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We construct two reduced quantum theories for the Oppenheimer-Snyder model, respectively
taking the point of view of the comoving and the exterior stationary observer, using affine coherent
states quantization. Investigations of the quantum corrected dynamics reveal that both observers can
see a bounce, although for the exterior observer certain quantization ambiguities have to be chosen
correctly. The minimal radius for this bounce as seen from the stationary observer is then shown to
always be outside of the photon sphere. Possible avenues to lower this minimal radius and reclaim
black holes as an intermediate state in the collapse are discussed. We demonstrate further that
switching between the observers at the level of the quantum theories can be achieved by modifying
the commutation relations.
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I. INTRODUCTION

Singularities are an unavoidable feature of general
relativity, but it is widely believed that they cannot occur
in a full theory of quantum gravity. In the absence of a
complete such theory we have to rely on specialized
models to investigate how singularities could be avoided,
what that means conceptually for the full theory, and
where potential observational windows to it could be. In
this paper we present such a model by quantizing the
prototypical example for gravitational collapse to a black
hole: the Oppenheimer-Snyder (OS) model for spherically
symmetric, homogeneous dust collapse.
Quantization of the OS model has been discussed before

with regard to its spectrum and possible singularity
avoidance [1–5]. Here we want to focus in particular on
quantum corrected dynamics.
In Ref. [6] we have presented a canonical formulation

of the OS model restricted to a flat interior, and in
particular implemented the comoving and the exterior
stationary observers explicitly. In this paper we want to
quantize the OS model in this form, leading to two
different deparametrized quantum theories, one for each
observer. As we have already discussed in Ref. [6], our
investigation of a different collapse model in Ref. [7]
shows that quantum corrections as seen by the comoving
observer will cause the dust cloud to bounce instead of
collapsing to a singularity. Further we have found
indications that from the point of view of the exterior

observer the dust cloud can also bounce. In the following
we want to investigate this in more detail.
These kind of quantum bounces avoiding classical

singularities have in fact emerged in various approaches
to quantum gravity. In addition to the results mentioned
above, in the Wheeler-DeWitt approach null shells have
been shown to bounce as well [8,9]. Similar results for null
shells can also be obtained by using an effective one-loop
action for quantum corrected gravity [10]. Loop quantum
cosmology can yield bounces [11] which have been
discussed in the context of collapse models [12], although
the robustness of these bounces has been called into
question recently [13]. Further there have been investiga-
tions of effective models for bouncing collapse based on the
results above [14–18].
There are many open questions regarding the consis-

tency of bouncing collapse. The most important one is the
lifetime of the temporary black hole produced by the
collapse; in various approaches to bouncing collapse it
has been shown that the transition from collapse to
expansion has a lifetime proportional to the mass of the
dust cloud [19–22]. In general this would lead to extremely
short lived black holes. There are proposals for mechanisms
that could increase this lifetime [20,23] but no consensus
has been reached so far. Related questions concern the
behavior of the horizon during the bounce [8,14,24–27]
and by what mechanism quantum gravitational effects even
propagate to the horizon [26–28]. For a review of bouncing
collapse and all it entails see Ref. [29].
For most of these open questions, particularly for the

lifetime, the point of view of the stationary observer is
especially relevant. This is why we explicitly implement
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that observer here in the quantum theory; we hope to
complement and build on our discussion of the comoving
observer [6,7] and shed a bit more light on the aforemen-
tioned questions in bouncing collapse.
For some of the quantum theories producing bounces

mentioned above the exterior observer is the preferred one,
but this seems to be limited to the cases where null collapse
was investigated. To our knowledge a quantization of a
model for massive collapse from the point of view of the
stationary observer has not been done before.
In addition, having access to two observers with their

quantum theories will allow us to discuss the relationship
between them. With this we can at the very least decide
whether our method of implementing these observers by
switching between them classically and quantizing the
reduced theories is consistent. Further we can investigate
how this switch could be realized within the quantum
theories.
Due to the unusual form of the Hamiltonian for the

stationary observer we apply a quantization method
that might be unfamiliar to the reader: affine coherent
states quantization (ACSQ). Coherent states quantization
schemes rely on the identification of phase space with a
Lie group. With the help of this Lie group one can
construct a family of coherent states by letting a unitary
irreducible representation of it on a Hilbert space act on
some fixed state. Phase space functions are then mapped
to operators on this Hilbert space by inserting them into
the resolution of the identity that the coherent states bring
with them. This allows also more complicated phase
space functions to be paired up with operators, at least
formally. Because the phase space here is a half plane we
choose the affine group acting on the real line as the Lie
group. For a more detailed explanation with some simple
examples we refer the reader to [30–32], or our intro-
duction to the method below.
This quantization scheme has also been used in quantum

cosmology, for example in Refs. [33–36], and quite reliably
seems to replace the singularity by a bounce.
Finally we want to mention that for simplicity we will

restrict ourselves to the flat OS model, as we did in Ref. [6].
A generalization to curved Friedmann interiors would be
interesting, but we do not believe that it will change our
results significantly.
We proceed here as follows. In Sec. II we summarize

the classical considerations from Ref. [6] that lead to the
Hamiltonians we will discuss for the rest of the paper. In
Sec. III we will quickly introduce the uninitiated reader to
affine coherent states quantization, and apply this quanti-
zation scheme to the Hamiltonians relevant for the comov-
ing observer in Sec. IV and the stationary observer in
Sec. V. We will primarily focus on the quantum corrected
dynamics. How the two quantum theories can be related we
discuss in Sec. VI, before we finally conclude in Sec. VII.
In the following we will use units where G ¼ c ¼ 1.

