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The eikonal approximation is an ideal tool to extract classical observables in gauge theory and gravity
directly from scattering amplitudes. Here we consider effective theories of gravity where in addition to the
Einstein-Hilbert term we include nonminimal couplings of the type R3, R4 and FFR. In particular, we study
the scattering of gravitons and photons of frequency ω off heavy scalars of mass m in the limit
m ≫ ω ≫ jq⃗j, where q⃗ is the momentum transfer. The presence of nonminimal couplings induces helicity-
flip processes which survive the eikonal limit, thereby promoting the eikonal phase to an eikonal phase
matrix. We obtain the latter from the relevant two-to-two helicity amplitudes that we compute up to one-
loop order, and confirm that the leading-order terms in ω exponentiate à la Amati, Ciafaloni and Veneziano.
From the eigenvalues of the eikonal phase matrix we then extract two physical observables, to 2PM order:
the classical deflection angle and Shapiro time delay/advance. Whenever the classical expectation of
helicity conservation of the massless scattered particle is violated, i.e., the eigenvalues of the eikonal matrix
are nondegenerate, causality violation due to time advance is a generic possibility for small impact
parameter. We show that for graviton scattering in the R4 and FFR theories, time advance is circumvented if
the couplings of these interactions satisfy certain positivity conditions, while it is unavoidable for graviton
scattering in the R3 theory and photon scattering in the FFR theory. The scattering processes we consider
mimic the deflection of photons and gravitons off spinless heavy objects such as black holes.
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I. INTRODUCTION

A. Overview

One of the exciting applications of scattering amplitudes
focuses on the computation of classical observables in
gauge theory and gravity such as deflection angles and time
delay/advance, or effective Hamiltonians describing the
dynamics of binary systems. Early results in this direction
date back to [1], where it was already noted that loop
amplitudes contribute to classical processes, contradicting
the erroneous belief of e.g., [2]. The intimate connection
between loops and classical physics was sharpened in [3],
and had already been applied in [4] to obtain the classical
and quantum OðG2Þ corrections to Newton’s potential,
where G is Newton’s constant. In this approach, gravity is

treated as an effective theory [5], where one can make
predictions at low energy despite the nonrenormalisability
of the theory. More recently, a systematic approach
employing scattering amplitudes in conjunction with uni-
tarity [6,7] was developed to compute classical quantities in
gauge theory and gravity. Classical [8] and quantum [8,9]
corrections to Newton’s potential can be obtained from a
two-to-two scattering amplitude of two massive scalars, in
particular narrowing down to terms that have discontinu-
ities in the channel corresponding to the momentum
transfer q⃗ of the process [3,5]. An additional simplification
stems from the fact that in the unitarity-based calculation
the cuts can be kept in four dimensions, as discrepancies
with D-dimensional results only give rise to analytic terms,
at least at one loop. Unitarity was also applied in [10–13] to
compute the deflection angle for light or for gravitons
passing by a heavy mass, a quantity that has the advantage
of being gauge invariant. We also mention some of the
efforts leading to the computation of the effective (Newton)
potential at second [14,15], third [16–19], fourth [20–32],
fifth [33,34] and sixth [35] post-Newtonian order, follow-
ing the landmark computation at first post-Newtonian
order [36]. Comprehensive reviews on this topic from
different perspective can be found in [37–40]. In the post-
Minkowskian framework, which is natural in the context of
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amplitudes, the current state of the art is at 3PM order
[41,42], a result which was recently confirmed in [35,43].
Note also the effective one-body approach of [44], recently
extended to incorporate the first and second post-
Minkowskian corrections in [45,46], respectively. For other
interesting approaches to extract classical observables in
general relativity from amplitudes see [47–57].

B. Gravity with higher-derivative couplings

Much attention has been devoted to the study of effective
theories of gravity obtained by adding higher-derivative
interactions to the Einstein-Hilbert (EH) action. In particu-
lar, efforts have been made in [58,59] to confront such
modifications with gravitational wave observations. It was
also noted in [58] that for these effects to be measurable by
experiments such as LIGO the cutoff of the effective theory
must not be much larger thanOðkm−1Þ. In [60] we initiated
a study of the effects that these higher-derivative terms have
on the Newtonian potential and deflection angle. In this
paper we sharpen this study by rooting it in the eikonal
approximation—specifically, applying it to three types of
terms, denoted schematically as R3, R4 and FFR, for which
we compute the corresponding corrections to the deflection
angle and time delay/advance. More in detail, the particular
action we consider for the graviton, photon and a massive
scalar has the form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

2

κ2
R −

1

4
FμνFμν

þ 1

2
ðDμϕÞðDμϕÞ − 1

2
m2ϕ2

−
2

κ2

�
α02

48
I1 þ

α02
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G3

�
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κ2
L8 −

αγ
8
FμνFρσRμνρσ

�
;

ð1:1Þ

where

I1 ≔ Rαβ
μνRμν

ρσRρσ
αβ; G3 ≔ I1 − 2Rμνα

βRβγ
νσRσ

μγα;

ð1:2Þ

while

L8 ¼ β1C2 þ β2CC̃ þ β3C̃
2; ð1:3Þ

where

C ≔ RμνρσRμνρσ; C̃ ≔
1

2
Rμναβϵ

αβ
γδRγδμν: ð1:4Þ

A few comments on the various couplings in (1.1) are in
order here.
First, there are two types of R3 terms, denoted as I1 and

G3 above. Such terms arise naturally in the low-energy

effective description of bosonic string theory. Their effects
on gravitational scattering of different matter fields have
been discussed recently in [60,61]; specifically for the
scattering of two massive scalars, both independent struc-
tures I1 and G3 were found to contribute. On the other
hand, for the helicity-preserving deflection of massless
particles of spin 0, 1 and 2, it was shown in [60] that the G3

interaction has no effect. Additional interesting features
about the I1 and G3 couplings are that I1 is the only
coupling that contributes to pure graviton scattering up to
four points [62,63] and is the two-loop counterterm in pure
gravity [64], while G3 is a topological term in six
dimensions. In the following we will be concerned with
(helicity-preserving and flipping) scattering of massless
gravitons in the background produced by a massive scalar,
in which case only the I1 structure contributes, hence we
will refer to it simply as the R3 term, since no confusion can
arise. Note that in the case of photons there is no R3

contribution to the helicity-flipping process.
The second interaction we study is of the type R4.

In principle there are 26 independent parity-even quartic
contractions of the Riemann tensor [65], but only the seven
which do not contain the Ricci scalar or tensor survive on
shell in arbitrary dimensions, as can also be seen using field
redefinitions [66–68]. In four dimensions these reduce to
two independent parity-even structures [58,69], plus one
parity-odd structure [59], as shown in (1.3).1 In agreement
with [69] we find that these interactions induce the
following four-point graviton amplitudes: those with all-
equal helicities, and the amplitude with two positive- and
two negative-helicity gravitons (the MHV configuration). If
β2 in (1.3) is nonvanishing, then the all-plus and all-minus
graviton amplitudes are independent. We also note that a
particular contraction of four Riemann tensors appears in
type-II superstring theories where it is the first higher-
derivative curvature correction to the EH theory, and can be
determined from four-graviton scattering [71].
The third interaction we consider is an FFR term, where

F is the electromagnetic field strength. It is known to arise
in string theory as well as from integrating out massive,
charged electrons in the case of electrodynamics coupled to
gravity, as discussed in [72,73], and considered more
recently in [74,75].
We have also introduced in the action a minimally

coupled massive scalar to represent a black hole.2 Note
that in (1.1) we have excluded terms quadratic in the
curvatures since from an effective field theory/on-shell
point of view they have no effect to any order in four
dimensions, as shown recently in [68].

1A general approach to find a complete, nonredundant operator
basis of dimension six and eight for the effective Standard Model
including gravity has been given recently in [70] using the Hilbert
series method.

2In order to describe charged black holes the real scalar in (1.1)
should be replaced by an electrically charged complex scalar.
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C. Physical observables from the
eikonal phase matrix

We now come to the computation of the physical
observables of interest—these are the classical deflection
angle and the time delay/advance [76] experienced by
massless gravitons and photons when they scatter off a
(possibly charged) massive scalar. A method ideally suited
for obtaining classical observables directly from ampli-
tudes, without passing through intermediate, unphysical
quantities, is the eikonal [77–82]. In this approach the
relevant amplitudes are evaluated in an approximation
where the momentum transfer jq⃗j is taken to be much
smaller than both the mass m of the heavy scalar and the
energy ω of the massless particle, or more precisely taking
m ≫ ω ≫ jq⃗j. Crucial for this is a convenient parametri-
zation of spinor helicity variables for the massless particles
in the eikonal limit. The amplitudes thus obtained are
then transformed to impact parameter space via a two-
dimensional Fourier transform. In this space the amplitudes
are expected to exponentiate into an eikonal phase, from
which one can extract directly the classical (and, if desired,
quantum) deflection angle and time advance/delay. Recent
applications of this method to this type of problem include
[83] for the deflection angle of massless scalars up to 2PM,
[11] for photons and fermions up to 2PM order, and up to
3PM order in [84–86]. We also note that [11] showed
the equivalence of the eikonal method and the formalism
based on the computation of an intermediate potential/
Hamiltonian used for instance in [10–13,60,61].
An important point we wish to make is that in our case,

because helicity-preserving as well as helicity-violating
processes contribute, the eikonal phase is promoted to an
eikonal phase matrix in the space of helicities of the
external massless particles, with (þ−) and (−þ) being
the diagonal entries associated to no-flip scattering (in a
convention where all particles’ momenta are outgoing),
while (þþ) and (−−) are the off-diagonal entries, with
helicity flip. The associated mixing problem has to be
resolved in order to obtain the physical quantities of
interest. Whenever the two eigenvalues of the eikonal
phase matrix are distinct, a possible violation of causality
at small impact parameter arises, as noticed already at tree
level in [87]. See also [74,75,88–93] for further discussions
an resolutions of this issue in UV-complete theories,
[80,87,94,95] for earlier appearances of the eikonal oper-
ator and [72,73] for related discussions involving helicity
flip and no-flip amplitudes.

