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Based on the observation that the exterior space-times of Schwarzschild-type solutions allow two
symmetric slicings, a static spherically symmetric one and a timelike homogeneous one, modifications of
gravitational dynamics suggested by symmetry-reduced models of quantum cosmology can be used to
derive corresponding modified spherically symmetric equations. Generally covariant theories are much
more restricted in spherical symmetry compared with homogeneous slicings, given by 1þ 1-dimensional
dilaton models if they are local. As shown here, modifications used in loop quantum cosmology do not
have a corresponding covariant spherically symmetric theory. Models of loop quantum cosmology
therefore violate general covariance in the form of slicing independence. Only a generalized form of
covariance with a non-Riemannian geometry could consistently describe space-time in models of loop
quantum gravity.

DOI: 10.1103/PhysRevD.102.046006

I. INTRODUCTION

Models of black holes in quantum gravity are valuable
not only because their strong-field effects draw consider-
able physical interest, but also because they are understood
as a consequence of nontrivial dynamical properties of
space-time. Given the incomplete status of all approaches
to quantum gravity, the latter connection would, at present,
seem even more important than the former. In this sense,
black-hole models in quantum gravity have a clear advan-
tage over models of quantum cosmology because basic
cosmological solutions work with simpler space-times
characterized by exact or perturbative spatial homogeneity
with a preferred background time direction.
The connection between black holes and space-time

structure is particularly relevant in canonical, background-
independent approaches, such as loop quantum gravity. In
such approaches, the structure of space-time is a derived
concept and not presupposed. Explorations in a physically
motivated context can therefore provide important insights
into the viability of any specific proposal. Even if implied
quantum-gravity effects in black holes may not be realis-
tically observable, studying them in detail can often
strengthen an analysis of purely mathematical consistency
conditions on the theory.
An important step in this direction had recently been

undertaken in Ref. [1]. Although the initial analysis was
quickly found to be invalid—owing to an incorrect treat-
ment of phase-space-dependent quantum corrections [2–6],
a failure to recognize subtleties in the asymptotic structure
[7], and unacceptable long-term effects in astrophysically
relevant solutions [8]—it was based on an interesting
suggestion that leads to a new and independent test of

space-time structure in models of loop quantum gravity [9].
Here, we elaborate on this application and use it to
demonstrate a no-go result that implies the noncovariance
of any model of loop quantum gravity, if covariance is
understood in the classical way related to slicing inde-
pendence in Riemannian geometry.

II. SYMMETRIES IN SCHWARZSCHILD
SPACE-TIME

The construction utilized in Ref. [1] is an application of
minisuperspace results, originally derived for models of
quantum cosmology, to a black-hole context. The most
common example of this form is based on the well-known
fact that the Schwarzschild solution,

ds2 ¼ −
�
1 −

2m
r

�
dt2 þ dr2

1 − 2m=r

þ r2ðdϑ2 þ sin2 ϑdφ2Þ; ð1Þ

has a homogeneous spatial slicing in the interior, where
r < RS ¼ 2m is less than the Schwarzschild radius. In this
region, r can serve as a time coordinate because the
restricted line element ds2jr¼const > 0 is positive between
any two distinct points at the same value of r. The r
dependence of the coefficients in Eq. (1) therefore implies
time dependence in this region, but not spatial inhomoge-
neity. The resulting homogeneous dynamics is described by
the Kantowski-Sachs model [10].
A quantum scenario of the Schwarzschild interior can

therefore be constructed by importing quantum effects
found in anisotropic minisuperspace models from quantum
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cosmology. Of major interest to Ref. [1] was the possibility
that a bounce in cosmological models, as sometimes claimed
in models of loop quantum cosmology, might then be
reinterpreted as a nonsingular transition through the black-
hole interior. Note, however, that most bounce claims in loop
quantum cosmology are based on oversimplifiedmodels that
do not capture the correct physics near a spacelike singularity
[11–13]. Moreover, such models are often in violation of
general covariance [14], a conclusion that will be strength-
ened by our derivations below. Specific predictions made in
this context, in particular of a quantitative nature as in the
example of the ratio of masses before and after the bounce,
therefore cannot be considered reliable.
Nevertheless, it is justified to assume themodified dynam-