II. CANONICAL FORMULATION OF THE
OS MODEL

Here we will briefly recapitulate the canonical formu-
lation of the OS model developed in Ref. [6]. We started
from a general spherically symmetric spacetime. Following
the usual Arnowitt-Deser-Misner procedure, the Einstein-
Hilbert action for this class of spacetimes can be brought
into canonical form, see Ref. [37]. This involves arbitrarily
foliating the spacetime by spatial hypersurfaces character-
ized by a fiducial coordinate frame with label time t and
radial coordinate r.
We included then into this canonical formulation Brown-

Kuchař dust [38], characterized by the canonical pair of
dust proper time τ and dust density. To implement a
discontinuity in the matter content we followed Ref. [39]
and partially gauge fixed the fiducial coordinate frame such
that the surface of the dust cloud we want to describe is
always at a fixed r ¼ rS, splitting the spacetime into
interior and exterior.
Let us first focus on the exterior, r > rS, where the dust

density vanishes. One can bring the constraints there into a
fully deparametrizable formbypromoting theSchwarzschild
coordinates to phase space variables. This was donewith the
help of a series of canonical transformations developed in
Ref. [37]. The constraints are then the momenta conjugate to
the Schwarzschild coordinates. Both classically and in the
quantum theory this simply tells us that the exterior is exactly
Schwarzschild.
Through the fall-off behavior of the exterior canonical

variables as they approach rS one canmake sure that interior
and exterior are smoothly matched. In particular we chose
those conditions in such a way that the usual matching
between a Friedmann-Lemaître-Robertson-Walker (FLRW)
interior and a Schwarzschild exterior across r ¼ rS, see, e.g.,
Ref. [40], are appropriately reproduced in the canonical
formalism.
Since we have fully deparametrized the exterior at the

classical level, it is clear that the matching in this form will
not hold up through quantization. In fact, it can not even be
guaranteed that at the level of quantum corrections the
matching can be made exact again by allowing a non-
vanishing energy-momentum tensor on the collapsing
body’s surface, as was done, e.g., in Ref. [16]. We will
briefly discuss at the end of this section how this restriction
could be lifted in future work.
In the interior, r < rS, where the dust density does not

vanish, we imposed a further symmetry-reduction to homo-
geneity. To this end we restricted the dust density to be
homogeneous, and the spacetime metric to be of FLRW
form. This allowed us to integrate out the radial degree of
freedom, giving us essentially a canonical formulation of
Friedmannmodels with dust asmatter, described by the scale
factor a and itsmomentumpa, and the dust proper time τ and
its momentum Pτ. We further identified Pτ as the total mass
of the collapsing body M > 0.
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The Hamiltonian constraint in the interior can then be
expressed in the formH þ Pτ, and is hence deparametrizable
with regard to dust proper time.H therein is our first physical
Hamiltonian. Restricting to flat interiors it is given by

H ¼ −
P2

2R
; ð1Þ

where R ¼ arS is the curvature radius of the dust cloud, and
P ¼ pa=rS its canonical momentum. This Hamiltonian then
describes the dust cloud from the point of view of the
comoving observer.
The Hamiltonian is always negative, but this does not

pose a problem. Classically it can be identified as −M,
hence our Hamiltonian is negative but our notion of energy
is not.
Note that the same Hamiltonian describes the Lemaître-

Tolman-Bondi model for inhomogeneous, spherically sym-
metric dust collapse, when one separates the dust cloud
into a continuum of dust shells. This we have discussed
in Ref. [7], where the above Hamiltonian was quantized
using Dirac’s canonical quantization. Large parts of this
discussion carry over to the OS model, as already men-
tioned in Ref. [6]. For completeness we will also discuss
this Hamiltonian using ACSQ and compare the results
to Ref. [7].
Additionally we promoted the Painlevé-Gullstrand coor-

dinate transformation, which connects comoving time to
Schwarzschild Killing time T, to a canonical transforma-
tion. Thereby we obtain T as a canonical variable in the
interior, given by

T ¼ τ � 2
ffiffiffiffiffiffiffiffi
2Pτ

p � ffiffiffiffi
R

p
−

ffiffiffiffiffi
Pτ

2

r
ln

���� ffiffiffiffi
R

p þ ffiffiffiffiffiffiffiffi
2Pτ

pffiffiffiffi
R

p
−

ffiffiffiffiffiffiffiffi
2Pτ

p
�����:

