ¼ Ncλ
1=2

π

μ

λ1=4
: ð2Þ

We have plotted the transition line for Ncλ
1=2 ¼ 10π; 5π,

and 3π in Fig. 1 and for Ncλ
1=2 ≤ 5π all the physics we will

use is present. This is still strong coupling.
In practice, we just concentrate on the role of μI in the

Dirac Born Infeld (DBI) action for the probe branes in
Schwarzschild AdS5 describing the quarks. The result is
shown on the left in Fig. 1—the first order transition
extends a little way into the μI piece of the μ − T plane
before the theory becomes unstable. We have checked that
the transition line is linear in μ2 across the μ ¼ 0 axis as one
would expect. Instabilities exist at μI to the left or above the
red dotted lines in Fig. 1 as we will discuss. Again, if
Ncλ

1=2 > 5π, then the Roberge-Weiss transition occurs
before any of the instabilities set in and this may indicate
that this is the smallest value of Ncλ

1=2 compatible with the
large Nc analysis—this limit is sufficient for our purposes.
As shown, at this stage, there is little to be deduced for the
real chemical potential, μR, region.
The theory, however, contains more information than

just the ground state. We can find all turning points of the
effective potential and it is interesting to track these and
show in which regions of the parameter space there
are metastable vacua (also sometimes called spinoidal
regions—e.g., in [15,16]). The metastable states exist in
a band around the first order transition. This is shown in
Fig. 2—for the moment the reader should just associate the

shaded regions with the presence of metastable vacua. On
the outer edges of this band, the peak in the effective
potential between the true vacuum and the false vacuum
merges with the false vacuum (there is some structure to

FIG. 2. The phase diagram of the N ¼ 2 theory with B field
from Fig. 1 but now in addition showing regions with metastable
vacua. In the orange shaded region, the chirally symmetric
vacuum is metastable. In the red region, the chirally broken
vacuum with zero density is metastable. There is also a small gray
region where a chirally broken, dense state is metastable which is
addressed carefully in Sec. III. The boundaries of the metastable
regions and the transition lines themselves converge close to the
region with the critical points—the shaded region “points” to the
critical point region.

FIG. 1. The phase diagram of theN ¼ 2 theory with a magnetic
field. T and μ here are expressed in units of the magnetic field

ffiffiffiffi
B

p
.

The positive μ axis is real μR, while negative μ corresponds to
imaginary μI values. The blue line is the chiral restoration
transition (solid is first order, dashed second order); the purple
line is the second order transition associated with the onset of
density. The horizontal red dashed line shows where the chirally
broken vacuum ceases to be a turning point of the effective
potential—in the imaginary μI plane above this line, the effective
potential is unbounded. The curved red dashed line shows where
vacua with density become unstable—to the left in the imaginary
μI plane there are again instabilities. The dotted lines show the
positions of the Roberge-Weiss transition forNcλ

1=2 ¼ 10π (blue),
5π (orange), and 3π (green).
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this boundary in this model that we will elaborate on below)
as the metastable vacuum disappears. These boundaries,
which are distinct from the first order transition line,
smoothly become the second order transition line(s) at the
critical points. There are therefore actually three lines we can
draw which must converge at, or near, the critical point. If
one can identify these lines at finite μI or at low μR, as one
can here, then extrapolation provides a sensible guess to the
position of the critical point (one could reasonably estimate
the T, μ values at the critical point at the 10% level).
Having just a single theory, of course, makes it hard to

learn generic lessons but equally fully solvable models are
scarce. Previously [17], we applied some “bottom-up”
parameters to this model that allow us to move the position
of the critical point and even change the order of the phase
transitions. An example, that we will use here, is a
parameter in the black hole emblackening factor which
distorts the horizon from a sphere to an ellipse. While this is
not a full solution of the supergravity equations, it does at
least encode the breaking of the symmetry between the
directions parallel and perpendicular to the D7 branes so
may be indicative of the behavior of a backreacted D3/D7
solution. The parameter can be used to move the chiral
symmetry breaking critical point toward μR ¼ 0, and we
show here it can even push it through the axis into the μI
plane leaving the pure temperature transition second order.
We repeat our study in some of these cases to show how
generic our conclusions are and to display some other
possible structures.
In our final section, wewill try to draw lessons on possible

structures in both generic phase diagrams and for QCD. We
speculate as to whether regions of the QCD phase diagram
accessible to computation on the lattice might contain
metastable vacua, in which case the boundaries of these
regions could be used to point to the critical point. Also, the
second order transition line may separate in the μI plane into
several transitions, including one for the onset of density and
another for chiral symmetry restoration—these two lines
might point to the critical point. In practice, these transitions
will be blurred into the crossover transition though and are
likely very hard to spot even if they exist.
Heavy ion collision data might also be able to identify

regions of the phase diagram with metastable vacua. In
such regions, there might be events in which the vacuum
becomes caught for a period in the metastable state. It is
possible that such states will hadronize differently and form
an identifiably distinct set of events indicating that the
theory is in a region with metastable vacua. This again
might help distinguish boundaries of the regions with
metastable vacua. See [18] for a recent summary of heavy
ion collision searches for the QCD critical point.

