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We describe a correspondence between domain wall solutions of Einstein gravity with a single
scalar field and self-interaction potential. The correspondence we call conformal scale factor inversion
(CSFI) is a map comprising the inversion of the scale factor in conformal coordinates, and a
transformation of the field and its potential which preserves the form of the Einstein equations for
static and isotropic domain walls. By construction, CSFI maps the asymptotic anti–de Sitter boundary
to the vicinity of a naked singularity in a theory with a special Liouville (exponential) scalar field
potential; it is also a map in the parameter space of exponential potentials. The correspondence can be
extended to linear fluctuations, being akin to an S-duality, and can be interpreted in terms of “SUSY
quantum mechanics” for the fluctuation modes. The holographic implementation of CSFI relates the
UV and IR regimes of a pair of holographic renormalization group flows; in particular, it is a
symmetry of the GPPZ flow.

DOI: 10.1103/PhysRevD.102.046009

I. INTRODUCTION

Domain wall solutions of (super)gravity are important
both from the gravitational point of view [1] and because
they correspond to the holographic renormalization group
flows of dual quantum field theories (QFTs) [2–11]. A
domain wall solution with d-dimensional Poincaré sym-
metry has the form

ds2 ¼ a2ðzÞ½dz2 þ ηabdxadxb�: ð1Þ

Large values of the scale factor aðzÞ → ∞ correspond to
the UV limit of the holographic theory, small values of
a → 0 to the IR, and the profile of the function aðzÞ
describe different ways in which the holographic RG can
flow from the UV to IR. In the standard case [5,8,9,11]
the UV is a fixed point corresponding to the boundary
of an asymptotically AdSdþ1 geometry, and conformal
symmetry of the QFTd is broken by a (self-interacting)
scalar field ϕ, that drives the RG flow to the IR. The
simplest fate of the flow is a IR fixed point with a different
AdSdþ1 asymptotics near the anti–de Sitter (AdS) horizon,
but there are other explicit constructions of flows with

nontrivial and interesting IR behavior—confinement,
screening, etc.—such as the Girardello-Petrini-Porrati-
Zaffaroni (GPPZ) example of deformations of N ¼ 4
SYM [12–14]. Typically, these involve singularities [15];
in general, a bottom-up approach [16–20] has proven to be
fruitful for the classification of all possible different
behaviors of solutions.
In the present paper, we introduce a map between the

UV and IR limits of pairs of domain wall solutions related
by inversion of the conformal scale factor aðzÞ. More
precisely, the map, which we call conformal scale factor
inversion (CSFI), relates two domain wall geometries, DW
and gDW, in Einstein gravity, with scalar fields ϕ and ϕ̃ and
potentials VðϕÞ and Ṽðϕ̃Þ,

aðzÞ↦ ãðz̃Þ ¼ c2

aðz0 � zÞ ; ϕ↦ ϕ̃ðϕÞ; VðϕÞ↦ Ṽðϕ̃Þ;

ð2Þ
c is a free parameter. The transformation is such as to
preserve the form of the Einstein equations, ensuring that if
aðzÞ;ϕðzÞ solve the equations with the potential VðϕÞ, then
ãðz̃Þ; ϕ̃ðz̃Þ solve the equations with Ṽðϕ̃Þ.
The inversion of the scale factor in conformal coordi-

nates can be seen as a kind of discrete Z2 Weyl trans-
formation. The transformation of the scalar field and its
potential is in fact rather nontrivial. It maps (asymptoti-
cally) AdS solutions to the (asymptotic) solutions of a
special Liouville exponential potential V ¼ V0evϰϕ with
v ¼ 2ðd − 1Þ−1=2. It also maps different Liouville models
by changing the parameters v ↦ ṽ in a definite manner.
Domain walls with exponential potentials are one of the
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few cases, outside of asymptotically AdS geometries, for
which holography has a precise quantitative formulation
[21]: they can be described as AdS-linear dilaton solutions
dual to QFTs which are not conformal, but possess a
“generalized conformal structure.” They can also be
obtained from dimensional reductions of pure AdS sol-
utions in a larger number of dimensions [22,23].
In principle, given any (as long as some restrictions are

observed) solution DW corresponding to the RG flow of a
QFT, the CSFI map will yield an image solution gDW and
the flow of a different gQFT. The most important holo-
graphic information contained in homogenous, isotropic
backgrounds is the beta function βðϕÞ ¼ −dϕ=d log a
describing the RG flow of the coupling ϕ with the energy
scale log a. The explicit CSFI transformations of β and
of the remaining RG data turn out to have quite a simple
form. Nontrivial IR limits due to exponential behavior of
VðϕÞ are important in phenomenological applications
[16,17,23–26], and a natural question is whether these
IR limits are related by CSFI to some interesting UV limit.
As we will show, this is indeed the case. In particular, we
can construct a class of models which are invariant under
(2), and one of these models is the well-known GPPZ flow
[14] (truncated to a single scalar field).
Beyond isotropic backgrounds, CSFI can be consistently

extended to fluctuations, like the S-duality of cosmological
fluctuations [27]. The equations for tensor modes around
any domain wall present a symmetry under CSFI relating
the modes and their conjugate momenta; the equations for
the scalar modes posses the same symmetry in theories with
exponential potentials (but only in those theories). The
symmetry can be interpreted in terms of the well-known
“SUSY quantum-mechanical” [28] description of domain
wall fluctuations. A given pair of modes related by CSFI
are superpartners, each can be found from acting with the
supersymmetry (SUSY) generators on the other. This
relates the corresponding “wave functions” in such a
way that fixing the boundary conditions of fluctuations
in one model fixes them in its CSFI-pair as well, even in
cases where the extension of CSFI is only asymptotic, such
as in asymptotically Liouville/AdS backgrounds.
The structure of the paper is as follows. In Sec. II we

review the description of isotropic domain walls in terms of
a system of first-order differential equations. In Sec. III we
introduce CSFI, describe its properties and construct
explicit examples of pairs of solutions, focusing in asymp-
totically AdS/Liouville geometries. In Sec. VA, we discuss
pairs of solutions from the point of view of holographic RG
flows, and in Sec. V B we discuss the relations between
one-point functions. In Sec. VI we describe the extension
of CSFI to fluctuations and the consequences for wave
functions and spectra of d-dimensional eigenstates. In
Sec. VII we conclude with a discussion of the CSFI
correspondence, and some of its possible developments.
Secondary topics and examples are left for the appendixes.

II. DOMAIN WALLS

Let us briefly review the basic features of domain walls
(DWs) in Einstein gravity coupled to one scalar field [1,29].
We work in the Einstein-frame, with action

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
1

ϰ2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð3Þ

and consider static and flat domainwallswithd-dimensional
Poincaré symmetry1

ds2 ¼ e2AðzÞ½dz2 þ ηabdxadxb�; eAðzÞ ≡ aðzÞ;
ϕ ¼ ϕðzÞ: ð4Þ

The field equations obtained from the action (3) have the
form

2A00 þ ðd − 2ÞA02 ¼ −
ϰ2

d − 1

�
1

2
ϕ02 þ e2AVðϕÞ

�
ð5aÞ

ϕ00 þ ðd − 1ÞA0ϕ0 ¼ e2A∂ϕVðϕÞ ð5bÞ

dðd − 1ÞA02 −
1

2
ϰ2ϕ02 ¼ −ϰ2e2AVðϕÞ ð5cÞ

where 0 ≡ d=dz. Equations (B5) can be rewritten in an
equivalent form as the first-order system

A0ðzÞ ¼ −
ϰ

d − 1
eAðzÞWðϕÞ ð6aÞ

ϕ0ðzÞ ¼ 2

ϰ
eAðzÞ

dWðϕÞ
dϕ

ð6bÞ

by introducing an (auxiliary) function WðϕÞ called the
“superpotential” due to its (fake or true) supersymmetric
origin [3,5,30,31]. The constraint (5c) determines the poten-
tial VðϕÞ in terms of the superpotential:

VðϕÞ ¼ 2

ϰ2

�
dWðϕÞ
dϕ

�
2

−
d

d − 1
W2ðϕÞ; ð7Þ

or vice versa—when VðϕÞ is given, one should solve
Eq. (7) for WðϕÞ and then to use this (nonunique) solution
for solving the first-order system. We are mostly interested
in the proper supergravity DWs of Bogomol’nyi-Prasad-
Sommerfield (BPS) type, where the superpotential is an
important input and the first-order system is nothing but the
integrability consistency conditions for the BPS Killing
spinor equations. Notice that in the patches of spacetime
where WðϕÞ is monotonic, one can use ϕ itself as a

1ηab is the Minkowski metric, where a; b ¼ 0; 1; 2;…; d − 1
denote d-dimensional “transversal” coordinates and μ, ν
bulk coordinates. Newton’s constant in (dþ 1) dimensions is
(proportional to) ϰ2.
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coordinate and find A ¼ AðϕÞ from the equation
dA=dϕ ¼ −1=βðϕÞ, where

βðϕÞ ¼ −
dϕ
dA

¼ 2ðd − 1Þ
ϰ2

∂ϕWðϕÞ
WðϕÞ ; ð8Þ

which has the holographic interpretation of the beta-function
for the running coupling ϕ in the dual QFT (cf. Sec. VA).

III. CONFORMAL SCALE FACTOR INVERSION
CORRESPONDENCE

We want to construct a map between two domain wall
solutions—which we call DW and gDW—such that their
scale factors are related by an inversion,

ãðz̃Þ ¼ c2

aðzÞ ; z̃ ¼ �zþ constant ð9aÞ

where c is a dimensionless parameter. The motivation for
finding such a map is simple: it naturally relates a near-
singular geometry (ã=c ≪ 1) to a small-curvature geom-
etry (a=c ≫ 1). (The causal structure of spacetimes related
by (9a) is described in Appendix A.) Holographically, the
correspondence relates the deep IR of the RG flow to the
UV limit of a (as we will see) different RG. Since we want
to relate two domain wall solutions, the inversion of the
scale factor (9a) must preserve the form of the Einstein
equations (B6). It is straightforward to see that this is only
true if the scalar and the potential transform in a specific
way, as

ϕ̃02 ¼ −ϕ02 þ ϰ2

d − 1
a2ðϕÞW2ðϕÞ;

Ṽðϕ̃Þ ¼ −
a4ðϕÞ
c4

½VðϕÞ þ 2W2ðϕÞ�: ð9bÞ

Hence we are relating by scale-factor inversion a pair of
solutions in two different theories, differing by the scalar
potential.
We are going to call the map composed by the three

transformations (B9) a conformal scale factor inversion
(CSFI) correspondence.
We can also express the map in terms of the super-

potentials WðϕÞ and W̃ðϕ̃Þ of the related theories.
Scale-factor inversion implies that the superpotential trans-
forms as

ãðϕ̃ÞW̃ðϕ̃Þ ¼∓ aðϕÞWðϕÞ or W̃ðϕ̃Þ ¼∓ a2ðϕÞ
c2

WðϕÞ;
ð10Þ

with the signs following those of (9a). We can further set
c ¼ 1 by choosing the normalization of the scale factors in
the two solutions.

The field transformation ϕ ↦ ϕðϕ̃Þ can be written in a
more direct form by using the scale factor aðϕÞ, as a
function of the scalar field, together with Eq. (8),

ϕ̃ðϕÞ ¼ ϕ̃0 �
Z

ϕ0

ϕ
dϕ

�
4ðd − 1Þ
ϰ2β2ðϕÞ − 1

�
1=2

: ð11Þ

The condition that the right-hand side (rhs) has to be real
introduces the upper bound

β2ðϕÞ ≤ 4ðd − 1Þ=ϰ2: ð12Þ

If this bound is violated in a given solution DW, the kinetic
energy of ϕ̃ has the wrong sign, and the solution gDW is
unstable. In other words, the bound (12) preserves the null
energy condition (NEC), which for the single homo-
geneous scalar field reads ϕ02ðzÞ ≥ 0. It is not difficult
to derive the transformation of the beta-functions,

β̃ðϕ̃Þ ¼ �
�
4ðd − 1Þ
ϰ2β2ðϕÞ − 1

�
1=2

βðϕÞ ð13Þ

where the signs follow the ones in (11). This can be written
in a symmetric way (that however hides the relation
between signs) as

β2ðϕÞ þ β̃2ðϕ̃Þ ¼ 4ðd − 1Þ=ϰ2; ð14Þ

and from the symmetry of this equation one sees that if (12)
holds for DW it holds for gDW as well.
The ambiguities in sign appearing in Eqs. (10), (11), and

(13) correspond to different ambiguities in Eq. (7), which
determines WðϕÞ from VðϕÞ. To be definite, in what
follows we adopt the following conventions:

(i) We always choose z̃ ¼ −zþ const: in (9a). Thus
both W̃ > 0 and W > 0, i.e., the plus sign is chosen
in (10). Choosing a definite sign of the super-
potential has no physical consequence, it only
stipulates that both a and ã grow with their respec-
tive radial coordinates.