ics implied by a quantum version of the Kantowski-Sachs
model as a possible substitute for the dynamics of general
relativity in the Schwarzschild interior, and then to evaluate
potential implications on qualitative features of the resulting
model. An open question even in such less ambitious studies
has been how to connect the Schwarzschild interior to a
possible inhomogeneous exterior geometry. Such a connec-
tion has become possible by the useful suggestion of Ref. [1]
to consider homogeneous timelike slicings in the exterior,
given by constant r in Eq. (1) even if r > RS, and apply
modifications proposed inminisuperspacemodels.Using this
method, the authors of Ref. [1] constructed a modified line
element that could possibly describe the exterior geometry of
a quantum-modified, nonsingular Schwarzschild black hole
(or its Kruskal extension).
In order to do so, Ref. [1] assumed that the modified

exterior is subject to the same space-time structure as the
classical theory, given by Riemannian geometry and
described by a line element such as Eq. (1) but with a
modified r dependence in its coefficients. However, in
background-independent models of quantum gravity, it is
not guaranteed that the structure of space-time as seen in
the classical theory remains intact. Space-time structure
should rather be derived from the theory, which would then
show whether a line element of the form ds2 ¼ gabdxadxb,
restricted to spherical symmetry in the present context, can
indeed describe the modified quantum dynamics. In
canonical approaches to quantum gravity, such as loop
quantum gravity used in Ref. [1], the task is to show that
gauge transformations acting on components of gab,
generated by modified constraints that generate the modi-
fied dynamics used to obtain any kind of nonsingular
homogeneous model, are consistent with standard coor-
dinate transformations of dxa assumed in the definition of a
line element. We will show that this is not the case for
modifications suggested by loop quantum cosmology.

III. DYNAMICAL MODELS

For our demonstration, we will need the relevant
equations that describe the classical and modified dynamics
of the slicings involved in the construction of Ref. [1].

We present these equations and our new derivations in a
form based on metric variables, which are more common
and therefore more easily accessible than the triad variables
used in models of loop quantum gravity. Our general result
does not depend on the choice of variables because it is
invariant under canonical transformations. For an explicit
derivation in triad variables, see Ref. [9].

A. Spherical symmetry and interior geometry

We begin with the generic form of line elements subject
to the symmetries of Kantowski-Sachs models:

ds2¼−NðtÞ2dt2þaðtÞ2dx2þbðtÞ2ðdϑ2þ sin2ϑdφ2Þ ð2Þ

with three free functions, N, a and b, depending on
time. Such a line element can be used to describe the
spatially homogeneous Schwarzschild interior. Because
the line element is also spherically symmetric, it is of
the general form

ds2 ¼ −Nðt; xÞ2dt2 þ Lðt; xÞ2ðdxþMðt; xÞdtÞ2
þ Sðt; xÞ2ðdϑ2 þ sin2 ϑdφ2Þ; ð3Þ

specialized to r-independent coefficients as well as vanish-
ing shift, M ¼ 0.
Since we will use spherically symmetric models later

on, we quote the dynamical equations implied for the
coefficients of Eq. (3) by a local, generally covariant
theory in which a line element of this form would indeed
correctly describe the symmetries of solutions. In the 1þ 1-
dimensional context in which spherically symmetric mod-
els are placed, it is well known that this set of theories is
given by dilaton-gravity models [15–17] in which, up to
field redefinitions, only a specific set of functions, includ-
ing the dilaton potential VðSÞ, can be varied while all other
terms in an action or Hamiltonian constraint are fully
determined by covariance. The equivalence of the gener-
alized dilaton models introduced in Ref. [17] with two-
dimensional Horndeski theories [18], and therefore with the
most general two-dimensional local scalar-tensor theory
with second-order field equations, has recently been
demonstrated in Ref. [19]. This general class of theories
also includes Palatini-fðRÞ models [20] through their
equivalence with scalar-tensor theories with a nondynam-
ical scalar field [21].
The action of any such theory can be written as