D. Summary of the paper

We now summarize our results. We have computed
the graviton deflection angle and time delay/advance for
the three interactions R3, R4 and FFR, and in addition the
photon deflection and time delay induced by the FFR
interaction. The single most important qualitative differ-
ence with the EH theory is that the propagation and speed

of the massless particle acquire a dependence on its
polarization in all cases except the graviton propagation
in the presence of the FFR interaction. This generically
leads to a time advance at small impact parameter b.
Interestingly, in the case of graviton scattering due to R4

and FFR, causality violation can be avoided if the coef-
ficients of the interactions obey certain positivity con-
straints which, for R4, are in precise agreement with those
of [96,97]. For the R3 interaction our results are fully
consistent with the tree-level findings of [87], extending
them to one loop. Note that while we used a massive scalar,
[87] used a coherent state to set up the background in which
the graviton is deflected. Similarly, the FFR interaction
induces superluminal propagation of photons.
An important point is the dependence of the eikonal S-

matrix Seik on the energy ω of the scattered massless
particle. In the EH theory, Seik is expected to take the form
Seik ¼ eiðδ0þδ1þ���Þ, where the subscript L denotes the loop
order of δL. For the leading eikonal δ0, this was proven for
our kinematic setup in [83], and it is generally expected that
the δL are linear in ω, although we are not aware of an all-
order proof. Both for R3 and FFR our results are perfectly
aligned with this expectation up to 2PM order, resulting in
an ω-independent deflection angle and time advance/delay.
A novelty arises for R4 where the corresponding eikonal
phase (matrix) scales as ω3 with the graviton frequency.
The rest of the paper is organized as follows. In Sec. II

we discuss our kinematic set-up and provide explicit
expressions for the spinor helicity variables associated to
each massless particle in the eikonal limit. We then discuss
some general aspects of the eikonal approximation, in
particular the extraction of the phases δL from the loop
scattering amplitudes. We highlight consistency conditions
relating amplitudes in impact parameter space at different
loop orders and powers of ω which will then be explicitly
checked in all cases considered. We also quote here the
relevant formulae to derive the particle deflection angle and
time advance/delay.
Section III contains the computations of all tree-level and

one-loop amplitudes relevant for our analysis. As a warm
up we consider the EH theory, where we re-discuss the
graviton deflection computation of [13]; while it is conven-
tionally assumed that in the classical picture the helicity of
the scattered massless projectile is unchanged, we show
explicitly that this is the case in the eikonal limit: the
flipped-helicity amplitudes are nonzero both at tree level
and one loop, but are subleading once the eikonal limit is
taken, resulting in a diagonal eikonal phase matrix. We then
move on to present the relevant four-point two-scalar two-
graviton amplitudes with and without helicity flip in the
case of R3, R4 and FFR, as well as the two-scalar two-
photon amplitudes for the FFR case, all at tree and one-loop
level. Some of these amplitudes have been calculated here
for the first time. While at tree level we present exact
expressions, at one loop we work in the eikonal
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approximation and we only consider cuts in the q2-channel
which produce nonanalytic terms arising from the long-
range propagation of two massless particles, following
the approach initiated in [4,8,9,98,99]. Although in the
subsequent section we focus only on classical contribu-
tions, arising from triangle integral functions with one
internal mass, we quote complete answers for the ampli-
tudes up to one loop including box (needed to check the
exponentiation of the tree-level phase matrix) and bubble
integrals (generating OðℏÞ corrections to the physical
observables).
Section IV is dedicated to the computation of the leading

and subleading eikonal matrices δ0 and δ1, from which we
will then obtain the OðGÞ and OðG2Þ corrections to the
deflection angle and time advance/delay for the four cases
considered—scattering of gravitons in the presence of R3,
R4 and FFR terms, and scattering of photons induced by the
FFR interaction. We also show the case of graviton
scattering in EH to set the scene for the more complicated
examples discussed later. In all cases we check the
exponentiation of the tree-level eikonal phase matrix
explicitly, providing important consistency checks of our
calculations. Our main results are given in (4.40), (4.47),
(4.55), and in (4.41), (4.48), (4.56), for the graviton
deflection angle and time advance/delay in the R3, R4

and FFR cases, while the photon deflection and time
advance/delay in the FFR theory are given in (4.74) and
(4.75), respectively.
A few appendixes complete the paper, where we present

relevant integrals, the Feynman rules used for some of our
new computations, a list of tree amplitudes, and a deriva-
tion of the four-point graviton amplitudes in R4 only based
on little-group and dimensional analysis considerations.

II. FROM AMPLITUDES TO THE
DEFLECTION ANGLE AND TIME

DELAY VIA THE EIKONAL

In this section we first give a precise definition of the
eikonal limit providing an explicit parametrization for all
the momenta and spinor-helicity variables we need. We
then briefly review the connection between amplitudes in
the eikonal limit (Fourier-transformed to impact parameter
space) and the eikonal phase matrix, the deflection angle
and the time delay.

A. Kinematics of the scattering

We begin by describing the kinematics of the scattering
processes we consider. We denote by p1 and p2 the
four-momenta of the incoming and outgoing scalars,
respectively, with m being their common mass, while
the momenta of the incoming and outgoing massless
particles (gravitons or photons) are p4 and p3. We will
work in the center of mass frame, with the following
parametrization:

ð2:1Þ

In our conventions we take all momenta to be outgoing,
hence the minus signs in the expressions of p1 and p4 since
particles 1 and 4 are incoming. We also have

E1 ¼ E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗2 þ q⃗2=4

q
;

E3 ¼ E4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þ q⃗2=4

q
≔ ω; ð2:2Þ

where p⃗ · q⃗ ¼ 0 due to momentum conservation. Hence q⃗
lives in a two-dimensional space orthogonal to p⃗. In this
paper we define the Mandelstam variables as

s ≔ ðp1 þ p2Þ2 ¼ −q⃗2; t ≔ ðp1 þ p4Þ2 ¼ ðE1 þ E4Þ2;
u ≔ ðp1 þ p3Þ2; ð2:3Þ

with sþ tþ u ¼ 2m2. In this notation the spacelike
momentum transfer squared is given by s, while t denotes
the center of mass energy squared, and ω is the energy of
the scattered massless particle.
In the above parametrization, the kinematic limit we are

interested is

m ≫ ω ≫ jq⃗j; ð2:4Þ

which implies for the Mandelstam variables

t ≃m2 þ 2mω; ut −m4 ≃ −ð2mωÞ2; ð2:5Þ

and for the energies of the massless particles

E3 ¼ E4 ≔ ω ≃ jp⃗j
�
1þ q⃗2

8p⃗2

�
: ð2:6Þ

For definiteness we choose p⃗ ¼ jp⃗jẑ with jp⃗j ≫ jq⃗j, as
implied by (2.4). In this approximation we can write the
four-momentum p3 of the massless particle in spinor
notation as

p3 ¼
 

q⃗2

8jp⃗j − q̄
2

− q
2

2jp⃗j

!
; ð2:7Þ

with q ≔ q1 þ iq2 and q̄ ≔ q1 − iq2. One can then find an
explicit parametrization for the spinors associated to the
null momenta pi ¼ λiλ̃i, i ¼ 3, 4, with the result
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λ3 ¼
ffiffiffiffiffiffiffiffiffi
2jp⃗j

p �− q̄
4jp⃗j
1

�
; λ̃3 ¼

ffiffiffiffiffiffiffiffiffi
2jp⃗j

p
ð− q

4jp⃗j 1Þ;

λ4 ¼ i
ffiffiffiffiffiffiffiffiffi
2jp⃗j

p � q̄
4jp⃗j
1

�
; λ̃4 ¼ i

ffiffiffiffiffiffiffiffiffi
2jp⃗j

p
ð q
4jp⃗j 1Þ: ð2:8Þ

Note the extra factors of i due to the negative energy-
component of p4 corresponding to an incoming particle.