Further we imposed PT ¼ Pτ to keep the convenient
physical interpretation of this quantity as M. To make
the canonical transformation complete one also needs to
find a new momentum canonically conjugate to R that has a
vanishing Poisson bracket with T. This can be done by
finding an appropriate generating function. The exact form
of this new momentum is of no further importance here,
details can be found in Ref. [6]. For simplicity we will also
call this new momentum P.
The interior Hamiltonian constraint can then be brought

into the form

HT ¼ PT −
R
2

�
tanh2 P

R ; R > 2PT

coth2 P
R ; R < 2PT

: ð2Þ

How the above can be deparametrized with regard to
Killing time will be discussed in Sec. V. The resulting
Hamiltonian will then describe the evolution of the dust
cloud as seen from a stationary exterior observer.

It is straightforward to see that the constraint (2) yields
the expected behavior for the dust cloud. In particular we
want to point out that as the momentum P grows to infinity,
the constraint goes to R ¼ 2PT ¼ 2M: the dust cloud
asymptotically approaches the horizon.
Note that the above cannot be easily adapted to the

Lemaître-Tolman-Bondi model. Switching the observer as
above would apply to its outermost dust shell, but it is
unclear how one would extend this to the other shells, since
the Painlevé-Gullstrand coordinate transformation only
applies up to the dust cloud’s surface.
In summary we want to say that this setup to describe

dust collapse canonically is convenient due its simplicity,
but this simplicity comes with restrictions on the model.
For the remainder of this section we want examine how one
could go beyond some of these restrictions.
Firstly we want to discuss how our efforts could be

adapted to nonflat interiors. Up to the Hamiltonian for the
comoving observer such a generalization is straightfor-
ward, it simply adds a potential term linear in R to Eq. (2),
with its sign determined by the interior’s curvature.
It is when switching observers where the restriction to

flat interiors simplifies matters considerably. The comoving
time from the Painlevé-Gullstrand transformation describes
comoving observers that start with zero velocity at infinity.
Hence it can only be used for the flat case, where this initial
condition is applicable. Dust clouds described by positively
or negatively curved FLRW line elements fulfill instead
other such conditions: the positive curvature case starts
collapsing with zero velocity from a finite radius, and the
negative curvature case has a nonzero velocity everywhere.
Coordinates that are applicable to these initial conditions

are available, see Ref. [41] for the negative curvature case
and Ref. [42] for the positive curvature case. Especially the
latter requires some additional care since it is only valid up
to the initial radius of the collapsing body and would need
to be extended beyond this region for our purposes. For
simplicity we thus restricted ourselves to flat interiors.
Further restrictions are that the exterior is not allowed

to differ from Schwarzschild, and that the interior is always
homogeneous. In Ref. [6] we have already discussed indi-
cations that homogeneity could necessarily break near
the classical singularity. It seems to us that the most fruitful
avenue for discussing these questions is to emulate the
quantum corrected dynamics of the interior that we will
derive here with an effective matter contribution. On the
one hand, one can then investigate what exterior can be
matched to it, as, e.g., done in Refs. [14,16–18]. On
the other hand, one can implement inhomogeneity either
perturbatively or by letting every dust shell in the cloud
evolve separately, as discussed in Ref. [7]. These consid-
erations are outside of the scope of the present efforts.

III. AFFINE COHERENT STATES QUANTIZATION

Coherent states can be defined with the help of a Lie
group by letting a unitary irreducible representation of it on
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some Hilbert space act on an arbitrary state from that space
[43]. In coherent states quantization one can then use these
coherent states to quantize a classical canonical theory by
identifying the classical phase space with this Lie group.
ACSQ is a coherent states quantization scheme for the

Lie group being the affine group, and below we give a quick
introduction to it. More details can be found, e.g., in
Refs. [30–32] and references therein.
We start from a canonical theory whose phase space is

the half plane: One canonical variable R is restricted to the
positive half line, and its conjugate momentum P takes
values from all the reals. This phase space can be identified
with the affine group of the real line, acting on y ∈ R as

ðP;RÞ · y ¼ y
R
þ P:

Note that this identification of the phase space with the
affine group is highly ambiguous, and different choices
lead to unitarily inequivalent quantum theories [44]. We
will make use of this ambiguity later, but for now we stick
to the one given above. It has the advantage of behaving
similarly to Dirac’s prescription for canonical quantization,
as we will see below.
One can let this group act on the Hilbert space

H ¼ L2ðRþ; dxÞ by using the representation

UðP; RÞ · ψðxÞ ¼ e
i
ℏPxffiffiffiffi
R

p ψ

�
x
R

�
:

Affine coherent states (ACS) can then be constructed as
jP;Ri ¼ UðP;RÞjΦi, where initially the so-called fiducial
vector jΦi is a normalized element of the Hilbert space,
fixed but arbitrary. Later more conditions on jΦi will be
implemented as needed, such that certain numerical factors
emerging from the quantum theory are finite.
Choosing the fiducial vector can be seen as a quantiza-

tion ambiguity in ACSQ, roughly corresponding to the
factor ordering problem in Dirac’s canonical quantization,
as we will see later. In practice one usually considers
a whole family of fiducial vectors to see how different
choices impact the quantum theory.
With the help of the ACS one can now construct a

resolution of the identity on the Hilbert space. To this end
we need in addition to the ACS a measure on phase space
invariant under the action of the affine group,

dR0dP0 ¼ dRdP; ðP0; R0Þ ¼ ðπ; ρÞðP;RÞ:

This measure is left invariant and allows us to write

1 ¼ 1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dPjP;RihP;Rj; ð3Þ

where we define

cΦα ¼
Z

∞

0

dx
x2þα jΦðxÞj2:

Readers can convince themselves that this is indeed a
resolution of the identity by confirming that it commutes
with the irreducible representation UðP;RÞ. By Schur’s
lemma it then has to be at least a multiple of the identity.
For a complete proof of (3) see Ref. [32].
In order for cΦ−1 to be finite the first additional condition

on Φ presents itself: Φ has to be square-integrable with
regard to the measure x−1dx.
The quantization procedure now builds on (3). We assign

functions fðP; RÞ on phase space to operators acting on the
Hilbert space by

f ↦ f̂ ¼ 1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dPfðP; RÞjP;RihP;Rj:

The operators constructed in this way are automatically
symmetric, and if the function f is at least semibounded then
f̂ even has a self-adjoint extension in the Friedrich extension
of the quadratic form defined as f̃ðϕ;ψÞ ¼ hϕjf̂jψi. For
details see Ref. [30] and references therein.
As an example, consider how R̂, P̂ and the dilation D̂,

where D ¼ RP, act:

R̂ψðxÞ ¼ cΦ0
cΦ−1

xψðxÞ;

P̂ψðxÞ ¼ −iℏψðxÞ0 − iℏγ
ψðxÞ
x

;

D̂ψðxÞ ¼ −iℏ
cΦ0
cΦ−1

xψðxÞ0 − iℏλψðxÞ;

where γ and λ are constants that depend on the fiducial
vector. For details on the derivation see the Appendix A.
For real fiducial vectors γ vanishes and λ takes the value
cΦ0 =2c

Φ
−1, and the operators associated with position,

momentum and dilation match those from Dirac quantiza-
tion, aside from numerical factors. This direct correspon-
dence between the two quantization schemes will not hold
for more complicated phase space functions, as we will
see later.
Because the momentum operator matches its counterpart

from Dirac quantization it cannot be made self-adjoint on
the half line, and is thus not strictly speaking an observable.
This is why we also explicitly consider the dilation here,
which does not have that problem.
The canonical and affine commutation relations are also

intact, regardless of ΦðxÞ being real,

½R̂; P̂� ¼ iℏ
cΦ0
cΦ−1

;

½R̂; D̂� ¼ iℏ
cΦ0
cΦ−1

R̂;
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aside from the same numerical factor depending on jΦi as
above. This factor can be made to disappear by a conven-
ient choice of jΦi, or simply absorbed by a reparametriza-
tion of R in the affine group.
The last concept that we will need in the following is the

notion of the lower symbol of a phase-space function. It is
the expectation value of the operator associated with this
function with regard to ACS,

f̌ ¼ hP;Rjf̂jP; Ri

¼ 1

2πℏcΦ−1

Z
∞

0

dR0
Z

∞

−∞
dP0fðP0; R0ÞjhP0; R0jP;Rij2:

Consider once again as an example the lower symbols of
position and momentum,

Ř ¼ cΦ−3c
Φ
0

cΦ−1
R;

P̌ ¼ P;

Ď ¼ D − iℏα;

where details can once again be found in Appendix A.
Aside from a prefactor and a constant imaginary shift iℏα
in Ď, which vanishes for real fiducial vectors, these lower
symbols then match the original phase space functions
(apart from the rescaling of R we already know from the
commutation relations). As for the operators, this will
generally not be the case for other functions, and the lower
symbols will, e.g., acquire additional terms as compared to
their classical counterpart.
In particular the lower symbol of the Hamiltonian has a

special significance as it is often taken to generate quantum
corrected time evolution in the classical phase space, see,
e.g., Refs. [32,33]. The viewpoint most commonly adopted
seems to be that this quantum corrected sector is not to be
identified within the full quantum theory, but is rather a
theory of its own. This theory can be constructed by taking
the action for full quantum mechanics and restricting the
states that are to be varied to coherent states. Details can be
found in Ref. [45] and references therein.
As we discuss in Appendix B, one can also show that

evolution of the coherent states according to the full
Schrödinger equation implies evolution of their parameters
R and P according to the lower symbol of the Hamiltonian
as an approximation. The accuracy of the approximation
thereby depends on the stability of the coherent states. In
this way one can also obtain the quantum corrected phase
space picture without leaving the full quantum theory. The
difference between the two viewpoints is purely conceptual
and does not have any operational consequences for the
following.
Note that the same phase space picture emerges when

one investigates coherent state propagators using a path
integral approach, see e.g., Refs. [46,47] for a discussion of

this for canonical coherent states. Conceptually this could
be assigned to either of the viewpoints above.
Lastly we want to note that it is often useful to work with

a centered fiducial vector, which means that it fulfills

1 ¼ hΦjx̂jΦi ¼
Z

∞

0

dx xjΦðxÞj2 ¼ cΦ−3

0 ¼ hΦjd̂xjΦi ¼ −iℏ
Z

∞

0

dxΦ�ðxÞ
�
x
∂
∂xþ

1

2

�
ΦðxÞ

The second condition can be realized by choosing a real
fiducial vector. For more details see Ref. [45].