II. THE HOLOGRAPHIC DESCRIPTION

Using D7 brane probes [5] to introduce quarks to the
basic D3 brane AdS/CFT correspondence is now a

well-established technique. At zero temperature, we use
an AdS5 × S5 geometry with coordinates

ds2 ¼ r2

R2
dx24 þ

R2

r2
ðdρ2 þ ρ2dΩ2

3 þ dL2 þ L2dΩ2
1Þ; ð3Þ

where we have split the coordinates into the x3þ1 of the
gauge theory, the ρ and Ω3 which will be on the D7 brane
world volume and two directions transverse to the D7, L;ϕ.
The radial coordinate, r2 ¼ ρ2 þ L2, corresponds to the
energy scale of the gauge theory and radius of the space
is R4 ¼ 4πg2uvNcα

02.
We will introduce a D7 probe brane into the geometry to

include quarks—the probe approximation is equivalent to
working in a quenched approximation. This system has a
Uð1ÞA axial symmetry on the quarks, corresponding to
rotations in the angle ϕ, which will be broken by the
formation of a quark condensate.
We seek D7 embedding functions LðρÞ at some fixed ϕ.

The Dirac-Born-Infeld action is

SD7 ¼ −NfT7

Z
d8ξeϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðP½G�ab þ 2πα0FabÞ

p
¼ −NfT7

Z
d4xdρ ρ3β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρLÞ2

q
; ð4Þ

where T7 ¼ 1=ð2πÞ7α04 and T7 ¼ 2π2T7=gs after integrat-
ing over the 3-sphere on the D7. The factor of β appears
when a magnetic field is introduced through, e.g.,
F12 ¼ B=2πα0 [6],

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2R4

ðρ2 þ L2Þ2

s
: ð5Þ

Note that it enters as an effective dilaton term, although its
origin is in the DBI action.
The equation of motion for the embedding function is

therefore

∂ρ

2
64 βρ3∂ρLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∂ρLÞ2
q

3
75 − 2Lρ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρLÞ2

q ∂β
∂r2 ¼ 0: ð6Þ

The UV asymptotic of this equation has solutions of the
form

L ¼ mþ c
ρ2

þ � � � ; ð7Þ

where we interpret m as the quark mass (mq ¼ m=2πα0)
and c is proportional to the quark condensate.
There is always a solution L ¼ 0 which corresponds

to a massless quark with zero quark condensate (c ¼ 0).
However, for forms of β such as that in (5) which grow near

LOW μ AND IMAGINARY μ SIGNALS OF A … PHYS. REV. D 102, 046018 (2020)

046018-3



the origin, there are symmetry breaking solutions that have
m ¼ 0 in the UV but bend off axis (at a particular,
symmetry breaking, value of ϕ) to end on the L axis with
L0ð0Þ ¼ 0. These “Minkowski” embeddings are the mini-
mum of the effective potential (computed by evaluating
minus the action on the solution). The L ¼ 0 embedding is
a local maximum of the potential.
Temperature can be included in the theory by using the

AdS-Schwarzschild black hole metric as proposed by
Witten [4]. The metric is

ds2 ¼ −
KðrÞ
R2

dt2 þ R2

KðrÞ dr
2 þ r2

R2
dx⃗23 þ R2dΩ2

5; ð8Þ

KðrÞ ¼ r2 −
r4H
r2

; rH ≔ πR2T: ð9Þ

rH is a dimension one parameter identified with temper-
ature T.
It is helpful to make the coordinate transformation [19]

rdr

ðr4 − r4HÞ1=2
≡ dw

w
ð10Þ

2w2 ¼ r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − r4H

q
; ð11Þ

with
ffiffiffi
2

p
wH ¼ rH. The metric becomes

ds2 ¼ w2

R2
ð−gtdt2 þ gxdx⃗2Þ

þ R2

w2
ðdρ2 þ ρ2dΩ2

3 þ dL2 þ L2dΩ2
1Þ; ð12Þ

where

gt ¼
ðw4 − w4

HÞ2
w4ðw4 þ w4

HÞ
; gx ¼

w4 þ w4
H

w4
; ð13Þ

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ L2

q
; ρ ¼ w sin θ; L ¼ w cos θ: ð14Þ

The Lagrangian for the magnetic field case becomes

L ¼ −T7ρ
3

�
1 −

w4
H

w4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρLÞ2

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ w4

H

w4

�
2

þ R4B2

w4

s
: ð15Þ

The embedding equation for LðρÞ is straightforward to
derive. Minkowski embeddings exist until the black hole
horizon “eats” the central area of the ρ − L plane. The
flat L ¼ 0 embedding always exists and so there is a first
order transition from Minkowski to flat at a critical value
of T [19,20].