S½g;ϕ� ¼ 1

16πG

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðξðϕÞRþ kðϕ; XÞ

þ Cðϕ; XÞ∇aϕ∇bϕ∇a∇bϕÞ ð4Þ

with three free functions, ξðϕÞ, kðϕ; XÞ and Cðϕ; XÞ of the
scalar field ϕ and
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X ¼ −
1

2
gab∇aϕ∇bϕ: ð5Þ

As a parametrization of the most general second-order
theories in two dimensions, the three functions ξðϕÞ,
kðϕ; XÞ and Cðϕ; XÞ are not independent if field redefini-
tions of ϕ and gab are allowed. For instance, ξðϕÞ can be
mapped to one by a suitable ϕ-dependent conformal
transformation of gab, adjusting also kðϕ; XÞ. This ambi-
guity will not concern us here. It is only important that for
any local generally covariant theory for a two-dimensional
metric and a scalar field with second-order field equations
there is a choice of ξðϕÞ, kðϕ; XÞ and Cðϕ; XÞ such that the
action is of the form (4).
The canonical formulation of Eq. (4) in this general form

(and without fixing the gauge) is rather involved because it
requires inversions of some of the free functions or their
derivatives. Since the models under consideration here are
canonical, we will therefore begin with a restricted class of
spherically symmetric theories in which, compared with
Eq. (4), we have ξ ¼ 1, C ¼ 0 and k linear in X. That is, we
will first consider minimally coupled scalar-tensor theories
with quadratic kinetic terms. In a second step, we will then
show that our result does not depend on field redefinitions
that change ξðϕÞ, or on an introduction of nontrivial k
and C.
The most general covariant theory under these condi-

tions can be derived directly at the canonical level; see
Refs. [22–24] for explicit derivations. This dynamics tells
us that, up to canonical transformations, the momenta
canonically conjugate to S and L, respectively, are given by

pS ¼ −
1

N

�∂ðSLÞ
∂t −

∂ðMSLÞ
∂x

�
; ð6Þ

pL ¼ −
S
N

�∂S
∂t −M

∂S
∂x

�
: ð7Þ

The Hamiltonian constraint

Hsph½N� ¼
Z

dxN

�
−
pSpL

S
þ Lp2

L

2S2
þ S
L
∂2S
∂x2 −

S
L2

∂S
∂x

∂L
∂x

þ 1

2L

�∂S
∂x

�
2

þ 1

4
LSVðSÞ

�
ð8Þ

and diffeomorphism constraint

Dsph½M� ¼
Z

dxM

�
pS

∂S
∂x − L

∂pL

∂x
�

ð9Þ

then generate the equations of motion

1

N
∂pS

∂t ¼ −
pSpL

S2
þ Lp2

L

S3
−
1

L
∂2S
∂x2 −

1

LN
∂N
∂x

∂S
∂x

þ 1

L2N
∂L
∂x

∂ðNSÞ
∂x −

S
LN

∂2N
∂x2

−
L
4

dðSVðSÞÞ
dS

þ ∂ðMpSÞ
∂x ð10Þ

and

1

N
∂pL

∂t ¼ −
p2
L

2S2
−

S
NL2

∂S
∂x

∂N
∂x −

1

2L2

�∂S
∂x

�
2

−
1

4
SVðSÞ þM

∂pL

∂x ð11Þ

while equations for ∂S=∂t and ∂L=∂t follow from the
Eq. (6) for the momenta. For spherically symmetric general
relativity, the dilaton potential is given by VðSÞ ¼ −2=S.
Since Kantowski-Sachs models are spherically symmet-

ric, we can derive the momenta, constraints, and equations
of motion of Eq. (2) by specializing the equations of
spherical symmetry, also usingM ¼ 0 and x independence.
We obtain the momenta

pa ¼ −
b
N
∂b
∂t ; pb ¼ −

1

N
∂ðabÞ
∂t ; ð12Þ

with the Hamiltonian constraint

Hhom½N� ¼ N
�
−
papb

b
þ ap2

a

2b2
−
a
2

�
: ð13Þ

It implies the equations of motion

da
dt

¼ ∂Hhom½N�
∂pa

¼ N

�
−
pb

b
þ apa

b2

�
; ð14Þ

db
dt

¼ ∂Hhom½N�
∂pb

¼ −N
pa

b
; ð15Þ

dpa

dt
¼ −

∂Hhom½N�
∂a ¼ 1

2
N

�
1 −

p2
a

b2

�
; ð16Þ

dpb

dt
¼ −

∂Hhom½N�
∂b ¼ −N

�
papb

b2
−
ap2

a

b3

�
: ð17Þ

B. Timelike homogeneity

In the Schwarzschild exterior, r > RS, slices of constant
r are still homogeneous but timelike. The resulting canoni-
cal relationships can be derived from the Kantowski-Sachs
equations by a complex canonical transformation from a,
pa and N to

A ¼ ia; pA ¼ −ipa; n ¼ iN ð18Þ
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while b and pb remain unchanged. The line element (2)
then takes the form

ds2¼ nðtÞ2dt2−AðtÞ2dx2þbðtÞ2ðdϑ2þ sin2ϑdφ2Þ ð19Þ

in which slices of constant t are timelike. This line element
represents the symmetry of the exterior Schwarzschild
solution, where x would be the Schwarzschild time coor-
dinate and t the Schwarzschild radial coordinate.
We will derive the dynamics of Eq. (19) in a generalized

form that takes into account possible modifications from
loop quantum cosmology, applied to this homogeneous
model. These modifications are subject to a large number
of quantization ambiguities. Our result, however, will
be insensitive to ambiguities because it holds for any
Hamiltonian constraint

Htimelike½n� ¼ n

�
−
pApb

b
þ Ap2

A

2b2
þ A

2
þ δhðA; b; pA; pbÞ

�

ð20Þ

with a nonlinear function hðA; b; pA; pbÞ of the canonical
variables, multiplied by a parameter δ that vanishes in the
classical limit. (In an explicit version, both δ and h would
be obtained from so-called holonomy modifications of loop
quantum cosmology, which always imply a nonlinear and
even nonpolynomial h.) For δ ¼ 0, the classical terms in
Eq. (20) are derived by applying the complex canonical
transformation (18) to Eq. (13).
While A and b are still defined geometrically by their

appearance in the line element (19), the new term δh in
Eq. (20) modifies the relationship between momenta and
time derivatives of A and b. The previous equations (14)
and (15) are replaced by

dA
dt

¼ ∂Htimelike½n�
∂pA

¼ n

�
−
pb

b
þ ApA

b2
þ δ

∂h
∂pA

�
; ð21Þ

db
dt

¼ ∂Htimelike½n�
∂pb

¼ n

�
−
pA

b
þ δ

∂h
∂pb

�
: ð22Þ

Deriving the momenta requires an inversion of these
equations, which is now nontrivial unless h is a low-order
polynomial in pA and pb. For our purposes, however, it is
sufficient to invert these equations perturbatively in δ. Since
our aim is to show that no modifications of this form are
compatible with slicing independence, and since an effec-
tive theory parametrized by some δ is covariant if and only
if it is covariant order by order in δ, a perturbative treatment
to leading order in δ suffices to show that the theory violates
covariance. To first order in δ, we then have the simple
inversion

pA ¼ −
b
n
db
dt

þ δb
∂h
∂pb

; ð23Þ

pb ¼ −
1

n

�
b
dA
dt

þ A
db
dt

�
þ δ

�
A

∂h
∂pb

þ b
∂h
∂pA

�
ð24Þ

of the previous equations. We have not explicitly replaced
the appearance of pA and pb in δ terms on the right-hand
sides. To first order in δ, these appearances merely
represent the classical form of the momenta.
In terms of time derivatives, the modified Hamiltonian

therefore equals

Htimelike½n� ¼ −n
�
b
n2

dA
dt

db
dt

þ 1

2
A
�

1

N2

�
db
dt

�
2

− 1

��

þ nδ

�
−pA

∂h
∂pA

− pb
∂h
∂pb

þ h

�
: ð25Þ

It is modified by a δ term if and only if h is nonlinear in
momenta which, to repeat, is always the case in models of
loop quantum gravity. Our main result will depend only on
this general feature.

C. Testing slicing independence

If space-time is of classical Riemannian form, the
condition of homogeneity in a timelike direction is
equivalent to the existence of a static solution in a spacelike
slicing. The direction in which the timelike slicing
“evolves” then corresponds to a direction of inhomogeneity
in the spacelike slicing. In the present context, both slicings
share rotational symmetry implied by the angle-dependent
spherical line element. For this statement, we do not need
complete slices, and our derivations will therefore apply to
local properties of space-time. They are insensitive to any
renormalization procedures that may have to be applied to
parameters in h or δ in an effective theory if fields are
evolved over a wide range of scales.
The modification of Eq. (25) by δ terms does not change

the symmetric nature in the geometrical interpretation
of the solution as the dynamics of a timelike slicing of
space-time. If it belongs to a generally covariant, slicing-
independent theory, it must therefore allow an equivalent
description as a static solution in a spherically symmetric
spacelike slicing. The Hamiltonian (25) is based on a
canonical formulation with the same phase space as the
classical theory; therefore, it is a homogeneous model of a
local gravitational theory in metric variables. Nonlocality
would imply additional degrees of freedom through aux-
iliary fields that describe nonlocal terms, or higher time
derivatives in a derivative expansion, but no such fields are
implied by holonomy modifications in homogeneous
models. Therefore, the corresponding spherically symmet-
ric theory should be local if covariance is realized. Here, it
is important that we are not just looking for an embedding
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of a single solution or a class of solutions in a covariant
theory, but rather have to make sure that the complete
canonical description, including the phase-space
structure, can be realized in a generally covariant theory.
Similarly, the number of phase-space degrees of freedom
in holonomy-modified homogeneous models, with a
single momentum per spatial metric or triad component,
implies that we are looking for a theory with second-order
field equations. No higher-derivative terms are therefore
allowed, even if they are local.
Since all local, generally covariant theories with one

inhomogeneous spatial dimension and second-order field
equations are, up to field redefinitions, given by 1þ 1-
dimensional dilaton-gravity models of the form (4), where
the scalar ϕ is now given by the function S which does
transform like a scalar under two-dimensional coordinate
transformations of t and x, there must be functions ξðSÞ,
kðS; XÞ and CðS; XÞ such that all solutions of the dynamics
generated by Eq. (25) can be mapped to solutions of this
generalized dilaton-gravity theory. This condition allows us
to test whether models of loop quantum cosmology with
nonlinear δ terms in Eq. (25) can be consistent with slicing
independence in a generally covariant theory. As already
mentioned, we will first evaluate this condition in the
restricted setting in which a single dilaton potential VðSÞ in
Eq. (8) characterizes a given model.
In order to determine a possible mapping that could

relate the two slicings, we compare the homogeneous line
element (19) on timelike slices with a static spherically
symmetric one,

ds2¼−KðXÞ2dT2þLðXÞ2dX2þSðXÞ2ðdϑ2þ sin2ϑdφ2Þ:
ð26Þ

Staticity restricts the dependence of the metric components
to X, while it implies zero shift vector. This comparison
uniquely determines the candidate mapping

X ¼ t; T ¼ x ð27Þ

for coordinates, combined with

A ¼ K; b ¼ S; n ¼ L ð28Þ

for metric components.
Solutions in the homogeneous slicing must be such that

the Hamiltonian constraint Htimelike½n� ¼ 0 is satisfied. In a
covariant theory, the same equation must hold true after
applying the mapping (28), but it need not correspond to
the spherically symmetric Hamiltonian constraint. (In fact,
it does not, as we will see soon.) For covariance, it would be
sufficient if it were a combination of all the equations
available in the spherically symmetric slicing, including the
staticity condition in addition to the general spherically
symmetric constraints and equations of motion.