(ii) We always choose the plus sign in Eqs. (11) and
(13). This particular sign ambiguity stems from
invariance of Eq. (7) under a change of sign of
dW̃=dϕ̃. Once we have fixed W̃ > 0 in item (i), the
sign of β̃ is fixed by dW̃=dϕ̃, cf. Eq. (8). A choice of
the opposite sign would select a different W̃ðϕ̃Þ, but
in a theory with the same Ṽðϕ̃Þ.2

Some observations are in order.
There is a well-known relation between domain walls

and FRW spacetimes. In cosmology, the maps obtained
by inversion of the scale factor are known as “scale

2See [18] for an extensive discussion of the solutions of the
superpotential equation (7).
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factor dualities,” in analogy to Veneziano’s work [32].
CSFI corresponds to the inversion of the FRW scale-
factor in conformal time developed by the present authors
in [33–35].
In this paper we use only the first-order system (B6), but

its easily verified that the transformations (B9) actually
preserve the full second-order equations (B5). (See [33].)
Starting from the second-order equations, it is easy to see
that preservation of the first-order system automatically
follows. The first-order system, i.e., the superpotential,
exists whenever a solution aðzÞ is a (piecewise) monotonic
function of z, and the converse is also true [6]. Now, if aðzÞ
is monotonic, then 1=aðzÞ is monotonic as well. Hence
CSFI maps two monotonic functions which must be
described by the corresponding superpotentials.
The map, however, is not a symmetry of the action—

only of the field equations. Dismissing a volume factorR
ddx, the action for the ansatz (4) can be put in the well-

known (pseudo)-BPS form [3,6]

S ¼
Z

z2

z1

dzad
�
dðd − 1Þ

ϰ2

�
a0

a
þ ϰaW
d − 1

�
2

−
1

ϰ

�
ϰ

2a
ϕ0 − a

dW
dϕ

�
2
�

−
�
2d
ϰ2

ad−1
�
a0

a
þ ϰ

d
aW

��
z2

z1

ð15Þ

which after the CSFI transformations (with dz ¼ �dz̃ and
c ¼ 1) become

S ¼ �
Z

z̃2

z̃1

dz̃
1

ãd

�
dðd − 1Þ

ϰ2

�
ã0

ã
þ ϰã W̃
d − 1

�
2

−
1

ϰ

�
dϕ̃
dϕ

�
2
�
ϰ

2ã
ϕ̃0 − ã

dW̃

dϕ̃

�
2
�

−
�
2d
ϰ2

1

ãd−1

�
ã0

ã
þ ϰ

d
ã W̃

��
z̃1

z̃2

ð16Þ

The BPS-like separation of squares is preserved, but the
position of a and ã is different on the overall coefficients.
Hence there is no invariance, not even on-shell, when only
the boundary terms survive.
We are considering here only flat domain walls (4) but

solutions with ηab in (4) replaced by a metric gab with
constant curvature proportional to the cosmological con-
stant Λd are also important [6]. A remarkable feature of
CSFI is that the second-order equations (B5), modified by
the presence of Λd terms, are also invariant under the same
transformations (B9). That is, CSFI is valid for any domain
wall with maximally symmetric slices. This can be seen by
looking at the first-order system for the curved domain-
walls. As shown in [6], Eqs. (B6) are modified by the
appearance of a factor γ ≡ ½1 − αΛd=ðaWÞ2�1=2, where α is

a numerical factor [6]. This factor is invariant under CSFI,
because of (10).
In our definition of the CSFI map, the emphasis in

“conformal” comes from aðzÞ being a conformal factor.
This point is important because implementing a scale factor
inversion in a different coordinate leads to a different map,
with a different field transformation. For example, suppose
we implement the scale factor inversion ãðrÞ ¼ c=aðrÞ,
where r ¼ R

dzaðzÞ. This gives a different map, with field
transformations such that _ϕ2ðrÞ ↦ − _ϕ2ðrÞ.3 Thus in this
alternative correspondence the kinetic energy of the scalar
field always changes sign and the NEC is always broken.
The equivalent duality in Friedmann-Robertson-Walker
spacetimes [36] can be used to relate standard and phantom
cosmological models [36,37].
One can concoct other maps, by using other “lapse

functions”NðzÞ on the domain wall metric (4), although the
most natural ones are either CSFI, with NðzÞ ¼ aðzÞ, or
the map just mentioned with N ¼ 1. We have seen that the
latter always violates the null energy condition by con-
struction, while CSFI allows for pairs DW and gDW both
obeying the NEC. Also, CSFI is the only such map, for
whatever choice of NðzÞ, which can be extended for curved
maximally symmetric solutions. But there are two more
remarkable features of CSFI. First, it relates asymptotically
AdS potentials to exponential potentials, and is also a map
on the parameter space of exponential-potential models
where it acts as a strong-/weak-coupling map. Second,
CSFI can be naturally extended to fluctuations in these
cases. Remarkably, AdS and exponential-potential models
are two classes of theories with a precise holographic
interpretation. The remaining of this paper is devoted to
exploring these features.

IV. SOLUTIONS RELATED BY CSFI

We now proceed to discuss explicit realizations of the
CSFI transformations (B9). Of course, the obvious place to
start would be with AdS solutions: what is their image
under CSFI? The answer is a domain wall in a special
Liouville model, with a specific exponential potential. In
fact, it turns out that the CSFI transformations are realized
in a particularly simple way in Liouville models, acting as a
map in the parameter space of the exponential potentials, of
which the AdS solution can be obtained from a limiting
procedure. We therefore start, in Sec. IVA, by describing
these maps.
Exponential potentials can be obtained in different ways,

from an AdS linear dilaton solution of a Jordan-frame
action, and from consistent dimensional reductions of a
higher-dimension pure AdS solution. In Secs. IVA 1–IVA 2

3This is easy to see from the Einstein equations, since now we
are imposing AðrÞ ↦ −AðrÞ.
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we analyze how CSFI can be interpreted in these
frameworks.
In Sec. IV B, we give as a further example the more

complicated case of the image of a standard asymptotically
AdS potential. Finally, we give an example of a nontrivial
theory (and a solution) invariant under the transformations.

A. Liouville potentials and AdS space

Consider Liouville, i.e., exponential, potentials

WðϕÞ ¼ 2=v2

ϰL
evϰϕ=2 ð17Þ

VðϕÞ ¼ −
ðd − 1Þðvc=vÞ4

ϰ2L2
½d − ðv=vcÞ2�evϰϕ;

vc ≡
ffiffiffiffiffiffiffiffiffiffiffi
2

d − 1

r
: ð18Þ

Here v > 0 is a dimensionless parameter. The amplitude
has been chosen appropriately to simplify the scale factor in
terms of a length scale L > 0. We assume that V ≤ 0, hence

0 < v <
ffiffiffi
d

p
vc: ð19Þ

The beta-function given by (8) is a constant parametrized
by v,

β ¼ ðd − 1Þv=ϰ ð20Þ

so integrating Eq. (8) we find the DW solution

aðϕÞ ¼ exp

�
−

ϰϕ

ðd − 1Þv
�
; ð21Þ

while integration of the first-order system (B6) yields

aðzÞ ¼
�ðv2 − v2cÞðz0 − zÞ

v2L

� v2c
v2−v2c

�
vc < v; z ∈ ð−∞; z0Þ
vc > v; z ∈ ðz0;þ∞Þ

ð22Þ

aðzÞ ¼ exp

�
z0 − z
L

�
vc ¼ v; z ∈ ð−∞;∞Þ ð23Þ

where z0 is an integration constant. In all cases there is a
singularity when a → 0, but with one crucial difference: for
v > vc the singularity is reached at the finite radius z0. For
v ≤ vc the point z0 is where the scale factor diverges, and
the singularity is at z ¼ þ∞. The solutions for ϕ are

ϕðzÞ ¼ −
2

ϰv
log

��ðv2 − v2cÞðz0 − zÞ
v2L

� v2

v2−v2c

�
if v ≠ vc

ð24Þ

ϕðzÞ ¼ −
2

ϰv
ðz0 − zÞ

L
if v ¼ vc ð25Þ

with ranges of z again as in (22)–(23). Note that the
singularity is always at ϕ → þ∞; cf. (21).
The CSFI image gDW of this solution has ã ¼ c2=a.

For v ≠ vc,

ãðz̃Þ ¼
�ðv2 − v2cÞðz̃0 − z̃Þ

v2L̃

�− v2c
v2−v2c ;

z̃ − z̃0 ¼ −ðz − z0Þ; ð26Þ

for some constant L̃. Eq. (26) has the same structure as (22),
but with

ṽ2 − v2c ¼ v2c − v2: ð27Þ

Since the scale factors have the same form, the potential
and the superpotential must again be exponentials. The
field ϕ̃ is given by Eq. (11), whose integral is trivial,

ϕ̃=ṽ ¼ −ϕ=v: ð28Þ

We have chosen the plus sign in (11), and also set the
integration constant to zero. With this choice, from
Eq. (10), we find that the potential and superpotential are

W̃ðϕ̃Þ ¼ W̃0eṽϰϕ̃=2;

Ṽðϕ̃Þ ¼ −
W̃2

0

d − 1

�
d −

ṽ2

v2c

�
eṽϰϕ̃: ð29Þ

Note that we have the map fϕ → −∞g ↦ fϕ̃ → þ∞g,
corresponding, from Eq. (21) to fa → ∞g ↦ fã → 0g
(and vice versa).
Thus we have found that CSFI is a map between

exponential potentials:

VðϕÞ ¼ V0evϰϕ⟷
CSFI

Ṽðϕ̃Þ ¼ Ṽ0eṽϰϕ̃ ð30Þ

0 < v2 < v2c⟷
CSFI

v2c < ṽ2 < 2v2c: ð31Þ

The correspondence reflects a value of v2 across the critical
v2c, as shown in Fig. 1. Then v2 ¼ 0 is mapped to ṽ2 ¼ 2v2c,

FIG. 1. Parameter space of pairs of domain walls with ex-
ponential potentials related by CSFI.
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and any v2 > 2v2c is mapped to a ṽ2 < 0. So requiring that
the pair ðv; ṽÞ is real introduces the bound

0 ≤ v2 ≤ 2v2c or v2 ≤ 4=ðd − 1Þ: ð32Þ

Equation (27) is equivalent to the beta-function
transformation (14) and the bound (32) corresponds to
the bound (12). As discussed, a DW violating the bound
has the corresponding gDW with the wrong sign of the
kinetic term.
The critical value v ¼ vc gives the simplest example

of an “invariant potential,” symmetric under CSFI. A
Liouville model with exponential parameter

v ¼
ffiffiffi
2

p
vc ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
; ð33Þ

for which (32) is saturated, will be called a special Liouville
solution. The special nomenclature is because the corre-
sponding parameter is ṽ ¼ 0, which gives not an expo-
nential potential anymore but a (negative) constant Ṽ,
hence the pair of the special Liouville is AdS space.
Note however that, as v → 0 the solutions for a and ϕ
must be looked at carefully. In particular, with our chosen
parametrization for the superpotential (17), the limit v → 0

must be taken with the fixed product v2L → 2l=ðd − 1Þ,
where l is the radius of AdS. For example, Eq. (21) does
not have a limit, because in pure AdS there is no scalar
field; but Eq. (22) does have the right limit, giving a ¼ l=z.

1. Linear dilaton solutions

The Liouville solutions obtained above are related to a
linear-dilaton AdS solution of the Jordan-frame action

S ¼
Z

ddþ1x
ffiffiffiffiffiffiffi
−G

p eΦ

ϰ2

�
ℛþ

�
1þ 1

2α

�
Gμν∂μΦ∂νΦþ C

�
ð34Þ

where ℛ ¼ ℛðGÞ is the Ricci scalar for the metric Gμν,
and C is a constant. This action can describe the decoupling
limit of Dp-branes for some specific values of α and C
[4,21] but we can, and will, consider these parameters to be
arbitrary. The Einstein-frame metric gμν is found with a
conformal transformation and by defining the canonically
normalized field ϕ,

gμν ¼ exp

�
2

d − 1
Φ
�
Gμν;

ϰϕ ¼ −
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − ðd − 1Þ
2αðd − 1Þ

s
Φ; ð35Þ

so that (34) assumes the standard Einstein-Hilbert form (3)
with a potential VðϕÞ ¼ − 1

ϰ2
C exp ð− 2

d−1ΦðϕÞÞ that reads

VðϕÞ ¼ −
1

ϰ2
C exp

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α

ðd − 1Þð2αþ 1 − dÞ

s
ϰϕ

#
: ð36Þ

The exponent is uniquely parametrized by α. We can put it
in the same form as (18) by defining

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4α

ðd − 1Þð2αþ 1 − dÞ

s
; vc ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

d − 1

r
: ð37Þ

Solving (37) for α, we get

α ¼ v2=v2c
v2 − v2c

: ð38Þ

In terms of these parameters, the transformations (35) read
simply

gμν ¼ expðv2cΦÞGμν ¼ expð−vϰϕÞGμν;

ϰϕ ¼ −ðv2c=vÞΦ: ð39Þ

Note that the constant appearing in the action (34) is found
from (18) to be

C ¼ ðd − 1Þðvc=vÞ4
L2

½d − ðv=vcÞ2�

¼ ðd − 2αÞðd − 1 − 2αÞ
R2

; ð40Þ

where we have defined the radius R≡ 2
d−1 jαjL.

Now we can use (39) to obtain solutions of (34) starting
from the Einstein-frame domain wall solutions found in
Sec. IVA. From (24), we find the dilaton evolution

expΦ ¼
�jz0 − zj

R

�
2α

; ð41aÞ

and then the metric Gμν is found to be simply AdS space in
Poincaré coordinates with radius R,4

Gμνdxμdxν ¼ ω2ðzÞ½dz2 þ ηabdxadxb�;

with ω2ðzÞ ¼ R2

ðz0 − zÞ2 : ð41bÞ

Equations (41) are an AdS linear dilaton solution of (34),
i.e., the exponential of the dilaton evolves trivially as a
power of the radial coordinate.

4This can be found by noting that

ω2 ¼ e−v
2
cΦa2ðΦÞ ¼ e

−v2−v2c
v2=v

2
c
Φ ¼ e−Φ=α

wherewe have used Eq. (21), which gives a2ðΦÞ¼ exp½ðv4c=v2ÞΦ�.
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The existence of linear dilaton solutions in Liouville
models allows for a precise definition of the holographic
correspondence, known as “nonconformal holography”
[4,21]. Absence of conformal invariance is due to the
(trivial) running of the dilaton/coupling, but the holo-
graphic QFT posses a “generalized conformal structure”:
the theory is invariant under Weyl transformations of the
metric as long as the coupling is also appropriately
transformed.
In the holographic dictionary, the scale factor ω in (41b)

is dual to the energy scale of the QFT. Holographic
renormalization, first done in [21], follows the same steps
of standard holography—one makes a Fefferman-Graham
(FG) expansion for the geometry, along with an expansion
for the running dilaton,

Gμνðρ; xÞ ¼ R2
dρ2

4ρ2
þ gabðρ; xÞdxadxb

ρ
ð42aÞ

Φðρ; xÞ ¼ α log ρþ κðρ; xÞ ð42bÞ

where ρ ¼ ðz − z0Þ2=R2 is the standard FG coordinate and
the expansion has the form

gabðρ; xÞ ¼ gð0Þab ðxÞ þ ρgð2Þab ðxÞ þ � � �
þ ρσ½gð2σÞab ðxÞ þ log ρhð2σÞab ðxÞ� þ � � � ð42cÞ

κðρ; xÞ ¼ κð0ÞðxÞ þ ρκð2ÞðxÞ þ � � �
þ ρσ½κð2σÞðxÞ þ log ρφð2σÞðxÞ� þ � � � ð42dÞ

The Einstein equations derived from (34) determine the

functions gðnÞab ðxÞ and κðnÞðxÞ algebraically in terms of the

“sources” gð0Þab ðxÞ and κð0ÞðxÞ, up to order n ¼ σ, where [21]

σ ¼ 1

2
d − α: ð43Þ

Such holographic reconstruction of the bulk metric (i.e., the

coefficients gðnÞab and κðnÞ) from the boundary structure (i.e.,

gð0Þab and κð0Þ) is basically the same as in the pure AdS case
[8,9,11], only now the order σ of the nonlocal terms is
shifted by −α. From here, it is evident that we must have

α ≤ d=2; ð44Þ

otherwise σ < 0 and the Fefferman-Graham expansion
breaks down. The most interesting cases have in fact
α < 0, even though for negative parameters with jαj < 1

2
,

the kinetic term in (34) is negative. For example, the
decoupling limit ofDp-branes with p ¼ 0, 1, 2, 3, 4, 6, can
be obtained from the action (34) if we set d ¼ pþ 1, and

α ¼ ðp−3Þ2
2ðp−5Þ, see [4,21]. All of these branes, except p ¼ 6,

have α ≤ 0.5 The D6-brane has α ¼ 9
2
, violating (44), hence

there is no FG expansion since σ ¼ −1. On the other hand,
a D2-brane has α ¼ − 1

6
, which gives a negative kinetic term

in (34).
The effect of CSFI on the linear dilaton solutions is to

change α, as can be readily seen from Eq. (38) together with
(27), α ↦ α̃ ¼ −αþ 2=v2c, i.e.,

α̃ ¼ −αþ ðd − 1Þ: ð45Þ

Hence the image of (41) is again a linear dilaton AdS
solution, but with a different exponent α̃ for the evolution of
exp Φ̃, and a different radius R̃ for the AdS geometry.
We have seen that CSFI is only well-defined for

parameters v lying within the range (32). The range splits
into two halves, v2 ∈ ½0; v2c� and v2 ∈ ½v2c; 2v2c�, related by
CSFI as in Fig. 1. These intervals translate into α as

ð46aÞ

ð46bÞ

Note the reversed orientation of the intervals in the rhs, due
to the fact that, e.g., in (46) we have fv2 ¼ 0g ↦ fα ¼ 0g
and fv2 ¼ v2cg ↦ fα ¼ −∞g. The boundedness of the
interval of v2 where CSFI is well defined translates into
a gap ð0; d − 1Þ, for which α̃ is not defined.
There is a simple interpretation for the gap: iff α ∉

ð0; d − 1Þ then α and α̃ always have opposite signs. This
can be immediately seen from the transformation (45).
Since α is the power appearing in the linear dilaton solution
(41a), this means after all that CSFI is a map such that
expΦ > 1 ⇔ exp Φ̃ < 1. Now, note that the positive values
of α allowed by the bound (44), viz. 0 < α ≤ d

2
, lie inside

the forbidden gap in (46), so these models do not have
consistent CSFI images. Meanwhile, any α ≤ 0 is mapped
to a α̃ ≥ d − 1, thus violating the bound (44), hence the
image under CSFI of any model with α ≤ 0 (e.g., the
p-brane solutions discussed) is a model for which the FG
expansion (42) is not defined. But we can look the other
way around: if we take a model in interval (46b), it is
uniquely mapped by CSFI into a model with α ≤ 0, which
can be consistently renormalized with the FG expansion
(42). The special Liouville model has α ¼ d − 1 and is
mapped to α ¼ 0, which is (like in the Einstein frame) pure

5Specifically, for p ¼ f0; 1; 2; 3; 4; 6g we have

α ¼
�
−

9

10
;−

1

2
;−

1

6
; 0;−

1

2
;
9

6

�
:
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AdS since the dilaton (41a) freezes. (One must redefine
Φ → αΦ in the action before taking α ¼ 0.)
From the discussion above, one can already conclude

that the only effect of CSFI in the linear dilaton solutions is
to change the exponent of the dilatonic evolution: the
Jordan-frame scale factor ω rests invariant. Let us show
this explicitly. Using (39) and (21), we find that

ωðzÞ ¼ ½aðzÞ�
v2c−v

2

v2c : ð47Þ

Making the CSFI transformation, we have to take two
effects into account: first, that the Einstein-frame scale
factor a undergoes an inversion, second that the exponent
is transformed according to (27). The overall effect is
therefore

ω̃ðz̃Þ ¼ ½ãðz̃Þ�
v2c−ṽ

2

v2c ¼
�

1

aðz� � zÞ
�v2−v2c

v2c ¼ ½aðz� � zÞ�
v2c−v

2

v2c

¼ ωðz� � zÞ:

For simplicity, we have set c ¼ 1 in (9a), by the usual
freedom of choosing the normalization of the scale factor.
We recall that the transformation of the argument,
z̃ ¼ z� � z is also the usual translation- and reflection-
invariance of the domain wall solutions.
Finally, let us make a comment about the invariant

potential in the Einstein frame, with v ¼ vc. It corresponds
to α ¼ �∞, then the kinetic term of Φ is uniquely
normalized to unity in (34) and, with the redefinition
Φ → −2Φ, one finds just the bosonic string effective
action, but with a constant dilaton potential

S ¼
Z

ddþ1x
ffiffiffiffiffiffiffi
−G

p e−2Φ

ϰ2

�
ℛþ 4Gμν∂μΦ∂νΦ −

ðd − 1Þ2
L2

�
:

ðv ¼ vcÞ: ð48Þ

Again, there is no meaningful FG expansion, since
σ → �∞. This was to be expected, as the solution of
the Liouville model is qualitatively different in this case.
The Einstein-frame solution (23) and (25) is not an AdS
linear dilaton solution in the Jordan frame. In fact, from
Eq. (47) we can see that in the critical model the Jordan-
frame scale factor is trivial, ω ¼ 1. The Jordan-frame
geometry is, therefore, simply Minkowski space, while
the dilaton, given by (39) and (25), is Φ ¼ ðd−1Þ

L ðz0 − zÞ.

2. CSFI and dimensional reductions of AdS

We have seen that Einstein-frame Liouville models with
parameters lying within the range (46a) have a well-defined
holographic interpretation via the AdS linear dilaton
solution (41) found in the Jordan frame (34). In [22], it
was shown that one can obtain the Einstein-frame poten-
tials in a different way: by performing a dimensional

reduction of a higher-dimensional pure AdS solution over
a torus. The reduction is consistent, hence one can first
perform the usual renormalization of the D-dimensional
asymptotically AdS solution, with a FG expansion (42) of
order σ ¼ 1

2
ðD − 1Þ; then reducing over a torus of dimen-

sion q ¼ 2σ − d yields the correct counterterms and
sourced one-point functions for the nonconformal holog-
raphy of the (dþ 1)-dimensional Liouville models.
Later [23], it was shown that the dimensional reduction

can be done consistently not only over a torus but over any
Einstein manifold. One starts from a pure Einstein action in
D ¼ 2σ þ 1 dimensions,

S ¼ 1

ϰ2D

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−GðDÞ

q
ðRðDÞ − 2ΛDÞ; D ¼ 2σ þ 1;

ð49Þ

and performs a reduction to a (dþ 1)-dimensional theory
by factoring out an internal space Xq with dimension q,

ds2ðDÞ ¼ e2λϕds2ðdþ1Þ þ e2βϕds2qðXqÞ; q ¼ 2σ − d: ð50Þ

The reduction is consistent, i.e., it gives the correct Einstein
equations in lower dimensions, if the parameters are related
by ðd − 1Þλ ¼ −qβ, and if Xq is an Einstein manifold
(which we assume to be compact), i.e., its Ricci curvature
must be proportional to its metric, with curvature normali-

zation RðqÞ
ij ¼ ð1=qÞRðqÞgðqÞij . Then (49) becomes the stan-

dard Einstein-Hilbert action, with the Kaluza-Klein field ϕ
appearing as a scalar with potential

VðϕÞ ¼ 2ΛD

ϰ2
e−vqϰϕ −

RðqÞ

ϰ2
e−wqϰϕ; ð51Þ

where

vq ¼ vc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ − d
2σ − 1

r
¼ v2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2c þ 2=q
p ;

wq ¼ vc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ − 1

2σ − d

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2c þ 2=q

q
: ð52Þ

Recall that vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðd − 1Þp

. Canonical normalization of
ϕ implies that λ ¼ − 1

2
vσ. Newton’s constant is induced

from (49) as ϰ2 ¼ ϰ2D=Vq, where Vq is the volume of the
Einstein space Xq.
The dimensional reduction (50) can be “generalized” by

noting that q only enters the low-dimensional physics as a
parameter in (51) [22]; then one can continue q (and σ)
away from a (semi-)integer. Thus vq becomes a continuous
parameter, but still it must satisfy

0 ≤ v2q ≤ v2c because q > 0; ð53Þ
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that is the (generalized) dimension of the compactified
space Xq must be non-negative. Meanwhile,

v2c ≤ w2
q ≤ dv2c because q ≥ 1: ð54Þ

The upper bound coincides with the condition (19) that the
potential be negative, but here it has a very different
interpretation: it amounts to the dimension of Xq not being
smaller than one.
The parameters vq and wq lie in the complementary

ranges (31) related by CSFI in single-exponential Liouville
models. There are two instances when only one of the two
exponentials in the sum (51) is in fact present. For each
case, the V0 in (30) has a different interpretation:
(A) Higher-dimensional cosmological constant: If the

internal space has zero curvature, i.e., if Xq is a torus,
the potential (51) has one single exponential whose
exponent lies in the range (53). Then V0 ¼ 2ΛD=ϰ2

is inherited from the cosmological constant of the
higher-dimensional AdS space.

(B) Curvature of internal space: Instead, if ΛD ¼ 0 and
the internal space has positive curvature RðqÞ > 0,
i.e., Xq is a sphere, the (negative) potential will have
one single exponential with exponent in the range
(54). In this case, Ṽ0 ¼ −RðqÞ=ϰ2 comes from the
curvature of Xq.

So in cases A and B, the single exponentials in VðϕÞ have
exponents in the ranges (53) and (54), respectively. CSFI
swaps these two complementary intervals because of (27)
(cf. Fig. 1), and therefore it also swaps the two interpre-
tations: the image of a type A potential is a type B potential,
and vice versa. In short, CSFI maps vq ↔ wq and A ↔ B.
But there is a subtlety: the relation between v2q and w2

q that
follows from the dimensional reduction formulas (52) is

w2
q ¼ v4c=v2q; ð55Þ

which is, of course, not the same as (27). Hence the pair of
potentials related by CSFI correspond not only to different
“sectors” of the dimensional reduction, i.e., to either ΛD or
RðqÞ being zero, but they also correspond to the reduction of
a different number of dimensions, i.e., to different values
of q. Precisely, identifying v ¼ vq and ṽ ¼ wq̃ and using
Eqs. (55) and (27), we have

ṽ2 ¼ v2c þ
2

q̃
¼ 2v2c − v2 ¼ 2v2c −

v4c
v2c þ 2=q

and solving for q̃,

q̃ ¼ qþ ðd − 1Þ: ð56Þ

Let us summarize this geometric interpretation. CSFI
relates a pair of Liouville models, both in (dþ 1) dimen-
sions. One of the models, type A, is obtained from
dimensional reduction over a torus Tq of a pure AdSD

solution in D ¼ ðdþ 1Þ þ q dimensions. The other model
in the pair, type B, is obtained by dimensional reduction
over a sphere Sq̃ of a flat solution in D̃ ¼ ðdþ 1Þ þ q̃
dimensions. The generalized (possibly continuous) dimen-
sions q and q̃ of the internal Einstein spaces, and the
dimensions D and D̃ of the total reduced spacetime are
related by

q̃ − q ¼ D̃ −D ¼ d − 1: ð57Þ

This relation is asymmetric for tilded and untilded quan-
tities, as it was expected since now we have different
properties for each of the solutions in the CSFI pair. In
particular, Eq. (57) only makes sense if both q and q̃ are
positive, hence

q̃ ≥ d − 1; ð58Þ

which is precisely equivalent to the bound 0 ≤ w2
q ≤ 2v2c in

(32). (Note that this CSFI bound is stricter than (54).)
By this construction, the AdSdþ1 solution obtained from

the Liouville models by making v ¼ 0 corresponds to a
model of type Awith no dimensional reduction, i.e., q ¼ 0
hence D ¼ dþ 1. CSFI maps it to the special Liouville
model, which is of type B with the dimension of the
reduced sphere q̃ ¼ d − 1, saturating the bound (58); in this
special case, D̃ ¼ 2d. As for the self-invariant Liouville
model, with vq ¼ wq ¼ vc, it can only be achieved in the
limit of infinite dimensions: i.e., q; q̃ → ∞ and D; D̃ → ∞
with fixed ratios q=q̃ ¼ D=D̃ ¼ 1.
We have seen in §IVA 1 that Liouville models with ṽ ∈

ðv2c; 2v2cÞ correspond to linear dilaton solution with an ill-
defined FG expansion. Nowwe have seen that these models
lift to a D-dimensional asymptotically flat spacetime
where, indeed, there is no FG expansion.6 CSFI maps
these models to their well-behaved, asymptotically AdS
partners.

