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The first and second swampland conjectures (FSC & SSC) are substantially modified in noncritical
string cosmology, in which cosmic time is identified with the timelike Liouville mode of the supercritical
string. In this scenario the Friedmann equation receives additional contributions due to the noncriticality of
the string. These are potentially important when one seeks to apply the Bousso bound for the entropy of
states that may become light as the dilaton takes on trans-Planckian values, as in a de Sitter phase, and
restore consistency with the FSC and in at least some cases also the SSC. The weak gravity conjecture
(WGC) for scalar potentials is saturated in the supercritical string scenarios discussed in this work, but only
if one uses the dilaton as appears in the string effective action, with a kinetic term that is not canonically
normalized. In the case of a noncritical Starobinsky potential, the WGC is satisfied by both the canonically
normalized dilaton and the dilaton used in the string effective action.
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I. INTRODUCTION

One of the outstanding challenges for string theory is
to identify experimental measurements that could test
some characteristic prediction derived from the theory.
Confronted with the tremendous gap between the primary
formulation of string theory in multiple dimensions at a
distance scale beyond the direct reach of observation, the
conventional approach to this experimental challenge has
been to formulate and probe some effective field theory that
describes four-dimensional physics at accessible energy
scales that is derived from (or at least motivated by) string
theory. Unfortunately, this approach has long been stymied
by the enormous ambiguity in the choice of possible
effective field theory.
A promising way forward has been provided by the

swampland conjectures [1–5], which postulate some very
general properties of the possible effective field theory,
whose violation would lead to the conclusion that (our

current understanding of) string theory does not describe
Nature. This line of attack is particularly intriguing because
some aspects of the swampland conjectures appear to be in
tension with the appearance of a cosmological constant in
present-day cosmology as well as the commonly studied
models of inflation in the early Universe, and may raise
questions about the formulation of spontaneous symmetry
breaking in the Standard Model of particle physics [6].
One possible way to resolve these issues may be to

abandon the conventional effective field theory description
of physics in the infra-red limit at energies far below the
putative string scale. Effective field theory emerges natu-
rally from critical string theory via its formulation in terms
of theory on the string world sheet. We have long argued
that conformal field theory is just one aspect of the
underlying string theory, and that critical string theory
should be regarded as embedded in a broader framework
that includes supercritical string scenarios in which there is
a timelike Liouville mode that can be identified with
cosmic time in scenarios for an evolving Universe [7–11].
As we have discussed previously, the nontrivial dynam-

ics of such a Liouville mode modifies the equations of
motion of a conventional effective field theory. In particu-
lar, as we emphasize in this paper, in the cosmological
context the supercritical dynamics introduces extra terms
into the Friedmann equation describing the evolution of the
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Universe, reopening the possibility of a stringy description
of inflation in the past and/or dark energy today.
We recall in this context that an essential feature of

perturbative critical string theory is the existence of a
perturbative S-matrix. This requirement appears to exclude
a de Sitter background, since it does not accommodate
asymptotic states because of the presence of a horizon
[12]. On the other hand [8,11,13], supercritical strings are
formulated without requiring the existence of an S-matrix
[13], and hence can accommodate both an early near-de
Sitter epoch from which the Universe exits smoothly and
another near-de Sitter epoch at late times.1

The outline of this paper is as follows. In Sec. II we
outline relevant aspects of the swampland conjectures (SC).
Then, in Sec. III we examine the swampland from the point
of view of noncritical string theory. Section IV provides a
parallel discussion of the weak gravity conjecture (WGC)
in the framework of noncritical string theory.

II. THE SWAMPLAND CONJECTURES

There are several swampland conjectures (SC) that bear
upon the possible embedding of a de Sitter (dS) solution in
a low-energy effective field theory arising from a micro-
scopic string theory model that is supposed to provide a self
consistent UV completion.

(i) The distance in field space conjecture (DFSC) [1]
When considering a scalar field ϕ within the effective

low-energy field theory (EFT) of some string theory,
which is displaced by a “distance” Δϕ in field space from
some initial value, the validity of the EFT is guaranteed
provided

κjΔϕj≲ c1 > 0; ð1Þ
where c1 is a positive constant of orderOð1Þ, and κ ¼ 1

MPl
is

the gravitational constant in four space-time dimensions,
where MPl ¼ 2.4 × 1018 GeV is the reduced Planck mass.
In general, when (1) is violated towers of string states
descend from the UV, becoming light and thus “contami-
nating” the EFT, jeopardizing any physical conclusions that
may be derived from it.
(ii) The first swampland conjecture (FSC) [2]
This conjecture restricts the self-interactions of scalar

field(s) in an EFT stemming from string theory via the
gradient of the scalar potential V in field space, so that the
EFT is valid:

j∇Vj
V

≳ c2κ > 0; ð2Þ

where c2 is a positive (dimensionless) constant of Oð1Þ.
The gradient in field space is in the multicomponent space
of scalar fields ϕi, i ¼ 1;…N that the EFT contains.
The constraint (2) can be derived from the DFSC (1),

using entropy in de Sitter space [3], by using the Bousso
bound [15], which is in this case saturated by the Gibbons-
Hawking entropy [16]. Specifically, let us consider an EFT
of a quintessence field ϕðtÞ in which, say, the latter increases
with cosmic time, i.e., ϕðtÞ has _ϕ > 0.2 As the time evolves,
if the field lies in regions in which (2) is violated, towers of
string states with massesm∼expð−ajΔϕjÞ, where a > 0 is a
constant with mass dimension −1 that depends on the details
of the microscopic string theory, become lighter and lighter
and descend from the UV-complete theory to contaminate
the EFT as the distance Δϕ from the initial point increases.
The number of these effective light degrees of freedom

NðϕÞ depends on the value of the field ϕ at any moment in
time, and can be parametrized as [2]:

NðϕÞ ¼ nðϕÞ expðbκϕÞ; ð3Þ

where nðϕÞ indicates the number of states in the tower
that are becoming light, and b, like a, is another positive
constant that depends on the mass gap and other details
of the underlying string theory. Since, according to the
distance conjecture, more states become light as ϕ grows,
one has to take the (positive) function nðϕÞ > 0 to be

monotonically increasing with ϕ, i.e., dnðϕÞ
dϕ > 0.

In an accelerating Universe, characterized by a Hubble
parameter H, which for (near-)de Sitter-times is (approx-
imately) constant, the entropy of this tower of string states
increases with the Hubble horizon 1=H as

Sstring statesðN;H−1Þ ¼ NγðκHÞ−δ; ð4Þ

where γ, δ > 0. On the basis of string examples, the authors
of [3] argued that 0 < δ ≤ 2. If the tower of string states
that are becoming light behave effectively as point par-
ticles, then δ ¼ 0, but this is not necessarily the case, and
the value of δ depends on the underlying microscopic string
theory.
Since the expanding Universe is characterized by the

presence of the Hubble horizon of area A ¼ 4πH−2, the
entropy is bounded by Bousso’s covariant entropy con-
straint applied to a cosmological background [15]:
Sstring statesðN;H−1Þ ≤ 1

4
A, which is nothing other than the

Gibbons-Hawking entropy [16]:

NðϕÞγðκHÞ−δ ≤ 8π2ðκHÞ−2; ð5Þ

from which we derive
1In some supercritical string cosmologies [11], the Universe

approaches at large cosmic times a linearly expanding universe
[14] that is characterized by a logarithmic dependence of the
dilaton on cosmic time, in which case the perturbative S-matrix
can be well-defined asymptotically [13].