An explicit transformation ofHtimelike½n� ¼ 0 to a spheri-
cally symmetric model, using Eq. (28) together with a
substitution of t derivatives by X derivatives, shows which
spherically symmetric equations should be referred to.
Transforming Htimelike½n�, we obtain the expression

Htimelike½L� ¼ −
S
L
dK
dX

dS
dX

−
1

2
KL

�
1

L2

�
dS
dX

�
2

− 1

�

þ Lδ
�
−pA

∂h
∂pA

− pb
∂h
∂pb

þ h
�

ð29Þ

where

pA ¼ −
S
L
dS
dX

þOðδÞ; ð30Þ

pb ¼ −
1

L

�
S
dK
dX

þ K
dS
dX

�
þOðδÞ ð31Þ

are implied by Eqs. (23) and (24). [We do not need to replace
these expressions explicitly in theδ termofEq. (29), allowing
us to work with a more compact constraint.]
In the form (29), the constraint of the timelike slicing

clearly cannot directly correspond to the spherically sym-
metric Hamiltonian constraint because it depends on the
lapse function K of the spherically symmetric slicing not
just throughK itself but also through its derivative, dK=dX.
An additional condition is therefore required if Htimelike½L�
is to vanish for all solutions in a static spherically
symmetric model. It turns out that staticity can be used
to eliminate the derivative dK=dX in favor of K itself and
the remaining fields, L and S and their derivatives. In
particular, evaluating Eq. (11) with pL ¼ 0 and M ¼ 0,
implied by staticity, (as well as N ¼ K) leads to the
differential equation

0 ¼ −
S

KL2

dS
dX

dK
dX

−
1

2L2

�
dS
dX

�
2

−
1

4
SVðSÞ: ð32Þ

[We need only one further condition, and therefore will not
use a second independent equation (10) in the present
context. This equation is more complicated but would give
equivalent results.] Solving this equation algebraically for
dK=dX, we can therefore eliminate this derivative from
Eq. (29), such that

Htimelike½L� ¼
1

2
KL

�
1þ 1

2
SVðSÞ

�
þOðδÞ: ð33Þ

Disregarding δ terms, this expression vanishes in a
spherically symmetric model provided the dilaton potential
indeed belongs to classical spherically symmetric gravity,
VðSÞ ¼ −2=S. Classically, therefore, the Hamiltonian con-
straint equation in the timelike homogeneous slicing
amounts to a combination of the staticity condition and
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a condition on the dilaton potential in the spherically
symmetric slicing. It is independent of the spherically
symmetric Hamiltonian constraint, which rather can be
seen to correspond to one of the equations of motion in the
timelike homogeneous slicing. (Recall that spatial deriva-
tives in the spherically symmetric slicing correspond to
normal derivatives in the timelike homogeneous slicing.)
The equivalence is no longer realized if we include δ

terms of the general form as shown in Eq. (25) with
nonlinear h. In particular, these terms depend on pb which,
following Eq. (31) depends on the lapse function K of a
spherically symmetric slicing. If h is nonlinear in pb, the δ
terms are nonlinear in pb, or nonlinear in K after the
transformation to spherically symmetric variables. After
factoring out a single factor of KL, as in Eq. (33), the
remaining termsHtimelike½L�=ðKLÞ therefore still depend on
K. If the dynamics in this slicing corresponds to a dilaton
model with Hamiltonian (8), Htimelike½L�=ðKLÞ can depend
only on S because the dilaton potential is restricted by the
covariance condition to have only such a dependence.
However, ifHtimelike½L�=ðKLÞ depends onK when δ terms

are included, it cannot just depend on S: while the staticity
condition (32) canbeused to solve forK in termsofS andL, it
requires solving the differential equation; an algebraic sol-
ution for dK=dX as in the classical case is not sufficient. A
solutionK ofEq. (32) depends onS andL nonlocally because
integrations are required. No nonlocal S dependence, and no
dependence on L at all, can be absorbed in a local dilaton
potential VðSÞ. Therefore, there is no local generally covar-
iant theory of the restricted form considered so far, that could
describe a spherically symmetric slicing corresponding to the
timelike homogeneous one which, by construction, is also
local. Any δ term with nonlinear h therefore violates slicing
independence and general covariance.
So far, we have shown that there is no minimally coupled