A chemical potential is introduced through the U(1)
baryon number gauge field At component [21] which enters
the DBI action as

L ¼ −T7ρ
3

�
1 −

w4
H

w4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ w4

H

w4

�
2

þ R4B2

w4

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρLÞ2Þ −

w4ðw4 þ w4
HÞ

ðw4 − w4
HÞ2

ð2πα0AtÞ2
s

: ð16Þ

There is a conserved quantity d (the density) associated
with At. We can Legendre transform the action to write At
in terms of d leaving (after rescaling all dimensionful
objects to be in units of R

ffiffiffiffi
B

p
denoted by the tildes)

L̃ ¼ −T7

w̃4 − w̃4
H

w̃4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kð1þ ð∂ ρ̃L̃Þ2Þ;

q
ð17Þ

K ¼ ρ̃6
�
w̃4 þ w̃4

H

w̃4

�
2

þ ρ̃6

w̃4
þ w̃4d̃2

w̃4 þ w̃4
H
: ð18Þ

Given a solution for L at some T, d, one can then find the
chemical potential as

μ̃ ¼ d̃
Z

∞

ρ̃H

dρ̃
w̃4 − w̃4

H

w̃4 þ w̃4
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ ρ̃L̃Þ2

K

s
: ð19Þ

At small T, the appropriate solutions as d begins to grow
from zero are solutions that end on the black hole horizon
at the origin but “spike” up to the form of the Minkowski
embedding. There is a corresponding nonzero critical μ for
the onset of d. There is a continuous transition here as the
Minkowski embedding becomes a black hole ending
embedding. As d then increases, the black hole solution
smoothly evolves to merge with the flat L ¼ 0 embedding
in a second continuous transition (where chiral symmetry
breaking switches off) at a higher critical μ.
The full μ − T phase diagram is discussed in detail in [7].

Here we use the following two techniques to find the
transition lines that will interest us:
(1) To locate first order transitions: At a fixed T, d,

we seek Minkowski embeddings and then evaluate
the difference in free energy between these and the
L ¼ 0 embedding. We then vary d to locate the first
order transition point where these embeddings are
degenerate in energy. One then repeats at all T.

(2) To locate second order transitions: at fixed T, d, we
find embeddings shooting off the black hole surface
from an angle θ and read off the UV asymptotic
value of m. Now varying d we seek points where
massless solutions merge with the flat embedding at
θ ¼ π=2 or the Minkowski embedding at θ ¼ 0 or
points where two new solutions emerge. Again, one
repeats at all T.
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Imaginary chemical potential solutions are found by
simply allowing At → iAt or d → id and repeating the
process. The Lagrangian with imaginary chemical potential
is unchanged except in the factor K in Eq. (18) where
d2 → −d2.
In the Appendix, we present detailed computations and

plots for one particular T slice across the phase diagram
including evaluating the free energy of the solutions.
It is worth pausing to write the physical temperature and

chemical potential in terms of μ, wH, and the physical B
field that emerges from (17) and (19). We have

Tphys ¼
ffiffiffi
2

p
w̃H

πR2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πα0Bphys

q
¼ 2w̃Hffiffiffi

π
p

λ1=4
ffiffiffiffiffiffiffiffiffiffi
Bphys

p
; ð20Þ

μphys ¼
μ̃

2πα0
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πα0Bphys

q
¼ μ̃λ1=4ffiffiffiffiffiffi

2π
p ffiffiffiffiffiffiffiffiffiffi

Bphys

p
: ð21Þ

Note that these are independent of α0 as they must be
since α0 → 0 in the supergravity limit. In our plots, we plot
μphys=λ1=4 against λ1=4Tphys and set

ffiffiffiffiffiffiffiffiffiffi
Bphys

p ¼ 1.

III. THE PHASE STRUCTURE

We show the phase transition structure for the model in
Fig. 1 (the positive μ axis is μR the negative axis μI). In the
phase including T ¼ μ ¼ 0, the vacuum is characterized by
chiral symmetry breaking and zero density (it is the so-called
Minkowski embedding in the brane picture). At high T; μR,
the vacuum is a chirally symmetric state with generically
melted mesons and nonzero density (these are flat embed-
dings). At low μR, there is a first order thermal transition
between these vacua as T grows. At larger μR, there is a
region with a third low T vacuum which has a density of
deconfined quarks but which are still massive due to chiral
symmetry breaking (a black hole embedding). The chiral
restoration transition has a critical point where the transition
becomes second order. The transition from the low T; μR
phase to the deconfined massive quark phase is second order.
The transition from that phase to the chirally symmetric
phase is also second order.
Our first new results here are that we have extended the

phase structure to imaginary chemical potential, μI . This is
shown on the left-hand side of Fig. 1. Note we have checked
in all our figures to come that the transition line is linear in μ2

across the μ ¼ 0 axis as one would expect. The first order
chiral transition extends into the imaginary μ plane before
coming to a halt on the line at T ¼ 0.311 (shown by a red
dashed line in Fig. 1). Above this value of T the remnant of
the low T, μ chiral symmetry breaking vacua ceases to be a
turning point of the effective potential. The Minkowski
embedding cannot exist above this value of T because the
black hole is too large and blocks the IR of the solution. Note
this is independent of μ since the Minkowski embedding
simply has At ¼ μ which does not contribute to the action.

At real μR, this state is no longer the true vacuum and this
line simply marks where the state ceases to be a turning point
of the potential. At larger μI though below the T ¼ 0.311
line, the Minkowski embedding (chiral symmetry breaking
state) is the true vacuum yet it suddenly vanishes at higher T.
The only explanation is that at higher T, for these μI , the
effective potential becomes unbounded at large values of
the condensate. Thus, above the line T ¼ 0.311, the theory is
ill-defined for μI—we will henceforth not consider temper-
ature above that value.
In Fig. 1, there is a second dashed red line emerging from

the origin and cutting the T − μI plane. To the left of this
line, the flat or black hole embeddings do not exist because
the action turns imaginary. To make this explicit, consider
the parameter K of (18) which is square rooted in the action
(16)–we can evaluate it near the black hole horizon. We set
wH ∼ T and remember ω2 ¼ ρ2 þ L2, where at the black
hole horizon we have ρ ∼ T sin θ and L ∼ T cos θ, we have

K ¼ ðT sin θÞ6
�ððT sin θÞ2 þ ðT cos θÞ2Þ2 þ T4

ððT sin θÞ2 þ ðT cos θÞ2Þ2
�

2

þ ðT sin θÞ6
ððT sin θÞ2 þ ðT cos θÞ2Þ2

−
ððT sin θÞ2 þ ðT cos θÞ2Þ2d2

ððT sin θÞ2 þ ðT cos θÞ2Þ2 þ T4
: ð22Þ

The final negative term is trying to force the action to
become imaginary. The first two positive terms both go as
sin θ, so for a given temperature increasing density forces
the minimum value of θ to take on larger values. For large
enough d, this value becomes π=2 and above this value of d
there can be no further flat or black hole solutions. The
curved red dotted line in Fig. 1 is where these criteria are
met. This corresponds to another instability of the effective
potential against moving to larger density. Thus, our
analysis will be restricted to the part of the μI plane
bounded by the red dashed lines in Fig. 1. We note that
very close to this boundary there are some additional black
hole solutions, but we will not investigate these further
since we wish to focus around the critical point. As we
mentioned in the Introduction if Ncλ

1=2 ≥ 5π, then the
instability regions are not part of the true vacuum of the
theory because to the left of the Roberge-Weiss transitions
there are just repeats of the physics to the right of the
transition line in Fig. 1. This may indicate that this value of
Ncλ

1=2 is the minimum possible value compatible with the
large Nc limit—that minimum value is sufficient for our
discussions here.
Let us now imagine that some theorists can compute at

imaginary μI and only very low μR values and they are
hoping to understand the large μR structure to see if there
are one or more critical points in this case. Looking at Fig. 1
there is little to guide this theorist—he could perform a fit to
the first order chiral transition line as it crosses the T axis
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and perhaps do a reasonable job of predicting where the
transition contour is at real μ, but there is apparently no hint
as to where the critical point must lie.
To gain more insight, our putative theorist could make

use of more information that is available to him. In
particular, the first order transition is associated with a
crossing of two distinct vacua and to either side one or the
other is a metastable vacuum state. We can ask the question
are there metastable vacua in the plane?
The answer in this case is illustrated in Fig. 2. Here the

orange region is where the chirally symmetric vacuum (flat
embedding) is metastable. In the red shaded region, the
Minkowski embedding (chirally broken, d ¼ 0 phase) is
metastable. In the small gray region, a black hole embed-
ding (chirally broken but d ≠ 0) is metastable.

To understand this picture better, it is helpful to use it to
reconstruct the effective potential of the model across a
number of fixed T slices—see Fig. 3 where we zoom in on
the interesting structure.
Slice one is at low temperature: starting at reasonably

large imaginary μI, the chiral symmetry breaking (zero
density) phase is preferred (Minkowski embedding). As we
track right, a second order transition occurs to the decon-
fined massive quark phase (a black hole embedding
emerges from the Minkowski embedding)—here we
believe the chiral symmetry breaking vacuum turns into
a point of inflection of the effective potential. Then
sequentially a second order transition to the chirally
symmetric (flat embedding) occurs—that is the black hole
embedding merges with the flat embedding and then ceases

FIG. 3. The structure of the effective potential against quark condensate as one moves from left to right across the phase diagram of the
B field theory on a number of different T slices. Turning points of the potential are marked dependent by their nature: F (flat, chirally
symmetric), BH (black hole, dense massive phase), M (Minkowski, chirally broken).
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to exist. Note here at no stage are there metastable vacua
(we assume a point of inflection is insufficient to be visible
either through lattice studies or by noticeable events in a
heavy ion collider).
Moving now to large T—slice 2. To the left again, the

chirally broken vacuum dominates. As we track left to right,
the first event is that a peak in the effective potential (black
hole embedding) emerges from the chirally symmetric state
as that state becomes a local minimum metastable vacuum.
The chirally broken and chirally symmetric vacuum then
interchange at a first order transition, leaving the chirally
broken phase as the metastable vacuum. The final change is
that the chirally broken vacuum and the maximum of the
potential merge to again leave the chirally broken phase
remnant as a point of inflection.
Slices 3 and 4 show some more subtle structure around

the critical points. Slice 3 follows slice 2 (moving to the
right) until after the first order transition. Now, the chirally
broken remnant does not just merge with the potential peak
but converts itself to a point of inflection throwing off a
potential minimum that then moves to merge with the
potential peak. In this intermediate region, there is a
metastable vacuum which is a deconfined massive quark
phase (black hole embedding). Typically, these minima are
less deep than when the chirally broken or symmetric vacua
are metastable. We show regions of the phase diagram with
these metastable vacua in gray.
Slice 4 shows a further mixing of these events—the

chirally broken vacuum converts to a deconfined massive
quark phase at a second order transition before the first
order transition. Thus, the resulting first order transition is
from the deconfined massive quark phase to the chirally
symmetric phase.
Hopefully this slice analysis has helped the reader to

interpret the figures we present.
A key observation is to follow the behavior of the two

boundaries where the chirally symmetric and chirally
broken phase become metastable at high temperature—
the boundaries of the red and orange regions. At each of
these, a black hole embedding merges with either the flat or
Minkowski embedding. As one moves to lower T, these
boundaries become precisely the second order phase lines
where again black hole embeddings merge with flat and
Minkowski embeddings. Necessarily these boundaries of
the metastable vacua region must join the transition lines at
the critical points where the order of the transitions change.
Further that these boundaries are distinct at high T naturally
transforms to them being distinct at low T producing the
three phases and two second order transitions we see.
The interesting thing about Fig. 2 in comparison to Fig. 1

is that while the latter simply has transition lines that
apparently randomly convert their order, Fig. 2 essentially
has arrows pointing to the critical points. In particular, the
boundary where the chirally broken phase becomes meta-
stable and the transition line itself converges at the critical

point for chiral symmetry breaking. Equally the boundary
where the chirally symmetric phase becomes metastable
and the transition line converge is the critical point on the
transition line to the deconfined quark phase. Thus, our
putative theorist who can only compute at imaginary μI and
low μR relative to T could try to identify the edges of the
metastable regions and then extrapolate them to make an
approximation as to the positions of the critical points.
If the theorist could also access heavy ion collision data

from a variety of experiments, then he could hope to
identify whether in those experiments μ, T lie in the
metastable regions—for example, one might expect two
different categories of events, one which is ignorant of the
metastable vacua and one of which got stuck in the
metastable state for a period. These events could plausibly
have different signatures even after hadronization. One
might be able to further map out the metastable region even
if the critical point had not been hit directly.

IV. HORIZON DEFORMED THEORIES

So far, we have only considered a single phase structure so
one might wonder how generic any of the features we see
are. In principle, it would be good to study many other such
holographic setups, yet the number of fully understood ones
are few and far between. In the future, it would be interesting
to construct more, for example, based on the D4/D6 system
[22]. For now, we will add a bottom-up parameter to our
probe D3/D7 system with a B field which was first
introduced in [17]. Of course, bottom-up is synonymous
for an incomplete model, but the trick we use is instructive
and allows us to rather simply move the critical point.
The trick is to deform the spacetime geometry by making

the substitution

w2 → ρ2 þ 1

α
L2; α > 1 ð23Þ

into the metric factors in (13). This is not a solution of the
Einstein equations, but it breaks the ρ − L symmetry which
at least would happen were one to backreact the D7 branes
(they are extended in ρ but point like in L). More practically,
by squashing the black hole horizon onto the L axis, it is
harder for the black hole to disturb the Minkowski embed-
dings that describe the chirally broken vacuum. This change
tends to favor second order chiral transitions with temper-
ature. The test of the use of this approach is rather in what
one learns by doing it. In Fig. 4, we display (zoomed to the
interesting segments) phase diagrams for a variety of α’s.
If one first concentrates on the phase lines, then the effect

of growing α is to push the critical point on the chiral line
toward the T axis. At α ¼ 1, the critical point on the chiral
transition line lay after the separation of the density onset
transition. By α ¼ 1.12, the critical points on both these
lines have moved together. At larger α, the density line
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shows a period of first order behavior after separating from
the chiral transition line at the critical point.
Previous analysis [17] had seen that for big enough α

one could make the μ ¼ 0 chiral transition second order,

but now we see that in fact we have pushed the
critical point into the imaginary μI plane. It is fascinating
to think that some deformation might do this in QCD
itself.

FIG. 4. T − μ phase diagrams for the deformed theories with α ¼ 1, 1.08, 1.12, 1.137, 1.139, 1.15, 1.16.
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The region of metastable vacua broadly speaking moves
with the points, but there are some new features which we
highlight by sketching the effective potential for a couple of
slices in the α ¼ 1.12 case—see Fig. 5. The first slice just
highlights the meaning of the gray zones around the edge of
the full metastable region. Moving along slice 5 from the
left to right, the chirally symmetric embedding must
become metastable from initially being a potential maxi-
mum. Previously, it did this by casting out another
maximum. Here though a maximum and a minimum pair
create away from the chirally symmetric solution (both
black hole solutions) and the minimum then merges with
the chirally symmetric vacuum to convert it to a metastable
minimum. Similarly, after the first order transition, the
chirally broken remnant vacuum does not simply merge
with the potential maximum but casts off another minimum
(becoming a point of inflection) that annihilates the
maximum. Thus, in the gray zones, there are metastable
vacua with a massive deconfined quark phase. Since these

are minima created between the previous maximum and
minimum of the potential (the chirally broken and chiral
restored vacua), the metastable vacuum is typically not very
deep which suggests it would be harder to find either on the
lattice or in heavy ion collision events.
Slice 6 shows a remnant of these “pair creation” events

forming a “fishtail crossover” between two second order
transitions. Here after the chiral symmetry breaking vac-
uum has second order transitioned to a massive deconfined
quark phase a maximum and minimum pair create. There is
then a first order transition (the cyan line) between two
massive deconfined quark phases. Finally, the metastable
vacuum annihilates with the maximum to allow a second
order transition from the massive deconfined quark phase
to the chirally symmetric phase. This explains the tail
transition between the legs in these plots (which we view as
a minor part of the story).
Let us again comment on the broad picture and lessons.

The lines that mark the borders of where the chirally

FIG. 5. The effective potential evolution (vs c) from left to right as one moves along two T slices at α ¼ 1.12.
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symmetric or chirally broken phases become metastable
continue to play a crucial role. In all these phase diagrams,
these borders plus the first order phase line itself join at the
critical points—in each case, the two lines point at the
critical point. Further these borders are distinct around
the first order transition and then cross as they become the
second order lines. Note even in the case where the two
borders both cross at the critical point (α ¼ 1.12), they do
not merge but separate again. This is the origin of the
deconfined massive quark phase.
None of the cases we have seen have second order

transitions at μ ¼ 0 and first order at T ¼ 0 as expected in
QCD. However, the cases where the critical point lies in
the imaginary μI plane can allow us to speculate. Imagine
now a putative theorist who (somehow) can only compute
at real μR but not imaginary μI. In these cases, the theorist
would just see a second order chiral transition. In this
model, however, if they could identify both the density
onset transition and the chiral transition, then those lines
can be extrapolated to the critical point in the μI plane
where he is ignorant.

V. GENERAL LESSONS AND QUESTIONS FOR
THE QCD PHASE STRCUTURE

So far, it has been interesting as a purely theoretical
problem to investigate the structure in the phase diagram
(extended to imaginary μ) of an exactly solvable gauge
theory and amusing to look for signals of transitions and

critical points in one part of the plane if one only had
access to a subregion. Have we learnt any lessons that
could be applied more widely to a generic set of chiral
symmetry breaking models (perhaps at large Nc) or even
to QCD? We have concluded that looking for the regions
of the phase diagram with metastable vacua can be used to
identify the positions of the chiral critical point. Using this
insight, in Fig. 6, we propose a number of qualitative
pictures for theories where the transition is first order at
high μR and low T, but second order transitions at higher T
and lower μ or at μI .
Let us begin by simply talking about theories without

confinement that seem a natural extrapolation of the ones
we have studied and ask in these worlds what lattice or
heavy ion data could reveal. The first sketch in Fig. 6
shows the most pessimistic possible conclusion. Here we
assume that the second order transitions (chiral crossover
at finite mass) for density switching on and chiral
restoration are degenerate and that the first order transition
exists only at large real μ. The metastable region could be
quite tightly positioned around the first order transition.
Here there is little hope of using the lattice to identify
anything beyond the position of the second order line
which provides no information on the position of the
critical point. Here one might hope to use heavy ion
collisions at low T to identify T, μ points within the region
with metastable vacua (again assuming that events that get
stuck in the metastable vacua can be distinguished after
hadronization).

FIG. 6. Here we present some speculative sketches for the phase diagrams of theories with first order transitions at high μR and low T,
but second order transitions at higher T and lower μ or at μI . Here dashed lines are second order transitions; solid lines are first order
transitions; in the red region, the chiral symmetry breaking vacua are metastable; in the orange region, the chirally symmetric vacuum is
metastable; in gray regions, dense massive quark phases are metastable. The final sketch shows the case that might apply to QCD where
the density transition is linked to the known nuclear density onset and the chiral transition is separate (here the outer red and orange
regions are metastable dense massive quark vacua).
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The second sketch is a more hopeful speculation where
the region with metastable vacua might be wider about the
first order line—here one could hope to find regions of
metastability at low T and low μ or even imaginary μ on the
lattice. The second order phase transition line and the edge
of the region of metastability converge at the critical point
and could be used to point to it. Here we have also allowed
a boundary region around the metastability region with a
metastable massive deconfined quark phase. Tracking from
left to right across the metastability region would have an
effective potential that changes as in slice 5 of Fig. 5. Here
the key question is whether the chirally symmetric vacuum
converts from a maximum to a minimum directly by
spitting out a maximum or whether a maximum and
minimum are pair created elsewhere in the potential with
that minimum then joining to the chirally symmetric
vacuum to make it a minimum. A priori both seem possible.
The third and fourth sketches show the structure one

would expect if the chiral and density transitions separate.
The critical line and one boundary of the metastable
region meet at each critical point so could be used to
predict its position.
Finally, let us tentatively speculate for QCD. The first

additional issue we must consider is confinement that is not
included in the model we have used. We already know that
at T ¼ 0 the first transition with μ is the first order switch
on of baryon number. This transition might be distinct from
the deconfined quark pictures we have drawn so far in
which case the first four sketches could all lie to the right of
the baryon onset transition. However, it also seems natural
to associate the baryon density transition with the bottom of
the density phase transition we have seen. The chiral
transition is then separate but potentially also first order.
We sketch such a setup in the final picture of Fig. 6. Here
we appear to have drawn a deconfined, dense but chirally
broken phase between two phase boundaries all along the
transition. On the other hand, we know that on the left-hand
boundary at low T, these quarks should be confined and we
should treat this as the baryonic phase. It is possible that
within this region there is a transition where confinement
switches off and a deconfined massive quark phase is
realized (as speculated in [23]), but equally confinement
may cover the whole phase region.
Note in this final picture the left-hand red region is where

the chirally broken vacua are metastable and the rightmost
orange region where the chirally symmetric vacuum is
metastable. The orange and red regions on the outer edges,
in the language of our brane model, would be metastable
dense and chirally broken vacua. If we believe our
structures, then these boundaries would continue beyond
the critical region as further second order boundaries
between a variety of dense yet chirally broken vacua. In
QCD, the full region between density switching on and
chiral symmetry being restored is the crossover region. Our
model suggests there might be further second order

transitions within that cross over region. In reality, in
QCD, these are likely to be smoothed to crossovers and
be very hard to spot if they exist at all. On the other hand, at
finite μ, this crossover region might widen and allow more
structure to be spotted (Fig. 4 in [24] suggests the crossover
region may widen at larger μR).
Finally, we can again speculate that metastable vacua of

some sort might exist over a wide region of the low T phase
diagram that could be hunted for on the lattice at low μR or
even at μI or that might display as new types of event in
heavy ion collisions. Of course, both are difficult and
expensive technologies to use for such speculative searches.