B. Asymptotically AdS solutions and their pairs

Now consider an asymptotically AdS domain wall DW.
The superpotential has the standard form corresponding the
quadratic approximation of the potential near a maximum,

WðϕÞ ¼ d − 1

ϰl
þ s
4ϰl

ðϰϕÞ2 þ � � � ð59Þ

VðϕÞ ¼ −
dðd − 1Þ
ϰ2l2

þ 1

2
m2ϕ2 þ � � � ; ð60Þ

6A note: in making the FG expansion directly in the (dþ 1)-
dimensional space, as in Sec. IVA 1, the failure of the expansion
was due to having σ < 0. In the higher-dimensional construction,
σ is always positive, and the absence of the FG expansion is due
to a different reason, namely the D-dimensional spacetime not
being asymptotically AdS.
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s ¼ 1

2
ðd�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2l2

p
Þ > 0; −

d2

4l2
< m2 < 0:

ð61Þ
We are considering solutions with 0 < ϰϕ ≪ 1, near the
AdS vacuum with radius l located at ϕ ¼ 0. The geometry
will be the vicinity of the AdS boundary. The function (8) is

βðϕÞ ¼ sϕþ � � � ð62Þ

To find ϕ̃, we must insert this into Eq. (11) and integrate.
Keeping only the leading term,

ϰϕ̃ ¼ −
2

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p

s
logðϰϕÞ þ � � � ð63Þ

For 0 < ϰϕ ≪ 1, we have ϰϕ̃ ≫ 1. Inverting (63) as
ϕ ¼ ϕðϕ̃Þ,

ϰϕ ¼ ðe− ϰϕ̃

2
ffiffiffiffiffi
d−1

p Þs½1þ Oðe−2s ϰϕ̃

2
ffiffiffiffiffi
d−1

p Þ� ð64Þ

where e−
ϰϕ̃

2
ffiffiffiffiffi
d−1

p ≪ 1.
We now want to find the superpotential for gDW.

Inserting (62) into Eq. (13) and using (64) we get

β̃ðϕ̃Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p

ϰ
−

s2

4
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
ϰ
ðe− ϰϕ̃

2
ffiffiffiffiffi
d−1

p Þ2s þ Oðe−4s ϰϕ̃

2
ffiffiffiffiffi
d−1

p Þ:

ð65Þ
Equation (8) can be solved as a differential equation for
W̃ðϕ̃Þ, resulting in an exponential superpotential, and in the
asymptotic expressions

W̃ðϕ̃Þ ¼ W̃0e
ϰϕ̃ffiffiffiffiffi
d−1

p
�
1þ s

8ðd − 1Þ e
−s ϰϕ̃ffiffiffiffiffi

d−1
p þ � � �

�
ð66Þ

Ṽðϕ̃Þ ¼ −
d − 2

d − 1
W̃2

0e
2ϰϕ̃ffiffiffiffiffi
d−1

p
�
1þ sð2sþ d − 2Þ

4ðd − 1Þðd − 2Þ e
−s ϰϕ̃ffiffiffiffiffi

d−1
p

�
ð67Þ

with ϰϕ̃ ≫ 1. The first term of Ṽðϕ̃Þ is the leading one, and
it is just the special-Liouville potential; the other terms
vanish for ϕ̃ → ∞. We plot asymptotic regions of the pair
of potentials (60) and (67) in Fig. 2.
Of course, if we include more (subleading) terms in the

ellipsis in Eq. (59), then the formula (67) for Ṽðϕ̃Þ will
include more terms inside the brackets. But note that the
leading term does not depend on s; so we could, for
example, start with s ¼ 0 and get the same potential at
leading order. Say, if instead of (59) we start with a cubic
superpotential,

WðϕÞ ≈ d − 1

ϰl
þ D
6ϰl

ðϰϕÞ3; ϰϕ ≪ 1;

the domain wall structure is very different, but after
calculating W̃ðϕ̃Þ and Ṽðϕ̃Þ we still find the same leading
asymptotic exponential behavior. This was expected, since
AdS is always mapped by CSFI to the special Liouville
solution.

C. Invariant domain walls

An obviously interesting class of solutions are geom-
etries invariant under the scale factor inversion,

aðzÞ ↦ ãðzÞ ¼ aðz̃Þ; hence aðzÞ ¼ c2

að2zc − zÞ : ð68Þ

The position zc is the invariant point of the transformation,
where ãðzcÞ ¼ aðzcÞ ¼ c. In [33], it was shown how to
construct invariant cosmological solutions, by making an
appropriate ansatz for the energy-density scaling with a.
We now adapt the argument for domain wall solutions.
The first step is to consider an ansatz for the super-

potential as a function of the scale factor, i.e., W ¼ WðaÞ,
and then impose the condition of invariance, which from
Eq. (10) reads

W2ðãÞ ¼ ða=cÞ4W2ðaÞ: ð69Þ
A simple nontrivial ansatz is W2ðaÞ ¼ ðw1ar þ w2asÞt,
whence invariance implies that t ¼ −2=ðrþ sÞ and relates
w2=w1 ¼ cr−s. We will focus in models with r ¼ 0 which,
after some relabeling, can be written as

WðaÞ ¼ W0½1þ ðc=aÞ4α� 12α: ð70Þ
These are the models which are asymptotically AdS.
Once given WðaÞ, one must solve the first-order equa-

tions to findWðϕÞ. In general this is hard, but for (70) it can
be easily done. We are required to find a ¼ aðϕÞ; to do so,
we must solve the Eq. (8) in the form

da=dϕ ¼ −a=β; hence ϕ ¼ −
Z

da
aβðaÞ : ð71Þ

We can manipulate Eq. (8) to write β as a function of the
scale factor,

β2ðaÞ ¼ −
2ðd − 1Þ

ϰ2
a dW=da
WðaÞ ; ð72Þ

FIG. 2. Asymptotic regions of related potentials. (a) The
quadratic potential (60); (b) The Liouville potential (67).
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and inserting (70) into these equations, we find that

ϰϕ ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p

α
arc coth

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðw=w̃Þa4α

q i
; ð73Þ

therefore

WðϕÞ ¼ W0

�
cosh

�
αffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ϰϕ

��1
α

: ð74Þ

This is a class of invariant superpotentials parametrized by
α, hence a class of models for which CSFI is a symmetry of
the solutions. In the next section, we show that the model
with α ¼ 1=2 is the well-known GPPZ flow.

V. HOLOGRAPHIC IMPLICATIONS OF CSFI

The first-order system (B6) has a standard holographic
interpretation as RG equations of a QFTd with an energy
scale E ¼ aðzÞ and running coupling g ¼ ϕðzÞ, driven
by a scalar operatorO [5,8]. The RG flow is determined by
the holographic beta-function β≡ −dg=d logE given by
Eq. (8). In this context, CSFI defines a map between the RG
flows of two holographic QFTds—a map which, because of
scale factor inversion, relates their ultraviolet and infrared
limits. In Sec. VA we discuss some properties of pairs of
holographic RG flows, concentrating on the transformation
of the beta-functions. In Sec. V B, we digress about the
effect of CSFI on the one-point function of the operator O.

A. A relation between holographic RG flows

Let us call QFT and gQFT a pair of theories related by the
CSFI correspondence. The transformation of the beta-
functions, given by Eq. (14) [and using (11)],

β2ðϕÞ þ β̃2ðϕ̃Þ ¼ 4ðd − 1Þ=ϰ2; ð75Þ

now should be seen as a statement about the RG flows; the
RG flow of QFT determines the RG flow of gQFT. Other
holographic features are inherited by the domain wall
solutions and the corresponding action of CSFI. For
example, the running of the anomalous scaling dimension
of O, given by sðϕÞ ¼ −dβ=dϕ, transforms as7

β̃2ðϕ̃Þs̃ðϕ̃Þ ¼ β2ðϕÞsðϕÞ:

Another important characteristic of the QFTs is the central-
charge function8 [12,38,39] whose CSFI transformation is
found readily from Eq. (10),

cðϕÞ≡ 2ðd − 1Þd−1πd=2
ϰdþ1Γðd

2
Þ½−WðϕÞ�d−1 ;

c̃ðϕ̃Þ
ãd−1ðϕ̃Þ ¼

cðϕÞ
ad−1ðϕÞ :

At the UV fixed point of the RG flow (i.e., at the AdSd
boundary of the DW bulk), cð¼ aÞ is a natural generali-
zation of the central charge(s) of the corresponding UV
CFTds. In RG flows between two fixed points, this function
obeys the (generalized) Zamolodchikov’s c-theorem:
cUV ≥ cIR, assuring the decreasing of the central functions.
The inequality follows if the null energy condition is
satisfied along the domain wall evolution [39]; under the
condition (12) CSFI preserves the NEC, so it also guar-
antees the validity of the c-theorem, i.e., c̃UV ≥ c̃IR.
The map (75) does not preserve the RG fixed points, i.e.,

fβðϕÞ ¼ 0g ↦ fβ̃ðϕ̃Þ ≠ 0g. Instead, as seen in Sec. IV B,
CSFI maps QFT near the UV (AdS) fixed point with small
ϰϕ ≪ 1 to the IR regime of gQFT with a logarithmically
diverging coupling ϰϕ̃ ≫ 1. Such “flows to infinity” of
the scalar field in the IR are relevant in phenomenologi-
cal applications of holography to QCD [16,17,24,25], and
in holography applied to condensed matter [23,26]. For
example, using the methods of [17], we can show that the
special-Liouville singularity is “confining”, in the sense
that the holographic Wilson loops of the QFT obey the
area-law in the IR. Flows that end in a naked singularity
in the IR are an indication of a nontrivial IR structure of
the holographic QFT and, on this note, all our Liouville
singularities are “good” by the criterion of Gubser [15],
since the (negative) potential VðϕÞ is bounded from
above. This means that the singular domain walls can
be obtained from a black hole solution whose horizon
shrinks to zero, and the field theories have a well-defined
finite-temperature limit.
As an illustration of what kinds of pairs of RG flows

can be obtained as a result of the CSFI correspondence, we
now consider three examples of flows with a UV fixed
point, and their respective images shown in Fig. 3.

(I) In the standard RG flow between two CFTs the
domain wall interpolates between two AdS vacua
where VðϕÞ has a maximum (the UV point) and a
minimum (the IR point), with sðϕIRÞ < 0 < sðϕUVÞ.
The image of this flow interpolates between two
special-Liouville asymptotics.

AdS

Special Liouville

Types 
of 

pairs
I IIIII

FIG. 3. Three types of RG flows related by CSFI. Bullets
indicate AdS fixed points, stars indicate special Liouville
asymptotics and the pair of spades indicate pairs of Liouville
asymtptotics. Blue marks the UV and red the IR.

7To show this, just take the derivative of Eq. (75), and use the
identity dϕ=βðϕÞ ¼ −dϕ̃=β̃ðϕ̃Þ obtained from the definition of β
and the fact that scale-factor inversion gives da=a ¼ −dã=ã.

8In Einstein gravity, and in asymptotically AdSdþ1 back-
grounds, the two central functions c and a coincide: c ¼ a [38].
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(II) The flow starts in the AdS UV and runs to a general
Louville singularity in the IR. Its image has two
different Liouville asymptotics, with the special
potential in the IR limit (as image of the AdS
boundary).

(III) The third example is a flow starting at AdS and
ending with a special Liouville IR; its image has,
therefore, the same types of asymptotics.

In Sec. IV B we have given the explicit expression
of β̃ðϕ̃Þ and ϕ̃ðϕÞ, mapped to the vicinity of a UV fixed
point of βðϕÞ when 0 ≪ ϰϕ ≪ 1. We saw that ϕ̃≈
− 2

ffiffiffiffiffiffi
d−1

p
ϰs logðϰϕÞ, so as ϕ → 0þ we have ϕ̃ → þ∞. The

beta-functions βðϕÞ and β̃ðϕ̃Þ, given in Eqs. (62) and (65),
are plotted in Fig. 4.
In general, given a beta function βðϕÞ, it is not possible

to invert Eq. (11) to find ϕðϕ̃Þ, hence we cannot give a
closed expression for β̃ðϕ̃Þ. However, it is possible to give
β̃ðϕÞ, so we can still see the behavior of the RG flow ofgQFT, even without knowing the explicit transformation of
the fields. Let us illustrate this with examples of the three
types above.
The simplest example of Type I flow is given by the

superpotential

WðϕÞ ¼ 1

ϰl

�
2þ α−2ssin2

�
α

2
ϰϕ

��
;

ϰβðϕÞ ¼ s sinðαϰϕÞ
1þ s

3α sin
2ð1

2
αϰϕÞ : ð76Þ

We take d ¼ 4. There is a UV fixed point at ϕUV ¼ 0 with
anomalous dimension sðϕUVÞ > 0, and a IR fixed point at
ϕIR ¼ π=ϰαwith sðϕIRÞ ¼ −3α2s=ð3α2 þ sÞ < 0. It pair β̃,
as a function of the original field ϕ, can be readily found
from Eq. (13).
Awell-studied flow of Type II is the Coulomb branch of

N ¼ 4 SYM in d ¼ 4. The superpotential is given by [8,9]

WðϕÞ ¼ 2

ϰ

�
e−ϰϕ=

ffiffi
6

p
þ 1

2
e2ϰϕ=

ffiffi
6

p �
;

βðϕÞ ¼ 2
ffiffiffi
6

p

ϰ

�
e

ffiffiffiffiffiffi
3=2

p
ϰϕ − 1

e
ffiffiffiffiffiffi
3=2

p
ϰϕ þ 2

�
: ð77Þ

The RG flows from an AdS UV fixed point at ϕ ¼ 0, driven
by the vacuum expectation value (VEV) an operator with
anomalous dimension s ¼ 2, up to a null Liouville singu-
larity at ϕ ¼ −∞ (produced by a disc of D3-branes in the
“lifted” 10-dimensional supergravity), whereW ∼ e−vcϰϕ=2.
Here vc ¼

ffiffiffiffiffiffiffiffi
2=3

p
is the critical parameter (18). Note that

the critical-Liouville limit is invariant, as expected. The
image of the UV point has β̃ ≈ −2

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
=ϰ; the minus

sign comes from the fact that β and ϕ are negative. Here we
can also look at the map (11) between fields ϕ and ϕ̃
asymptotically: for −1 ≫ ϰϕ, we have ϰϕ̃ ≈

ffiffiffi
3

p
log jϕj →

−∞, and for ϕ → −∞ we have ϕ̃ ≈ −ϕ → þ∞. (So the
flow of β̃ðϕ̃Þ should be read in the opposite direction when
as function of ϕ.)
Another interesting example of Type II has been dis-

cussed in [24], with

VðϕÞ ¼
�
sðs− dÞ þ dðd− 1Þv2

2ϰ2l2

�
ϕ2 −

dðd− 1Þ
ϰ2l2

coshðvϰϕÞ:

ð78Þ

This potential has rich QCD phenomenology for finite
temperature solutions (i.e., black hole geometries); it has
AdS asymptotics (60) for ϰϕ ≪ 1, and for ϕ → ∞ it goes
to VðϕÞ ∼ −evϰϕ.
Finally, there are the flows of Type III, which are

“asymptotically symmetric” under CSFI, and both βðϕÞ
and β̃ðϕ̃Þ have a UV fixed point and a special-Liouville
IR asymptotic. A first example of this kind is given by
the potential (78) with v ¼ ffiffiffi

2
p

vc, which is precisely the
numeric example examined in [18], in connection with the
dynamical instability of [24]. A more restrict example is
given by the class of invariant models (74). Here we can
give a remarkable example: the single-field version of the
GPPZ flow [14] (cf. [8–10]). This is a relevant deformation
of N ¼ 4 SYM in the UV, going to a IR fixed point given
byN ¼ 1 SYM, in d ¼ 4. The most general superpotential
has in fact a scalarmwhich is a singlet of SO(3) and also an
SU(3) singlet σ (corresponding to a gaugino condensate),
and readsW ¼ 3

4
ðcosh 2mffiffi

3
p þ cosh 2σÞ. Here we consider the

consistent single-field truncation that sets σ ¼ 0, and we
call m ¼ ϕ. (We also use the name “GPPZ flow” for the
arbitrary dimension d.) The superpotential is
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FIG. 4. βðϕÞ near an (AdS) UV fixed point (left panel) and β̃ðϕ̃Þ near a Liouville singularity (right panel).
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WðϕÞ ¼ d − 1

2ϰl

�
1þ cosh

�
ϰϕffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
��

¼ d − 1

ϰl
cosh2

�
ϰϕ

2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
�
: ð79Þ

The AdS boundary is at ϕ ¼ 0 and the special-Liouville
singularity at ϕ → þ∞, near which W ∼ evϰϕ with
v ¼ ffiffiffi

2
p

vc. The invariance of the GPPZ solution under
CSFI can be immediately seen from the fact that we
are dealing with (74) for α ¼ 1=2, but let us perform
an explicit calculation. The solution in conformal coor-
dinates is

aðzÞ ¼ tanð−z=lÞ; sinh

�
ϰϕ

2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
�

¼ cot

�
−
1

l
z

�
;

ð80Þ

with − π
2
l < z < 0, and the beta-function

βðϕÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p

ϰ
tanh

�
ϰϕ

2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
�
: ð81Þ

Scale factor inversion, with z̃ ¼ −z and c ¼ 1, gives
ãðz̃Þ ¼ cotð z̃lÞ, with 0 < z̃ < π

2
l. Integrating Eq. (11), we

get cotð− ϰϕ̃
2
ffiffiffiffiffiffi
d−1

p Þ ¼ coshð ϰϕ
2
ffiffiffiffiffiffi
d−1

p Þ, with −∞ < ϕ̃ < 0. Then

with Eq. (10) we find the superpotential

W̃ðϕ̃Þ ¼ d − 1

ϰl
cosh2

�
−

ϰϕ̃

2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
�

ð82Þ

which has exactly the same form as (79).

B. Renormalized actions and one-point functions

An important part of the holographic renormalization
procedure is the calculation of sourced one-point functions,
from which higher-point functions can be found by func-
tional differentiation. Here we focus on the scalar one-point
function of an operator dual to the scalar field, in (possibly
asymptotically) Liouville models.9

For asymptotically linear-dilaton solutions in the Jordan-
frame, described in Sec. IVA 1, the one-point functions
have been calculated exactly in [21], using the asymptotic
expansion (42). Much like in the standard case (where
the solution is AdS with a scalar field in the Einstein
frame) [8,11], the one-point functions are related to the
“free” constants in the asymptotic expansion (42d).
Precisely, κð0ÞðxÞ acts as the source of the scalar operator
OΦ dual to the Jordan-frame field Φ, and κð2σÞðxÞ gives
its VEV; the boundary function φð2σÞðxÞ, which is only
present for integer σ, is related to an anomaly as in [38].

Characteristically, in the linear-dilaton solutions the source
enters the one-point function via an exponential, viz.

hOΦðxÞiκð0Þ ¼ N κð2σÞðxÞ exp ½κð0ÞðxÞ�; ð83Þ

where N is numerical factor.10

The holographic renormalization performed in [21,22]
relies on the asymptotically locally-AdS geometry of the
Jordan-frame solution, or on a higher-dimensional AdS
solution, to which the exponential potential in the Einstein
frame is related via generalized dimensional reduction, as
discussed in Sec. IVA 2. These constructions only work for
α ≤ d=2, cf. Eq. (44), and CSFI relates models where this
bound holds to models where it is violated, see (46). More
recently, in [41], a formalism was proposed which allows
the holographic renormalization in some models without an
AdS boundary. This class of models includes asymptoti-
cally Liouville models (in the Einstein frame) for the whole
range (19), so it can be used for both models of a CSFI-
related pair.
The procedure in [41] for homogeneous backgrounds is

very similar to the well-known procedure for asymptoti-
cally AdS theories [8,10]. If one defines the UV (IR) limit
by eA going to infinity (zero)—which is consistent with the
interpretation of the scale factor as the renormalization
energy scale E—then in theories (defined by the potential
VðϕÞ) where the superpotential equation (7) has an attrac-
tor, in the sense that for any two solutions W1ðϕÞ and
W2ðϕÞ of (7)

lim
ϕ→ϕUV

W2ðϕÞ −W1ðϕÞ
W2ðϕÞ

¼ 0; ð84Þ

one can use the attractor behavior to isolate the counter-
terms and renormalize the on-shell action. It is actually not
difficult to isolate the attractor behavior. Let W2ðϕÞ≡
WðϕÞ and W1ðϕÞ≡WðϕÞ þ wðϕÞ be two solutions of (7)
in the UV limit. It is not hard to show that wðϕÞ ¼
Cwe−dAðϕÞ, where Cw is an integration constant and

AðϕÞ≡ −
1

2ðd − 1Þ
Z

ϕ

ϕ0

dφ
WðφÞ

∂φWðφÞ : ð85Þ

ϕ0 is an arbitrary boundary condition; a change in ϕ0

can be absorbed into Cw. The renormalized action
is obtained by subtracting from the on-shell action
Son-sh ¼ 2

R
ddx edAðrÞWðϕÞ a counterterm action Sct ¼

−2
R
ddx edAðrÞWctðϕÞ given by a superpotential WctðϕÞ.

The attractor behavior then ensures that

9In this section we set ϰ2 ¼ 1 for simplicity.

10This is in contrast with the standard case where the source
enters the one-point function “linearly,” i.e., as hOi ∼ fð2nÞ þ
Cðfð0ÞÞ for some function C, where fð2nÞ and fð0Þ play the role of
κð2σÞ and κð0Þ in the asymptotic expansion; see, e.g., [40]
Eq. (4.9).
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SðrenÞ½E;ϕðEÞ� ¼ CR

Z
ddx exp½d½AðEÞ −AðϕðEÞÞ��;

ð86Þ

where CR is a scheme-dependent constant because it
includes an integration constant from the Wct contribution.
It is immediate to check, using Eq. (8), that SðrenÞ½E;ϕðEÞ�

is scale-invariant, i.e., that

dSðrenÞ=d log E ¼ 0;

an indication of the fact that SðrenÞ is valid all along the
flow. For any solution fϕðzÞ; AðzÞg of the field equations,
AðϕðzÞÞ and AðzÞ do coincide in the UV up to an additive
constant, which is the reason why the renormalized action is
finite. However, it is important to stress that AðϕÞ is a
function of ϕ only, independent of the particular radial
evolution ϕðzÞ. Thus the renormalized action can be written
as a function of the energy scale E and of the coupling ϕ
independently, as

SðrenÞ½E;ϕ� ¼ CR

Z
ddx exp½dðAðEÞ −AðϕÞÞ� ð87Þ

where it should be understood that ϕ varies while keepingE
fixed, so we can find [41] the renormalized one-point
function of the operator O sourced by ϕ, at energy E,

hOϕiE ¼ δSðrenÞ

δϕ
¼ dCR

2ðd − 1Þ
WðϕÞ

∂ϕWðϕÞ e
−dAðϕÞedAðEÞ: ð88Þ

In Liouville models, the attractor condition (84) is
satisfied whenever the exponential potential satisfies the
bound (19). (See [41] Sect.7.2.1.) Hence we can use
Eq. (88) for both models in a CSFI pair (30). Inserting
the superpotentials explicitly,

hOϕiE ¼ dCR

ðd − 1Þv exp
�
dðϕ − ϕ0Þ
ðd − 1Þv

�
edAðEÞ: ð89Þ

The dependence of the energy-scale with the scale factor is
the usual, viz. eAðEÞ ¼ E (modulo an arbitrary multiplica-
tive constant), but writing it as a function of A allows us to
see clearly, now, the effect of CSFI: taking into account the
field transformation (28) and scale factor inversion,

dCR

ðd − 1Þṽ exp
�
dðϕ̃ − ϕ̃0Þ
ðd − 1Þṽ

�
edÃðẼÞ

¼ dC̃R

ðd − 1Þṽ exp
�
−
dðϕ − ϕ0Þ
ðd − 1Þv

�
e−dAðEÞ:

This can be written as

hÕϕ̃iẼ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v2c
v2 − 1

q hO−ϕi1E: ð90Þ

We see that one-point functions depend on the fields in a
strong-/weak-coupling relation, and are evaluated at recip-
rocal energy scales.
The most usual definition of the one-point function of a

scalar operator holds at the UV limit, not at an arbitrary
scale of the RG. Instead of (88), the functional derivative is
divided by a factor of

ffiffiffiffiffiffi−γp
, where γ is the determinant of

the induced metric of the radial slice where the QFT is
placed. Since

ffiffiffiffiffiffi−γp ¼ edA, we get

hOϕi ¼
1ffiffiffiffiffiffi−γp δSðrenÞ

δϕ

¼ dCR

ðd − 1Þv exp
�
dðϕ − ϕ0Þ
ðd − 1Þv

�
: ð91Þ

It is interesting to note how the source ϕ appears in an
exponential, the same structure seen in Eq. (83). Using the
freedom to change ϕ0 by redefining the unspecified
scheme-dependent constant CR, we can formally set ϕ0 ¼
ϕjUV and ϕ − ϕ0 ¼ J , such that J ¼ 0 in the UV. Then

hOJ i ¼
d

ðd − 1Þv CRe
d

ðd−1ÞvJ ; ð92Þ

where now CR and J play more clearly the part of κð2σÞ and
κð0Þ. In the UV limit, defined as eA → ∞, we can see from
Eq. (21) that ϕ → −∞, hence Eq. (91) shows that
hOϕi ¼ 0. Accordingly, CR ¼ 0. In the Jordan-frame, the
VEV hOΦi also vanishes in the exactly linear-dilaton
solution (41) where κð2σÞ ¼ 0. (Hence in both cases, we
find there is no symmetry breaking.) We note that the
constant CR is undetermined by the method above. In
contrast, the renormalization procedure of [21,22] gives an
exact one-point function once one finds κð2σÞ and κð0Þ by
asymptotically expanding a given AdS linear-dilaton sol-
ution. Note also that, although it is expected that they are
related, the operators OΦ and Oϕ are not the same, and the
comparison between Eqs. (91)–(92) and Eq. (83) should be
made with care. In particular, while Φ is a dimensionless
field, the canonical dimension of ϕ is ϰ−1, so the quantiza-
tion of the corresponding operators may be nontrivially
related. (It would be interesting to explore more deeply the
dictionary between holographic renormalization in the
Einstein and Jordan frames.)
We have been considering only homogeneous domain

walls, but the asymptotic expansion (42) generally
involves functions of the transverse coordinates xa. In
the Jordan-frame picture, the counterterms involving
transverse derivatives is found by solving algebraically
the coefficient-functions in the expansion (42), leading to
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SðctÞ ¼ −
Z
Σh
r

ddx
ffiffiffiffiffiffi
−h

p
eΦ

�
2ðd − 1Þ − 4α

þ 1

d − 2ðαþ 1Þ

×

�
ℛðdÞðhÞ þ

�
1þ 1

2α

�
hab∂aΦ∂bΦ

��
ð93Þ

see Eq. (6.50) of [21]. The integral is evaluated at a surface
Σh
r ≡ fr ¼ constantg, with induced metric hab and intrin-

sic Ricci curvature ℛðdÞ, which is a surface in the radial
ADM-like foliation of the spacetime in coordinates
fr; xag where the lapse function is constant.11 In passing
to the Einstein frame with (39), we find