B. Eikonal phase, deflection angle and time delay

In this section we briefly review relevant aspects of the
eikonal approximation and the eikonal phase matrix which
allows for an efficient extraction of the deflection angle and
time delay/advance from scattering amplitudes. This topic
was intensively studied in the context of gravity and string
theory in the nineties [81,82]; for related recent work see
also [55,100,101] and references therein.
First, we introduce the amplitude in impact parameter

space Ã. This is defined as a Fourier transform of the
amplitude A with respect to the momentum transfer q⃗,

Ãðb⃗Þ ≔ 1

4mω

Z
dD−2q
ð2πÞD−2 e

iq⃗·b⃗Aðq⃗Þ; ð2:9Þ

where b⃗ is the impact parameter, and the number of
dimensions will eventually be set to D ¼ 4 − 2ϵ.
In the eikonal approximation the gravitational S-matrix

can be written in the form [81,83]

Seik ¼ eiðδ0þδ1þ���Þ; ð2:10Þ

where δ0 is the leading eikonal phase, which is OðGÞ, δ1
the first subleading correction, of OðG2Þ, and the dots
represent subsubleading contributions. Alternatively, one
can write the S-matrix in impact parameter space as

Seik ¼ 1þ Ãð0Þ
ω þ Ãð1Þ

ω2 þ Ãð1Þ
ω þ Ãð2Þ

ω3 þ Ãð2Þ
ω2 þ Ãð2Þ

ω þ � � � ;
ð2:11Þ

where the superscript indicates the loop order L and the
subscript the power in the energy ω of the massless
particle. That the maximal power of ω at a given loop
order is Lþ 1 is a well-established fact in (super)gravity
and we will see below that the R3 corrections do not alter
this expectation. However, we also find that the R4

corrections lead to higher powers of ω starting at one
loop, which is not surprising since higher-derivative
corrections worsen the high-energy behavior. In the
effective field theory approach we adopt, we are not
really interested in high-energy physics (or high-energy
completions of the theory)—we use the eikonal approxi-
mation as an efficient and elegant tool to extract
deflection angles and time delay/advances without pass-
ing through the computation of non gauge-invariant

intermediate quantities such as effective potentials or
Hamiltonians. Nevertheless it would interesting to check
if in the R4 case unitarity can be restored as well through
exponentiation.
Equating (2.10) with (2.11) one gets

δ0 ¼ −iÃð0Þ
ω ; ð2:12Þ

δ1 ¼ −iÃð1Þ
ω ; ð2:13Þ

as well as the condition

−
ðδ0Þ2
2

¼ Ãð1Þ
ω2 ; ð2:14Þ

which implies the consistency condition

Ãð1Þ
ω2 ¼ 1

2
ðÃð0Þ

ω Þ2: ð2:15Þ

Thus, the contribution to the one-loop amplitude that is
leading in ω, Ãð1Þ

ω2 , does not provide any new information
about the S-matrix. In general, it is only the term in ÃðLÞ

that is linear in ω, ÃðLÞ
ω , that provides new information

entering δL. We also note that (2.12)–(2.15) hold as matrix
equations.
Note that a priori these statements are known to hold for

EH gravity. The results in this paper show that (2.15) also
holds for the higher-derivative interactions discussed here
at least up to one loop. Of course the work of [81] on the
eikonal limit of string amplitudes gives reason to believe
that the exponentiation will work for higher-derivative
interactions to all orders.
Finally, the particle deflection angle can be obtained

from the eigenvalues δðiÞ of the eikonal phase matrix δ.
Using a saddle-point approximation [11,81,102] one finds,
for small θ,

θðiÞ ¼ 1

ω

∂
∂b δ

ðiÞ; ð2:16Þ

where i runs over all eigenvalues of δ and b ¼ jb⃗j. For the
time delay, we will use instead [103–105]

tðiÞ ¼ ∂δðiÞ
∂ω : ð2:17Þ

III. THE RELEVANT SCATTERING
AMPLITUDES

In this section we compute the relevant amplitudes
needed to extract the deflection angle and time delay/
advance induced by the various interactions in (1.1). At tree
level we will present exact expressions; at one loop we
only need to compute the part of the amplitude with a
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discontinuity in the s-channel3 and we will write the
relevant expressions after expanding them in the eikonal
approximation (2.4)—this will be denoted in the following
by the ≃ symbol. A direct extraction of the classical part of
the deflection angle and time delay can be performed using
triple cuts, and in an even more refined way using the
holomorphic classical limit [106]. We chose instead to
compute the one-loop amplitudes through two-particle
cuts, which also determine the quantum part of the
amplitude. The latter, despite not being used in the present
paper, becomes essential when considering the exponen-
tiation in the eikonal limit at higher orders [101].
We will begin our discussion with the simple case of EH

gravity, quoting from [13] the relevant two-scalar two-
graviton amplitude without helicity flip. We also compute
the amplitude with helicity flip, and show that it does not
contribute in the eikonal approximation, as correctly
assumed in previous treatments. We will then move on
to compute the relevant tree and one-loop amplitudes that
are necessary in order to compute the corrections induced
by the R3, R4 and FFR terms in (1.1).

The two-particle cut diagrams relevant for the R3 and R4

cases are shown in Fig. 1. The corrections induced by the
FFR interaction need a separate analysis and we show the
corresponding diagrams in Figs. 2 and 3. For the case of
the Rn interaction both internal and external particles are
gravitons, while in the case of FFR we either have external
gravitons and internal photons, or viceversa.
A comment is in order here. Focusing on the cuts

relevant for Rn depicted in Fig. 1, the case h3 ¼ h4
corresponds to the massless particle flipping helicity upon
interacting with the scalar, whereas h3 ¼ −h4 corresponds
to the helicity-preserving process, since in our conventions
all external particles are outgoing. A simple way to take
into account particle statistics is to sum over all values of
the internal helicities h1 and h2 and divide the result by 2.4

A. Four-point scalar/graviton scattering in EH gravity

The relevant tree-level amplitudes in the EH case are the
two-scalar/two-graviton amplitudes in the two helicity
configurations for the gravitons5:

Að0Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞ ¼ −

�
κ

2

�
2 h3j1j4�4

s2

�
i

t −m2
þ i
u −m2

�
;

Að0Þ
EHð1ϕ; 2ϕ; 3þþ; 4þþÞ ¼ −

�
κ

2

�
2

m4
½34�2
h34i2

�
i

t −m2
þ i
u −m2

�
; ð3:1Þ

The computation of the four-point one-loop amplitude without helicity flip in the eikonal approximation (2.4) was
performed in [13], with the result

Að1Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞ ≃N h

�
κ

2

�
4
�
ð2mωÞ4ðI4ðs; t;mÞ þ I4ðs; u;mÞÞ − 15ðm2ωÞ2I3ðs;mÞ

þ ð4mωÞ2sI3ðsÞ −
29

2
ðmωÞ2I2ðsÞ

�
; ð3:2Þ

FIG. 1. The two-particle cut diagrams for the Rn interaction in the s ¼ −q⃗2-channel. In our conventions external momenta are all
outgoing and internal loop momenta flow from left to right in the diagram.

3We recall that s ¼ −jq⃗j2 where q⃗ is the momentum exchange between the classical source and the graviton.
4If the two particles are identical this introduces the correct Bose symmetry factor of 1=2; if they are different this takes into account

that the internal particles are not colour ordered, hence summing over two possible internal helicity assignments would lead to double
counting, compensated by the factor of 1=2.

5See for instance [60,107].
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where

N h ≔
�h3j2j4�

2mω

�
4

ð3:3Þ

is a pure phase, withN h → 1 in the eikonal approximation. We have also computed the new amplitude with helicity flip in
the same approximation, with the result

Að1Þ
EHð1ϕ; 2ϕ; 3þþ; 4þþÞ ≃

�
κ

2

�
4 ½34�2
h34i2 ðm

2sÞ2½I4ðs; t;mÞ þ I4ðs; u;mÞ�: ð3:4Þ

B. Four-point scalar/graviton scattering in EH+R3

We now consider the amplitudes with addition of the R3 interaction in (1.1): the helicity-preserving amplitude at tree-
level is vanishing

Að0Þ
R3 ð1ϕ; 2ϕ; 3−−; 4þþÞ ¼ 0; ð3:5Þ

while the helicity-flip amplitude is [60]

Að0Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞ ¼ i

�
κ

2

�
2
�
α0

4

�
2

½34�4 ðt −m2Þðu −m2Þ
s

: ð3:6Þ

At one loop, the result of [60] for the no-flip amplitude gives:

Að1Þ
R3 ð1ϕ; 2ϕ; 3−−; 4þþÞ ≃

�
κ

2

�
4
�
α0

4

�
2

N h

�
ðmsÞ4ðI4ðs; t;mÞ þ I4ðs; u;mÞÞ þ ðm2sωÞ2I3ðs;mÞ

þ 3

2
ðmsωÞ2I2ðsÞ

�
; ð3:7Þ

where N h is defined in (3.3). The one-loop amplitude with helicity flip requires a new computation and the result in the
eikonal approximation is

Að1Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞ ≃

�
κ

2

�
4
�
α0

4

�
2

½34�4
�
ð2mωÞ4ðI4ðs; t;mÞ þ I4ðs; u;mÞÞ

− 13ðm2ωÞ2I3ðs;mÞ þ 16ðmωÞ2sI3ðsÞ þ
153

10
ðmωÞ2I2ðsÞ

�
: ð3:8Þ

FIG. 2. The two-particle cut diagrams in the s ¼ −q⃗2-channel of the graviton deflection angle in the presence of an FFR interaction.
The internal lines are photons. The first diagram is proportional to κ2e2 and is only nonvanishing for h1 ¼ h2 for the internal photons.
The second diagram is proportional to κ4, it is nonvanishing when h4 ¼ −h3 and h2 ¼ −h1 thus it contributes solely to the helicity-
preserving configuration. Also, it only produces quantum corrections (bubble integrals) with coefficients that vanish in the case of four-
dimensional external kinematics.
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C. Four-point scalar/graviton scattering in EH + R4

In this section we consider the addition of an R4

interaction to the EH action. Such interaction affects the
two-scalar two-graviton amplitude at one loop and thus
contributes to graviton deflection and time delay at order
G2. In order to build this amplitude using the unitarity-
based method we first need to find out the expression for
the four-graviton tree-level amplitudes in the R4 theory. We
do so here starting from the Lagrangian in (1.3) in order to
make contact with the notation of [58]; in Appendix D we
present an alternative derivation only relying on little-group
considerations and dimensional analysis, which does not
require writing down any Lagrangian.
Deriving the four-graviton amplitudes from (1.3) is

straightforward—we simply have to replace the four
Riemann tensors in each term by their linearized form
corresponding to the four on-shell gravitons. For particle i
the well-known expression in momentum space is

RðiÞμνρσ ¼
1

2
FðiÞμνFðiÞρσ ð3:9Þ

where

FðiÞμν ¼ piμεiν − piνεiμ: ð3:10Þ

Since we are interested in helicity amplitudes, we choose
the field strengths FðiÞ to be self-dual (negative helicity) or
anti–self-dual (positive helicity), hence in spinor-helicity
formalism their form is

FðiÞSDα _αβ _β ¼ −
ffiffiffi
2

p
λiαλiβϵ _α _β and

FðiÞASDα _αβ _β ¼ −
ffiffiffi
2

p
λ̃i _αλ̃i _βϵαβ: ð3:11Þ

The building blocks in (1.4) are bilinear in Riemann
tensors, and take the form

C ≃ ðFðiÞðAÞSD · FðjÞðAÞSDÞ2; ð3:12Þ

and

C̃ ≃ ðFðiÞðAÞSD · FðjÞðAÞSDÞ
�
FðiÞðAÞSD ·

1

i
� FðjÞðAÞSD

�
;

ð3:13Þ

where · denotes Lorentz contractions and � denotes the
usual Hodge dual which acts on the (anti-)selfdual
field strengths as �FSD ¼ FSD and �FASD ¼ −FASD.
Furthermore, given the form (3.11) these expressions are
only nonvanishing if both particles i and j have the same
helicity. In summary, if both gravitons have negative
helicity (SD field strength) we have

C ¼ iC̃ ¼ 1

2
hiji4; ð3:14Þ

while if both gravitons have positive helicity (ASD field
strength) we have

C ¼ −iC̃ ¼ 1

2
½ij�4: ð3:15Þ

With these results one easily arrives at

Að0Þ
R4 ð1þþ; 2þþ; 3þþ; 4þþÞ ¼ iβþ

�
κ

2

�
2

ð½12�4½34�4 þ ½13�4½24�4 þ ½14�4½23�4Þ;

Að0Þ
R4 ð1−−; 2−−; 3−−; 4−−Þ ¼ iβ−

�
κ

2

�
2

ðh12i4h34i4 þ h13i4h24i4 þ h14i4h23i4Þ;

Að0Þ
R4 ð1þþ; 2þþ; 3−−; 4−−Þ ¼ iβ̃

�
κ

2

�
2

½12�4h34i4; ð3:16Þ

with

βþ ¼ 4

�
β1 þ

i
2
β2 − β3

�
; ð3:17Þ

β− ¼ 4

�
β1 −

i
2
β2 − β3

�
; ð3:18Þ

β̃ ¼ 4ðβ1 þ β3Þ: ð3:19Þ

Note that if we do not allow the parity-odd coupling (β2 ¼ 0), then the coefficient of the all-plus and all-minus amplitudes
are the same βþ ¼ β− ≔ β.
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The next step is to carry out one-loop amplitude calculations in the eikonal approximation, as done in previous sections.
The result for the relevant amplitudes is:

Að1Þ
R4 ð1ϕ; 2ϕ; 3−−; 4þþÞ ≃ −N hβ̃

�
κ

2

�
4

s2
�
35

4
ðmωÞ4I3ðs;mÞ þ 93

8
ðmω2Þ2I2ðsÞ

�
;

Að1Þ
R4 ð1ϕ; 2ϕ; 3þþ; 4þþÞ ≃ −βþ

�
κ

2

�
4

½34�4
�
3

4
ðmωÞ4I3ðs;mÞþ55

24
ðmω2Þ2I2ðsÞ

�
;

Að1Þ
R4 ð1ϕ; 2ϕ; 3−−; 4−−Þ ≃ −β−

�
κ

2

�
4

h34i4
�
3

4
ðmωÞ4I3ðs;mÞþ55

24
ðmω2Þ2I2ðsÞ

�
; ð3:20Þ

where N h was introduced in (3.3).

D. Scattering with the FFR interaction

The last interactionwewish to consider is the FFR term in
(1.1). From an on-shell point of view this is the simplest
nonminimal modification of the coupling of photons to
gravity. As wewill show below this leads to new corrections
to the bending and time delay/advance of light and graviton
propagation in the background of a very massive scalar
particle.
This new interaction modifies the three-point two-

photon/one-graviton amplitude:

Að0Þ
FFRð1þ; 2þ; 3þþÞ ¼ i

�
κ

2

��
αγ
4

�
½13�2½23�2; ð3:21Þ

which we will now use to construct the relevant amplitudes
at tree level and one loop to compute deflection angles and
time delay in the presence of this interaction. Note that this
amplitude is determined by its helicity structure and dimen-
sional analysis up to a normalization which we fixed from
the Feynman rule (B3) following from our action (1.1).

1. Relevant amplitudes for graviton deflection

Using factorization and Feynman diagrams we have
computed the four-point amplitudes relevant for graviton
deflection from a massive charged source (such as a
charged black hole). The new FFR interaction involves
two photons and one graviton, hence one cannot generate a
tree-level correction to the amplitude with two scalars and
two gravitons. The first corrections arise at one loop, from
the cut diagrams in Fig. 2.
For the cut diagram on the left-hand side of the figure, we

need the tree-level scalar QED amplitude with two photons
and two massive scalars [9]

Að0Þ
SQEDð1ϕ; 2ϕ; 3þ; 4þÞ ¼ Q2m2

½34�2
s

�
i

t −m2
þ i
u −m2

�
;

ð3:22Þ
along with the modification to the two-graviton/two-photon
amplitudes arising from the FFR coupling for both helicity
configurations of the graviton: no flip,

Að0Þ
FFRð1þ; 2þ; 3−−; 4þþÞ ¼ −i

�
κ

2

�
2
�
αγ
4

�
½12�2 h3j1j4�

4

stu
;

ð3:23Þ
or flipped,

Að0Þ
FFRð1þ; 2þ; 3þþ; 4þþÞ

¼ i

�
κ

2

�
2
�
αγ
4

��½13�2½34�2½42�2
s13

þ ½23�2½34�2½41�2
s23

�
:

ð3:24Þ
Both amplitudes can be computed with on-shell techniques.
Specifically, (3.23) can be constructed using BCFW
recursion relations [108] by shifting appropriately the
graviton momenta, while it is easy to verify [109] that
(3.24) can be derived via an (holomorphic) all-line shift.
Note that the cut is nonvanishing only in the singlet

configuration (internal photons with the same helicities).
This is because the four-point amplitude with two photons
and two gravitons induced by the FFR interaction is
nonvanishing only for same-helicity photons.
We now move to the cut diagram on the right-hand side

of Fig. 2. The two-photon/two-graviton EH amplitude only
exists in the configuration where the gravitons and the
photons have opposite helicity (see for instance [11]),

Að0Þ
EHð1þ; 2−; 3þþ; 4−−Þ ¼ −i

�
κ

2

�
2

½13�2h24i2 h4j1j3�
2

stu
;

ð3:25Þ
and thus it contributes only in the helicity-preserving
process. Hence, in order to compute the cut we will
only need the following two-scalar/two-photon amplitude
involving an FFR interaction:

Að0Þ
FFRð1ϕ; 2ϕ; 3−; 4þÞ ¼ −i

�
κ

2

�
2
�
αγ
4

�
h3j1j4�2: ð3:26Þ

Performing the calculation, it turns out that the right-hand
side of Fig. 2 does not produce any nonanalytic term with
an s-channel discontinuity when external kinematics are
considered to be strictly four-dimensional.
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Following the above considerations, the one-loop amplitudes in the eikonal limit can be computed entirely from the lhs of
Fig. 2, and are found to be

Að1Þ
FFRð1ϕ; 2ϕ; 3−−; 4þþÞ ≃ −N hQ2

�
κ

2

�
2
�
αγ
4

�
s

�
ðmsÞ2ðI4ðs; t;mÞ þ I4ðs; u;mÞÞ

þ ðmωÞ2I3ðs;mÞ þ 3

4

s3

ω2
I3ðsÞ þ

3

2
ω2I2ðsÞ

�
;

Að1Þ
FFRð1ϕ; 2ϕ; 3þþ; 4þþÞ ¼ Q2

�
κ

2

�
2
�
αγ
4

�
m2½34�4I3ðs;mÞ; ð3:27Þ

where again N h is the phase defined in (3.3), and Q
denotes the charge of the classical source (the black hole).

2. Relevant amplitudes for photon deflection

It is interesting to study how this new FFR interaction
affects the bending and time delay/advance of light. In
order to do so, we now review the known two-scalar/two-
photon amplitudes for minimally coupled photons [11], and
present the new corresponding amplitudes induced by the
FFR interaction, both at tree and one-loop level.

In the following we consider processes where the
internal legs are gravitons. In the EH theory, for the
two-photon two-scalar process, only the helicity-preserving
amplitude is nonvanishing,6 both at tree level

Að0Þ
EHð1ϕ; 2ϕ; 3−; 4þÞ ¼ i

�
κ

2

�
2 h3j1j4�2

s
; ð3:28Þ

and at one loop [11],

Að1Þ
EHð1ϕ; 2ϕ; 3−; 4þÞ ≃ −N γ

�
κ

2

�
4
�
ð2mωÞ4ðI4ðs; t;mÞ þ I4ðs; u;mÞÞ − 15ðm2ωÞ2I3ðs;mÞ

þ 3sð2mωÞ2I3ðsÞ −
161

30
ðmωÞ2I2ðsÞ

�
; ð3:29Þ

where the phase factor N γ is

N γ ¼
�h3j1j4�

2mω

�
2

≃ −1: ð3:30Þ

We now discuss the corrections to the two-scalar two-photon amplitudes arising from one insertion of the FFR
interaction. These come from a single graviton exchange between a minimally coupled scalar and the FFR three-point
vertex. At tree level, only the helicity-flip amplitude

Að0Þ
FFRð1ϕ; 2ϕ; 3þ; 4þÞ ¼ −i

�
κ

2

�
2
�
αγ
4

�
½34�2

�ðt −m2Þðu −m2Þ
s

þm2

�
; ð3:31Þ

contributes in the eikonal approximation, while the no-flip amplitude, already quoted in (3.26), is a contact term that is
subleading in the eikonal limit (it does not have a pole in s ¼ −jq⃗j2).
Moving to one loop, the relevant two-particle cuts for the (þþ) configuration are shown in Fig. 3. We find that the

amplitude with photons in the (þþ) helicity configuration in the eikonal approximation is

Að1Þ
FFRð1ϕ; 2ϕ; 3þ; 4þÞ ≃ −

�
κ

2

�
4
�
αγ
4

�
½34�2

�
ð2mωÞ4ðI4ðs; t;mÞ þ I4ðs; u;mÞÞ

− 15ðm2ωÞ2I3ðs;mÞ þ 3sð2mωÞ2I3ðsÞ þ
3

10
ðmωÞ2I2ðsÞ

�
; ð3:32Þ

6Indeed, one can check that in four dimensions the Feynman rule for two same-helicity (on-shell) photons and one off-shell graviton h
is zero: Vμνð1�; 2�; 3hÞ ¼ 0, where Vμν is given in (B2).
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while the amplitude with photons in the (þ−) helicity
configuration vanishes:

Að1Þ
FFRð1ϕ; 2ϕ; 3−; 4þÞ ¼ 0: ð3:33Þ

IV. EIKONAL PHASE MATRIX, DEFLECTION
ANGLE AND TIME DELAY

In the previous section we have derived the relevant
tree and one-loop amplitudes which we will now use to
extract the deflection angle and time delay up to 2PM order
(or OðG2Þ) generated by the addition of the various
couplings in (1.1). The key quantity is the eikonal phase
matrix δ, to be introduced below, of which we will compute
the leading, δ0, and subleading contributions, δ1. As an
important consistency check we will confirm that the
leading-energy contribution of the one-loop amplitudes
captures the required exponentiation of the leading-order
eikonal phase matrix δ0.
In the following we focus on the classical contribution

to δ. We stress that for the cases we consider, δ will be a
2 × 2 matrix: the diagonal entries correspond to the two
amplitudes Að1ϕ; 2ϕ; 3h1 ; 4h2Þ where the helicity of the
massless particle is not flipped (which in our all-outgoing
convention corresponds to h1 ¼ −h2), while the off-
diagonal ones correspond to the two helicity-flip processes
(with h1 ¼ h2).
As a final comment, we note that the combined effect of

the interactions in (1.1) is simply the sum of the contri-
butions of each interaction treated independently; hence we
will study them separately, and begin our discussion by
reviewing the computation in EH gravity.

A. Graviton deflection angle and time delay
in Einstein-Hilbert gravity

1. Leading eikonal

The relevant tree-level amplitudes in EH gravity are
given in (3.1). In the eikonal approximation (2.4) they
become

Að0Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞ ≃ i

�
κ

2

�
2 ð2mωÞ2

q⃗2
;

Að0Þ
EHð1ϕ; 2ϕ; 3þþ; 4þþÞ ≃ i

�
κ

2

�
2 m2

ð2ωÞ2
q4

q⃗2
≃ 0; ð4:1Þ

where the second amplitude is subleading compared to
the first.
The amplitudes in impact parameter space are obtained

from those in momentum space using (2.9). To compute
them, we will use repeatedly the result

fðp; dÞ ≔
Z

ddq
ð2πÞd e

iq⃗·b⃗jq⃗jp ¼ 2pπ−d=2Γðdþp
2
Þ

Γð− p
2
Þ

1

bdþp ;

ð4:2Þ

where b ≔ jb⃗j. We then have

Ãð0Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞjω ¼ i

�
κ

2

�
2 mω

4π
D−2
2

Γ
�
D
2
− 2

�
1

bD−4 ;

Ãð0Þ
EHð1ϕ; 2ϕ; 3þþ; 4þþÞjω ¼ 0; ð4:3Þ

therefore the leading eikonal phase matrix is

δ0;EH ¼
�
κ

2

�
2

ðmωÞfð−2; D − 2Þ12

≃ −
�
κ

2

�
2mω

2π

�
1

4 −D
þ logb

�
12 þ � � � ; ð4:4Þ

where we omitted terms of OðD − 4Þ and finite terms
which do not depend on b⃗.
Next we consider the one-loop amplitudes (3.2) and

(3.4). In order to check exponentiation (2.15) we only keep
terms that are leading in energy in the eikonal approxima-
tion, i.e., Oðω3Þ in momentum space (or Oðω2Þ in impact
parameter space). These are

FIG. 3. The two-particle cut diagrams in the s ¼ −jq⃗j2-channel contributing to photon deflection to first order in the FFR interaction.
We only show the helicity-flip configuration since the helicity-preserving cuts vanish. The cut diagram on the rhs of the figure only
contributes terms which are subleading in the eikonal limit.
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Að1Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞjω3 ¼

�
κ

2

�
4

ð2mωÞ4½I4ðs; t;mÞ

þ I4ðs; u;mÞ�;
Að1Þ

EHð1ϕ; 2ϕ; 3þþ; 4þþÞjω3 ¼ 0; ð4:5Þ

where the sum of the box integrals I4ðs; t;mÞ þ I4ðs; u;mÞ
was evaluated inD dimensions in [55] and is given in (A4).
Transforming to impact parameter space, we have

Ãð1Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞjω2

¼ −
�
κ

2

�
4

ðmωÞ2 2D−7ΓðD − 4Þ
π

D
2ðD − 4ÞΓð3 −D=2Þ

1

b2D−8 : ð4:6Þ

As expected from (2.15), we find that

Ãð1Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞjω2

¼ 1

2
½Ãð0Þ

EHð1ϕ; 2ϕ; 3−−; 4þþÞjω�2 þOðD − 4Þ: ð4:7Þ

2. Subleading eikonal

In momentum space, the subleading contribution to the
eikonal phase matrix is extracted from the Oðω2Þ contri-
bution to the amplitude in (3.2)7:

Að1Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞjω2 ¼

�
κ

2

�
4

ð−15m4ω2ÞI3ðs;mÞ;

ð4:8Þ

where I3ðs;mÞ is given in (A3), and as usual s ¼ −jq⃗j2. In
the following we focus on the first term on the right-hand
side of (A3), since the log term only contributes quantum
corrections. Using

Z
dD−2q
ð2πÞD−2 e

iq⃗·b⃗jq⃗j−1 ¼ 1

2π

1

b
þOðD − 4Þ; ð4:9Þ

we obtain the subleading part of the amplitude in impact
parameter space:

Ãð1Þ
EHð1ϕ; 2ϕ; 3−−; 4þþÞjω ¼ i

�
κ

2

�
4 15

256π

m2ω

b
; ð4:10Þ

and finally, using (2.13), δ1:

δ1;EH ¼
�
κ

2

�
4 15

256π

m2ω

b
12: ð4:11Þ

The eikonal phase matrix up to one loop in EH is then
given by

δEH ¼ δ0;EH þ δ1;EH þ � � �

¼ −
�
κ

2

�
2mω

2π

�
1

4 −D
þ log b −

�
κ

2

�
2 15

256π

m
b

�
12

þ � � � ð4:12Þ

Note that this matrix is proportional to the identity, since
the polarization of the gravitons scattered by the classical
source is unchanged. The deflection angle can now be
extracted using (2.16). While the eigenvalues of δ are
divergent in D ¼ 4, the corresponding deflection angle is
finite:

θEH ¼ −
1

2π

�
κ

2

�
2 m
b

�
1þ

�
κ

2

�
2 15

128

m
b

�

¼ −
4Gm
b

�
1þG

15π

16

m
b

�
: ð4:13Þ

This result agrees with the derivation of [13], and as
expected matches the photon deflection angle [10,11], first
computed by Einstein.8

Another quantity of interest which can be extracted from
the eigenvalues of the eikonal matrix is the time delay.
Using (2.17) applied to the leading eikonal phase (4.4),
we get

tEH ¼ −
�
κ

2

�
2 m
2π

�
1

4 −D
þ log b

�
: ð4:14Þ

As is well known, in order to define the time delay in four
dimensions we need to take the difference of two time
delays as measured by an observer at b and one at a much
larger distance b0 ≫ b [87]. Doing so the pole in (4.14)
drops out, and neglecting power-suppressed terms in b0
one gets

tEH ¼
�
κ

2

�
2 m
2π

log
b0
b

¼ 4Gm log
b0
b
; ð4:15Þ

in agreement with [111]. Including now also the contri-
bution from δ1, we arrive at the result

tEH ¼
�
κ

2

�
2 m
2π

�
log

b0
b
þ
�
κ

2

�
2 15

128

m
b

�

¼ 4Gm

�
log

b0
b
þ G

15π

16

m
b

�
: ð4:16Þ

In the next sections we compute the corrections ΔθX and
ΔtX to the deflection angle (4.13) and time delay (4.15) in
EH due to the inclusion of an interactions X in (1.1). The
complete deflection angle and time delay will then be
θEH þ ΔθX and tEH þ ΔtX.