2This is a convention for the definition of the flow, which is
made for concreteness, see the explicit examples below.
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H2 ≤
1

κ2

�
8π2

NðϕÞγ
�

2=ð2−δÞ
: ð6Þ

If the potential energy of the scalar field dominates the
energy density of the Universe, and one assumes the
standard Friedmann equation

H2 ≃
κ2

3
V; ð7Þ

i.e., the kinetic energy of the scalar field responsible for
inflation is ignored, compared to the potential energy, then
we can use (7) to rewrite (6) as

κ4V
3

≤
�

8π2

NðϕÞγ
�

2=ð2−δÞ
: ð8Þ

After some straightforward manipulations, and taking into
account the fact that the derivative of the potential with
respect to the field ϕ is negative,3 we find that

jV 0j
V

≥
2

2 − δ
ðln½Nγ�Þ0; ð9Þ

where the prime denotes the derivative with respect to the
field ϕ. Using (3), one then obtains

jV 0j
V

≥
2γ

2 − δ

�
n0

n
þ bκ

�
>

2bγ
2 − δ

κ; ð10Þ

where the last inequality follows from the fact that
n0 > 0. Comparing (9) with (2), we obtain the FSC with
c2 ¼ 2bγ

2−δ > 0, provided that the parameters b, γ and δ are
such that c2 is of order Oð1Þ.4
The FSC (2) rules out slow-roll inflation, since it implies

that the parameter ϵ ¼ ð ffiffiffi
2

p
κÞ−1ðjV 0j=VÞ is of order one, in

conflict with phenomenologically successful inflationary
models [18].
In fact, it was argued in [3,4] that the FSC does not

necessarily hold, but that consistency of the EFT requires
either the constraint (2), or:
(iii) The second swampland conjecture (SSC) [3,4]
According to the SSC, the minimum eigenvalue of the

Hessian in theory space minð∇i∇jVÞ, with the notation ∇i
denoting the gradient of the potential V with respect to
the scalar field ϕi, should satisfy the following constraint
near the local maximum of the potential V, provided there
is one:

minð∇i∇jVÞ
V

≤ −c3κ2 < 0; ð11Þ

where c3 > 0 is an appropriate positive (dimensionless)
constant that is Oð1Þ.
We note that, for single-field inflationary models, the

condition (11) would also be incompatible with the small-
ness in magnitude of the second of the slow-roll parameters
η, as required for conventional slow-roll inflationary
models.
We also remark that in case of models for which the SSC

applies but not the FSC, the entropy-bound-based deriva-
tion of FSC still holds, but for a range of fields further away
from the regime for which the local maximum of the
potential occurs (as required for the implementation of the
SSC). The critical value (range) of the field magnitude for
the entropy-bound implementation of the FSC depends on
the underlying microscopic model, upon which the para-
meters γ, b in the bound (10) also depend.

III. SUPERCRITICAL STRING THEORY
AND THE SWAMPLAND

The central point of our discussion is the modification of
the first swampland conjecture (FSC) (2) in supercritical
string theory, in which the right-hand-side (rhs) of the
Friedmann equation of motion (7) receives additional
contributions due to noncritical string degrees of freedom
[8,9], which arise from identifying time as the Liouville
mode of the supercritical string [10]. To see this, we
consider a concrete but representative example of a
supercritical string cosmology where the Liouville mode
is identified with cosmic time, and the dilaton plays the role
of a quintessence field. The scenario is discussed in detail
in [9], and here we simply outline the main results relevant
for our purposes.

A. The supercritical string cosmology approach

Before going into calculational details, it is important
to recall briefly the underlying philosophy of the non-
critical approach to string cosmology of [8]. This neces-
sarily involves infinite towers of stringy states that fail to
decouple from the light degrees of freedom. In the approach
of [8] these string states provide a nontrivial environment
for the low-energy effective field theory (EFT), whose
description incorporates only local field theory modes.
When the string is noncritical, the world sheet Weyl-
anomaly coefficients, which appear as the renormalization-
group β-functions of the couplings/target-space fields gi of
the σ-model that describes string propagation, are no longer
zero as in a conformal field theory corresponding to a
critical string model. Instead, they are determined by a
standard Liouville-dressing procedure5:

gi00 þQg0 ¼ −βiðgÞ ≠ 0; ð12Þ
3Here we adopt the conventions of, e.g., the work in [17], as we

are interested in the flow of the field from large values, where the
de Sitter phase occurs, to small values, where the exit from
inflation takes place.

4As already remarked, δ ¼ 0 if only pointlike states are
included in the tower of states NðϕÞ.

5For notation, conventions and more details we refer the reader
to [8] and references therein.
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where the gi are Liouville-dressed couplings/background
fields in the σ-model, which has dþ 1 coordinates, of
which d are spacelike coordinates in target space, and one
is timelike and interpreted as the target time. The prime in
(12) denotes differentiation with respect to the world sheet
zero-mode ρ of the Liouville field ρðσÞ, where σ denotes
collectively the dependence on world sheet coordinates,
which is identified with the target time in the approach of
[8]. The Liouville mode itself is viewed as a dynamical
renormalization-group scale, which is local on the world
sheet and promoted to a fully fledged quantum field on the
two-dimensional world sheet geometry. The right-hand
side of (12) vanishes in critical string theories, and this
absence provides the standard target-space equations of
motion of local fields in a low-energy string EFT. The
identification with the target time of this extra coordinate in
the target space of the string, which in supercritical strings
has a timelike signature, imposes a constraint on the
(dþ 2)-dimensional target manifold, such that there is a
single physical time.
A prototype that illustrates how towers of string states

may affect the Weyl-invariance conditions and leading to
Liouville dressing is the cigar-type black-hole background
in two-dimensional string theory [19], which may be
embedded in higher dimensions [20]. As observed in
[7], such a stringy background leads to the mixing with
light modes of infinite towers of topological modes of
(nonpropagating) massive string states with discrete
momenta. If they are not taken into account, the truncated
σ-model that includes only backgrounds from the massless
string states (the graviton and dilaton in this example) is no
longer conformally invariant, rendering the string noncriti-
cal. Liouville dressing is then required to restore world
sheet conformal invariance, and thus independence of the
target-space physics from world sheet dynamics.6

Other examples of such mixing between massive and
massless states occur in D-brane theories [17,21], when one
takes into account the space-time distortions induced by the
recoil of such extended objects during scattering with string
states representing low-energy matter. Such an approach
can also lead to a time-dependent vacuum energy, with a
dark energylike equation of state that exhibits temporal
dependence (relaxation) [22].7 This cosmological situation

is similar in spirit to the effective field theory model of a
running vacuum [25], but involves brany objects whose
recoil induces the temporal dependence via noncriticality of
the underlying string theory.8

When applied to specific noncritical string models
[8,9,11], the Eq. (12) result in a coupled system of
equations that constitute an extension of the cosmological
equations of standard critical string cosmologies. The
simplest and most representative systems we deal with
here, which suffice for our purposes, contain dilaton and
metric backgrounds only. In more realistic string models
[11] one considers other fields, such as fluxes, string
moduli, antisymmetric tensors, etc., which provide addi-
tional equations of motion and constraints among the
relevant parameters of the models, but do not affect our
basic conclusions on the fate of the first swampland
conjecture (2) in the noncritical cosmology framework.
We conclude this summary by commenting on the

relation between the approach adopted here and the
linear-dilaton string cosmology of [14]. The latter is
regarded as a critical, “equilibrium” string configuration,
which is described by a conformal field theory on the world
sheet, even though the internal central charge is noncritical.
In the approach of [8], the presence of the Liouville mode
and its identification with target time provides a non-
equilibrium “transient” period for the associated string
universe, which may in some instances tend asymptotically
[9,11] to the equilibrium critical string model of [14].