VI. SUMMARY

The AdS/CFT correspondence allows the exact compu-
tation of the phase diagram of anN ¼ 2 gauge theory with
a small number of quark hypermultiplets in the fundamen-
tal representation in the presence of a magnetic field which
triggers chiral symmetry breaking. The phase diagram was
computed previously in [7] and is shown on the right
in Fig. 1. There are regions where the chiral restoration
transition are first order, second order, and there is a linking
critical point. Here we first extended the phase diagram to
imaginary chemical potential, μI, shown on the left-hand
side of Fig. 1. Only a small region of the μI plane is stable
and there the first order transition extends from the real
μR plane.
As shown in Fig. 1, it is hard to imagine deducing

anything about the phase structure at μR from the μI plane.
However, we have added to the figure regions in which
there are metastable vacua—see Fig. 2. Amusingly the
edges of these regions and the phase line itself form arrows
pointing to the critical points in the μR plane. One could
hope to identify the edges of these arrows in the μI plane
or at low μR and extrapolate to find the critical points
approximate position.
If one approaches the critical points from large μR in this

theory, the second order transition line in fact splits into a
line at which density switches on and another at which the
chiral condensate switches off. Here we have understood
that these second order transition lines are the natural
extensions of the boundaries of the region where there are
metastable vacua around the first order transition line. It
seems very natural that those lines should remain distinct in
the second order region. The two second order transition
lines again converge at a critical point.
We have also explored variants of these phenomena in a

bottom-up deformed version of the theory which allows the
critical point to be pushed into the complex chemical
potential segment of the plane. See Fig. 4.
These observations have led us to speculate about QCD.

Could the crossover region from the onset of density to the
restoration of chiral symmetry actually contain several
distinct transitions or crossovers corresponding to the
continuation of the edges of the metastable regions needed
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in QCD? At imaginary chemical potential, this separation
might be wider than on the T axis. If these sperate
transitions could be identified, then they could be used
to predict the position of the critical point. Second, it would
be worth searching the rest of the accessible μ − T plane for
metastable vacua since the boundaries of these regions also
contain information about the position of the critical point.
Of course, there is no guarantee that these features are
present or identifiable on the lattice or using heavy ion data
but they are intriguing possibilities.
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APPENDIX: COMPUTATIONAL DETAILS
FOR A SINGLE T SLICE

Here we present detailed plots of the T ¼ 0.26 slice
across the phase diagram in the α ¼ 1 theory—slice 4 in

Fig. 3. This provides more detail on how we construct the
phase diagrams we have presented.
We plot example D7 embeddings in the top figure in

Fig. 7. In red is the Minkowski embedding with d̃ ¼ 0;
orange is the flat embedding L̃ ¼ 0 with d̃ ≠ 0. In between,
we plot some black hole embeddings. These are found from
the second plot down in Fig. 7—here at a given d̃ we shoot
off the horizon at different angles θ and plot the resulting UV
mass value m̃—we seek solutions with m̃ ¼ 0. As can be
seen between d̃ ¼ 0.03 and d̃ ¼ 0.07, the number of
solutions changes as the minimum of the curve passes
through the m̃ ¼ 0 axis. This corresponds to the pair creation
of two black hole solutions which we will call BH1 and
BH2—the two solutions emerge as the closest green and
blue black hole solutions in the top plot. By following the
evolution of the two solutions in the second plot, it can be
seen that one moves to merge with the Minkowski embed-
ding and the other with the flat embedding—the outer two
blue and green embeddings in the top plot.
Now, we can, embedding by embedding, compute μ̃

from (19) and the free energy Ω̃ ¼ −L̃ in (16). We plot Ω̃
against μ̃ for our solutions in the third plot and d̃ versus μ̃ in
the bottom plot in Fig. 8.

FIG. 7. Detailed plots for the α ¼ 1 theory with T ¼ 0.26.
(i) The top plot shows sample embedding functions (red
Minkowski, orange flat, BH1 in green, and BH2 in blue). (ii) The
second plot shows the UV mass of embeddings emerging at angle
θ from the black hole as a function of d (for values d ¼ 0.001,
0.01, 0.03, 0.07, 0.1, 0.12, 0.15 from left to right).

FIG. 8. Detailed plots for the α ¼ 1 theory with T ¼ 0.26.
(i) The third plot shows the free energy of the solutions against μ
and (ii) the fourth plot shows d vs μ for the solutions.
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The free energy plot allows us to clearly see the phase
structure along the slice, from left to right. At imaginary μ̃I,
the Minkowski embedding is the lowest energy state and the
flat embedding is the maximum of the potential. The first
transition is where a BH2 solution emerges from the flat
embedding—the flat embedding has become a local mini-
mum of the potential. Next, a BH1 solution emerges from
thre Minkowski embedding and has lower energy—there is
second order transition to the BH1 state as density switches
on (we do not plot the continuation of the Minkowski

embedding red line in the plot further to the right, although it
does continue to exist). There is then a first order transition
from the BH1 embedding to the flat embedding. The BH1
state is a metastable state briefly, although with energy quite
near the flat embedding of the true vacuum. Finally, the BH1
solution ceases to exist merging with a BH1 solution that is
the continuation of the BH2 state that is the local potential
maximum. Note that the annihilation of the BH1 and BH2
solution as identified in the density plots is an innocuous
transition when plotted with μ̃.
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