generally covariant theory quadratic in momenta which
could correspond to the modified dynamics of a timelike
homogeneous slicing. It is not difficult to see that non-
minimal coupling, leading to ξ ≠ 1 in Eq. (4), does not
change the result. Such a theory can always be obtained
from a minimally coupled one by a field redefinition, using
an S-dependent conformal transformation of the two-
dimensional metric. Such a transformation, formulated
canonically, would rescale K and L by S-dependent
functions, such that there would be new terms in the
equations of motion with spatial derivatives of S, but no
new derivative terms of K or L. It is impossible for such
terms to absorb a K dependence in a δ term as mentioned in
the preceding paragraph, or a term nonlocal in L or with an
entire derivative expansion of L if a solution of Eq. (32) for
K is used. Our no-go result therefore extends to non-
minimally coupled scalars. Similarly, allowing for terms
with nonlinear k or nonzero C in Eq. (4) leads, in the static
case which is relevant here, only to terms with additional
spatial derivatives of S or at most first-order derivatives of

L through the Christoffel symbol required in the C term of
Eq. (4). Again, even with the freedom of choosing k or C it
is impossible to absorb the dependence on K or nonlocally
on L that results from a δ term.
Our no-go theorem is therefore complete: there is no

generally covariant spherically symmetric theory that
could have a solution space corresponding to the modified
timelike homogeneous model. Slicing independence is
therefore violated by holonomymodifications in symmetry-
reduced models of loop quantum gravity.

IV. CONCLUSION

We have shown that the model proposed in Ref. [1]
violates general covariance and therefore fails to describe
space-time or black holes. This result has implications
even if one is not interested in black holes but only in
cosmological applications of models of loop quantum
gravity. If such models are sufficiently general, it must
be possible to apply any proposed modification to models
with the symmetries of Kantowski-Sachs space-times,
including those with a timelike homogeneous slicing. If
they belong to a generally covariant theory, it must then be
possible to find a consistent mapping to a static spherically
symmetric slicing. Our results show that this is never the
case for holonomy modifications proposed in models of
loop quantum cosmology. This is our no-go result about
general covariance in this setting. (Our result is consistent
with the observation that all proposed analog actions that
could describe holonomy modifications by higher-curva-
ture terms in isotropic models [25,26], based on mimetic
gravity [27,28], fail to describe related effects in anisotropic
models [29] or for perturbative inhomogeneity [30].)
Such a general violation of covariance might be inter-

preted as ruling out not only a specific model but also the
entire approach, based on loop quantization. Luckily,
however, previous research had already independently
shown a possible way out of this damning conclusion. It
is possible to evade our no-go result if one takes into
account the possibility of generalized space-time structures
that may be considered covariant in the sense that the same
number of gauge transformations is realized as in the
classical theory, but in a way that no longer corresponds to
slicing independence in Riemannian geometry [22,31]. In
fact, the constructions of Ref. [1] implicitly assumed that
space-time, even after modifying dynamical equations
originally derived from general relativity, retains its
Riemannian structure and can be described by line ele-
ments. Our no-go result rules out this implicit assumption,
but it may be evaded if the assumption is relaxed.
It is difficult to describe non-Riemannian space-time

structures in general terms because most of our intuition in
general relativity is built on Riemannian properties.
Nevertheless, in canonical theories, there are systematic
methods that allow one to test whether gauge symmetries
are respected by modifications or quantization, even while
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algebraic relations of the symmetries may be subject to
modifications themselves. General covariance in canonical
gravity is expressed as the condition of anomaly-freedom
of the constraints that generate hypersurface deformations
in space-time, given by the Hamiltonian and diffeomor-
phism constraints. If modified constraints still have closed
Poisson brackets, the theory is anomaly-free and enjoys
the same number of gauge transformations as classical
general relativity, with hypersurface deformations realized
in the classical limit. If this is the case, the theory may be
considered covariant but in a generalized way. The modi-
fied constraints then may no longer generate hypersurface
deformations in space-time, but they do provide a well-
defined set of gauge transformations that allow one to

remove the correct number of spurious degrees of freedom.
Line elements might then be applicable in certain regions of
space-time, after a field redefinition of metric components
that in certain cases can be derived from the consistent
generators of modified hypersurface deformations [32,33].
These constructions are now being investigated [34–36],
but generalized covariance must be better understood
before it is possible to derive complete and reliable models
of black holes in loop quantum gravity.
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