B. A representative supercritical string cosmology
model and the swampland conjectures

Considering metric and dilaton cosmological back-
grounds, along with some generic matter and radiation
(denoted by the suffix m), one finds the following
cosmological equations in the Einstein frame, upon iden-
tifying the (supercritical) Liouville mode with the target
time9:

3H2 − ϱ̃m − ϱϕ ¼ e−
ffiffi
2

p
ϕ

2
G̃ϕ;

2 _H þ ϱ̃m þ ϱϕ þ p̃m þ pϕ ¼ G̃ii

a2
;

ϕ̈þ 3H _ϕþ ∂VallðϕÞ
∂ϕ −

1ffiffiffi
2

p ðϱ̃m − 3p̃mÞ ¼ þ 3

2

G̃ii

a2

þ e−
ffiffi
2

p
ϕ

2
G̃ϕ;

ð13Þ

6Studies of such stringy black holes, and the mixing of the
environment of higher string modes, prompted the authors of [7]
to discuss quantum coherence issues and modifications of naive
quantum mechanics within such an EFT framework, identifying
the Liouville mode with time and mapping the problem to a
suitable supercritical string.

7For phenomenological consequences of relaxation models for
the cosmological dark energy in the context of noncritical string
cosmologies of [14], see [23]. We also note that supercritical
string cosmologies of the type we focus our attention upon here
[9] could also contribute to the alleviation of the apparent H0

tension [24].

8An embedding of the running vacuum model in critical string
theory and its cosmological implications havebeendiscussed in [26].

9For notational convenience in the rest of the article, unless
otherwise stated, we work in units with κ ¼ 1.
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where ϱ̃m and p̃m are the conventional matter density and
pressure, ϱϕ and pϕ are the dilaton energy density and
pressure, and10:

G̃ϕ ¼ −e
ffiffi
2

p
ϕ

�
1ffiffiffi
2

p ϕ̈þ 1

2
_ϕ2 þQðtÞffiffiffi

2
p e−ϕ=

ffiffi
2

p
_ϕ

�
;

G̃ii ¼ 2a2
�
−

1ffiffiffi
2

p ϕ̈ −
3ffiffiffi
2

p H _ϕþ 1

2
_ϕ2 þ ð1 − qÞH2

−
1ffiffiffi
2

p QðtÞe−ϕ=
ffiffi
2

p
ð _ϕ −

ffiffiffi
2

p
HÞ

�
; ð14Þ

whereQ2ðtÞ is the central-charge surplus, a the cosmic scale
factor and q the cosmic deceleration, and we note that only
two of the equation (13) are independent. We have used in
the above a dilaton field with a canonically normalized
kinetic term, following the notation in [17]. In particular, the
dilaton ϕ used in [17] and appearing in (13) is related to the
standard dilaton Φ used in [14] and [8,9] by

ϕ ¼ −
ffiffiffi
2

p
Φ: ð15Þ

In our conventions, the slope of the potential is positive, as
the potential increases for increasing ϕ, until it assumes an
approximately constant value for large values of ϕ.
In the convention (15), the string coupling is given by

gs ¼ gð0Þs eΦ ¼ gð0Þs e−ϕ=
ffiffi
2

p
; ð16Þ

and, as we discuss below, in all our noncritical cosmology
examples [8,9,14,17], the string coupling is weak, includ-
ing during the inflationary era, in the sense that the dilaton
takes on large (trans-Planckian) positive values. Indeed it is
an increasing function of the cosmic time. One can take

gð0Þs < 1 to guarantee string-loop perturbation theory in all
the phenomenologically relevant epochs of the Universe
evolution, from early cosmology to the current era.
The dots above a quantity in (13) denote derivatives with

respect to the Einstein-frame cosmic time, which is the
standard time used in cosmology to compare models with
observations [18]. The rhs of these equations are provided
by the terms that are associated with the noncritical string
behavior. The time derivatives appearing on the rhs are
essentially derivatives with respect to the Liouville mode,
which is the zero mode of the world sheet renormalization
scale and has been constrained to be identical to the cosmic
time [8]. Such terms are absent in critical string cosmol-
ogies, including the asymptotic situation met in [14].
We ignore for our purposes here the matter/radiation

contributions denoted by the suffix m, as we are only
interested in early (inflationary) epochs, in particular the
validity of the swampland conjectures for de Sitter space

time and the EFT in the context of noncritical string
cosmologies, and hence set ϱ̃m ¼ p̃m ¼ 0.
The reader should notice the dissipative terms propor-

tional to QðtÞ _ϕ in (14), where QðtÞ is the central charge
surplus, that depends in general on the cosmic time [9].
There are many explicit ways to generate such as a surplus,
and we shall come back to explicit examples discussed
below. In general, the variation of the central charge deficit
QðtÞwith the cosmic time is provided [9,11] by the Curci—
Paffuti equation [27], which expresses the renormalizability
of the world sheet theory. To leading order in an α0
expansion, to which we restrict ourselves in this work,
this equation is given by

dG̃ϕ

dt
¼ −6e

ffiffi
2

p
ϕ

�
H −

1ffiffiffi
2

p _ϕ

�
G̃ii

a2
ð17Þ

in the Einstein frame.
In Eq. (14) above, q denotes the deceleration parameter

of the noncritical string Universe q≡ −äa= _a2 as function
of the time. We shall be interested in (almost) de Sitter
space-times for which

q ≃ −1: ð18Þ
The potential appearing in (13) above is defined by

VallðϕÞ ¼ ðQ2ðtÞ exp ð−
ffiffiffi
2

p
jc0jϕÞ þ V0Þ; ð19Þ

where c0 is a constant to be determined by consistency with
the modified swampland criteria, and for generality we
have allowed for a potential term in the string action
−

ffiffiffiffiffiffiffi
−G

p
V0 in addition to that dependent on the central

charge deficit term. We expect that V0 might be generated
by, e.g., string-loop effects, or else by interaction with
D-particle defects [17], which themselves provide a source
of noncriticality. In our convention, inflation is obtained for
large positive values of the field ϕ, which correspond to
early cosmic times.
The form of the potential (19) is indicated in Fig. 1. The