SðctÞ ¼ −2
Z
Σγ
r

ddx
ffiffiffiffiffiffi
−γ

p ½WctðϕÞ

− UctðϕÞ½RðdÞðγÞ þ b3γab∂aϕ∂bϕ�� ð94Þ

where ϕ ¼ −v2cΦ=v, γab ¼ e−vϕhab is the induced metric
in the corresponding radial surface Σγ

r with Ricci curvature
RðdÞ, and

WctðϕÞ≡ B1evϕ=2 ð95Þ

UctðϕÞ≡ B2e−vϕ=2 ∼ 1=WctðϕÞ ð96Þ

where B1;2 and b3 are constants. The function Wct has the
behavior of an exponential superpotential, corresponding
to the renormalization of the background (homogeneous)
on-shell action (87). The function UctðϕÞ multiplies the
terms with transversal derivatives, and has been found
(with a slightly different procedure) in [41], cf. Eq. (5.3)
ibid. Using the attractor mechanism, one can use these
counterterms to calculate the renormalized action, see
Eq. (7.47) of [41],

SðrenÞ½ϕ; γab� ¼
Z

ddx
ffiffiffiffiffiffi
−γ

p �
CR exp

�
d

ðd − 1Þvϕ
�

þDR exp

�
d − 2

ðd − 1Þvϕ
�

×

�
RðdÞðγÞ þ dR

v2
γab∂aϕ∂bϕ

��
ð97Þ

where CR, DR and dR are numerical constants.
Equation (87) corresponds to a zero-derivative limit
where the d-dimensional curvature RðdÞðγÞ vanishes and
ϕ depends only on the radial coordinate. As argued in
[41], the renormalized action (97) is, again, valid at any
energy scale along the RG flow, as it is typical of
Hamilton-Jacobi constructions which the formalism in

[41] is an example of. The renormalized action along the
RG flow obtained with Hamilton-Jacobi technology is
originally given in [21], see Eq. (6.26). There SðrenÞ is
written in terms of the highest term of an expansion of the
extrinsic curvature in eigenfunctions of the bulk dilatation
operator (which is basically the radial derivative ∂r). The
advantage of formula (97) for our purposes is that it makes
very clear how to apply the CSFI transformations.12 CSFI
relates different Liouville models with parameters v and ṽ
according to Eq. (27), so it should act on SðrenÞ in the same
way. This is, indeed, the case: the transformation of the
fields (28) is precisely the correct one to make the
functional form of SðrenÞ invariant, only changing v ↔ ṽ
and ϕ ↔ ϕ̃ because only the combination ϕ=v appears in
(97). The fact that CSFI transformations are consistent
with the full nonhomogeneous action (97) is a presage of
the fact they can be extended to fluctuations around the
isotropic backgrounds in Liouville models—hence we can
indeed expect CSFI to preserve the form of the xa-
dependence of SðrenÞ. This extension is what we dis-
cuss next.

VI. CSFI FOR FLUCTUATIONS AND
THEIR SPECTRA

We now turn to the effect of CSFI on fluctuations around
the domain wall geometry. We will be interested in tensor
and scalar modes, which are the most relevant for holog-
raphy. The linearized metric is13

ds2 ¼ e2A½½1 − ðd − 2ÞB�dz2
þ ½ð1þ BÞηab þ hab�dxadxb�

∂ahab ¼ 0; haa ¼ 0; ϕðz; xaÞ ¼ ϕ̄ðzÞ þ χðz; xaÞ
ð98Þ

Tensor modes habðz; xaÞ are transverse and traceless,
and the scalar sector is written in Newtonian gauge. We
mark the background field with an overbar. Since we are
working with a single scalar field, there is only one true
scalar degree of freedom. The “Bardeen potential” Bðz; xaÞ,
and the perturbation of the scalar field χðz; xaÞ combine
into the gauge-invariant “curvature perturbation” [43]
ζ ¼ B − ðA0=ϕ̄0Þχ; we use ζ to describe the scalar d.o.f.
The linearized field equations are

h00ab þ ðd − 1ÞA0h0ab þ□dhab ¼ 0 ð99Þ

11These are related to conformal coordinates by r ¼ R
r aðzÞdz.

12We thank an anonymous referee for generous remarks on the
contents of this section.

13The description of fluctuations around domain walls is
(basically) the same as in cosmology, see, e.g., [42]. For domain
wall conventions, see, e.g., [18].
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ζ00 þ ½ðd − 1ÞA0ðzÞ þ ∂z log β2ðzÞ�ζ0 þ□dζ ¼ 0 ð100Þ

where βðϕ̄Þ is given by Eq. (8).

A. CSFI and S-duality

Equations (99) and (100) can be obtained from an
effective quadratic action I. Writing f for either the scalar
mode ζ or the tensor modes h (ignoring polarization
indexes),

I ¼ 1

2

Z
ddx

Z
dzGðzÞ ðf02 − ηab∂af∂bfÞ ð101aÞ

where

GhðzÞ ¼ eðd−1ÞAðzÞ; GζðzÞ ¼ eðd−1ÞAðzÞβ2ðzÞ; ð101bÞ

and if we pass to phase space with the canonical momen-
tum Π ¼ δI=δf0 ¼ Gf0 we get a Hamiltonian

H ¼ 1

2

Z
ddx dz

�
Π2

G
þGð∂fÞ2

�
¼ 1

2

Z
ddk dz

�jΠkj2
G

þ Gk2jfkj2
�
: ð102Þ

We have used Fourier modes in transverse space, with
jfkj2 ¼ fkf−k, etc. and k2 ¼ ηabkakb < 0 is a timelike
vector. In [27] it was noted that (102) is invariant under the
transformation

G ↦ G̃ ¼ λ2

G
;

fk ↦ f̃k ¼
1

λk
Πk;

Πk ↦ Π̃k ¼ −λkfk ð103Þ

where λ is a parameter. This was called S-duality. It is a
“canonical transformation,” exchanging Π and f; it pre-
serves the Hamilton equations and it swaps the two second-
order equations for f and Π, viz.

f00k þ ðG0=GÞf0k − k2fk ¼ 0;

Π00
k − ðG0=GÞΠ0

k − k2Πk ¼ 0; ð104Þ

the first of which corresponds to Eqs. (99)/(100).
Now, for tensor modes we have GhðzÞ ¼ ½aðzÞ�d−1.

Hence Gh ↦ G̃h is an inversion of the scale factor in
conformal coordinates: it is CSFI. More precisely, CSFI
can be extended to tensor modes as

a ↦ ã ¼ c2

a

hk ↦ h̃k ¼
1

cd−1
k−1ΠðhÞ

k

Πk ↦ Π̃ðhÞ
k ¼ −cd−1khk: ð105Þ

For scalar modes, the same is not true in general,
because inversion of GζðzÞ ¼ ½aðzÞ�d−1β2ðzÞ does not
correspond to an inversion of aðzÞ. However, in
Liouville models, where β is a constant, Gζ ↦ G̃ζ is
again an inversion of the scale factor: again, it corre-
sponds to CSFI. Therefore, CSFI can be extended to
scalar modes in Liouville models as

a ↦ ã ¼ c2

a

ζk ↦ ζ̃k ¼
1

β2cd−1
k−1ΠðζÞ

k

ΠðζÞ
k ↦ Π̃ðζÞ

k ¼ −β2cd−1kζk ð106Þ

with β ¼ constant. When a domain wall is only asymp-
totically Liouville, as in the examples of Sec. VA,
the transformation for the scalar modes is valid
asymptotically.
The name S-duality was given in [27] because (103) is

a generalization of the usual strong-/weak-coupling dual-
ity of string theory. This is in fact also true for CSFI in
the examples we have discussed. As a function of the
string-frame dilaton ϕS, the Liouville solution (21) gives
[cf. (48)]

G ∼ ad−1 ¼ e−ϰϕ=v ¼ e−2vcϕS=v:

Hence G ↦ 1=G is equivalent to ϕS ↦ −ϕS, i.e., it is
indeed equivalent to an inversion of the string cou-
pling g2S ¼ eϕS .

B. Schrödinger equations

It is well known that fluctuations around domain walls
can be described by a one-dimensional Schrödinger prob-
lem with a potential dictated by the background dynamics.
With a change of variables,

ψkðzÞ≡ e−
R

WðzÞdzfkðzÞ; WðzÞ≡ −
1

2
G0ðzÞ=GðzÞ;

ð107Þ

Eq. (104) becomes a Schrödinger equation with energy
M2

k ¼ −k2 > 0,

H1ψk ¼
�
−

d2

dz2
þ VðzÞ

�
ψk ¼ M2

kψk; ð108Þ

LIMA, DA SILVA, and SOTKOV PHYS. REV. D 102, 046009 (2020)

046009-16



where

VðzÞ ¼ W2ðzÞ −W 0ðzÞ: ð109Þ

This Hamiltonian is factorizable as

H1 ¼ Q†Q; Q ¼ d
dz

þWðzÞ; Q† ¼ d
dz

−WðzÞ;
ð110Þ

and has a “superpartner” H2 ¼ QQ† whose potential has a
flipped sign,

H2ψk ¼ QQ†ψk ¼ −ψ 00
k þ ½W2ðzÞ þW 0ðzÞ�ψk: ð111Þ

The special factorization relates the eigenstates and the

spectra ofH1 and H2. If ψ
ðAÞ
k are the wave functions of HA,

Q†Qψ ð1Þ
k ¼ M2

kψ
ð1Þ
k ψ ð2Þ

k ðzÞ ¼ M−1
k Qψ ð1Þ

k

QQ†ψ ð2Þ
k ¼ M2

kψ
ð2Þ
k ψ ð1Þ

k ðzÞ ¼ M−1
k Q†ψ ð2Þ

k ð112Þ

What we have here is known as “supersymmetric quantum
mechanics” (SUSY QM) [28]; the function WðzÞ is (also)
called “superpotential.”
We can rephrase the results of Sec. VI A in terms of

SUSY QM. The duality of tensor modes written in (105)
here manifests itself in the fact that CSFI is SUSY for the
tensor superpotential, which can be read from Eq. (99),

WTðzÞ ¼ −
1

2
ðd − 1ÞA0ðzÞ: ð113Þ

Indeed, scale-factor inversion amounts to just flipping the
sign of W 0

TðzÞ. Therefore CSFI represents a crossed map
between the SUSY partners of domain wall solutions
related by CSFI, as shown in Fig. 5. If we solve the tensor
wave functions around a domain wall DW, (112) gives us
automatically the tensor wave functions around its pair gDW
obtained by CSFI.
The SUSY QM representation is also valid for scalar

modes in general, with the SUSY partner of the curvature
perturbation ζ being the Bardeen potential B [18]. Just as
S-duality, the relation between SUSY QM and CSFI,
however, only holds for the scalar modes on Liouville
backgrounds. We can find the scalar superpotential from
Eq. (100),

WSðzÞ ¼
1

2
ðd − 1ÞA0ðzÞ þ ∂z log jβðzÞj: ð114Þ

In Liouville models β is a constant, hence (114) is equal
to the superpotential (113) and CSFI is equivalent to
SUSY QM.
The most important fact about the extension of CSFI to

fluctuations is that, basically, it exchanges a mode with its
derivative. In the S-duality context, this corresponds to an
exchange between fk and Πk; in the SUSY QM context, it
corresponds to the operation M−1

k Qψk leading to a super-

partner. Note that when we express ψk ¼ e−
R

Wdzfk, the
corresponding fluctuation/superpartner, given by (112) as

e
R

Wdzf̃k ¼ ψ̃k ¼ M−1
k ðd=dzþWÞψk ¼ M−1

k e−
R

Wdzf0k;

is equivalent to (103), i.e., to

f̃k ¼
1

k
Πk ¼

1

k
Gf0k

where by the definition (107) we have e−
R

Wdz ¼ G1=2.
This correspondence between the fluctuation and its
derivative has important consequences for the boundary
conditions of the pairs of models, as we illustrate con-
cretely below.

1. Wave functions for (asymptotically) Liouville models

We now apply the CSFI transformations to fluctuations
around asymptotically Liouville (or/and AdS) backgrounds.
The potentials of the fluctuation equations (108) for both
tensor and scalar modes are given asymptotically by

VðzÞ ¼ δðδ − 1Þ
ðz� − zÞ2 þ O

�
1

jz� − zj
�
; δ≡ 1

v2 − v2c
: ð115Þ

According to (27) the parameter δ transforms as

δ̃þ δ ¼ 0; ð116Þ

and inTable Iwe show in each column the ranges of variables
related by CSFI. The point z� may be the location of a
timelike boundary or of a timelike singularity, depending on
whether δ < 0 or δ > 0.

FIG. 5. Relations between partner Hamiltonians.

TABLE I. Ranges of δ, v and z in (asymptotically) Liouville
models.

Timelike boundary Timelike singularity

v2 ∈ ð0; v2cÞ v2 ∈ ðv2c; 2v2cÞ
δ ∈ ð−∞;−1=v2cÞ δ ∈ ð1=v2c;þ∞Þ
z < z� z > z�
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The asymptotic solution near z� is

ψ ð1Þ
k ðzÞ ¼ CþðkÞðz − z�Þδ½1þ bþðkÞðz − z�Þ2

þ Oðz − z�Þ3�
þ C−ðkÞðz − z�Þ1−δ½1þ Oðz − z�Þ2� ð117Þ

and its pair can be obtained by applying the Q operator,

ψ̃ ð2Þ
k ðz̃Þ ¼ −

ð1þ 2δ̃ÞC−ðkÞ
Mk

ðz̃� − z̃Þδ̃

þ 2bþðkÞCþðkÞ
Mk

ðz̃� − z̃Þ1−δ̃ þ � � � ð118Þ

where z̃� − z̃ ¼ z − z�. Of course, (118) has the same form
as (117), but with the integration constants related as

C̃þ ¼ −2νC−=Mk; C̃− ¼ 2bþCþ=Mk: ð119Þ

This shows that, by fixing boundary conditions at z� in

ψ ð1Þ
k , the CSFI image of the boundary condition at z̃� in ψ̃

ð2Þ
k

is univocally determined. Thus, even when CSFI holds only
asymptotically, it relates Dirichlet and Neumann (or mixed)
boundary conditions of the paired wave functions. Going
back to the original perturbation with Eq. (107), we find

fkðzÞ ≈
Lδþ1

j1 − v2c=v2jδþ1
½CþðkÞ þ C−ðkÞjz − z�j−2δþ1�:

ð120Þ

In the near-boundary limit we have δ < 0.
In special cases, the fluctuations can be solved exactly.

Then CSFI can be used as a “solution generating tech-
nique” for tensor fluctuations in a similar way as it is for
background solutions. We give an illustration of this fact in
Appendix B, by finding the exact solution of fluctuations
around a complicated domain wall.

C. Spectra of bound states

Bound states of the d-dimensional QFToccur when ψk is
normalizable both in the UV and in the IR, i.e., whenZ

zUV

zIR

dzjψkðzÞj2 < ∞; ð121Þ

ensuring that the kinetic term of the effective d-dimensional
action for fðz; xÞ is finite.
We are, as usual, interested in domain walls which are

asymptotically Liouville or AdS. The first thing we prove
is that the quantum-mechanical SUSY is broken for the
potential (113). This means that neither the solution of

Qψ ð1Þ
0 ¼ 0 nor the solution of Q†ψ ð2Þ

0 ¼ 0 are square-
integrable, which is easily verifiable, since the solutions are

ψ ð1Þ
0 ðzÞ ¼ CUV exp

�ðd − 1Þ
2

AðzÞ
�
;

ψ ð2Þ
0 ðzÞ ¼ CIR exp

�
−
ðd − 1Þ

2
AðzÞ

�
; ð122Þ

and aðzÞ is given by (22) and/or (23) in the UV and IR
asymptotics. Hence Q and Q† do not change the “energy
levels,” and the partner models have a completely degen-
erated spectrum [28]

H1ψ
ð1Þ
n ¼ M2

ð1Þnψ
ð1Þ
n M̃2

ð2Þn ¼ M2
ð1Þn ¼ M2

n

H̃2ψ̃
ð2Þ
n ¼ M̃2

ð2Þnψ̃
ð2Þ
n M2

0 ≠ 0; ð123Þ

with n ¼ 0; 1; 2; 3;… Therefore, given any domain wall
with a tensor mass spectrum fMng, CSFI yields a different
domain wall which has the same spectrum.

1. Stability

Fluctuations are stable as long as M2
k ≥ 0. Starting

from
R
zUV
zIR

dz½Qψk��½Qψk� ≥ 0, the special factorization
of the SUSY Hamiltonians implies that ψ�

kðzÞQψkðzÞ�zUVzIR þ
M2

k

R
zUV
zIR

dzjψkðzÞj2 ≥ 0, hence a sufficient condition for
M2

k ≥ 0 is that the boundary term vanishes,

ψ�
kðzÞQψkðzÞ�zUVzIR ¼ 0: ð124Þ

Thus imposing Dirichlet or Neumann(-like) boundary
conditions,

ðDirichletÞ ψkðzIRÞ ¼ ψkðzUVÞ ¼ 0 ð125Þ

ð“Neumann”Þ QψkðzIRÞ ¼ QψkðzUVÞ ¼ 0 ð126Þ

is sufficient to ensure stability of the fluctuations. (There
are, of course, other “mixed” choices.) Note that the form of
Eq. (124) is such that, taking into account (112), if DW is
stable then gDW will be as well, i.e., CSFI preserves
stability.
It is not guaranteed that (124) can indeed be imposed.

Analyzing the asymptotic solutions of (108), it was
shown in [18] that stability is ensured for domain
walls which have an AdS UV boundary within the
Breitenlohner-Freedman unitarity bound and a regular
(i.e., nonsingular) IR, or a singular Liouville IR satisfying
the condition

δ ≥ 3=2 hence v2c < v2 ≤ v2c þ
2

3
; ð127Þ

cf. Eq. (115). This condition ensures that the Hamiltonian
with the Schrödinger potential (115) is self-adjoint. When
(127) holds, we are forced to make C− ¼ 0 in (117),

LIMA, DA SILVA, and SOTKOV PHYS. REV. D 102, 046009 (2020)

046009-18



otherwise the wave function is not square-integrable.14

Moreover, when (127) holds, normalizability forces the
Dirichlet boundary condition ψðzIRÞ ¼ 0, leaving only
one integration constant to be fixed at zUV. We thus have
a well-defined spectrum imposed by the condition of
normalizability of the wave function.
When (127) does not hold, i.e., when δ ∈ ð0; 3=2Þ,

normalizability does not forcefully imply an IR Dirichlet
condition. (Both terms in (117) are normalizable.) Then
the Hamiltonian of the Schrödinger potential (115) is not
self-adjoint, but there are techniques that allow the con-
struction of families of self-adjoint extensions, described
in terms of a continuous parameter [44–46]. It can be
shown [47] that there exists only one negative eigenvalue
M2 as long as δðδ − 1Þ ≥ − 1

4
, and this mode can always

be isolated and excluded, thus ensuring the stability of
the spectrum.
Now, recall that for potentials with well-defined CSFI

pairs, the parameter v is bounded from above by the special
Liouville value 0 < v2 ≤ 2v2c. How does this fit with the
interval (127)? The answer depends on the dimension d.
The most important case for holography is d ¼ 4, and in
this case, the two intervals coincide. This is a limiting case:
for d ≥ 5, every Liouville singularity with v2 ≤ 2v2c also
satisfies (127), but for d ¼ 3 (or 2) the special Liouville
singularity does not satisfy (127).

2. Example: GPPZ flow in d = 3

Consider the GPPZ flow (79) in 3þ 1 dimensions. This
is a useful example for two reasons. First, it has the peculiar
property of being symmetrical under CSFI. Second, since
d ¼ 3, it fits the case mentioned above, in which the wave
functions are automatically normalizable in the IR, so one
needs an extra criterion for fixing the IR boundary con-
ditions. We will show how the invariance under CSFI can
be used to fix the IR behavior of the wave function in terms
of its UV properties.
The background geometry, given by Eq. (80), shows an

AdS boundary at zUV ¼ − π
2
l and a Liouville singularity

at zIR ¼ 0. Given aðzÞ, we find the SUSY QM super-
potential (113), and the potential (109) for tensor modes:15

WTðzÞ ¼
2=l

sinð−2z=lÞ ; VTðzÞ ¼
2=l2

cos2ð−z=lÞ : ð128Þ

The Schrödinger equation (108) has the exact solution

ψðzÞ

¼ Cþ

� ffiffiffiffiffiffiffi
M2

p
sinð−

ffiffiffiffiffiffiffi
M2

p
zÞ þ 1

l
tan

�
1

l
z

�
cosð

ffiffiffiffiffiffiffi
M2

p
zÞ
�

þ C−

� ffiffiffiffiffiffiffi
M2

p
cosð−

ffiffiffiffiffiffiffi
M2

p
zÞ − 1

l
tan

�
1

l
z

�
sinð

ffiffiffiffiffiffiffi
M2

p
zÞ
�

ð129Þ

where C� are arbitrary constants to be fixed by the
boundary conditions. As it should be expected from
our previous discussion, ψðzÞ is regular at the IR, with
ψðzIRÞ ¼ C−

ffiffiffiffiffiffiffi
M2

p
. Thus normalizability at the singularity

does not require neither Cþ nor C− to be zero.
We then turn to the UV limit, where we must impose

Dirichlet conditions such that ψðzUVÞ ¼ 0 (we are after
bound states). This fixes the mass spectrum to be
M2

k ¼ k2=l2, with k ¼ 2; 3; 4; 5;…. The eigenfunctions
split into two classes, depending on wether k is even or
odd. For odd k ¼ 2nþ 3 we must take C− ¼ 0 and the
normalized functions are

ψþ
n ðzÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πlðnþ 1Þðnþ 2Þp �

ð2nþ 3Þ sin
�
2nþ 3

l
z

�
− cos

�
2nþ 3

l
z

�
tan

�
1

l
z

��
M2

n ¼
ð2nþ 3Þ2

l2
; n ¼ 0; 1; 2; 3; � � � ð130Þ

For even k ¼ 2n, we have to take Cþ ¼ 0 instead, and the
normalized solutions are

ψ−
n ðzÞ ¼

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πlð4n2 − 1Þ

p
×

�
2n cos

�
2n
l
z

�
þ tan

�
1

l
z

�
sin

�
2n
l
z

��
;

M2
n ¼

4n2

l2
ð131Þ

with n ¼ 1; 2; 3;… Thus we have two sets of eigenfunc-
tions which are regular in the singularity and give discrete
spectra in the UV. The functions ψþ vanish at zIR ¼ 0,
which is usually the boundary condition imposed by regu-
larity at the singularity. The functions ψ− do not vanish at
zIR but they are finite and hence square-integrable, so they
cannot be discarded.
Now we use CSFI. The SUSY QM superpotential and

potential are

W̃Tðz̃Þ ¼
2=l2

sinð2z̃=lÞ ; ṼTðz̃Þ ¼
2=l2

sin2ðz̃=lÞ ð132Þ

with 0 < z̃ < π
2
l, and z̃IR ¼ π

2
l and z̃UV ¼ 0. Note that the

SUSY partners (128) and (132) are actually identical, there

14For 0 < v2 < v2c (thus for δ < 0), the fluctuations are not
integrable because then the singularity lies at z → ∞, hence VðzÞ
is not bounded and the spectrum is a continuum.

15We describe tensor modes, but a similar discussion goes for
the scalar ones. Note that the exact invariance under CSFI extends
to the scalar modes even if this is not a Liouville model.
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is only a translation by π
2
l. This is a consequence of the

symmetry under CSFI. Using (112), i.e., applying the
operator M−1

n Q on ψþ
n ðzÞ, we find

ψ̃þ
n ðz̃Þ ¼

l
2nþ 3

�
∂z þ

2=l
sinð−2z=lÞ

�
ψþ
n ðzÞ

				
z¼−z̃

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πlðnþ 1Þðnþ 2Þp �

ð2nþ 3Þ cos
�
2nþ 3

l
z̃

�
− sin

�
2nþ 3

l
z̃

�
cot ðz̃=lÞ

�
with M̃2

n ¼ ð2nþ 3Þ2=l2 and n ¼ 0; 1; 2; 3;…. These are
the same as the original functions (130), which is also
consistent with the invariance of the model.
But for the even functions (131), the image solutions are

ψ̃−
n ðz̃Þ ¼

l
2n

�
∂z þ

2

l sinð−2z=lÞ
�
ψ−
n ðzÞ

				
z¼−z̃

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πlð4n2 − 1Þ

p
×
�
cos

�
2n
l
z̃
�
cot

�
1

l
z̃
�
þ 2n sin

�
2n
l
z̃
��

:

which are not the same as (131), an inconsistency with
invariance. The point, however, is that these solutions
should be discarded. Indeed, they diverge at z̃UV, so they
do not represent bound states. But to force ψ̃− ¼ 0, we
must take ψ− ¼ 0, and hence choose C− ¼ 0 in (129),
leaving only the functions (130) as eigenfunctions. Thus in
the end, consistency with the symmetry of the model under
CSFI has discarded half of the spectrum allowed by
normalizability, by ultimately fixing a specific IR
Dirichlet condition.

VII. CONCLUSION

We conclude this paper with a discussion and some
speculations about the nature and the possible uses of
conformal scale factor inversion correspondence.

A. CSFI as a duality

The idea of a scale factor inversion map is very similar in
nature to the “scale factor duality” (SFD) transformations
used in cosmology. The paradigmatic example of scale
factor duality is the one found by Veneziano [32], but
other maps between cosmological solutions have also been
called by the same apellation, e.g., [33,34,37,48]. The
analogous of our map for cosmological spacetimes, in
particular, has been called a scale factor duality in [33,34].
In the context of string theory and holography, however, the
word “duality” should be used with some care to avoid
misinterpretation.

The distinguishing feature of Veneziano’s SFD is to be a
symmetry of the string effective action (with a constant
potential), hence a kind of extension of T-duality for time-
dependent (cosmological) backgrounds. As discussed in
Sec. III, CSFI is not a symmetry of the action (3), so it
cannot be interpreted as a duality in this sense. In particular,
although it is based on a scale factor inversion, it is not
connected with a T-duality transformation, at least not in
any evident way. It would certainly be interesting to
investigate whether such a connection can be established
(this would perhaps require the inclusion of a two-
form field).
The strict interpretation of CSFI is as a map between

solutions of different theories—each with a scalar potential.
The map has a Z2 structure: applied twice, it gives again the
original domain wall solution, DW ↦ gDW ↦ DW. For
Liouville models, the map has the additional property of
being a map in parameter space: schematically, a Liouville
model LVv with a parameter v in the exponent is mapped
to LVv ↦ fLVṽ ↦ LVv.
Extended to fluctuations around isotropic domain walls,

CSFI gives a canonical transformation swapping a fluc-
tuation mode and its conjugate momentum. The extension
is (always) valid for tensor modes, and is valid also for
scalar modes (only) in Liouville models. This map between
fluctuations can be interpreted in terms of the S-duality
found in cosmological spacetimes by Brustein, Gasperini
and Veneziano [27].
The peculiar behavior of Liouville models may be an

indication that, perhaps, CSFI could be related more pre-
cisely to a kind of “generalized” conformal symmetry—we
note that the defining property of CSFI is precisely that the
scale factor is a conformal factor in the Einstein frame.
Understanding this point could shed an interesting light
on the nature of invariant models, such as the GPPZ
flow, and on the connection between the two geometric
constructions discussed in Sec. IVA 2 between the com-
plementary classes of dimensional reduction leading to
Liouville potentials.

B. IR boundary conditions

Fluctuation modes whose wave functions vanish at
the UV boundary correspond to composite particles in
the d-dimensional QFT, and the exact form of the mass
spectrum crucially depends on the boundary conditions to
be imposed at the IR. Domain walls with a singularity in
practice introduce the IR cutoff if the normalizability
condition (121) implies a natural Dirichlet boundary con-
dition at the singularity. For Liouville singularities, this is
the case when the parameters obey the bound (127). Then
the natural IR condition is ψðzIRÞ ¼ 0, or C− ¼ 0 in
Eq. (117), because this is the only way to make ψðzÞ
square-integrable. Singularities with such a behavior
have been called “spectrally computable” in [18], and
(127) has been called a “computability bound.” When
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the computability bound is not satisfied, IR normalizability
becomes trivial, ceasing to be a useful criterion. Then the
spectrum is unspecified unless some different criterion
fixes the IR boundary condition, as has been argued by
some authors [17,18,49].
CSFI transforms a UV boundary condition into an

IR one: according to (119), a bound state of gDW, i.e.,
ψ̃ðz̃UVÞ ¼ 0, implies the Dirichlet condition ψðzIRÞ ¼ 0 in
the dual DW. This could be an interesting complementary
condition to be used when spectral computability fails, but
the situation is delicate. We have shown that for d ¼ 4 the
computability bound is identical with the restriction (32)
that selects the Liouville models that possess good (NEC-
preserving) pairs under CSFI. For d ≥ 5, the computability
bound is less restrictive than (32) hence all NEC-preserving
models are already computable. Conversely, if we take a
domain wall which is not spectrally computable, we cannot
use CSFI to impose a boundary condition because the dual
domain wall will violate the NEC.
In some very specific cases, however, CSFI can be used

to provide a IR criterion, by mapping the unspecified
IR limit to the UV of a different solution. The simplest
example of such would be the map of a special-Liouville
singularity to an AdS boundary. Consider then a special-
Liouville IR limit with δ ∈ ð0; 3=2Þ; square-integrability of
ψ ð1Þ
k in Eq. (117) does not impose C− ¼ 0. On the other

hand, the image of ψ ð1Þ
k under CSFI, i.e., ψ̃ ð2Þ

k in (118),
should also be square-integrable. But for C− ≠ 0 this only
happens if δ ¼ −δ̃ < 1=2. Hence the consistency of CSFI is
more restrictive than the “normalizability condition,” as the
former does impose C− ¼ 0 whenever δ lies not in (127)
but in the (larger) interval δ > 1=2. Now, as discussed at the
end of Sec. VI C 1, when d ¼ 3 we have δ > 1 and when
d ¼ 2 we have δ > 1=2, so in these dimensions this use of
CSFI always fixes univocally the IR boundary condition.
This is, admittedly, an idiosyncratic example, but fixing the
computability problem could have some unexpected appli-
cations; in [50] it was shown to be related to a well-known
problem in conformal quantum mechanics.
Of course, the operation of fixing IR boundary conditions

to be the image of UV boundary conditions becomes truly
interesting in models which are invariant under CSFI. The
requirement of symmetry of the fluctuation modes fixes the
spectrum uniquely (and even when the computability bound
is violated), as shown by the explicit example of the GPPZ
flow in d ¼ 3 given in Sec. VI C 2.

C. Holographic cosmology

The correspondence, under an analytic continuation,
between isotropic domain walls and Friedmann-
Robertson-Walker spacetimes [51–53] has been used in
the construction of a holographic formulation of cosmology
[54]. One of the most interesting applications of the results
of the present paper is the use of CSFI in this context.

A first point to be noted here is that the CSFI trans-
formations hold for any spatial curvature of FRW geom-
etries. In d ¼ 3, CSFI has the interesting property of
mapping AdS space to a (special) Liouville model where
the energy density of the scalar field scales like radiation,
1
2
_ϕ2 þ VðϕÞ ∼ a−4. This could be interpreted as a map

between inflation and a radiation-dominated universe [34],
and it would be very interesting to investigate in detail this
connection in the context of holographic cosmology. The
aforementioned nontrivial use of CSFI in fixing the
boundary conditions of fluctuations in d ¼ 3 could play
an important role in a cosmological framework.
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APPENDIX A: CAUSAL STRUCTURE OF
CSFI PAIRS

Since it is defined in conformal coordinates, CSFI
preserves the causal nature of a surface. Thus, if we
generically call fa ¼ 0g a “singularity” and fa ¼ ∞g a
“boundary”, it is not hard to see that CSFI maps

null boundaries ↔ null singularities

timelike boundaries ↔ timelike singularities

This is shown in Fig. 6.
The best examples are the Liouville models. A Liouville

model with v > vc has the singularity at a finite distance
which we can set to z0 ¼ 0, so it is timelike, while the
boundary lies at z ¼ −∞ so it is null. The Penrose diagram
is in Fig. 6(a). On the other hand, its image under CSFI,
with v < vc, will have null singularity and a time-like
boundary as shown in Fig. 6(b). The critical model with
v ¼ vc has boundary at z ¼ ∞ and singularity at z ¼ −∞,
so both are null and the diagram is that of Fig. 6(c).
The Penrose diagram of an invariant model must be

shape-invariant under CSFI. This is illustrated by the

(a) (b) (c) (d)

FIG. 6. Penrose diagrams. Double lines are singularities;
dashed lines are timelike boundaries. The arrows indicate the
CSFI map. (a) Liouville models with v > vc; (b) Liouville
models with v < vc; (c) Liouville models with v ¼ vc; (d) Models
with an AdS boundary and a Liouville singularity with v > vc.
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Liouville model with v ¼ vc. Meanwhile, an invariant
model with an AdS boundary (e.g., the GPPZ geometry)
has a diagram like in Fig. 6(d) (which is also invariant
because boundary and singularity are both timelike).
On the other hand, for a model which is not invariant, the

shape of the diagram is not preserved. Figure 6(d) is also
the diagram of, say, a domain wall whose potential has two
different Liouville asymptotics: with v > vc as a → 0 and
v < vc as a → ∞. If these limits are reversed, we have a
Fig. 6(c) diagram, etc.
Note that a discrete spectrum occurs in models where the

interval ½zIR; zUV� is finite (then the Schrödinger problem
becomes a finite box). The casual structure of such domain
walls is that of Fig. 6(d) and, aswe have shown, this structure
is preserved byCSFI. Continuous spectra, on the other hand,
happen when there is an infinite, or semi-infinite range of
the conformal coordinate z, such as in diagrams (a), (b),
and (c). Again, this structure is preserved by CSFI.

APPENDIX B: RG FLOW FROM ADS TO
CRITICAL LIOUVILLE AND ITS IMAGE

Here we present another example of background for
which the tensor fluctuations can be solved exactly. The
interesting thing about this model is that the image back-
ground under CSFI is quite complicated, but the map gives
us the corresponding fluctuations nevertheless.
We start with a model given by

WðϕÞ ¼ d − 1

ϰl
cosh

�
ϰϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðd − 1Þp �
;

βðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þp
ϰ

tanh

�
ϰϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðd − 1Þp �
: ðB1Þ

There is a UVAdS boundary with radius l, and with s ¼ 1,

while for ϰϕ ≫ 1 we haveW ∼ eϰϕ=
ffiffiffiffiffiffiffiffiffiffiffi
2ðd−1Þ

p
, thus a critical

Liouville singularity. The beta-function coincides with (81)
near the UV fixed point. (Actually, the two functions
coincide after a rescaling of ϕ.) This illustrates how the
same flux may correspond to very different bulk geom-
etries. Solving the domain wall profile, we find

aðzÞ ¼ 1

sinhðz=lÞ ; ϰϕðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ

p
z=l; ðB2Þ

with 0 < z < ∞. The AdS boundary is at zUV ¼ 0, and
near the critical Liouville singularity at zIR ¼ ∞ we have
aðzÞ ∼ e−z=l; cf. Eq. (23).
From (B2) we find the SUSY QM potential and super-

potential of the tensor fluctuations to be

WTðzÞ ¼
d − 1

2l
coth ðz=lÞ;

VTðzÞ ¼
ðd − 1Þ2
4l2

þ d2 − 1

4l2

1

sinh2ðz=lÞ : ðB3Þ

The UV-square-integrable solution of the Schrödinger
equation, satisfying the Dirichlet boundary condition
ψðzUVÞ ¼ 0 at zUV ¼ 0, is

ψðzÞ ¼C

�
sinh

�
z
l

��dþ1
2

× 2F1

�
dþ 1

4
−
igl
2

;
dþ 1

4
þ igl

2
;
dþ 2

2
;−sinh2

�
z
l

��

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−

ðd− 1Þ2
4l2

s
: ðB4Þ

Near the boundary, ψðzÞ ≈ Cðz=lÞðdþ1Þ=2. Near the
singularity,

ψðzÞ ≈ Cjλgj cos
�
gðz − l log 2Þ þ 1

2
δg

�
;

jλgj ¼
2ΓðiglÞΓðdþ2

2
Þe−iδg=2

Γðdþ1
4

þ igl
2
ÞΓðdþ3

4
− igl

2
Þ ; ðB5Þ

where δg is the phase-shift of the wave function.
Now, with CSFI we are going to construct a new domain

wall, with a special-Liouville singularity (image of the AdS
boundary) and an asymptotic critical-Liouville boundary
(image of the critical Liouville singularity). Using c ¼ 1
and z̃ ¼ −z, we have the scale-factor

ãðz̃Þ ¼ sinh ð−z̃=lÞ; −∞ < z̃ < 0: ðB6Þ

The scalar field can be expressed implicitly as

ϰϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ

p
× log

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2þ ffiffiffi

2
p

2 −
ffiffiffi
2

p
��

γ − 1

γ þ 1

��
2γ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2 − 1

p
þ 1

2γ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ2 − 1

p
− 1

�s

×


γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1=2

q � ffiffi
2

p #
;

γ ≡ coth

�
ϰϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðd − 1Þp �
¼ coth ð−z̃=lÞ: ðB7Þ

Although it is not possible to invert this function exactly, it
is easy to verify that the asymptotics give the correct CSFI
results. Near the boundary, jz̃j=l ≫ 1 (γ → 1), we have

ϕ̃ ≈ −ϕ, hence W̃ðϕ̃Þ ∼ e
ϰϕ̃ffiffiffiffiffiffiffiffi
2ðd−1Þ

p
. This is indeed the critical

Liouville behavior. Near the singularity, z̃ → 0 (γ → ∞),

Eq. (7) give ϰϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þp

≈ e−
ϰϕ̃

2
ffiffiffiffiffi
d−1

p ≪ 1, hence W̃ðϕ̃Þ∼
eϰϕ̃=

ffiffiffiffiffiffi
d−1

p
≫ 1, which is a special Liouville singularity. The

new superpotential (and every bulk quantity) can be written
as a function of ϕ̃ only implicitly, through γ, viz.
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W̃ ¼ ðd − 1Þ
ϰl

γ
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
; ðB8Þ

but with this we can plot the function W̃ðϕ̃Þ; we do so
in Fig. 7.
Here the map between fluctuations is very useful.

Although the background is a very complicated implicit
function of the field ϕ̃, the tensor fluctuations can easily be
found explicitly. The SUSY QM superpotential and the
Schrödinger potential, as always, are found from (B6),

W̃Tðz̃Þ ¼
ðd − 1Þ
2l

coth ð−z̃=lÞ;

ṼTðz̃Þ ¼
ðd − 1Þ2
4l2

þ ðd − 1Þðd − 3Þ
4l2sinh2ð−z̃=lÞ : ðB9Þ

The Schrödinger equation can be solved as usual, but it is
easier to use (112)

ψ̃ðzÞ ¼ 1ffiffiffiffiffiffiffi
M2

p QψðzÞ
				
z¼−z̃

¼ 1ffiffiffiffiffiffiffi
M2

p
�
∂z þ

ðd − 1Þ
2l

coth ðz=lÞ
�
ψðzÞ

				
z¼−z̃

:

Using some properties of the hypergeometric function we
can write the result

ψ̃ðz̃Þ ¼ C̃

�
sinh

�jz̃j
l

��dþ1
2

× 2F1

�
d− 1

4
−
igl
2

;
d− 1

4
þ igl

2
;
d
2
;−sinh2

�jz̃j
l

��
;

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

ðd− 1Þ2
4l2

s
; C̃¼ dffiffiffiffiffiffiffiffiffiffiffi

M2l2
p C:

Near the singularity, z̃ → 0, we have ψ̃ðz̃Þ ≈ C̃ð1l jz̃jÞ
d−1
2 ,

while at the boundary, jz̃j → ∞,

ψ̃ðz̃Þ ≈ C̃jλ̃j cos
�
gðjz̃j − l log 2Þ þ δ̃g

2

�
;

jλ̃j ¼ 2ΓðiglÞΓðd
2
Þe−iδ̃g2

Γðd−1
4
þ igl

2
ÞΓðdþ1

4
þ igl

2
Þ : ðB10Þ

Comparison with (B5) gives the relation between the two
phase-shifts

δg ¼ δ̃g − arctan

�
2gl
d − 1

�
: ðB11Þ
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