7Note that such a contribution is absent in (3.4). 8Initially up to a factor of two [110].
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B. Graviton deflection angle and time delay in EH+R3

1. Leading eikonal

The relevant new amplitudes are obtained by evaluating
(3.5) and (3.6) in the eikonal limit (2.4), with the result

Að0Þ
R3 ð1ϕ; 2ϕ; 3−−; 4þþÞ ¼ 0;

Að0Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞ ≃ i

�
κ

2

�
2
�
α0

4

�
2

ð2mωÞ2 q
4

q⃗2
; ð4:17Þ

where from (2.7) we have ½34�4 ¼ q4. In order to transform
to impact parameter space we rewrite

b⃗ · q⃗ ¼ bq̄þ b̄q; ð4:18Þ

with b ≔ ðb1 þ ib2Þ=2, and b̄ ≔ ðb1 − ib2Þ=2 (and we
recall our previous definitions q¼q1þ iq2, q̄¼q1− iq2),
from which bb̄ ¼ b2=4. Then in b⃗-space we have

Ãð0Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞj

ω

¼ i

�
κ

2

�
2
�
α0

4

�
2

ðmωÞ
� ∂
∂b̄
�

4

fð−2; D − 2Þ

¼ i

�
κ

2

�
2
�
α0

4

�
2 ðmωÞ

b̄4
ξfð−2; D − 2Þ; ð4:19Þ

where

ξ ≔
�
D
2
− 2

��
D
2
− 1

��
D
2

��
D
2
þ 1

�
: ð4:20Þ

Hence the leading eikonal phase matrix δ0, including the
first contribution from the R3 interaction, has the form

δ0 ¼ δ0;EH þ δ0;R3 ; ð4:21Þ

where δ0;EH is given in (4.4), and

δ0;R3 ¼
�
κ

2

�
2
�
α0

4

�
2

ðmωÞ½ξfð−2; D − 2Þ�
�

0 b̄−4

b−4 0

�
;

ð4:22Þ

where we have used (2.12).
Moving on to one loop, from (3.7) and (3.8) we obtain

Að1Þ
R3 ð1ϕ; 2ϕ; 3−−; 4þþÞj

ω3 ¼ 0;

Að1Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞj

ω3 ¼
�
κ

2

�
4
�
α0

4

�
2

½34�4ð2mωÞ4

× ½I4ðs; tÞ þ I4ðs; uÞ�: ð4:23Þ

Transforming to impact parameter space, and using (A4),
we arrive at

Ãð1Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞj

ω2 ¼ −
�
κ

2

�
4
�
α0

4

�
2 ðmωÞ2

2π

1

D − 4

� ∂
∂b̄
�

4

fðD − 6; D − 2Þ

¼ −
�
κ

2

�
4
�
α0

4

�
2 ðmωÞ2
2πb̄4

ξ0

D − 4
fðD − 6; D − 2Þ; ð4:24Þ

where

ξ0 ≔ ðD − 4ÞðD − 3ÞðD − 2ÞðD − 1Þ: ð4:25Þ

The leading one-loop amplitude matrix in the eikonal
approximation is then found to be

Að1Þ
ω2 ¼ −

�
κ

2

�
4

ðmωÞ2 fðD − 6; D − 2Þ
2πðD − 4Þ

 
1 ðα0

4
Þ2 ξ0

b̄4

ðα0
4
Þ2 ξ0

b4 1

!
:

ð4:26Þ
One can then check the matrix relation

Að1Þ
ω2 ¼ −

1

2
ðδ0Þ2 þOðD − 4Þ; ð4:27Þ

in agreement with (2.15). In writing (4.27) we have used
that,

ðδ0Þ2 ¼
�
κ

2

�
4

ðmωÞ2½fð−2; D − 2Þ�2
 

1 ðα0
4
Þ2 2ξ

b̄4

ðα0
4
Þ2 2ξ

b4 1

!
;

ð4:28Þ

up to and including Oððα0=4Þ2Þ.
Finally we compute the eigenvalues of the matrix δ0 in

(4.21). Using

ξfð−2; D − 2Þ ¼ 3

2π
þOðD − 4Þ; ð4:29Þ

we can rewrite it as

δ0 ¼
�
κ

2

�
2mω

2π

 
− 1

2ϵ − log b ðα0
4
Þ2 3

b̄4

ðα0
4
Þ2 3

b4 − 1
2ϵ − log b

!
; ð4:30Þ

whose eigenvalues are
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δð1;2Þ0 ¼
�
κ

2

�
2mω

2π

�
−

1

2ϵ
− log b�

�
α0

4

�
2 48

b4

�
: ð4:31Þ

Following identical steps to those leading from (4.12) to
(4.16), one obtains for the time delay at OðGÞ

tEHþR3 ¼ 4Gm

�
log

b0
b
�
�
α0

4

�
2 48

b4

�
; ð4:32Þ

where G ¼ κ2=ð32πÞ. For sufficiently small b the eigen-
value with the choice of negative sign may become
negative, leading to a time advance. We will come back
to the time delay computation and addOðG2Þ corrections in
Section IV B 4.

2. Comparison to the work of [87]

The time advance due to R3 terms was first discovered in
[87], from which it was argued that the only way to avoid
causality violations is to embed the R3 theory into an
appropriate ultraviolet completion—in other words a con-
sistent ultraviolet completion of gravitational theories with
an R3 interaction requires the addition of an infinite tower
of massive particles with higher spins. Here we wish to
briefly compare our results to theirs.
The authors of [87] considered the interaction of a

graviton with the background produced by a coherent state
of massless particles, and computed the eikonal phase in
order to obtain the Shapiro time delay. The coherent state
simulates a large number of successive interactions of the
graviton with a single weakly coupled particle, each
instance being considered as independent and contributing
with a small amount to the total phase shift. It is then
observed that the presence of the R3 coupling, which
modifies the three-point graviton amplitude, leads to non-
degenerate eigenvalues of the eikonal phase matrix.
Concretely, it is interesting to compare the eigenvalues

(4.31) of the leading eikonal phase matrix (4.21).
Pleasingly, these eigenvalues turn out to be identical9 to
the eigenvalues (3.22) of [87], upon replacing mω → ω2.
This is due to the fact that we consider a different setup,
with massless gravitons moving in the background pro-
duced by massive scalar objects of mass m. In both cases
the time advance is induced by the novel three-graviton
coupling generated by the R3 interaction.

3. Subleading eikonal

We now go back to the one-loop amplitudes (3.7) and
(3.8) and extract the triangle contributions which are the
relevant terms contributing to the subleading eikonal
matrix:

Að1Þ
R3 ð1ϕ; 2ϕ; 3−−; 4þþÞj

ω2 ¼
�
κ

2

�
4
�
α0

4

�
2

× jq⃗j4m4ω2I3ðs;mÞ;

Að1Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞj

ω2 ¼ −13
�
κ

2

�
4
�
α0

4

�
2

× q4m4ω2I3ðs;mÞ: ð4:33Þ

We can now transform to impact parameter space, using

Z
dD−2q
ð2πÞD−2 e

iq⃗·b⃗jq⃗j3 ¼ 9

2π

1

b5
þOðD − 4Þ; ð4:34Þ

� ∂
∂b̄
�

4
Z

dD−2q
ð2πÞD−2 e

iq⃗·b⃗jq⃗j−1 ¼ 105

32π

1

b
1

b̄4
þOðD − 4Þ:

ð4:35Þ

The amplitudes in impact parameter space then become

Ãð1Þ
R3 ð1ϕ; 2ϕ; 3−−; 4þþÞj

ω
¼ −i

�
κ

2

�
4
�
α0

4

�
2 9

256π

m2ω

b5
;

Ãð1Þ
R3 ð1ϕ; 2ϕ; 3þþ; 4þþÞj

ω
¼ i

�
κ

2

�
4
�
α0

4

�
2 1365

4096π

m2ω

b
1

b̄4
:

ð4:36Þ

Using (2.12), we can extract the contribution of the R3

interaction to the subleading eikonal matrix δ1:

δ1;R3 ¼
�
κ

2

�
4
�
α0

4

�
2 1

256π

m2ω

b

 
− 9

b4
1365
16

1
b̄4

1365
16

1
b4 − 9

b4

!
: ð4:37Þ

4. Deflection angle and time delay

We can proceed similarly to the EH case. In the previous
sections we showed that the R3 interaction introduced off-
diagonal terms, i.e., the helicity of the scattered graviton
can change.
The eigenvalues of the leading and subleading eikonal

matrices (4.22) and (4.37) are

δð1;2Þ
0;R3 ¼ �

�
κ

2

�
2
�
α0

4

�
2 24

π

mω

b4
; ð4:38Þ

δð1;2Þ
1;R3 ¼

�
κ

2

�
4
�
α0

4

�
2 1

256π

m2ω

b5
ð−9� 1365Þ: ð4:39Þ

Next we present the correction to the graviton deflection
angle, both in terms of κ and G:

9Note that in (3.22) of [87] the 1=ϵ pole was not written
explicitly. This pole does not affect either the time delay (4.32) or
the particle bending angle. Our 1=ϵ pole corresponds to the logL
term in [87], where L is an infrared cutoff.
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Δθð1;2Þ
R3 ¼ −

1

2π

�
κ

2

�
2
�
α0

4

�
2 m
b

×

�
� 192

b4
þ 5

128
ð−9� 1365Þ

�
κ

2

�
2 m
b5

�

¼ −
4Gm
b

�
α0

4

�
2
�
� 192

b4
þ 5π

16
ð−9� 1365ÞGm

b5

�
:

ð4:40Þ

The deflection involving a graviton whose helicity is
preserved in the scattering process has already been studied
in [60], instead the flipped helicity case is presented here
for the first time.
Finally, for the time delay, proceeding as in Sec. IVA 2,

and applying (2.17) to (4.38) and (4.39), we arrive at

Δtð1;2Þ
R3 ¼

�
κ

2

�
2
�
α0

4

�
2 m
2π

×

�
�48

1

b4
þ
�
κ

2

�
2 1

128

m
b5

ð−9� 1365Þ
�

¼ 4Gm

�
α0

4

�
2
�
�48

1

b4
þ π

16
ð−9� 1365ÞGm

b5

�
:

ð4:41Þ

C. Graviton deflection angle and time
delay in EH+R4

In this section we consider the deflection of gravitons
induced by eight-derivative couplings in the Lagrangian,
which we collectively denote as R4. We will only consider
the parity-even interactions in (1.3) in order to present more
compact formulas, therefore we set β2 ¼ 0, and hence
βþ ¼ β− ¼ β in (3.16) and (3.20). Furthermore, since these
interactions do not produce a three-graviton vertex, it is
impossible to build any tree-level two-scalar two-graviton
amplitude involving R4. Thus there is no tree-level (1PM)
bending associated to the new term in the Lagrangian, and
one has

δ0;R4 ¼ 0; ð4:42Þ

and the leading contribution arises at 2PM order.
Furthermore, since the R4 term only produces a contact
term four-graviton interaction, the resulting one-loop ampli-
tudes does not contain any box integral. This is consistent
with the absence of a tree-level contribution in (4.42) which,
in the eikonal approximation, is expected to exponentiate,
and would result at one loop in the appearance of box
integrals. The same situation occurs for the graviton deflec-
tion due to FFR couplings discussed in Sec. IV D.
The relevant one-loop amplitudes are given in (3.20), and

from the massive triangle contributions we extract the
following results in the eikonal approximation:

Að1Þ
R4 ð1ϕ;2ϕ;3−−;4þþÞj

ω4 ¼ iβ̃
�κ
2

�
4 35

128
m3ω4jq⃗j3;

Að1Þ
R4 ð1ϕ;2ϕ;3þþ;4þþÞj

ω4 ¼ iβ
�κ
2

�
4 3

128
m3ω4

q4

jq⃗j ; ð4:43Þ

which then translate in impact parameter space into

Ãð1Þ
R4 ð1ϕ;2ϕ;3−−;4þþÞj

ω3 ¼ iβ̃

�
κ

2

�
4 315

512

m2ω3

2πb5
;

Ãð1Þ
R4 ð1ϕ;2ϕ;3þþ;4þþÞj

ω3 ¼ iβ

�
κ

2

�
4 315

512

m2ω3

32πb
1

b̄4
: ð4:44Þ

The subleading eikonal phase matrix resulting from the
previous amplitudes is given by

δ1;R4 ¼
�
κ

2

�
4 315

512

m2ω3

2π

1

b

 
β̃ 1
b4

β
16

1
b̄4

β
16

1
b4 β̃ 1

b4

!
; ð4:45Þ

whose eigenvalues are easily computed to be

δð1;2Þ
1;R4 ¼ ðβ̃ � βÞ

�
κ

2

�
4 315

512

m2ω3

2π

1

b5
: ð4:46Þ

Using (2.16) we can then extract the deflection angle

Δθð1;2Þ
R4 ¼ −ðβ̃ � βÞ

�
κ

2

�
4 1575

512

m2ω2

2π

1

b6

¼ −ðβ̃ � βÞðGmÞ2 1575π
16

ω2

b6
: ð4:47Þ

Similarly to the EH and the R3 interaction we can extract
the time delay arising from the R4 interaction in (1.1),
which in this case arises entirely from the subleading
eikonal phase. Applying (2.17) to (4.46) we find

Δtð1;2Þ
R4 ¼ ðβ̃ � βÞ

�
κ

2

�
4 945

512

m2ω2

2π

1

b5

¼ ðβ̃ � βÞðGmÞ2 945π
16

ω2

b5
: ð4:48Þ

We can express (4.47) and (4.48) in terms of the couplings
introduced in (1.3), using (3.17), (3.18) and (3.19). In the
parity-even theory (β2 ¼ 0) we get β þ β̃ ¼ 8β1, and
β̃ − β ¼ 8β3. In order to avoid a potential time-advance
and associated causality violation, we need to require

β1 > 0 and β3 > 0: ð4:49Þ

Interestingly this positivity constraint is the same as derived
from causality considerations in [96] and general S-matrix
analyticity properties in [97].
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D. Graviton deflection angle and
time delay in EH+FFR

Next we focus our attention on graviton deflection in EH
theory with the addition of an FFR coupling. As discussed
in Sec. III D 1, at tree level there is no new two-scalar two-
graviton amplitude generated by this interaction, hence

δ0;FFR ¼ 0: ð4:50Þ

In order to compute the subleading eikonal phase matrix,
we look at the massive triangle contribution to the one-loop
amplitudes in (3.27),

Að1Þ
FFRð1ϕ; 2ϕ; 3−−; 4þþÞjω2 ¼ −iQ2

�
κ

2

�
2
�
αγ
4

�
mω2

32
jq⃗j;

Að1Þ
FFRð1ϕ; 2ϕ; 3þþ; 4þþÞjω2 ¼ 0: ð4:51Þ

Using

Z
dD−2q
ð2πÞD−2 e

iq⃗·b⃗jq⃗j ¼ −
1

2π

1

b3
þOðD − 4Þ; ð4:52Þ

we obtain

Ãð1Þ
FFRð1ϕ; 2ϕ; 3−−; 4þþÞjω ¼ iQ2ðκ

2
Þ2ðαγ

4
Þ ω

256π

1

b3
;

Ãð1Þ
FFRð1ϕ; 2ϕ; 3þþ; 4þþÞjω ¼ 0; ð4:53Þ

In this case the eikonal phase matrix is diagonal and the
subleading contribution δ1;FFR is immediately seen to be

δ1;FFR ¼ Q2

�
κ

2

�
2
�
αγ
4

�
ω

256π

1

b3
12: ð4:54Þ

The new contribution to the graviton deflection angle due to
the FFR interaction is then obtained using (2.16):

ΔθFFR ¼ −Q2

�
κ

2

�
2
�
αγ
4

�
3

256π

1

b4
¼ −Q2G

�
αγ
4

�
3

32

1

b4
:

ð4:55Þ

Applying (2.17) to (4.54) we find the additional contribu-
tion to the time delay associated to the bending of a
graviton in the FFR theory:

ΔtFFR ¼ Q2

�
κ

2

�
2
�
αγ
4

�
1

256π

1

b3
¼ Q2G

�
αγ
4

�
1

32

1

b3
:

ð4:56Þ

The bending in this case is due to the electric charge Q of
the black hole, not to its mass, which does not appear in
either (4.55) or (4.56). We conclude that in order to avoid
possible causality violation due to time advance the

coefficient of the FFR interaction must obey the positivity
constraint

αγ > 0: ð4:57Þ

E. Photon deflection angle and
time delay in EH+FFR

In this section we consider the photon deflection angle
and the time delay/advance arising from the FFR inter-
action. Compared to the case of graviton bending consid-
ered in the previous section, there is a nonvanishing
tree-level contribution to the deflection, thus we consider
the leading and subleading eikonal cases separately.

1. Leading eikonal

The first contribution we consider arises from the EH
tree-level amplitude (3.28), which in the eikonal approxi-
mation becomes10

Að0Þ
EHð1ϕ; 2ϕ; 3−; 4þÞ ≃ i

�
κ

2

�
2 ð2mωÞ2

q⃗2
; ð4:58Þ

or, upon transforming to impact parameter,

Ãð0Þ
EHð1ϕ; 2ϕ; 3−; 4þÞ ≃ i

�
κ

2

�
2

mωfð−2; D − 2Þ: ð4:59Þ

Note that (4.58) has the same form as the two-scalar two-
graviton amplitude in the eikonal approximation, first
equation in (4.1), as consequence of the equivalence
principle.
At tree-level the helicity-preserving FFR amplitude

(3.26) is purely a contact term, while the helicity-flip
amplitude is given in (3.31). The leading contribution in the
eikonal limit is then

Að0Þ
FFRð1ϕ; 2ϕ; 3−; 4þÞ ≃ 0;

Að0Þ
FFRð1ϕ; 2ϕ; 3þ; 4þÞ ≃ i

�
κ

2

�
2
�
αγ
4

�
ð2mωÞ2 q2

jq⃗j2 ; ð4:60Þ

where we used ½34�2 ¼ −q2. Transforming the nonvanish-
ing helicity-flip amplitude to impact parameter space we
obtain

Ãð0Þ
FFRð1ϕ; 2ϕ; 3þ; 4þÞ ≃ i

�
κ

2

�
2
�
αγ
4

�
mω

b̄2
ξ00fð−2; D − 2Þ;

ð4:61Þ

where

10We recall from Sec. III D 2 that Að0Þ
EHð1ϕ; 2ϕ; 3þ; 4þÞ ¼

Að0Þ
EHð1ϕ; 2ϕ; 3−; 4−Þ ¼ 0.
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ξ00 ¼
�
D
2
− 2

��
D
2
− 1

�
: ð4:62Þ

Defining

δγ0 ¼ δγ0;EH þ δγ0;FFR; ð4:63Þ

we can combine (4.59) and (4.61) into a single leading
eikonal phase matrix11

δγ0;FFR ¼
�
κ

2

�
2

mωfð−2; D − 2Þ
 

1 ðαγ
4
Þ ξ00
b̄2

ðαγ
4
Þ ξ00
b2 1

!
;

ð4:64Þ

which, upon expanding around D ¼ 4, reduces to

δγ0;FFR ¼ −
�
κ

2

�
2 mω

2π

 
1

4−D þ log b −ðαγ
4
Þ 1
2b̄2

−ðαγ
4
Þ 1
2b2

1
4−D þ log b

!
:

ð4:65Þ

Next, in order to test the expected exponentiation
property of the leading eikonal phase matrix, we consider
the terms of Oðω2Þ in the one-loop amplitudes. These are
given in impact parameter space by

Ãð1Þ
EHð1ϕ; 2ϕ; 3−; 4þÞjω2

¼ −
�
κ

2

�
4

ðmωÞ2 fðD − 6; D − 2Þ
2πðD − 4Þ ;

Ãð1Þ
FFRð1ϕ; 2ϕ; 3þ; 4þÞjω2

¼ −
�
κ

2

�
4
�
αγ
4

� ðmωÞ2
b̄2

ðD − 3Þ fðD − 6; D − 2Þ
2π

;

ð4:66Þ

which are obtained from (3.29) and (3.32). In matrix form,

Ãð1Þ
ω2 ¼ −

�
κ

2

�
2 ðmωÞ2

2π
fðD − 6; D − 2Þ

×

 
1

D−4 ðαγ
4
Þ D−3

b̄2

ðαγ
4
Þ D−3

b2
1

D−4

!
: ð4:67Þ

Expanding around D ¼ 4 we find that Ãð1Þ
ω2 satisfies the

matrix equation

Ãð1Þ
ω2 ¼ −

1

2
ðδ0Þ2 þOðD − 4Þ; ð4:68Þ

as expected.

2. Subleading eikonal

Next we consider the subleading eikonal phase. The only
nonvanishing EH contribution comes from the one-loop
massive triangles in the helicity-preserving amplitude
(3.29), and reads

Ãð1Þ
EHð1ϕ; 2ϕ; 3−; 4þÞjω ¼ i

�
κ

2

�
4 15

256π

m2ω

b
: ð4:69Þ

Just as in the case of the leading eikonal phase, the bending
angle of photons in pure EH comes is the same as the
graviton bending (4.11) thanks to the equivalence principle.
The contributions coming from the FFR interaction are

obtained from (3.33) and (3.32), and in impact parameter
space are

Ãð1Þ
FFRð1ϕ; 2ϕ; 3−; 4þÞjω ¼ 0;

Ãð1Þ
FFRð1ϕ; 2ϕ; 3þ; 4þÞjω ¼ i

�
κ

2

�
4
�
αγ
4

�
45

1024π

m2ω

b
1

b̄2
:

ð4:70Þ

Combining these results into a subleading eikonal phase
matrix we get

δγ1;FFR ¼
�
κ

2

�
4 15

256π

m2ω

b

 
1 ðαγ

4
Þ 3
4b̄2

ðαγ
4
Þ 3
4b2 1

!
: ð4:71Þ

3. Deflection angle and time delay

Having computed the eikonal phase matrix at leading
and subleading order, we can now extract the light bending
angle and time advance/delay. First we compute the
eigenvalues of the leading eikonal phase matrix (4.65):

δγð1;2Þ0;FFR ¼ −
�
κ

2

�
2 mω

2π

��
1

4 −D
þ log b

�
∓
�
αγ
4

�
2

b2

�
;

ð4:72Þ

which match qualitatively the result of photon deflection in
a shockwave background (see [89,75] for related work),
while at subleading order we have

δγð1;2Þ0;FFR ¼
�
κ

2

�
4 15

256π

m2ω

b

�
1�

�
αγ
4

�
3

b2

�
: ð4:73Þ

Using once again (2.16), we find the light bending angle up
to OðG2Þ:

11There is no need here to separate the EH and theFFRcon-
tributions, since we consider only photon bending coming from
this source.
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Δθγð1;2ÞFFR ¼ −
�
κ

2

�
2 1

2π

m
b

	
1�

�
αγ
4

�
4

b2
þ
�
κ

2

�
2 15

128

m
b

�
1�

�
αγ
4

�
9

b2

�


¼ −
4Gm
b

	
1�

�
αγ
4

�
4

b2
þ 15π

16

Gm
b

�
1�

�
αγ
4

�
9

b2

�

: ð4:74Þ

Finally, applying (2.17) to (4.72) and (4.73) we arrive at our result for the time delay:

Δtγð1;2ÞFFR ¼
�
κ

2

�
2 m
2π
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b0
b
�
�
αγ
4

�
2

b2
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�
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�
2 15
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�
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b
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�
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4
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þ 15π
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b

�
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�
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4

�
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�

: ð4:75Þ

We note that the OðGαγÞ part of our result (4.74) is in
precise agreement with [73] while it disagrees with [72].12

Note that (4.75) generically leads to a potential time
advance and causality violation independent of the sign
of the coupling αγ . This parallels the situation for the R3

interaction which requires an appropriate UV completion to
restore causality [87].
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APPENDIX A: RELEVANT INTEGRALS

In this section we give the explicit expression for
the integral functions appearing in our results. These

expressions are expanded in ϵ up to the relevant orders,
and only terms with an s-channel discontinuity are kept.

I2ðsÞ ≃
i

16π2

�
1

ϵ
− logð−sÞ

�
; ðA1Þ

I3ðsÞ ≃
i

16π2s

�
1

ϵ2
−
logð−sÞ

ϵ
þ 1

2
log2ð−sÞ

�
; ðA2Þ

I3ðs;mÞ ≃ −
i
32

�
1

m
ffiffiffiffiffiffi
−s

p þ logð−s=m2Þ
π2m2

�
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I4ðs; t;mÞ þ I4ðs; u;mÞ ≃ −
1

8π
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mω

1

D − 4
ð−sÞD−6

2

≃ −
1

16πsðmωÞ
�
1

ϵ
− log

�
−

s
m2

��
:

ðA4Þ

APPENDIX B: FEYNMAN RULES

Below we list some of the Feynman rules used to obtain
the new tree-level amplitudes quoted in the paper. Note that
1ϕm

represents a massive scalar with momentum p1, 1α

represents a photon with momentum p1, and 3μν represents
a graviton with momentum p3:

ðB1Þ

12The result of [72] for ΔθγFFR was already identified as incorrect in [73] due to an inappropriate definition of the deflection angle.
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ðB2Þ

ðB3Þ

APPENDIX C: THE TREE-LEVEL AMPLITUDES

In this appendix we collect for the reader’s convenience all the tree-level amplitudes we have used in our derivations. All
are consistent with the normalizations of (1.1), also we assume all momenta to be outgoing.

Að0Þ
SQEDð1ϕ; 2ϕ; 3þ; 4þÞ ¼ e2m2

½34�2
s

�
i

t −m2
þ i
u −m2

�
; ðC1Þ

Að0Þ
EHð1þ; 2−; 3þþ; 4−−Þ ¼ −i

�
κ

2

�
2

½13�2h24i2 h4j1j3�
2

stu
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�
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h34i8
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�
κ

2

�
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ð½12�4½34�4 þ ½13�4½24�4 þ ½14�4½23�4Þ; ðC11Þ
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Að0Þ
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APPENDIX D: THE FOUR-GRAVITON
AMPLITUDES IN R4

In this appendix we show how the most generic four-
graviton amplitude in an R4 background can be constructed
just from little-group considerations and dimensional
analysis, without looking at any Lagrangian. We begin
by noting that the coupling constant of the four-point
amplitude has two powers of κ (½κ� ¼ −1) and it is
proportional to the coupling constant of the R4 interaction
β (½β� ¼ −6). Furthermore, the nature of the new interaction
implies that the four-point amplitude is just a contact term.
Mass dimension and scaling under little-group transforma-
tions fix the form of the possible amplitudes completely:

Að0Þ
R4 ð1þþ; 2þþ; 3þþ; 4þþÞ ¼ iβ

�
κ

2

�
2

λ̃⊗4
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4 ;

ðD1Þ

Að0Þ
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κ

2
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1 λ̃⊗4

2 λ⊗4
3 λ⊗4

4 : ðD3Þ

We can now introduce the convenient variables

a ≔ ½12�½34�; b ≔ −½13�½24�; c ≔ ½14�½23�; ðD4Þ

in terms of which the all-plus amplitude can be written
in such a way that permutation invariance is manifest.
By saturating the spinor indices of (D1) with the Levi-
Civita tensor in all possible ways one gets four distinct
combinations:

Að0Þ
R4 ð1þþ; 2þþ; 3þþ; 4þþÞ

¼ iβ

�
κ

2

�
2

8>>><
>>>:

a4 þ b4 þ c4

a2b2 þ a2c2 þ b2c2

a3bþ ab3 þ a3cþ ac3 þ b3cþ bc3

a2bcþ ab2cþ abc2:

ðD5Þ
However, using the Schouten identity, which in terms of
these variables reads

aþ bþ c ¼ 0; ðD6Þ
one can show that there is actually only one independent
combination, which we will take to be the first of (D5). We
will then define the all-plus amplitude to be

Að0Þ
R4 ð1þþ; 2þþ; 3þþ; 4þþÞ

¼ iβ

�
κ

2

�
2

ð½12�4½34�4 þ ½13�4½24�4 þ ½14�4½23�4Þ: ðD7Þ

In the presence of a parity-invariant theory, the amplitude
corresponding to (D7) with all helicities flipped is simply
obtained by replacing ½ji� → hiji, otherwise it should be
considered to have an independent normalization.
For the MHV amplitude (D3) there is only one possible

structure, and we define the corresponding amplitude as

Að0Þ
R4 ð1þþ; 2þþ; 3−−; 4−−Þ ¼ iβ̃

�
κ

2

�
2

½12�4h34i4: ðD8Þ

The derivation of these amplitudes from the Lagrangian
(1.3) is presented in Sec. III C.
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