IV. QUANTUM THEORY FOR
THE COMOVING OBSERVER

As recapitulated in Sec. II, the dynamics of the OS model
from the point of view of the comoving observer can be
described by the Hamiltonian

H ¼ −
P2

2R
:

The Hamilton operator in the corresponding quantum
theory accordingly takes the form

Ĥ ¼ 1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dPHðP;RÞjP;RihP;Rj;

and acts on wave functions as

ĤψðxÞ ¼ −
1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dP

Z
∞

0

dy
P2

2R2

× e
i
ℏðx−yÞPΦ

�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼ ℏ2

2cΦ−1

Z
∞

0

dR
R2

Φ
�
x
R

� ∂2

∂x2Φ
�
�
x
R

�
ψðxÞ;

where we have used the identity
R
∞
−∞ dPP2eiðx−yÞP ¼

−2πδ00ðx − yÞ.
For simplicity we will only consider real fiducial vectors.

The Hamiltonian can then be simplified by partial inte-
gration. We understand our assumption that no boundary
terms emerge from these partial integrations as additional
boundary conditions on the fiducial vector. Finally we
arrive at

ĤψðxÞ ¼ ℏ2

2cΦ−1

�
1 − cΦ

0
−4

x3
ψðxÞ − 1

x2
ψ 0ðxÞ þ 1

x
ψ 00ðxÞ

�
¼ ℏ2

2cΦ−1
x−1∓

ffiffiffiffiffi
cΦ

0
−4

p ∂
∂x x

1�2

ffiffiffiffiffi
cΦ

0
−4

p ∂
∂x x

−1∓
ffiffiffiffiffi
cΦ

0
−4

p
ψðxÞ:

It is obvious that the Hamiltonian is the same as the one
obtained from Dirac’s quantization in Ref. [7], apart from
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an irrelevant prefactor, restricted to a specific class of factor
orderings (aþ 2b ¼ 1 in the notation of Ref. [7]). There a
Hilbert space with measure x1−a−2bdx was investigated,
which then matches under the aforementioned constraint
our Hilbert space here. Therefore we suspect that one can
achieve a perfect match between the two approaches by
allowing measures in our Hilbert space different from the
standard one, but this is not necessary for our purpose.
Self-adjoint extensions of the Hamiltonian were dis-

cussed in Ref. [7], as well as solutions to the corresponding
Schrödinger equation. It was further shown that the norm
squared of those solutions behaves toward x ¼ 0 to leading

order as x2þ2

ffiffiffiffiffi
cΦ

0
−4

p
, as long as 4cΦ

0
−4 ≥ 9 or one chooses a

specific self-adjoint extension of the Hamiltonian (θ ¼ π in
the notation of Ref. [7]). Should these conditions not be

fulfilled, the solutions behave instead like x2−2
ffiffiffiffiffi
cΦ

0
−4

p
. Note

that the cases where 2
3

ffiffiffiffiffiffiffi
cΦ

0
−4

q
∈ Z had to be excluded from

the discussion. Interpreting the norm squared of wave
functions as the probability distribution for R in analogy to
Dirac’s canonical quantization, the above shows that the
classical singularity is avoided in the quantum theory when
one either chooses the θ ¼ π self-adjoint extension, or the
fiducial vector such that 4cΦ

0
−4 ≥ 9 or cΦ

0
−4 < 1.

We have further shown in Ref. [7] that the spectrum of
the Hamiltonian above is the negative real line, potentially
with an additional positive eigenvalue. This positive eigen-
value only occurs for some self-adjoint extensions, and its
value strongly depends on this extension and the chosen
factor ordering. We can hence exclude it as unphysical.
Since the Hamiltonian is interpreted as the negative mass of
the dust cloud, as discussed in Sec. II, the energy of the
system is therefore positive definite.
In Ref. [7] we further discussed quantum corrected

dynamics of the system by considering expectation values
of a wave packet. Here we want to compare these results to
the quantum corrected dynamics obtained from the lower
symbol of the Hamiltonian.
Let us find this lower symbol, keeping in mind we have

restricted ourselves to real fiducial vectors:

Ȟ ¼ hP;RjĤjP;Ri

¼ ℏ2

2RcΦ−1

Z
∞

0

dx e−
i
ℏPxΦ

�
x
R

�
×

�
1 − cΦ

0
−4

x3
−

1

x2
∂
∂xþ

1

x
∂2

∂x2
�
e

i
ℏPxΦ

�
x
R

�
¼ −

P2

2R
−
cΦ

0
−1 þ cΦ1 ðcΦ

0
−4 − 1Þ

2cΦ−1

ℏ2

R3
: ð4Þ

Ȟ consists of the classical Hamiltonian and an additional
potential, vanishing in the classical limit ℏ → 0. Note that
for more complicated phase space functions the classical

limit is obtained by also taking a limit in the chosen family
of fiducial vectors, as we will see in Sec. V.
The potential in (4) will always be repulsive. cΦ

0
−4 is

positive and we can rewrite

cΦ
0

−1 − cΦ1 ¼
Z

∞

0

dx
x3

ðΦðxÞ − xΦðxÞ0Þ2 ≥ 0:

In general, this identity holds up to a boundary term due to
partial integration. However, since we have already implic-
itly restricted the behavior of the fiducial vector for x → 0

and x → ∞ by assuming the finiteness of the cΦα ’s appear-
ing above, this boundary term vanishes. It follows that the
numerical factor in front of the effective potential in (4) is
always positive.
In summary we can say that ACS evolve as determined

by an effective Hamiltonian

Ȟ ¼ −
P2

2R
−
ℏ2δ

R3
; ð5Þ

where the factor δ > 0 depends on the choice of fiducial
vector. Note that this Hamiltonian matches the one for
Friedmann models found in Ref. [45] using Klauder’s
enhanced quantization. Further, in Ref. [48] a quantum
corrected Hamilton-Jacobi equation equivalent to (5) was
found from a Born-Oppenheimer approximation on min-
isuperspace, albeit with a slightly different repulsive
potential.
To solve the equations of motion given by (5), we take

into account that the Hamiltonian itself is a constant of
motion, −M with M > 0, and find�

dR
dτ

�
2

¼ 2M
R

−
2ℏ2δ

R4
;

giving the solution

RðτÞ ¼
�
ℏ2δ

M
þ 9M

2
ðτ − τ0Þ2

�1
3

:

Remarkably, this exactly matches the quantum corrected
dust trajectories in Ref. [7]: For large R, the trajectory
reproduces the classical expanding/collapsing trajectories,
which are connected by a bounce replacing the collapse to a
singularity. The minimal radius depends on quantization
ambiguities, here the fiducial vector, and scales with the
energy as M−1

3.
Depending on the factor δ, the dust cloud can tempo-

rarily fall behind its horizon R ¼ 2M and a stage of the
collapse similar to a black hole is reached. As already
mentioned in the introduction, it is important to know how
long this stage lasts. We can estimate this lifetime by

Δτ ¼ τþ − τ−;
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where Rðτ�Þ ¼ 2M. This leads to the expression

Δτ ¼ 8M
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
R0

2M

�
3

s
;

where R0 ¼ Rðτ0Þ. When the minimal radius R0 is sig-
nificantly smaller than the horizon we recover the result
from Ref. [7]: from the point of view of the comoving
observer, the lifetime of the black hole stage is proportional
to the mass of the dust cloud.
Also concerning the quantum corrected trajectory in

momentum space PðτÞ we have the same agreement
between the two approaches. As follows from the
Hamiltonian equations of motion for (5),

P ¼ −R
dR
dτ

¼ −
3M
R

ðτ − τ0Þ:

In conclusion, we can say that the ACSQ of this specific
Hamiltonian quite successfully reproduces the results of the
usual Dirac quantization discussed in Ref. [7]. Finding the
quantum corrected dynamics of the system is even easier in
ACSQ, since one only has to compute the lower symbol of
the Hamiltonian.

V. QUANTUM THEORY FOR THE
STATIONARY OBSERVER

From the point of view of the stationary observer we
have the Hamiltonian constraint

HT ¼ PT −
R
2

�
tanh2 P

R ; R > 2PT

coth2 P
R ; R < 2PT

: ð6Þ

We first want to discuss how we can arrive at a depar-
ametrized quantum theory with regard to T. In the current
form (5), the effective Hamiltonian still depends on PT
through the position of the split between inside and outside
of the horizon. As already noted in Ref. [6], having the
explicit split in the constraint is unnecessary, since the
conditions R < 2PT and R > 2PT are implemented auto-
matically by the constraint itself: On the constraint surface
we have 2PT ¼ R tanh2 P

R < R and respectively on the
inside. We can then identify an effective Hamiltonian,
albeit a multivalued one,

H ¼ −
R
2

�
tanh2 P

R

coth2 P
R

: ð7Þ

It is furthermore convenient to bring the Hamiltonian
into a slightly different form with a simple canonical
transformation: we introduce A ¼ 1

2
R2, proportional to

the surface area of the dust cloud, and its canonical
momentum PA ¼ P=R. The Hamiltonian then takes the
form

H ¼ −
ffiffiffiffi
A
2

r �
tanh2PA

coth2PA

:

If we want to directly quantize this Hamiltonian, we also
have to allow multivalued quantum states, both branches
evolving with respect to a branch of the Hamiltonian
operator. Such a construction has been discussed before
in Ref. [49]. There it has been shown that in such a
multivalued quantum theory unitary time evolution can still
be implemented with boundary conditions on the wave
function at the Hamiltonian’s branching points. Because we
are mainly interested in the quantum corrected dynamics of
the theory, we will not explicitly implement the construc-
tion from Ref. [49], but it would certainly be possible. The
branching points for our Hamiltonian would be at
PA → �∞. Alternatively one can view the following as
a quantization of two completely different systems. As it
turns out, what specific viewpoint is taken does not make
much of a difference.
There are other approaches to quantizing multivalued

Hamiltonians: Adding constraints implementing the veloc-
ities as phase space coordinates, eventually leading to the use
of Dirac brackets, has been used, e.g., in Refs. [50,51].
Alternatively, in Ref. [52] an effective Hamiltonian was
found as a sum of the different branches of the original
multivalued one by considering the path integral. Unfortu-
nately all these methods rely on the multivalued Hamiltonian
emerging from a single-valued Lagrangian, as, e.g., in
modified gravity where the velocities occur in powers higher
than two. This is not the case for our Hamiltonian, leaving us
only with the approach from Ref. [49].
As is apparent, even with the problem of deparametriza-

tion out of the way this Hamiltonian still presents some
challenges if one wants to follow Dirac’s prescription for
canonical quantization. We will instead employ ACSQ to
tackle this problem. Earlier we have seen that there at least
formally every phase space function has an associated
operator, so the fact that the hyperbolic tangent and cotangent
both do not have a Taylor series that is defined everywhere is
not a problem. Furthermore, since both branches of the
Hamiltonian are semi-bounded the resulting operators will
have a self-adjoint extension. The fact that the Hamiltonian
has a complicated dependency on the momentum is hence
not a problem, at least on the formal level.
Unfortunately the Hamilton operators as acting in

position space are the sum of a multiplicative and an
unbounded integral operator. It is thus quite challenging to
find eigenfunctions or make statements about the spectrum,
but we can still discuss the quantum corrected dynamics of
the system. To this end we will consider the lower symbols
of both branches of the Hamiltonian separately from
each other.
We will call the outside branch of the Hamiltonian

HþðPA; AÞ and the inside branch H−ðPA; AÞ. Their respec-
tive lower symbols are
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Ȟþ ¼ −
1

2πℏcΦ−1

Z
∞

0

dĀ
Z

∞

−∞
dP̄AjhP̄A; ĀjPA; Aij2

×

� ffiffiffiffī
A
2

r
ðtanh2P̄A − 1Þ þ

ffiffiffiffī
A
2

r �
and

Ȟ− ¼ −
1

2πℏcΦ−1

Z
∞

0

dĀ
Z

∞

−∞
dP̄AjhP̄A; ĀjPA; Aij2

×

� ffiffiffiffī
A
2

r
ðcoth2P̄A − 1Þ þ

ffiffiffiffī
A
2

r �
;

where

jhP̄A; ĀjPA; Aij2 ¼
Z

∞

0

dx
Z

∞

0

dy
e

i
ℏðPA−P̄AÞðx−yÞ

AĀ

×Φ
�
x
A

�
Φ�

�
x
Ā

�
Φ�

�
y
A

�
Φ
�
y
Ā

�
:

We have rewritten the Hamiltonian slightly to make use of
the following identities:Z

∞

−∞
dP̄Aðtanh2 P̄A − 1Þe− i

ℏP̄Aðx−yÞ

¼ −
Z

∞

−∞
dP̄A

e−
i
ℏP̄Aðx−yÞ

cosh2 P̄A
¼ −

π
ℏ ðx − yÞ

sinh ð π
2ℏ ðx − yÞÞ ;Z

∞

−∞
dP̄Aðcoth2 P̄A − 1Þe− i

ℏP̄Aðx−yÞ

¼
Z

∞

−∞
dP̄A

e−
i
ℏP̄Aðx−yÞ

sinh2 P̄A
¼ −

π
ℏ ðx − yÞ

tanh ð π
2ℏ ðx − yÞÞ :

The first Fourier transformation can straightforwardly be
obtained by contour integration. In computing the second
integral one has to be a bit more careful, because the
integrand diverges for P̄A → 0. We have regularized it by
performing two contour integrations, one over a contour
including this divergence and one excluding it, and
averaging over the results. The full derivation can be found
in Appendix C.
The lower symbols then take the form

Ȟ� ¼ −
cΦ−5

2

cΦ−1
2

cΦ−1

ffiffiffiffi
A
2

r
þ 1

2
ffiffiffi
2

p
ℏ2cΦ−1A

×
Z

∞

0

dĀffiffiffiffī
A

p
Z

∞

0

dx
Z

∞

0

dy
x − y

F�ð π
2ℏ ðx − yÞÞ

× e
i
ℏPAðx−yÞΦ

�
x
A

�
Φ�

�
y
A

�
Φ�

�
x
Ā

�
Φ
�
y
Ā

�
; ð8Þ

where

FþðxÞ ¼ sinhðxÞ and F−ðxÞ ¼ tanhðxÞ:

To progress any further we need to specify a fiducial
vector. A convenient choice, borrowed from Ref. [45], is

ΦðxÞ ¼ ð2βÞβffiffiffiffiffiffiffiffiffiffiffiffi
Γð2βÞp xβ−

1
2e−βx;

where β is a positive real parameter. The relevant constants
are then

cΦ−1 ¼
2β

2β − 1
;

cΦ−1
2

¼ 2
ffiffiffi
2

p
β

3
2

Γð2β − 3
2
Þ

Γð2βÞ ;

cΦ−5
2

¼ Γð2β þ 1
2
Þffiffiffiffiffi

2β
p

Γð2βÞ ;

cΦ−3 ¼ 1:

For these constants to be finite we have to impose β > 3
4
.

Note that this fiducial vector is centered.
We can then perform the Ā integration,Z

∞

0

dĀffiffiffiffī
A

p Φ�
�
x
Ā

�
Φ
�
y
Ā

�
¼ ð2βÞ2β

Γð2βÞ ðxyÞ
β−1

2

Z
∞

0

dĀ

Ā2β−1
2

e−
β
Ā
ðxþyÞ

¼ 22ββ
3
2

Γð2βÞ
ðxyÞβ−1

2

ðxþ yÞ2β−3
2

Γ
�
2β −

3

2

�
:

This gives as the lower symbols

Γð2β − 1ÞΓð2βÞ
Γð2β þ 1

2
ÞΓð2β − 3

2
Þ Ȟ�ðPA; AÞ

¼ −
ffiffiffiffi
A
2

r
þ 24β−

5
2β2βþ1

2

ℏ2Γð2β þ 1
2
ÞA2β

Z
∞

0

dx
Z

∞

0

dy

×
x − y

F�ð π
2ℏ ðx − yÞÞ

ðxyÞ2β−1
ðxþ yÞ2β−3

2

e
i
ℏPAðx−yÞ−β

AðxþyÞ: ð9Þ

These quantum corrected Hamiltonians can be inves-
tigated numerically. Before solving the equations of motion
we can first consider phase space portraits. To this end we
identify as the mass of the quantum corrected dust cloud

M ¼ −
Γð2β − 1ÞΓð2βÞ

Γð2β þ 1
2
ÞΓð2β − 3

2
Þ Ȟ�ðPA; AÞ: ð10Þ

After all, for jPAj → ∞ the second term in the
Hamiltonians vanishes, since Fourier transforms of inte-
grable functions vanish at infinity, leading to A ¼ 2M2; the
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classical horizon is still present at least kinematically,
so we can find the mass of the dust cloud from the area
of this horizon. See Fig. 1 and Fig. 2 for the phase space
portraits.
First, we want to note that the figures we show here are

restricted to masses close to the Planck scale, and similarly
for the parameter β, since this makes the numerical com-
putations considerably more stable. We will show analyti-
cally at the end of this section that the results discussed in
the following also apply to astrophysical scales, at least
when one chooses β accordingly.
For lower β as compared to M the outside branch given

by Ȟþ in Fig. 1 is qualitatively very close to the classical
portrait; kinematically the system is split into two parts,
asymptotically collapsing toward the horizon and expand-
ing away from it. Solving the equations of motion shows
that also dynamically the quantum corrected trajectory
behaves similarly to the classical one, see Fig. 3(d). When
one chooses a higher β, this picture changes dramatically:
The branches collapsing from and expanding to infinity
connect, as well as those near the horizon. This suggests a
bounce of the dust cloud when collapsing from infinity, and
a recollapse when expanding away from the horizon. This
prediction is confirmed by the trajectories in Fig. 3(a) and
Fig. 3(b). By comparison to the classical trajectories one
can also see that the recollapse is a slower process than the
bounce.
The inside branch given by Ȟ− behaves very similarly to

the outside branch and is in sharp contrast to the classical
case not confined to the inside of the horizon, see Fig. 2.
The only qualitative difference to the outside branch is that
the asymptotic approach toward the horizon can also
happen from the inside, after a bounce close to the classical
singularity. For fixed β this seems to take place for higher
M than the approach to the horizon from the outside. All of
this can also be seen in the trajectories in Fig. 3.
We also want to note that these quantum corrected

trajectories demonstrate that we do not need to consider
explicitly constructing multivalued states at this stage. It
seems that the branching points of the Hamiltonian P →
�∞ can never be reached in finite time.
Next we want to take a closer look at how this transition

in behavior depends onM and β. To this end we plot phase
space portraits at PA ¼ 0 as a function ofM for different β,
see Fig. 4. When for given M and β there are two values of
A on the phase space contour we have a bounce and a
recollapse, and when there are none we have an asymptotic
approach to the horizon.
With this in mind we see that for every β all masses up to

some critical mass bounce and recollapse, and all above it
do not. This critical mass grows with increasing β. