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In this work, we consider a nonquadratic dilatonΦðzÞ ¼ ðκzÞ2−α in the context of the static soft wall model
to describe the mass spectrum of a wide range of vector mesons from the light up to the heavy sectors. The
effect of this nonquadratic approach is translated into nonlinear Regge trajectories with the generic form
M2 ¼ aðnþ bÞν. We apply this sort of fits for the isovector states of ω, ϕ, J=ψ , andϒmesons and compare
with the corresponding holographic duals. We also extend these ideas to the heavy-light sector by using the
isovector set of parameters to extrapolate the proper values of κ and α through the average constituent mass m̄
for each mesonic specie considered. In the same direction, we address the description of possible non-qq̄
candidates using m̄ as a holographic threshold, associated with the structure of the exotic state, to define the
values of κ and α. We study the π1 mesons in the light sector and theZc, Y, andZb mesons in the heavy sector
as possible exotic vector states. Finally, the RMS error for describing these twenty-seven states with fifteen
parameters (four values for κ and α respectively and seven values for m̄) is 12.61%.
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I. INTRODUCTION

Nowadays, there is no doubt that hadrons are bound
states of quarks and gluons, whose interactions are
described by quantum chromodynamics (QCD). This
quantum field theory is endowed with a coupling constant
that controls the energy of the hadronic processes. At high
energies, the smallness of the coupling constant makes the
theory perturbative. On the other hand, the low energy
behavior is nonperturbative. It is precisely in the latter
regime where several hadronic properties are found. Also,
the developed perturbative theoretical tools are insufficient
to describe this particular hadronic physics. This issue
motivated the development of techniques and tools that
allows the direct use of QCD in the study of hadrons, such
as Lattice QCD (e.g., [1]) or the use of the Dyson
Schwinger equations to study hadrons (e.g., [2]).
This picture has also prompted the development of

phenomenological models inspired by QCD, capturing
important properties of the interaction between quarks
and gluons, offering us alternatives to perform calculations
of hadronic properties.
A successful example of phenomenological models

for the study of hadrons is the so-called quark potential

models [3–7], which have been remained valid since the
middle seventies when the first heavy quark mesons,
the J=ψ meson was observed. In this approach, the
Schrodinger equation, with a potential describing the
interaction between constituent heavy quarks inside
the meson, provides good results describing the mesonic
spectra and other properties related to the hadronic wave
function, such as the decay constants [8].
From the QCD point of view, it is possible to infer the

behavior of the potential when the constituent quarks are
close or far between them. In the former case, the large Q2

limit, the coupling constant is small enough, allowing us to
use perturbative techniques to describe the quark interaction
by considering the one-gluon exchange only. As a result, the
potential is found to be Coulomb-like in this limit. In the
other case, in the long-interquark distance. or smallQ2 limit,
the strong coupling constant becomes large, preventing any
perturbative machinery. In this case, quarks are considered
as confined partons. This part of the potential cannot be
explored by analytical QFT methods. But, extensive devel-
opments in lattice QCD proved that this term seems to be
linear [9]. Similar results were found on the holographic
side, where the dictionary establishes that a closed string
world-sheet is dual to the Wilson loop, which accounts for
confinement on the boundary theory [10–12].
Summarizing, today we know that the constituent quark

interaction potential is well-motivated from QCD: it must
interpolate between a Coulomb-like potential at short
distances and a linearlike potential at long distances. In
order to fit this phenomenological suggestion, several
alternatives have been proposed (See [3–5]). The simplest
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realization of these sorts of ideas, giving excellent results, is
just the sum of both contributions.
Another successful possibility of building phenomeno-

logical models is to study hadron properties using gauge/
gravity correspondence. Namely the so-called bottom-up
AdS/QCD approach allows us to calculate hadronic proper-
ties by capturing the main strong interaction features of
hadrons in different mediums in an 5-dimensional AdS-like
metric tensor and other background fields, as the dilaton.
In thesebottom-upsortsofmodels, adilaton field isused to

induce confinement on the dual boundary theory. If the
dilatonconsidered is static andquadratic [13], confinement is
manifest by the appearance of linearRegge trajectories in the
mesonic sector. Further works consider other possible forms
of the dilaton field that interpolates the quadratic dilaton at
high z, keeping linear trajectories (for higher quantum
numbers) and allowing the study of other phenomena as
chiral symmetry breaking. Other approaches in the AdS/
QCD context includes deforming the AdS background as it
was done in [14] or the use of a Dp=Dq background with a
static quadratic dilaton [15] to induce linear confinement.
Linear Regge trajectories are a good description of the

mesonic mass spectra in the light sector, and this has been
used traditionally as a guideline in order to catch hadron
properties in the AdS side of AdS/QCD models. But if
hadrons contain s or heavy quarks, linearity in trajectory is
lost [16–20]. Moreover, starting from the quadratic form of
Bethe Salpeter equation [19,21], it is possible to infer that
mesons consisting of heavier quarks have Regge trajectories
deviated from the linearity. In this sort of analysis, heavy
quarkonium is expected to have radial trajectories scaling the
excitationnumberasn2=3.This featuresuggests that the linear
behavior of the Regge trajectory should be dependent on the
quark constituent mass, implying linearity for the light
flavored mesons and nonlinearity for the heavier ones. We
will explore this hypothesis in this work.
For this reason, we explore other kind of dilatons in order

to describe hadrons where linear Regge trajectories disagree
with experimental data. This could be interesting at moment
to study, for example, heavy mesons in holographic models,
because as it can be seen in literature [22–27], AdS/QCD
models applied to charmonium or bottomonium spectra are
no so good enough to describe them, despite the fact that
other observables (as the melting temperature) have the
proper qualitative behavior.
This work has been structured as follows: in Sec. II we

consider four families of isovector mesons with different
constituent quarks and we show that these mass spectra
agree with a nonlinear Regge trajectory, parametrized by
M2 ¼ aðnþ bÞν inspired by the parametrization suggested
in [18], where a primer interpretation for the exponent ν is
to account for the linearity deviation in the radial trajectory.
Notice that this suggested parametrization is far different
from the ones proposed in the context of quantum correc-
tions to the string formulation [28], and is also different

from the ones suggested in [20,29]. We associate the index
ν with the average constituent quark mass in each case, and
then we propose an expression for this index.
In Sec. III we review holographic recipe to describe

mesonic masses. In the standard AdS/QCD scheme, the
energy scale associated with the dilaton field, which could
be static or dynamical, defines the slope in the Regge
trajectory. Moreover, the hadronic identity of the given
hadronic state is defined by the bulk mass of the corre-
sponding dual bulk field. This bulk mass carries informa-
tion about the scaling information of the operators that
define hadrons at the conformal boundary. Beyond these
two parameters, there is no other bulk quantity suitable to
define the mesonic state at hand. This fact sets a drawback
in the formulation. For instance, in the holographic Regge
trajectory associated to vector mesons written in the
soft-wall model context, i.e., M2

n ¼ 4κ2ðnþ 1Þ, it is not
possible to differentiate among the elements in this nonet
by holographic means. In other words, the trajectory
written above could be for ρ or ω mesons if we fix κ in
the light unflavored sector. This issue can be translated into
the fact that AdS/QCDmodels do not deal with the mesonic
inner structure directly. A possible form to circumvent this
issue is to consider the effect of quark constituent masses in
the Regge trajectory. According to the Bethe-Salpeter
analysis, constituent quark masses induces nonlinearities
to the trajectory. Therefore, we conjecture that the linearity
deviation in Regge trajectories is associated, in the AdS
side, with the deviation of the dilaton field from the
quadratic profile proposed in [13] We propose a dilaton
deformation of the form z2−α, where α encodes the effect of
the average constituent quark mass on the Regge trajectory.
In Sec. IV, we apply these ideas to the description of
radial isovector states (ω, ϕ, J=ψ and ϒ), with quantum
numbers defined as IGJPC ¼ 0−ð1−−Þ. We will use this fit
to establish how the parameters κ and α run with the
constituent mass. This will allow us test this approximation
with other mesonic species by using their constituent
configuration as an entry.
In Sec. V we used the isovector nonlinear trajectories

fitted to extrapolate the values of κ and α for K� and the
heavy-light vector mesons. We also make a description of
non-qq̄ states by testing at the holographic level some of
the proposals to describe exotic mesons as multiquark
states or gluonic excitations. These exotic states can be
described by considering the conformal dimension Δ
associated with the operator that creates these states and
how Δ affects the bulk mass term in the associated
holographic potential. In this case, we use m̄ as a holo-
graphic threshold, defined in terms of the structure of each
exotic state, to define the values of κ and α. We consider
exotic candidates in the light sector (π1 meson) as well as in
the heavy one (Zc, Zb, and X mesons).
Finally, in Sec. VI we expose the conclusions and final

comments about the present work.
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II. NONLINEAR TRAJECTORIES

The relation between hadronic squared mass and radial
(and orbital) quantum number is considered usually as
linear. This affirmation in general, accepted due to exper-
imental evidence, is especially true in the light sector, but
when quark masses are increased, a nonlinear Regge
trajectory seems better to describe hadron spectra [16–20].
For instance, in the Bethe-Salpeter analysis, by including

the quark mass directly in the radial trajectory

ðMn −mq1 −mq2Þ2 ¼ aðnþ bÞ; ð1Þ

where a is a universal slope and b accounts for the effect of
the mesonic quantum numbers, it is expected that non-
linearities associated with the constituent mass emerge
[16,19]. In the holographic AdS/QCD context, we can
parametrize this constituent quark mass effects by adding
an extra ν exponent to the radial trajectory as follows

M2
n ¼ aðnþ bÞν: ð2Þ

This nonlinearity deviation in the trajectory should be
captured in a nonquadratic static dilaton, in the same form
as the original soft-wall model dilaton encloses the linearity
of Regge trajectories [13].
In this work we consider four families of isovector

mesons labeled as IGJPC ¼ 0−ð1−−Þ, and investigate linear
and nonlinear expressions forM2. In Table I we summarize

the experimental masses of all four isovector meson
families considered in our analysis. In Table II we show
our fits for a linear and nonlinear Regge trajectory. In
Fig. 1, we summarize experimental data fitted using linear
and nonlinear fits.
If we see closely the fits done in Table II, the nonlinear

proposal could provide better results for the low lying states
in each isovector trajectory. We have to keep in mind that
linearity is enforced in the high excitation levels [20,31].
Besides, this is expected by analyzing the Cornell potential:
high excited states are dominated by the confinement term.
Following the Bethe-Saltpeter approximation, deviations

in the linearity should be produced by the constituent mass.
In the study of charmonium, we can get M2

n ∝ n2=3, thus
intermediate constituent masses would imply values for ν
ranging between one and 2=3. Bottomonium states should
have a exponent ν lower than 2=3. This particular behavior
suggest that ν should be running with the constituent quark
mass. At the holographic level, this idea will allow us to
infer information about the internal structure of the hadron
at hand.
We suggest that ν is a function of the average constituent

quark masses and, also propose an expression to fit the four
exponents ν appearing in Table II plus an additional point
suggested by the chiral limit, i.e., additionally, we consider
ν ¼ 1 when constituent quarks are massless.
The average constituent quark masses mentioned above

can be defined as

TABLE I. This table summarizes the experimental masses ([30]) for isovector mesons families consisting of ω, ϕ,
ψ , and ϒ radial states.

Isovector meson masses (PDG)

n ω (MeV) ϕ (MeV) ψ (MeV) ϒ (MeV)

1 782.65� 0.12 1019.461� 0.016 3096.916� 0.011 9460.3� 0.26
2 1.400–1450 1698� 20 3686.109� 0.012 10023.26� 0.32
3 1670� 30 2135� 8� 9 4039� 1 10355� 0.5
4 1960� 25 � � � 4421� 4 10579.4� 1.2
5 2290� 20 � � � � � � 10889.9þ3.2

−2.6
6 � � � � � � � � � 10992.9þ10.0

−3.1

TABLE II. Summary of linear and nonlinear fits for isovector meson Regge trajectories drawn in Fig. 1. We
expose parameters for each parametrization considered, altogether with the correlation coefficient R2. Observe that
linear fits bring good description of the trajectories, but R2 decrease from unity when we increase the quark
constituent mass. Also notice that the nonlinear fit is more precise since R2 is bigger than the linear one in each case.

Linear Regge Trajectory: M2 ¼ aðnþ bÞ Nonlinear Regge Trajectory (M2 ¼ aðnþ bÞν)
Meson a b R2 a b ν R2

ω 1.1074 −0.3781 0.9978 1.1078 −0.3784 0.9998 0.9978
ϕ 1.7595 −0.4048 0.9999 1.8545 −0.4524 0.9617 1.000
ψ 3.2607 2.0259 0.9997 7.6516 0.4460 0.6249 0.9999
ϒ 6.2015 13.9182 0.9996 85.3116 0.2849 0.1917 0.9999
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m̄ðq1; q2Þ ¼
1

2
ðmq1 þmq2Þ:

For the constituent quark masses, we use the following
set of values

mu ¼ 0.336GeV; md ¼ 0.340GeV; ms ¼ 0.486GeV

mc ¼ 1.550GeV; mb ¼ 4.730GeV:

For the exponent ν introduced in the nonlinear fit (2), we
propose the following parametrization in terms of the
average constituent quark mass given

ν ¼ aν þ bνeð−cνm̄
2Þ; ð3Þ

with the following model parameters

aν ¼ 0.1893; bν ¼ 0.8221; cν ¼ −0.2634:

This fit model mimics the effect of considering the
constituent masses in the nonlinearity of the Regge tra-
jectory. Notice that in the massless constituent quark case,
i.e., m̄ ¼ 0, we recover linearity.

In the next section we will develop the holographic
machinery to deal with the nonlinear fits for isovector
mesons and, also we will extend these ideas to other
mesonic species.

III. GEOMETRIC BACKGROUND

Let us consider a five-dimensional AdS Poincaré patch
defined by the following metric

dS2 ¼ e2AðzÞ½dz2 þ ημνdxμdxν�: ð4Þ

Also, we consider a bulk vector field Amðz; xÞ dual to
isovector mesonic states interacting with a static dilaton
ΦðzÞ, as in the original soft-wall model proposal [13]. This
dilaton is motivated by the particle phenomenology to
model confinement through the appearance of Regge
trajectories. The action for such fields is

IV ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞFmnFmn: ð5Þ

We have assumed the bulk vector field as massless since
for mesons this quantity is fixed to be zero.

FIG. 1. This plot shows M2 vs n for different vector mesons (ω, ϕ, ψ and ϒs). Dots represent experimental data, and in each panel
there are two continuous lines, one represent the best linear fit (M2 ¼ aðnþ bÞ) and the other corresponding to a nonlinear fit
(M2 ¼ aðnþ bÞν).
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From this action, and imposing the gauge fixing Az ¼ 0,
we arrive at the following equation of motion for the bulk
field

∂z½e−BðzÞ∂zAμðz; qÞ� þ ð−q2Þe−BðzÞAμðz; qÞ ¼ 0; ð6Þ

where we have introduced BðzÞ ¼ ΦðzÞ − AðzÞ. Let us span
the bulk vector field as Aμðz; qÞ ¼ AμðqÞψðz; qÞ in order
to transform the equation of motion into a Schrodinger-like
one. Performing the Bogoliubov transformation ψðzÞ ¼
eΦðzÞ=2ϕðz; qÞ we arrive to the following expression

−ϕ00ðz; qÞ þ VðzÞϕðz; qÞ ¼ ð−q2Þϕðz; qÞ ð7Þ

where the holographic potential VðzÞ is defined as

VðzÞ ¼ 1

4
B0ðzÞ2 − 1

2
B00ðzÞ ð8Þ

¼ 3

4z2
þΦ0ðzÞ

2z
þΦ0ðzÞ2

4
−
Φ00ðzÞ
2

; ð9Þ

wherewe have used thewarp factorAðzÞ ¼ logðR=zÞ. Recall
that in the original spirit of the soft wall model, the soft
breaking done by the inclusion of the dilaton in the geometric
background is translated into the appearance of bound states
organized in a Regge trajectory with the slope defined by the
static dilaton. Furthermore, the emergent bulk eigenmodes
are dual to the hadronic states at the conformal boundary. A
similar situation can be seen in top/downmodels [32]. where
confinement is achieved by the intersection of geometrical
defects, as in theDp/Dq system [33]. Amatter of example, in
the latter model, the associated Sturm-Liouville spectrum
arising from geometric fluctuations behaves quadratically
with the excitation number, i.e., M2

n ∝ n2, which is clearly
nonlinear by construction.
The hadronic mass spectra, and the Regge trajectories,

are constructed from the eigenvalues of this potential,
which is fixed by the structure of the BðzÞ function. In
the context of the original soft wall model [13], the
potential is fixed by BðzÞ ¼ κ2z2 − logðR=zÞ obtaining
the linear spectrum

M2
n ¼ 4κ2ðnþ 1Þ; ð10Þ

associated with vector mesons with massless constituent
quarks. The Regge slope is identified to the κ, in units of
GeV, that fixes the scale of the trajectory. The linearity
observed in (10) is achieved by the specific quadratic form
of the dilaton, which induces a z2 behavior at high-z in the
confining potential, that is translated into the linear
dependence with the radial excitation number n.
If we want to consider the case when the constituent

quarks are massive, we must extend to nonlinear Regge
trajectories [16–20]. As we mentioned early, we consider
nonlinearity connected with the quark constituent mass.

Therefore, massless quarks are tied to linear trajectories.
Beyond the chiral symmetry breaking, once the quarks get
mass, the trajectory ceases to be linear but remains as a
good approximation in the light sector. A deviation in the
linearity for the spectrum must be associated with a change
from the usual quadratic static dilaton. This deviation,
related to the constituent quark mass, can be parametrized
into a shift in the quadratic exponent of the dilaton

ΦðzÞ ¼ ðκzÞ2−α: ð11Þ
Fixing α to be zero, we have the massless constituent

quarks and recover the soft-wall model result. In the
following sections, we will discuss the massive constituent
quarks case. The exponent for the dilaton (considering an
additional point suggested by chiral limit) can be fitted as

αðm̄Þ ¼ aα − bαeð−cαm̄
2Þ; ð12Þ

with the following set of parameters:

aα¼ 0.8454; bα¼ 0.8485; cα ¼ 0.4233;

and for the energy scale κ we have the following fit

κðm̄Þ ¼ aκ − bκe−cκm̄
2

; ð13Þ
with the following fit coefficients:

aκ ¼ 15.2085; bκ ¼ 14.8082; cκ ¼ 0.0524:

Notice that the fit for α runs consistently with the
constituent mass, as we can expect from the analysis done
for the linearity deviation parameter ν defined above.

IV. MESON MASSES

In AdS/QCD models, mesonic states are identified with
the bulk field mass dual to the hadronic states in consid-
eration. This connection is made via the conformal dimen-
sion Δ that fixes how the bulk field scales at the boundary.
On the field theory side, the matching is realized by
considering Δ as the scaling dimension of the operator that
creates hadrons.The Regge slope for a given mesonic
trajectory is defined by the dilaton energy scale κ. In other
bottom-up approaches, when the higher excitations in the
angular momentumL are considered, the scaling dimension
is written in terms of the twist operator as Δ ¼ τ þ Lþ S.
See for example [34]. Beyond these two parameters, there is
no other bulk information that allows to identify a particular
mesonic family in these sorts of bottom-up models. Thus,
the constituent information, that in the spectroscopy of
mesons allows to classify mesonic, is absent in the AdS/
QCD formulation. A similar situation can be observed in the
top-down approach. Despite the fact that qq̄ states are
introduced as the Chan-Paton form factors for the open
strings attached to the intersecting D-branes, the light vector
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meson trajectories do not differentiate between unflavored
states with different isospin. See [32] for further details.
In general, from the standard AdS=CFT dictionary, for

meson states with spin S and L ¼ 0 we have the following
relation

M2
5R

2 ¼ ðΔ − SÞðΔþ S − 4Þ: ð14Þ
This relation for the bulk field mass is counting the

number of constituents in the scaling dimension Δ, but it
says nothing about the type of constituent or the mass
fraction inside the meson. In the particular case of isovector
mesons, we have Δ ¼ 3 and S ¼ 1 implying that such bulk
vector fields are massless.
Now let us turn our attention to the holographic potential

(8) constructed with the nonquadratic dilaton suggested in
expression (11). This potential has the generic form

Vqq̄ðz;κ;αÞ ¼
3

4z2
−
1

2
α2κ2ðκzÞ−αþ 1

4
α2κ2ðκzÞ2−2α

þ 3

2
ακ2ðκzÞ−α − κ2ðκzÞ−α−ακ2ðκzÞ2−2α

þ κ2ðκzÞ2−2αþ κ

z
ðκzÞ1−α −ακ

2z
ðκzÞ1−α: ð15Þ

Notice that the massless constituent quark case, when
α ¼ 0, we recover the potential for vector mesons [13].
In the nonquadratic case, the meson constituent information
regarding the mass fraction and the quark flavor is con-
signed in the parameter α.

At this point, α becomes an extra parameter to be
considered in the model. But, as we discussed in Sec. II,
it is possible to parametrize a specific form depending
on m̄. This also will define a running for the slope κ.
To properly construct these radial states, we will solve the
Schrodinger equation associated with the potential (15), with
α and κ as entries, for the chosen isovector family. Numerical
results for each family are summarized in Table III.

V. EXTRAPOLATION TO OTHER
MESONIC SPECIES

Let us apply the ideas developed above to other vector
mesonic systems at hand: Regge trajectory for vector kaons
and masses for vector heavy-light mesons. Since we have
fitted the isovector mesons from ω up to ϒ, we have now a
wider picture to study mesons with masses ranging in this
interval.
The key idea is to use the running of α and κ with the

quark constituent mass as calibration curve to extrapolate
the proper values for other mesonic samples. Figures 2–4
depict these calibrations curves. This methodology will
allows to include the constituent mass fraction as part of the
model in order to find the proper pair of parameters κ and α.

A. Kaons

Vector kaons are mesonic states labeled by IðJPÞ ¼
1=2ð1−Þ, with S ¼ �1 and C ¼ B ¼ 0. In order to set the
values for α and κ, we will use the following definition for

TABLE III. Summary of results for different families of isovector radial mesonic states considered in this work. All
of themass spectra displayed in this table are calculatedwith the parameters mentioned on each subtable header, using
(15). TheRegge trajectories are also presented in units of GeV2. The last column on each set of data is the relative error
per state. Experimental results are read from PDG [30].

ω with α ¼ 0.04 and κ ¼ 498 MeV ϕ with α ¼ 0.07 and κ ¼ 585 MeV

n MExp (MeV) MTh (MeV) R. E. (%) n MExp (MeV) MTh (MeV) R. E. (%)

1 782.65� 0.12 981.43 25.4 1 1019.461� 0.016 1139.43 11.8
2 1400–1450 1374 3.6 2 1698� 20 1583 5.8
3 1670� 30 1674 0.25 3 2135� 8� 9 1921 10
4 1960� 25 1967 1.7 4 Not Seen � � � � � �
5 2290� 20 2149 6.2 5 Not Seen � � � � � �
M2 ¼ 0.9514ð0.012þ nÞ0.9798 with R2 ¼ 0.999 M2 ¼ 1.268ð0.0244þ nÞ0.9650 with R2 ¼ 0.999

ψ with α ¼ 0.54 and κ ¼ 2150 MeV ϒ with α ¼ 0.863 and κ ¼ 11209 MeV

n MExp (MeV) MTh (MeV) R. E. (%) n MExp (MeV) MTh (MeV) R. E. (%)

1 3096.916� 0.011 3077.09 0.61 1 9460.3� 0.26 9438.5 0.23
2 3686.109� 0.012 3689.62 0.1 2 10023.26� 0.32 9923.32 0.78
3 4039� 1 4137.5 2.44 3 10355� 0.5 10277.2 0.75
4 4421� 4 4499.4 1.77 4 10579.4� 1.2 10558.6 0.19
5 Not Seen � � � � � � 5 10889.9þ3.2

−2.6 10793.5 0.88
6 Not Seen � � � � � � 6 10992.9þ10.0

−3.1 10995.7 0.03
M2 ¼ 8.07ð0.287þ nÞ0.6315 with R2 ¼ 0.999 M2 ¼ 76.511ð0.901þ nÞ0.2369 with R2 ¼ 0.999
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the quark constituent mass as the average of the masses of s
and d quarks:

m̄K� ¼ ms þmd

2
: ð16Þ

With this mass, we found for theK� system the following
values for κ and α from the calibration curves:

κK� ¼ 531.24 GeV;

αK� ¼ 0.0555:

In Table IV, we summarized the experimental nonlinear
and linear fits, altogether with the theoretical one. Also, we
have shown the associated mass spectrum.

B. Heavy-light mesons

Heavy-light mesons are defined as hadronic systems
where one of the constituent quarks is heavy (i.e., charm or
bottom) while the other is light flavored (up, down or
strange). The physics of these heavy-light hadrons has
become one of the vastest fields of research in particle
physics. Calculations of the heavy-light mass spectra are
done in the context of effective QFT [35], potential
methods [36], QCD sum rules [37], Bethe-Salpeter equa-
tion [38] and lattice QCD [39].
Following the same procedure done in the case of

vector kaons, we can fix the quark constituent mass
m̄ as an average of the pair of constituent quarks inside
the heavy-light meson. The mass spectrum and the
corresponding values of κ and α are summarized in
Table V.

C. Non-qq̄ vector states

All of the mesonic states with quantum numbers not
allowed by the usual qq̄ model are called exotic. A good
review of the physics of such states can be found in [40–42]
and references therein. We will focus on the vector exotic
states in this section. At holographic level, [43] addresses
the exotic meson spectra for Zc and Zb in the context of
Sakai-Sugimoto models.
Holographically, as we explain above, the hadronic

identity is controlled by the scaling dimension associated
with the operator that creates hadrons. This information
is encoded into the bulk mass of the five-dimensional
field use to mimic hadrons. Equation (14) summarizes
this. Therefore, if we identify the dimension of the
operators that create exotic states we can address the
associated vector mass spectrum by using the proper
holographic potential, that in our case has the specific
form

Vnon−qq̄ðz; κ; α;M5;ΔÞ ¼ Vqq̄ðz; κ; αÞ þ
M2

5ðΔÞR2

z2
; ð17Þ

FIG. 2. This plot shows the behavior of the dilaton exponent α
as a function of the quark constituent mass. Notice that for low
masses, dilaton should be quadratic, implying the appearance of
linear Regge trajectories for such states.

FIG. 4. This plot shows how the dilaton scale κ runs with the
average constituent mass. For the massless case we have used
κ ¼ 0.388 GeV [13].

FIG. 3. ν exponent as a function of the average constituent
quark mass. For the massless case, it should be expected to
recover ν ¼ 1.
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where Vqq̄ðz; κ; αÞ is given by the expression (15). This
potential is obtained by following the same procedure
done in the massless vector case: we start from the bulk
action for massive bulk vectors fields, write down the
mode equation, and perform the Bogoliubov transforma-
tion to obtain the Schrodinger-like equation.
Here, we will consider the exotic meson vector states

organized into two groups: multiquark states, and gluonic
excitations. The former is associated with tetraquarks,
hadroquarkonium, and hadronic molecules. Pentaquarks
are also part of this category. For the sake of simplicity, we
will devote to multiquark states candidates with just four
constituent quarks. The methods developed here can be
extrapolated to multiquark candidates also.
At this point, it is important to mention the gauge

invariance, since now we have massive bulk fields. Recall
that the gauge invariance should be manifest at the con-
formal boundary, where all of the dual fields are massless
[24]. The presence of the nonzero bulk mass does not affect
the gauge Az ¼ 0. If we pay attention to the massive e.o.m
for the vector bulk fields, i.e., for the z component

□Az − ∂zð∂μAμÞ þM2
5e

2AAz ¼ 0; ð18Þ

and the spacetime components

∂ν½e−Bð∂μAμÞþ∂zðe−BAzÞ�
−f∂z½e−B∂zAν�þe−B□Aν−e−Be−2AM2

5Aνg¼ 0; ð19Þ

we can realize that the Az ¼ 0 gauge condition still implies
∂μAμ ¼ 0. Therefore, the fields at the boundary are still
transverse.
The gluonic excitations category classifies glueballs and

hybrid mesons. In this paper we will focus on vector hybrid
mesons only, consisting of a quark-antiquark pair with a
finite number of active gluons.

1. Multiquark states

In the case ofmultiquark states, a degeneracy appearswhen
the conformal dimension is defined. Furthermore, since the
conformal dimension is counting indirectly the number of
constituent quarks, this dimension does not distinguish
between four quarks in the diquark antidiquark pair, the
hadroquarkonium or hadronic molecule configurations.
This degeneracy can be removed if we consider the

constituent mass of each multiquark configuration as a
collection of N constituents, quarks or mesons, given by

TABLE V. Summary of results for vector heavy-light mesonic states contrasting our theoretical results with the available experimental
data. The last column is the relative error per state. Experimental results are read from PDG [30]. Although D�þ

s has not been fully
identified, their decay modes are consistent with JP ¼ 1−. See [30] for further details.

State IðJPÞ q1q2 m̄ (MeV) κ (MeV) α MExp (MeV) MTh (MeV) R. E. (%)

K�ð782Þ 1=2ð1−Þ ds̄ 413 531.24 0.055 895.55� 0.8 1038.4 16.2
D�0ð2007Þ 1=2ð1−Þ cū 943 1070.8 0.261 2006.85� 0.05 1902.5 5.20
Dþ0ð2010Þ 1=2ð1−Þ cd̄ 945 1073.6 0.262 2010.26� 0.05 1906.4 5.16
D�þ

s 0ð??Þ cs̄ 1018 1179.1 0.296 2112.2� 0.4 2051.7 2.86
B�þ 1=2ð1−Þ ub̄ 2533 4681.2 0.800 5324.70� 0.22 4561.2 14.3
B�0 1=2ð1−Þ db̄ 2535 4687.3 0.801 5324.70� 0.22 4564.4 14.27
B�0
s 0ð1−Þ sb̄ 2608 4901.2 0.809 5415þ1.8

−1.5 4683.0 13.52

TABLE IV. Summary of results for the vector kaon K� radial mesonic states, with IðJPÞ ¼ 1=2ð1−Þ. The last
column is the relative error per state. Notice that we also show the linear and nonlinear radial experimental Regge
trajectories (R. T) altogether with the theoretical fit for the sake of clarity. The values of κ and α are extrapolated
using the fits (12) and (13) with m̄ as an input. Experimental results are read from PDG [30].

K� with m̄ ¼ 413 MeV, α ¼ 0.055, and κ ¼ 531.24 MeV

n State MExp (MeV) MTh (MeV) R. E. (%)

1 K�ð892Þ 895.55� 0.8 1038.4 16.2
2 K�ð1410Þ 1414� 15 1451.0 2.6
3 K�ð1680Þ 1718� 18 1754.5 2.1

Experimental Linear R. T.: M2 ¼ 1.075ð−0.2157þ nÞ with R2 ¼ 0.9992.
Experimental Nonlinear R. T.: M2 ¼ 1.157ð−0.6102þ nÞ0.718 with R2 ¼ 1.
Theoretical Nonlinear R. T.: M2 ¼ 1.175ð−0.0911þ nÞ0.902 with R2 ¼ 1.
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m̄multiquark ¼
XN
i¼1

ðPquark
i m̄qi þ Pmeson

i mmesoniÞ; ð20Þ

with the condition that

XN
i¼1

ðPquark
i þ Pmeson

i Þ ¼ 1: ð21Þ

Notice that each weight PquarkðmesonÞ
i measures the con-

tribution of a given constituent (quark or meson) with mass
mquarkðmesonÞ. Each multiquark state has a different mass
configuration, used to calculated the parameters κ and α in
the respective calibration curves, as we did in the heavy-
light mesons case.
Diquark constituent model. Tetraquark states can be

considered as hadronic states consisting of a pair of diquark
and an antidiquark interacting between them. A diquark is
a noncolored singlet object used as essential building
blocks forming tetraquark mesons and pentaquark baryons.
These fundamental blocks are either a color antitriplet or a
color sextet in the SU(3) color representation [44]. These
diquarks are bounded by spin-spin interactions. The con-
stituent diquark approach is useful to describe the spec-
troscopy and decays of multiquark states. It is expected that
these diquark composed candidates appear as poles in the
S-matrix, described by narrow widths.
Theoretical approaches to diquark-antidiquark interac-

tion are done in QCD sum rules [45,46], potential models
framework [47], and lattice QCD [48]. Experimentally,
charmonium and bottomonium tetraquark states can be
identified because they decay into open-flavor states
instead of a quarkonium with a light meson due to the
spin-spin interaction dominance (See [40]).
Following PDG [30], the charmonium Zc states, with

quantum numbers IGðJCPÞ ¼ 1þð1þ−Þ, are candidates to
be vector tetraquarks. For these states we can use the charm
quark constituent mass given in Sec. II to find the values of
κ and α for these states. Following Bambrilla, we consider
the Zc states as a single trajectory. Table VI summarizes the
experimental candidates.
Other studies, as [49], suggest ψð4260Þ with 0þð1−−Þ as

a vector tetraquark instead of Zc. As we will prove later, at
least at the holographic level, ψð4260Þ seems to be
consistent with the hypothesis that it is a hadrocharmonium
state.
In this case, we can organize the diquark and antidiquark

as ðqq̄Þ1ðqq̄Þ2, with conformal dimension Δ ¼ 6. This
implies that the bulk mass is M2

5R
2 ¼ 15 for these states.

The parameter m̄ can be set as a sort of holographic
threshold that will allow us to distinguish between multi-
quark state descriptions.
In the case of the diquark constituent model, the

threshold in this charmonium-like diquark-antidiquark case
is set as

m̄diquark-Antidiquark ¼ m̄c; ð22Þ

implying that Pquark
i ¼ 1=4 and Pmeson

i ¼ 0 for this con-
figuration. With this definition we can set the proper values
for κ and α. Numerical results for this approximation are
shown in the first left panel of Table VI.
Hadroquarkonium model. The hadroquarkonium states

can be constructed by considering a vector meson core with
a cloud of two quarks [50]. From the experiments, it was
observed that most of the candidates to be heavy exotic
states appear as final states composed by heavy quarko-
nium and light quarks. This motivated the idea that these
states were made of a compact heavy quarkonium core
surrounded by a light quark cloud [51]. This quarkonium
core interacts with the light quark cloud through a colored
Van der Waals-like force (similar as the one in molecular
physics), allowing the decay of these states into the
observed quarkonium core and the light quarks [52].
Following [52], we will suppose that the states ψð4260Þ,

ψð4360Þ and ψð4660Þ with 0þð1−−Þ are possible hadro-
charmonium states, forming a single vector trajectory.
Holographically, the operator that creates these states has
dimension six, i.e., Δ ¼ 6, implying that the bulk mass is
M2

5R
2 ¼ 15, as in the case of the diquark-antidiquark pair

configuration. The difference will be the definition of the
holographic threshold used to set the parameters α and κ.
In this case, we will consider a charmonium (J=ψ

meson) core characterized by its mass plus the light quark
cloud, consisting of a pair of u and d quarks. Therefore, the
holographic threshold is defined as

m̄Hadrocharmonium ¼ 1

2
mJ=ψ þ 1

4
ðm̄u þ m̄dÞ: ð23Þ

With this criterion, we can extrapolate the model
parameter and compute the mass spectra for these exotic
states. The summary of these results is shown in the third
left panel of the Table VI. Another possible candidates to be
vector hadrocharmonium are the pair of states χc1ð3872Þ
and χc1ð4140Þ [53], with quantum numbers given by
0þð1þþÞ. In our case, the model developed here is not
sensitive to such difference between the quantum numbers,
i.e., the transition CP ¼ þþ → −− is not described by this
nonquadratic dilaton (11), implying that for us these states
are degenerate. A similar situation occurs in other bottom-
up models, such as [14], where is not possible to distinguish
between mesonic states with different isospin since the
model does not consider chiral symmetry breaking. In our
case, we need to add extra parameters to split up these two
sets of exotic states.
Hadronic molecule model. Hadronic molecules are

states conformed by a pair of internal mesons bounded
by strong QCD forces, interacting between them via a
residual weak QCD colorless force [42]. These structures
can be realized as a two heavy quarkonia interacting or one
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TABLE VI. Summary of results for the set of non-qq̄ states considered in this work. Experimental results are read
from PDG [30].

Holographic spectrum Non-qq̄ states

Δ ¼ 6 and m̄diquark-antidiquark Multiquark state

α ¼ 0.539 and κ ¼ 2151 MeV IGðJCPÞ ¼ 1þð1þ−ÞZc mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 4004.8 1 Zcð3900Þ 3887.2� 2.3 3.0
2 4384.9 2 Zcð4200Þ 4196þ35

−32 4.5
3 4706.6 3 Zcð4430Þ 4478þ15

−18 5.1

Δ ¼ 6 and m̄hadronic molecule Multiquark state

α ¼ 0.539 and κ ¼ 2151 MeV IGðJCPÞ ¼ 1þð1þ−ÞZc mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 3816.3 1 Zcð3900Þ 3887.2� 2.3 1.82
2 4213.9 2 Zcð4200Þ 4196þ35

−32 0.43
3 4551.4 3 Zcð4430Þ 4478þ15

−18 1.64

Δ ¼ 6 and m̄Hadrocharmonium Multiquark state

α ¼ 0.604 and κ ¼ 2523 MeV IGðJCPÞ ¼ 0þð1−−Þ Y or ψ mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 4228.3 1 ψð4260Þ 4230� 8 0.25
2 4577.3 2 ψð4360Þ 4368� 13 4.8
3 4871.8 3 ψð4660Þ 4643� 9 4.9

Δ ¼ 6 and m̄Hadronic Molecule Multiquark state

α ¼ 0.538 and κ ¼ 1548.7 MeV IGðJCPÞ ¼ 0þð1−−Þ Y or ψ mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 40027.8 1 ψð4260Þ 4230� 8 5.37
2 4383.1 2 ψð4360Þ 4368� 13 0.35
3 4705.1 2 ψð4360Þ 4643� 9 1.34

Δ ¼ 6 and m̄hadronic molecule Multiquark state

α ¼ 0.863 and κ ¼ 11649 MeV IGðJCPÞ ¼ 1þð1þ−ÞZB mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 10410.9 1 ZBð10610Þ 10607.2� 2 1.85
2 10669.3 2 ZBð10650Þ 10652.2� 1.5 0.16

Δ ¼ 5 and m̄Hybrid Meson Gluonic excitation state

α ¼ 0.0367 and κ ¼ 488 MeV IGðJCPÞ ¼ 0−ð1þ−Þ π1 mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 1351.7 1 π1ð1400Þ 1354� 25 0.16
2 1646.6 2 π1ð1600Þ 1660þ15

−11 0.8
3 1901.7 3 π1ð2015Þ 2014� 20� 16 5.58

(Table continued)
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heavy quarkonium plus a light meson. This proposal is as
old as QCD itself [54]. The first theoretical approaches are
applications of the deuteron Weinberg’s model [55,56].
Experimental results for Xð3872Þ and DS0ð2317Þ are
consistent with these ideas. Other approaches are done
in the context of sum rules [57] or lattice QCD [58].
In the heavy sector, [40,41] suggest that Zc or Y mesons

could be possible hadronic molecule charmonium states,
containing at least one pair of cc̄ in the inner core of the
molecule. The most relevant decay of these states is J=ψπ.
Following this, we will construct the threshold mass for the
holographic Y or ψ mesons as

m̄hadronic molecule ¼
1

3
mJ=ψ þ 2

3
mρ: ð24Þ

In the case of the Zc mesons, we have proposed the
following threshold mass

m̄hadronic molecule ¼ 0.283mJ=ψ þ 0.717mρ: ð25Þ
We will extend these ideas to the bottomonium hadronic

molecule candidates, the zB mesons, where the expected
core is the ϒð1SÞ state. The holographic threshold in this
case is

m̄hadronic molecule ¼ 0.458mϒð1SÞ þ 0.542mρ: ð26Þ

Results for all of these fits are showed in the Table VI. As
in the other multiquark cases, the conformal dimension is
Δ ¼ 6, implying a bulk mass given by M2R2 ¼ 15.
At this point, we can notice that, at the holographic level,

Zc and Y states are better described as hadronic molecules.
When Zc is described as a pair of diquark-antidiquark, the
RMS error (7.5%) is bigger than in the hadronic molecule
case (2.5%). For the Y mesons we observe the same: the
RMS error in the hadrocharmonium description (6.8%) is
bigger than in the molecular case (5.5%).

2. Gluonic excitations: Hybrid mesons

Gluonic excitations are defined as hadrons with constitu-
ent gluonic fields. QCD confined states are naturally non-
perturbative, therefore it is not surprising to have constituent
gluons inside hadrons. This kind of structure is realized as
pairs of quarks and antiquarks joined by gluonic flux tubes.
This particular configuration allows us to introduce other sets
of quantum numbers not possible in the quark constituent
model, for example, the JCP ¼ 1þ− configuration that we
will explore in this section. The mesonic states consisting of
valence quarks and constituent gluons are called hybrid
mesons. Another set of gluonic excitations are the glueballs,
not addressed here, characterized by the absence of quark
quantum numbers. In general, hybrid mesons have been
studied using flux tube model [59], the MIT bag model [60],
Coulomb-like potentials [61], gluon constituent model [62],
quenched QCD [63], or lattice QCD [64].
Experimentally speaking, it is possible to find candidates

across the entire mass range, from light mesons up to
bottomonium states. In particular, we will focus on the π1,
Zc and Zb states.
To build up the holographic description, we need to

define the hadronic operators creating hybrid mesons.
Following the standard AdS/QFT dictionary, the phenom-
enological motivation comes from the two-point functions
at the conformal boundary. These objects are defined in
terms of operators that are composites of quarks and
gluons, that generally, can be defined as qγμq̄Gμν, where
G is a gluonic field on its ground stated and γμ are the Dirac
matrices [65]. This, in terms of the operator dimension,
means that Δ ¼ 5 if we consider one single constituent
gluon, orΔ ¼ 7 if we consider two constituent gluons. This
information is translated in the bulk mass asM2

5R
2 ¼ 8 and

M2
5R

2 ¼ 24 respectively.
Since we want to define the holographic threshold,

we need to infer a mass for the constituent gluon.

TABLE VI (Continued)

Δ ¼ 5 and m̄Hybrid meson Gluonic excitation

α ¼ 0.539 and κ ¼ 2151 MeV IGðJCPÞ ¼ 1þð1þ−ÞZc mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 3721.9 1 Zcð3900Þ 3887.2� 2.3 4.24
2 4156.4 2 Zcð4200Þ 4196þ35

−32 0.94
3 4513.2 3 Zcð4430Þ 4478þ15

−18 0.78

Δ ¼ 7 and m̄Hybrid Meson Gluonic excitation state

α ¼ 0.863 and κ ¼ 11649 MeV IGðJCPÞ ¼ 1þð1þ−ÞZB mesons

n MTh (MeV) n State MExp (MeV) ΔM (%)

1 10346.7 1 ZBð10610Þ 10607.2� 2 2.52
2 10696.6 2 ZBð10650Þ 10652.2� 1.5 0.42
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Following [62], we adopt MG ¼ 700 MeV. Therefore, our
general proposal for the holographic threshold has the form

m̄hybrid meson ¼ Pqmq þ Pq̄mq̄ þ PGmG: ð27Þ

In Table VII we summarize the choices for the Pi
coefficients used to describe the hybrid meson candidates
in the context of the model developed here. With these
holographic thresholds, we can obtain the proper values for
κ and α to fix the nonlinear trajectory. Results are depicted
in the last three panels of the Table VI.
The light and the charmonium were fitted supposing a

single constituent gluon, which is translated in a conformal
dimension fixed as Δ ¼ 6. The RMS error in both cases is
about 1% in the former and 4.4% in the latter. In the case of
the bottomonium hybrids, the best fits were obtained for
two constituent gluons, implying that Δ ¼ 7. The RMS
error, in this case, was near to 2.55%.
It is important to notice that, at holographic level, in this

model constituent gluons are not so relevant for the
definition of the holographic threshold, since their asso-
ciated weight in each of the three cases at hand was almost
near to zero, as we can read from the Table VII.
It is worthy to mention that, as a holographic prediction,

the Zc mesons are better described as a holographic
hadronic molecule (R.M.S near to 2.48%) than a holo-
graphic hybrid meson (R.M.S. near to 4.41%).

VI. DISCUSSIONS AND CONCLUSIONS

In the AdS/QCD model with dilaton, the usual approach
considers quadratic dilatons at large z, because configura-
tion produces linear Regge trajectories. But it is important to
notice that this sort of Regge trajectories is a good descrip-
tion only in the light sector. For this reasonwe propose a new
shape for dilaton field, (namely ϕðzÞ ¼ ðκzÞ2−α), breaking
the conformal invariance and producing trajectories with the
generic form M2

n ¼ aðnþ bÞν. This set of trajectories
reproduce, in a satisfactory form, masses for vector mesons
with different constituent quarks, catching linearity in the
massless quark case and exhibiting how this linearity starts
to cease when constituent quark masses increased.
We consider that α and ν depend on the average of

constituent quark masses for the mesons considered. Also
we proposed a explicit shape for αðm̄Þ and νðm̄Þ in order to

built a model that produce a good spectrum for vector
mesons with different constituents.
Nowadays in literature, it is possible to found some

models AdS/QCD applied to charmonium or bottomonium
[23–27], but spectra are no so good enough in these
models, although other observables (as the melting temper-
ature) have the proper qualitative behavior. Therefore, these
ideas, as we discussed here, can be useful in this kind of
application.
Regarding the chiral symmetry, even though the model

describes the spectra for ϕ and ω mesons, it does not
reproduce a proper chiral symmetry breaking picture, as
most of the static soft wall-like models developed. The
main drawback is the impossibility to distinguish between
the explicit and the spontaneous breaking since the quark
condensate σq and the quark mass mq are not independent.
In the case of the dilaton proposed here, although its UV
behavior is different from the static quadratic one, this
does not guarantee the independence between mq and σq.
The best advances are done in the frame of dynamical AdS/
QCDmodels, as [66,67], or direct modifications of the bulk
vev by changing the bulk mass, as it was done in [68].
In this direction, linear trajectories are associated with

low constituent quark mass, as the results in Tables II and
III are demonstrating. Therefore, we conclude that the soft
wall model is set before the chiral symmetry breaking
scenario. Furthermore, the meson spectra obtained is
degenerate: there is no form to distinguish ρ, ω, and a1
vector mesons the using quadratic dilaton only. It is
necessary to do explicitly the chiral symmetry breaking
by using SU(2) bulk vector fields and a tachyonic vev to
address this, even though soft wall-like models do not
represent a QCD-like chiral symmetry breaking. See for
example the analysis done in [69].
By introducing the ν exponent in the radial Regge

trajectory we can explore the effect of the quark mass.
As it was pointed out in [16–18], increasing the quark mass
should deviate the trajectory from the linear case. In this
holographic approach, such behavior was observed.
Therefore, despite the fact we do not deal with the meson
structure directly, we can capture information about it in the
nonlinearity behavior. Translated to the bulk side, this
information is captured in the α parameter, which measures
the deviation from the quadratic form in the dilaton. As we
observed in Fig. 3, increasing constituent quark mass
implies a strong deviation from the quadratic dilaton.
In the case of the energy scale κ, it is important to notice

that its value is near to the constituent quark mass for each
meson considered. Furthermore, in linear soft wall model,
κ defines thevectorRegge slope (string tension), i.e.,4κ2 ¼ a,
where the linear trajectory is defined as M2 ¼ aðnþ bÞ.
In the holographic nonlinear case, where the trajectory is
defined as M2¼aðnþbÞν, the energy scale κ also increases
with the quark mass, indicating that it is connected indirectly
with the meson structure. In Tables III, IV, and V we see that

TABLE VII. Summary of coefficients fixed for each hybrid
meson candidate. In the case of Zb we are considering two flux
tubes instead one.

Vector hybrid
meson Pq Pq̄ PG

π1 0.497 0.497 6 × 10−3

Zc 0.49 0.49 0.02
Zb 0.495 0.495 0.01
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each κ increaseswith the constituent quarkmass. In the case of
the nonlinear trajectory, a should be proportional to κ2, and
also carries information about the string tension and the quark
constituent mass in each mesonic family. Recall that in this
case, the meson is modeled as the usual flux tube with two
massive quarks at the ends, thus it is expected that the quark
mass information should appear in the slope. Thus, the factor
a in the nonlinear trajectory should be a function of α and ν.
Moreover, from the data reported in Table III we can infer the
fitted form for a as:

aðκ2; α; νÞ ¼ ð11.304e−0.4141α − 7.3054e−0.00348νÞκ2; ð28Þ

where the correlation coefficient for this fit is R2 ¼ 1.
Notice that in the case where α ¼ 0 (implying ν ¼ 0) and
κ ¼ 388 MeV, we obtain a ¼ 0.6022 which is consistent
with the usual soft wall model [13]. This expression could be
useful to construct general nonlinear trajectories just by using
as inputs the parameters κ, α, and ν.
It is worthy to say that this dilaton is not capturing the

expected low z behavior in the eigenmodes. Notice that the
meson ground states are not well fitted in the light sector as
long as the ν exponent. This can be inferred by the fact that
trajectories are not exactly fitted. Therefore, this proposed
dilaton should be interpolated with other low z proposals,
as [26,70]. But, on the other hand, it was possible to fit
heavy light vector mesons and to test, at holographic level,
possible candidates to be non-qq̄ states, just by considering
how the hadronic operators at the boundary change their
conformal dimension, that has information about the meson
constituent indirectly, altogether with the holographic
threshold m̄, that parametrizes the structure of the state
at hand. The change in the conformal dimension is
translated into a modification of the bulk mass term that
appears in the holographic potential (17), while m̄ fixes in
the calibration curves (13) and (12) the values for κ and α.
The same methodology was used to do the holographic fit
for the heavy-light mesons and the K� vector states.
As a final comment is important to recall the predict-

ability of the holographic picture discussed in this

manuscript. A good criterion is given by the RMS error
for estimating N quantities using Np parameters, that can
be defined as

δRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N − Np

XN
i

�
δOi

Oi

�vuut ; ð29Þ

where Oi is a given experimental measure with δOi
defining the deviation of the theoretical value from the
experimental one. Although the ground states for light
mesons were not well fitted (errors near to 20%), the RMS
for the model with 27 mesonic states (we do not consider
the non-qq̄ states since they are holographic predictions)
with fifteen holographic parameters listed as follows:

(i) Two parameters, κ and α, for each isovector meson
family, i.e., ω, ϕ, J=Ψ, and ϒ, implying eight in
total.

(ii) One threshold mass m̄ for the vector kaon K�
system.

(iii) Six threshold masses m̄ for each heavy-light vector
meson considered, i.e., D�0, Dþ0, D�0

s , B�, B�0,
and B0�

s .
This parameter fixing implies an RMS error near to

12.61%. It is important to remark that we fit four families of
isovector mesons, with constituent masses going from the
light to the heavy sector. Also, we have fitted heavy-light
resonances with parameters interpolated from the isovector
matches for κ and α, namely Eqs. (13) and (12), making the
model self-consistent. We have also approached the spectra
of some non-qq̄ candidates with the same interpolations.
Therefore an RMS error around 12% is reasonable for this
model, considering the simplicity of the proposal done and
the complexity of the QCD physics at a strong regime.
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