Q-dependent part of the potential is typical of noncritical
string cosmologies, and is associated with the central-
charge surplus of the underlying world sheet Liouville
theory [8,14]. Indeed, for constant Q (as, e.g., in the case
of [14]) and V0 ¼ 0 the potential exhibits a standard
quintessencelike behavior, which is compatible with the
first swampland conjecture (FSC) (2), provided c0 is of
order one. For instance, the case of a linearly expanding
universe with four uncompactified target-space dimensions
studied in [14] has c0 ¼ 1, and thus falls in this category.
The problems with the FSC start when one considers a

large-field de Sitter phase (no matter how brief) within the
EFT framework, for which the dilaton ϕ > 1=κ, V > 0 but
also, as we shall discuss [9], QðtÞ is no longer constant. In
fact, the purpose of this paper is to discuss the swampland
criteria for noncritical string potentials of the form depicted

10We note for completeness [9] that the function G̃00, which is
the 00 component of G̃μν, vanishes because the corresponding
component of the metric is constant.
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in Fig. 1. Depending on the details of the V0 part of the
potential, the Universe may enter a (relatively brief) de
Sitter era, before exiting into either (i) an era in which the
dilaton is stabilized at a constant value ϕ0, as in dilaton-
induced Starobinsky-like inflation in the context of the
noncritical string/brane scenario of [17] (with the value of
the potential Vallðϕ0Þ at its minimum being either zero, or
small and positive so as to match the current cosmological
constant value), or (ii) an era [11] in which the dilaton
potential exhibits another noncritical string quintessence
form, Vall ∼ e−c̃1κϕ, with c̃1 > 0 some positive constant of
Oð1Þ, and the dilaton evolves with the cosmic time as

ϕ ∝ ln a; ð20Þ
where a is the scale factor of the Universe. This solution is
asymptotic for very large cosmic times to the solution of
[14], in which the dilaton scales logarithmically with the
Einstein-frame cosmic time, and the Universe is linearly
expanding in this frame.11

The dilaton energy density and pressure are

ϱϕ ¼ 1

2
_ϕ2 þ VallðϕÞ:

pϕ ¼ 1

2
_ϕ2 − VallðϕÞ: ð21Þ

We observe in (21) that in a de Sitter background of the
type we are interested in, under the assumption that the
potential dominates, one can ignore the _ϕ2 terms in front of
Vall, so the field ϕ acts as a quintessence field inducing an
(almost) de Sitter space-time, with

ρϕ ≃ −pϕ ≃ VallðϕÞ: ð22Þ

The first of Eq. (13) is actually the analogue of the
Friedmann equation for noncritical string cosmologies.
Using (14) and ϱ̃m ¼ p̃m ¼ 0, we may write it in the
following form in the de Sitter phase:

H2 ≃
1

3
VallðϕÞ −

1

3

�
1

2
ffiffiffi
2

p ϕ̈ −
1

4
_ϕ2 þQðtÞ

2
ffiffiffi
2

p e−
1ffiffi
2

p ϕ _ϕ

�
: ð23Þ

During the de Sitter phase, we may make the reasonable
approximation that the behavior (20) characterizes the
dilaton field. In particular, we assume the proportionality
constant in (20) to be that in the solution of [14], which
actually describes the asymptotic exit phase from the
noncritical string inflation model of [9]. In such a solution
one has:

_ϕ ≃
ffiffiffi
2

p
H ⇒ ϕ̈ ≃

ffiffiffi
2

p
_H; ð24Þ

which, on account of the second of the equations (13),
implies

_H ≃ −
3

2
H2: ð25Þ

From this we easily obtain, using (24):

_H
H2

¼
ffiffiffi
2

p H0

H
≃ −

3

2
H2 ⇒ H ≃HIe

− 3

2
ffiffi
2

p ϕ; ð26Þ

where the prime denotes differentiation with respect
to ϕ, and HI is an inflationary scale to be determined
phenomenologically.
We now observe that, because of (24) and (25), the

Curci-Paffuti equation (17) implies that

G̃ϕ ¼ c4; ð27Þ

a constant of mass dimension [þ2], during the de Sitter
phase, which is realized for large values of ϕ [see Fig. 1].
Using (14) and (26), this yields the following evolution
with respect to the cosmic time, or equivalently ϕðtÞ, of the
central charge deficit QðtÞ [9]:

FIG. 1. A typical noncritical string cosmology potential in the
range 0 < ϕ < ∞. The Universe starts with a quintessencelike
behavior for small positive dilaton values, and then passes
through an approximately de Sitter era for larger values of
κϕ ¼ Oð1Þ, before exiting into an era where the dilaton is
stabilized with a value ϕ0 ≫ 1. The exit phase (blue curve, to
the right of the dashed vertical line) can be characterized by a
dilaton-induced Starobinsky-type potential as in the scenario of
[17]. In other noncritical string scenarios [11], the dilaton evolves
in such a way that the potential exhibits a decaying behavior,
Vall ∼ e−c̃1ϕ with c̃1 > 0, at very large times (indicated by the
doubly dotted-dashed red curve), and reaches asymptotically a
logarithmic behavior corresponding to the linearly expanding
Universe of [14], which constitutes an asymptotic “equilibrium”
situation for noncritical string cosmology [8,9,11].

11It should be noted that, if the expansion is measured in string
rods, the linear expansion is not really an expansion of the
Universe, but being an asymptotic equilibrium point in the
noncritical string evolution [11], this is not an issue.
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QðtÞHI ≃ ð−c4Þe
5

2
ffiffi
2

p ϕ þH2
I

2
e

3

2
ffiffi
2

p ϕ: ð28Þ

We now remark that, although the supercriticality of the
string corresponds to Q2ðtÞ > 0, we may without loss of
generality assume that QðtÞ > 0, which allows us to take

c4 ¼ −jc4j ≤ 0: ð29Þ

As we see later, this is a self-consistent choice when
formulating the modified swampland conditions for super-
critical strings.
Then, we obtain from (23)

H2 ≃
4

7
VallðϕÞ −

6

7
QðtÞHe−

1ffiffi
2

p ϕ: ð30Þ

Using the Bousso bound [16], or equivalently (6), which is
valid independently of the criticality or otherwise of the
string, being a geometric bound on the entropy of states,
one may obtain from (24) and (30):

VallðϕÞ ≤
7

4

�
8π2

Nγ

�
2=ð2−δÞ

þ 3

2
QðtÞHe−

1ffiffi
2

p ϕ

≡ 7

4

�
8π2

Nγ

�
2=ð2−δÞ

þDϕðϕÞ: ð31Þ

where

DϕðϕÞ ¼
3

2
jc4j þ

3H2
I

4
e−

1ffiffi
2

p ϕ; ð32Þ

as can be inferred from (28) and (29). It is clear that the
presence of the function DϕðϕÞ which depends on the
dilaton may drastically modify the swampland bound,
depending on the details of the noncritical string model,
in particular the values of the parameters c0 and c4.
Indeed, deep in the de Sitter phase, the field ϕ takes on

trans-Planckian values, for which the distance conjecture
(1) is violated. We may also assume that most of the
states that are becoming light behave either in a pointlike
way, corresponding to δ ≃ 0, or are stringlike, with δ ¼ 1.12

Hence, without loss of generality we may assume 0 < δ <
2 as a physically relevant range of this parameter for our
noncritical string cosmologies, which is also in agreement
with a plethora of critical string models [3].
Taking into account the fact that in this large-dilaton

regime there is a large number of states (3) that are light,
since nðϕÞ ≫ 1, with bγ ¼ Oð1Þ > 0, our analysis indi-
cates that the term DϕðϕÞ, proportional to QðtÞ, dominates
the N-dependent entropy term on the rhs of the inequality

(31). Therefore, using (32) we may approximate the rhs of
the inequality in the second line of (31) by

VallðϕÞ ≲ 3

2
jc4j þ

3H2
I

4
e−

1ffiffi
2

p ϕ; ð33Þ

where we stress once again that the (dimensionful) constant
c4 is connected to the supercritical-string central-charge
surplus Q, and vanishes for critical strings: c4 ¼ 0.
The potential (19) may be written as

Vall ¼ c24e
ð5−2jc0jÞ 1ffiffi

2
p ϕ þH4

I

4
eð3−2jc0jÞ

1ffiffi
2

p ϕ

þH2
I jc4jeð4−2jc0jÞ

1ffiffi
2

p ϕ þ V0: ð34Þ

For consistency with the (quintessencelike) exponential
behavior of the potential depicted in Fig. 1, which we take
as our prototype of supercritical string cosmology, it
suffices to consider potentials (34) for which either
(i) all of the exponents of the exponentials are negative,
or (ii) the largest of them vanishes, and the other two are
negative, i.e.,

jc0j ≥ 5=2: ð35Þ

Case (i): All the exponents in the exponential are
negative
For large positive ϕ, the leading term in the potential is

that with coefficient c24. We then see from (19) and (31) that
for consistency with inflationary phenomenology, a suffi-
cient condition for a de Sitter phase at large ϕ is

0 < V0 ∼H2
I ≲ 3

2
jc4j: ð36Þ

In this way satisfying the second swampland criterion
becomes almost trivial. Indeed, taking the logarithms on
both sides of (33), differentiating with respect to the field ϕ,
and recalling that in our case V 0

all < 0 during and before the
inflationary phase [see Fig. 1], we obtain

jV 0
allj

Vall
≳ 3H2

I

4
e−

1ffiffi
2

p ϕ 1

3
2
jc4j þ 3H2

I
4
e−

1ffiffi
2

p ϕ
þOðnðϕÞ− 2γ

2−δe−
2bγ
2−δϕÞ:

ð37Þ

which provides a much weaker constraint on the potential
than (2) for large ϕ ≫ 1. We reiterate that above we
assumed the presence of a large number of light string
states, in which case the terms Oð…Þ on the rhs of the
inequality (37) are subleading for b, γ ¼ Oð1Þ > 0, as
explained previously. Otherwise, the standard swampland
condition is recovered, which is the case for critical strings.
We now check the conditions on the parameters of the

potential (34) under which it satisfies the condition (37) in

12Surfacelike states with δ ¼ 2 correspond to a singular limit
of the N-dependent terms on the rhs of (31) and are subleading,
carrying zero measure in the space of states.
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the large-ϕ (de Sitter) regime (see Fig. 1). To this end, we
compute the quantity:

jV 0
allj

Vall
≃
j5 − 2jc0jjffiffiffi

2
p c24e

ð5−2jc0 jÞffiffi
2

p ϕ 1

V0 þ c24e
ð5−2jc0 jÞffiffi

2
p ϕ þ…

; ð38Þ

where the … denote subleading terms in the large-field de
Sitter regime ϕ ≫ 1 with jc0j > 5=2. Comparing (38) with
(37), we observe that (37) is satisfied provided:

5 − 2jc0j ¼ −1 ⇒ jc0j ¼ 3; and

c24
V0

≳ 1ffiffiffi
2

p H2
I

jc4j
; ð39Þ

which, since V0 ∼H2
I (36), implies:

κ2jc4j≳ 0.89ðHIκÞ4=3; ð40Þ

where we have reinstated the factors of κ units, for clarity.
On the other hand, from the Bousso bound on the potential
[(36) or equivalently (33)], we must have

κ2jc4j≳ 0.67ðHIκÞ2 ð41Þ

for κϕ ≫ 1. Taking into account the fact that phenomeno-
logically HIκ ∼ 10−4 ≪ 1 [18], we find that a stronger
lower bound on jc4j comes from (40), which is the result of
the modified swampland condition (37) in the supercritical
string model.
Case (ii): One exponent vanishes
Let us now consider the case in which one exponent

vanishes, and the other two are negative with

jc0j ¼
5

2
: ð42Þ

In this case, we see from (19) and (31) that for consistency
with inflationary phenomenology, a sufficient condition for
obtaining a de Sitter phase at large ϕ is

0 < jc4j2 þ V0 ∼ κ−2H2
I ≲ 3

2
jc4jκ−2; ð43Þ

where we have again reinstated the factors of κ, for
clarity. Performing a similar analysis as before, i.e., by
computing V 0

all=Vall from (34) at large ϕ ≫ 1, but now
under the condition (42), we reach the conclusion that in
order for Vall to satisfy (37) and (43) simultaneously one
must have

jc4jH2
I

jc4j2 þ V0

≳ 1ffiffiffi
2

p H2
I

jc4j
⇒ jc4j2 ≳ jc4j2 þ V0ffiffiffi

2
p ∼

H2
I κ

−2ffiffiffi
2

p ;

and jc4j2 ≳ 4

9
H4

I : ð44Þ

The stronger bound on jc4j is again that coming from the
modified swampland constraint (37) on the slope of the
dilaton potential.
The condition (37) is necessary and sufficient for the

validity of the EFT during the de Sitter phase of super-
critical string cosmology. The latter contains a plethora of
stringy states, which result in noncriticality, but collectively
their presence is taken into account by the presence of the
EFT terms on the rhs of (13), stemming from the identi-
fication of the Liouville mode with the cosmic time [8]. The
modified criterion (33) or equivalently (37) is compatible
with slow-roll inflation, in contrast to the first swampland
conjecture (2). The latter is recovered in the critical string
limit Q → 0, since the N-dependent term on the rhs of the
inequality in (31) is the only term present in that case.

C. Embedding in microscopic conformal
field theory models

The constants c4 and c0 entering the effective potential
(34) would be determined by the embedding of the effective
supercritical string cosmology model into a microscopic
string realization. For instance, one may consider the
framework of [14], in which the internal dimensions
correspond to minimal models characterized by specific
(discrete) values of their central charges. In such a case, c0
and c4 are fixed by the requirement that the supercritical
string model approaches the linearly expanding Universe
model of [14] asymptotically as ϕ → ∞. In this connection,
we observe that setting V0 ¼ 0 and

jc0j ¼ 7=2 ð45Þ

in (34) [which is compatible with (35)], the potential
assumes the form

Vall ¼ c24e
−

ffiffi
2

p
ϕ þH4

I

4
e−

4ffiffi
2

p ϕ þH2
I jc4je−

3ffiffi
2

p ϕ

⇒
ϕ→∞

Vallðϕ → ∞Þ ≃ c24e
−

ffiffi
2

p
ϕ: ð46Þ

The asymptotic form of Vall coincides with the dilaton
potential in the model of [14], when we identify c24 with the
central-charge surplus δc ∝ Q2⋆ ¼ constant.
We recall that, in the approach of [14], if ctot denotes

the total central charge of the world sheet σ-model theory,
and d the number of uncompactified string dimensions, one
has [14]

ctot ¼ d − 12Q2⋆ þ cI; ð47Þ

where cI is the central charge corresponding to the
conformal field theory of the internal manifold. In the
bosonic prototype string theory, decoupling of reparamet-
rization ghosts requires ctot ¼ 26 (10 for superstrings), and
in our case d ¼ 4. This implies that
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12Q2⋆ ¼ cI − 22; ð48Þ

which is a model-dependent constant in the model of [14]
that depends on the conformal data of the internal theory,
specifically on its central charge cI. Supercritical strings
correspond to Q2⋆ > 0.13 In terms of the target-space
effective action, in the model of [14] there is a positive
vacuum energy of quintessence type of the form

Z
d4x

ffiffiffiffiffiffi
−g

p
4Q2⋆e−

ffiffi
2

p
ϕ ð49Þ

in our conventions (15). Comparing (46) with (49), we
observe that the value of c4 is fixed by the choice of
conformal field theory corresponding to the internal mani-
fold degrees of freedom:

c24 ¼ 4Q2⋆; ð50Þ

whereQ2⋆ is the central charge surplus,14 which is a rational
real number in the models of [14].
Setting ϕ ¼ 0 in (28) and taking (29) into account, we

find

Qðϕ ¼ 0Þ ¼ jc4j
HI

þ 1

2
HI; ð51Þ

where HI is expressed in units of κ−1. For realistic infla-
tionary scenarios [18] HIκ ≲ 10−4 ≪ 1, so in Planck units
HI ≪ 1 in (51), (28), and hence Q2ð0Þ > Q2⋆ ¼ Q2ðϕ →
þ∞Þ when (50) is taken into account. One may consider
(51) as corresponding to an initial fixed-point conformal
field theory(CFT), e.g., another minimal model, following
[14], with

Q2⋆1CFT ≡Q2ðϕ ¼ 0Þ > Q2⋆ðϕ → ∞Þ≡Q2⋆2CFT ¼ jc4j
4

:

ð52Þ

In the minimal models considered in [14] as providing
conformal models for the internal manifold, Q2⋆i CFT, i ¼ 1,
2 take discrete rational values.
Thus Q2ðtÞ (28), which defines the overall “running”

central charge surplus in the supercritical string model
including the contributions from the internal manifold,
interpolates (52) between specific minimal models of the
type considered in [14]. We note that the evolution (28) of

Q2ðtÞ is independent of the constant c0, but assumes
implicitly that there exists a slowly running inflationary
phase at a scaleHI. This is not the case in the model of [14],
which describes a linearly expanding universe, but it is
consistent with the aforementioned role of this theory
as an asymptotic fixed point of the supercritical string
model [10].
In this approach one considers an interpolating theory

with a central-charge surplus Q2ðtÞ dependent on the
Liouville mode that is identified with the cosmic time
[10], hence there is no overall increase in the target-space
dimensionality of the interpolating string model. There is a
departure from criticality for the two-dimensional (world
sheet) field theory corresponding to the internal manifold of
the string. During the interpolating phase, the internal
conformal field theory at ϕ ¼ 0, corresponding to an initial
cosmic time, is perturbed by relevant operators in a world
sheet renormalization-group sense. This induces a flow
between the two fixed points described by the conformal
field theories corresponding to the Coulomb charges
Q2⋆i CFT, i ¼ 1, 2 (52).
During the flow, Liouville dressing is required to

maintain ctot ¼ 26, as required for ghost decoupling. In
this way, the internal central charge cI → cIðtÞ becomes
itself a function of the Liouville mode (i.e., cosmic time), so
that (48) [or, equivalently, (47)] is satisfied with ctot ¼ 26.
The theory flows asymptotically to a fixed-point theory
corresponding to a dilaton potential of the form (46)
for large positive values of ϕ → ∞, where the model
asymptotes to one of the conformal field theory models
of [14]. In this scenario the constants c24 (50) and c0 (45) are
determined.
The above serves as an example of how one can

determine the relevant constants appearing in the effective
dilaton potentials (19) of the supercritical string cosmology
models by means of specifying the underlying microscopic
world sheet conformal field theory models. As we have
emphasized, the models of [14] do not describe, as they
stand, inflationary physics. They serve as asymptotic fixed
points in a world sheet renormalization-group sense of a
more complete theory that describes inflation for relatively
small values of the dilaton ϕ > 0, as happens in the model
(34) examined above. More complicated supercritical
string models also exist in the literature, such as the
type-0 string noncritical string theory model of [28] and
the tachyon-dilaton models of [29]. Such models are
characterized by transient inflationary phases, during which
the central charge surplus diminishes as the cosmic time
increases as in our case (34) above, before oscillating
around zero for a short period of time, and then asymptot-
ing to one of the minimal model values of the linearly
expanding Universe of [14].
We stress again that our considerations deal with

generic supercritical effective theories, without an empha-
sis on presenting detailed microscopic string constructions.

13The terminology supercritical refers to the fact that in terms
of a string in D flat uncompactified target space time dimensions,
D ¼ dþ cI > 26 (or 10 for superstrings).

14It corresponds to a Wick-rotated Coulomb charge at infinity
for the minimal conformal field theory models considered in [14]
as a description of the internal-dimension manifolds of the
supercritical string.
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Our approach should be viewed as an attempt to demon-
strate that generically, supercritical string with a Liouville-
renormalized central charge surplus Q2ðtÞ can lead to
cosmologies that are embeddable in a UV-complete theory
of quantum gravity, in which the corresponding EFT
bypasses the swampland criteria. The aforementioned
specific string models serve as concrete examples of
microscopic string theory models where this situation is
realized explicitly.
Since our supercritical string (Liouville) cosmology is

viewed as an interpolation between critical string models,
during the monotonic Liouville evolution taken to corre-
spond in our convention to a dilaton field that increases
with the cosmic time, the descent from the UV of massive
string states that become massless during this evolution,
and thus fail to decouple, is governed by the same criteria as
in the critical string cosmologies used in [3] and above
when formulating the second swampland conjecture. In
particular, the generic parametrization (4) of the entropy of
massive string states is valid in our Liouville noncritical
string case as well, with the Hubble parameter depending
on the timelike Liouville mode that is identified with the
cosmic time in our approach [10].
This dependence parametrizes collectively the failure of

decoupling of the massive states in the following sense,
familiar from our prototype example of a noncritical string
theory, realized in the two-dimensional stringy black hole
system [7]: (i) one starts from an underlying conformal
field theory, corresponding to an initial value of the dilaton
field; (ii) then, some specific perturbations, depending on
the microscopic content of the theory, move it away from
criticality. The perturbations may mix massless and mas-
sive states in the spectrum, such that some of the massive
stringy states fail to decouple as the dilaton evolves, exactly
as happens in the aforementioned black hole example [7].
This failure is encoded in the noncriticality of the string
cosmology model that interpolates between critical string
backgrounds, and it is in this sense that the effective
description of the cosmology in terms of local field theories
at low energies, including the dilaton and graviton fields,
suffices. Any nonlocality stemming from these massive
states is described collectively by the effects of Liouville
mode. The embedding of such an EFT into a consistent
quantum gravity model is guaranteed by bypassing the
swampland criteria, as a consequence of the modified
cosmological evolution that characterizes the supercritical
string cosmologies [9].
This is the essence of our supercritical string cosmology

[7,10] and its evasion of the swampland criteria, as
presented above.

D. The special case of a dilaton-induced
Starobinsky-like potential [17]

In light of the above discussion, we infer that the dilaton/
D-particle-induced Starobinsky-like potential of [17]

constitutes a consistent noncritical string cosmology, as
it also satisfies (37). However, for completeness we should
mention that this model is constructed somewhat differ-
ently, in that its dilaton central charge deficit is assumed to
be subcritical, as the brane world lives in d ¼ 4 dimensions,
and the noncriticality arises from the interaction with
ensembles of D-particles living on the brane world, which
enter the latter from the bulk as the brane Universe
propagates in cosmic time.
The corresponding effective action in the Einstein-frame

is given by [17]

Sstaroeff ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðRðgÞ − ð∂μϕÞ2 − VNc−Staro þ…Þ;

ð53Þ

where the four-dimensional gravitational constant is given
by κ2 ¼ 8πα0V−1

C , and α0 ¼ M−2
s is the Regge slope where

Ms is the string mass scale, and VC is the volume of the
extra compact dimensions (or the volume of the portion of
the bulk space between the brane worlds, depending on the
construction). The potential VNC−Staro is given by [17]

VNC−Staro ¼ A −
44

3κ2α0
e−

ffiffi
2

p
κϕ þ… ≥ 0: ð54Þ

The quantityA ¼ 16π n
ffiffi
α

p

gð0Þs VC
> 0, with gð0Þs < 1, depends on

the (three-)density of D-particles on the brane world n,
which is assumed to be approximately constant, with its
dilution due to cosmic expansion being compensated by an
influx of D-particles from the bulk. The density n and
masses of the D-particles can be adjusted so that the
potential vanishes at ϕ ¼ 0. The magnitude of the quantity
A provides the inflationary scale in the model.
We now make some important remarks concerning the

structure of such a potential. Notice that in the conventions
of [17], the potential increases for increasing positive ϕ,
which is a crucial difference from the noncritical string
potentials (34). On the other hand, as in the supercritical-
string case, the inflationary phase occurs for large positive
κϕ ≫ 1. Nonetheless, because now V 0

NC−Staro > 0, some
crucial modifications need to be made in the noncritical
string analysis presented above that led to the swampland
conditions.
The potential (54) corresponds to (19), but now Q2 < 0

as in subcritical strings. Formally, the noncritical string
analysis can be performed in such a case by analytically
continuing to Euclidean cosmic time

t → it; Q → iQ; H → iH; ð55Þ

maintaining otherwise the structure of (23). Using the
analytic continuations of the expressions (25) and (26) and
the Curci-Paffuti equation we arrive at a modified evolution
equation for the central charge deficitQðtÞ, which results in
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a modified Bousso bound when we revert to Minkowski
cosmic time:

0 < VNC−StaroðϕÞ≲ 3

2
jc4j −

3H2
I

4
e−

1ffiffi
2

p ϕ; ð56Þ

where we maintain the same sign in front of the constant c4
as in the supercritical string case (33), as required by the
positivity of the potential (the reader can check from (27)
that we have the freedom to do so). However the sign of the
H2

I -dependent term is now the opposite, in view of (55).
Taking the logarithm of (56) and differentiating with

respect to ϕ, we now have

0 <
V 0
NC−Staro

VNC−Staro
≲ 3H2

I

4
e−

1ffiffi
2

p ϕ 1

3
2
jc4j − 3H2

I
4
e−

1ffiffi
2

p ϕ

þOðnðϕÞ− 2γ
2−δe−

2bγ
2−δϕÞ: ð57Þ

From this we see that the condition (37) is now modified by
changing the sign of the inequality, since now the slope of
the (positive) potential is also positive V 0

NC−Staro > 0.
It is thus straightforward to see that, during the trans-

Planckian inflationary de Sitter phase with κϕ ≫ 1, the
Starobinsky-like potential (54) satisfies the modified
Swampland conjecture (57) quite comfortably. Indeed,
we see that

V 0
NC−Staro

VNC−Staro
¼

ffiffiffi
2

p 44

3κ2α0
e−

ffiffi
2

p
κϕ

A − 44
3κ2α0 e

−
ffiffi
2

p
κϕ þ…

; ð58Þ

which can be compared with the rhs of the inequality (57).
The rhs of (58) is much smaller for phenomenologically
relevant values of HI , A, α0, jc4j ¼ OðAÞ, in view of the
difference in the powers in the exponents of the exponen-
tials containing the large ϕ field. Thus, the condition (57) is
naturally satisfied and an EFT description is valid.
We stress once more that, in our considerations in this

work, and more generally in our noncritical cosmological
string models [8,9,11], the string coupling remains weak:
gs < 1 during the entire cosmic evolution from the origin of
cosmic time, which corresponds to ϕ ¼ 0, until the present
era, including the inflationary epoch (see Fig. 1). Hence the
D-particles remain heavy in the scenario of [17], since their
masses are proportional to

MD ∼ g−1s ðα0Þ−1=2: ð59Þ

and gs ¼ gð0Þs e−
2ffiffi
2

p ϕ < 1.
Nonetheless, as the dilaton takes on large values, other

string states (e.g., scalar moduli or stringy extended
objects) can descend from the UV to contaminate the
EFT in the way described above. However, in the context of
our supercritical strings this is taken into account by
representing collectively the “environment” of such states

via extra contributions to the EFT cosmological equations,
incorporated via the appropriate Liouville dressing and
identification of the (timelike) Liouville mode with the
cosmic time (see the rhs of (13) in the concrete example
discussed in the current work). Thus, we always retain an
EFT description, which is reflected in the triviality of the
modified swampland condition (37) in supercritical string
cosmologies. There are, however, some restrictions on the
parameters of the respective dilaton potentials, see, e.g.,
(35) and (36), needed to match the relative phenomenology.

IV. DISCUSSION: ISSUES WITH THE WEAK
GRAVITY CONJECTURE

Before closing, we discuss the consistency of our results
with the weak gravity conjecture (WGC) [30] and its
extension to include scalar fields [31]. The WGC states
essentially that gravity is the weakest of the fundamental
forces in four dimensions. According to the WGC, if a
theory contains a U(1) gauge symmetry with coupling g,
then there must exist a state of charge q and mass m, such
that [30]

gqMP ¼ m ð60Þ

whereMP ¼ ffiffiffiffiffiffi
8π

p
MPl is the four dimensional Planck scale.

Its scalar field extension [31] implies that if mðϕiÞ is the
mass gap of some scalar field φ (not the dilaton) interacting
with the light scalar moduli fields ϕi (which include the
dilaton) within some four space-time dimensional EFT,
then gravity remains the weakest force, which requires that
interactions involving exchanges of the light scalars be
such that the mass of the scalar field φ satisfies

m2 ≤ g̃ij∂im∂jm; ð61Þ

where g̃ij is the metric in the space of the moduli fields ϕi.
As we do not deal explicitly with charged matter in this
work, it is this scalar extension (61) that is of interest to
us here.
First we notice that in models involving (scalar)

D-particles, as in the Starobinsky inflation model of
[17], the masses of the D-particle states themselves satisfy
(61), since that the D-particle mass is inversely proportional
to the string coupling (59). In terms of the standard dilaton
Φ (15) that is used in the canonical expression for the
D-particle mass, the string coupling is given by gs ¼ eΦ, so
we see that condition (61) is satisfied, in fact it is saturated
with a constant “metric” in theory space that is equal to
the identity. However, having said that, the conjecture is
formulated at present for local field theory scalars, and its
extension to stringy/brany objects is not yet formulated to a
level of precision and understanding that allows us to apply
the above result (61) with rigor.
Moreover, in our noncritical string cosmologies, the

considerations around the scalar WGC pertain to masses of
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scalars other than the dilaton, which is one of the string
moduli. As such, it is not relevant for the noncritical string
dilaton potentials (34) discussed in this work. One needs a
formulation of the scalar WGC that incorporates the
potential of the (self-interacting) dilaton.15

In this connection, an improved version of the scalar
WGC has been suggested in [32]:

ðV 00Þ2 ≤ ð2ðV 000Þ2 − V 00V 0000Þκ−2; ð62Þ

which is expressed in terms of the scalar potential V, for
canonically normalized fields. This improved WGC
resolves the axion puzzle, leading to a plausible constraint
on the axion decay constant, fa ≤ MP, as expected. In
principle, (62) should be applicable to our case, where we
deal with a canonically normalized dilaton ϕ (15).
As discussed in Sec. II, in both the cases (42) and (39)

that are compatible with the noncritical string modification
of the first swampland conjecture (37), we are dealing with
large dilaton field values κϕ ≫ 1 and exponential poten-
tials in a de Sitter phase of the Universe:

V ∼ Aeγκϕ; ð63Þ

where γ is a negative dimensionless constant that takes the
value

γ ¼ −
1ffiffiffi
2

p : ð64Þ

in both cases. For such potentials, the condition (62) is not
satisfied.
We remark, though, that there is no rigorous diagrammatic

derivation of the improved scalar WGC (62). In particular,
the coefficients of the various scalar self-interaction terms
appearing on the rhs of the inequality could in principle be
modified. For this reason, a generalized form of the scalar
potential WGC (62) has been proposed in [33]:

ðV 00Þ2 ≤ ð2c01ðV 000Þ2 − c02V
00V 0000Þκ−2; ð65Þ

where c01 and c
0
2 > 0 are positive coefficients of order Oð1Þ.

With appropriate values of these coefficients, the generalized
form of WGC (65) can accommodate various scalar poten-
tials of interest in the early Universe, as in Q-ball models, but
also exponential scalar potentials of the form (63) for γ ≤ 1,
such as our supercitical string case with a canonically
normalized dilaton (64). The condition would be saturated
in that case for c01 ¼ c02 ¼ 2.
On the other hand, we note that the condition is satisfied,

indeed saturated, if one uses the standard dilaton Φ (15)
appearing in the definition of the string coupling, gs ¼ eΦ,

as the string loop-counting parameter. However, we note
that in such a formalism the dilaton does not have
canonically normalized kinetic terms, but appears in the
string-inspired low-energy gravitational action in a
D-dimensional uncompactified target space in the form:

Seff ¼
1

2κ2

Z
dDx

ffiffiffiffiffiffi
−g

p

×

�
RðgÞ − 4

D − 2
ð∂μΦÞ2 − e

4Φ
D−2Q2 þ…

�
; ð66Þ

where Q2 is the central charge surplus of the supercritical
string [8,14], and the … denote other fields, higher
derivative terms, etc.. Thus, for four large uncompactified
dimensions, D ¼ 4, one obtains the result (15) for the
canonically normalized dilaton, ϕ, used in [17] and above.
The satisfaction of the improved WGC (62) byΦ but not

ϕ is curious, but may be the correct form to be used in the
case of noncritical strings with exponential scalar poten-
tials. We remark that in [32] the conjecture (62) was derived
by looking at four-point scalar interactions, one with the
scalar field as a mediator and the second a four-scalar
contact interaction, which could be due to the exchange of a
massive mediator. The four-point interaction is repulsive,
and is associated with the term in the conjecture involving
the fourth derivative of the field. Thus, subtracting the
contact interaction from the four-point amplitude with a
scalar mediator (which is attractive, and corresponds to the
term in the conjecture involving the square of the cubic
derivatives of the potential with respect to the scalar field)
should give a result at least as weak as the fourth-order
interaction mediated by a four-dimensional graviton
exchange, which is essentially the square of the second
derivative of the potential with respect to the field (which
defines the mass-squared of the scalar field). This is the
philosophy behind (62). For noncritical strings with expo-
nential potentials the situation needs to be revisited, which
might lead to an explanation on the aforementioned
discrepancy, and why the (noncanonically normalized)
form Φ of the dilaton should be used in the string effective
action.
Finally, we note that, for the dilaton-induced Starobinsky

potential (54), in the inflationary phase occurring for large
positive ϕ, and with a canonical kinetic term as in (15), the
condition (62) is trivially satisfied, as can be seen by direct
computation. The exponent

ffiffiffi
2

p
is crucial for this result. In

this model the potential (54) is of the following generic
form for large κϕ ≫ 1:

V ¼ jc5j − jc6je−
ffiffi
2

p
κϕ þ… ð67Þ

with c5, c6 ∈ R real constants, and with the kinetic term of
ϕ canonically normalized. We see from (67) that the
improved WGC (62) requires 4κ6 < 8κ6, which is satisfied.
We also remark that the condition is satisfied for this model

15In passing, we mention that the scalar WGC (61) appears to
be inconsistent with the postulated properties of axion potentials.
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also if one uses the noncanonically normalized standard
dilaton Φ appearing in the string effective action (66)
or (53).
However, we caution that there are many ambiguities

surrounding the formulation of the WGC. For example,
there are other forms of the WGC [34] that take into
account the weakness of gravitational interactions, imply-
ing that the situation involving scalars and the WGC is
still ambiguous, reflecting once more our ignorance of the
structure of quantum gravity. Thus, although the con-
jecture that gravity must be the weakest force certainly
sounds plausible for a quantum theory of gravity, the
rigorous and unambiguous quantification of this conjec-
ture is nevertheless not trivial. In particular, it is quite
possible that the formulation of the scalar WGC (61) may
need modification in the case of a noncritical string
cosmology with a running dilaton, while maintaining
the nature of gravity as the weakest observable force
in our four-dimensional world. We conclude that there
is no dramatic contradiction between the superstring

cosmology scenarios we advocate and the weak gravity
conjecture. Moreover, it seems clear from the discussion
in Sec. III that these models are quite compatible with the
swampland conjectures.
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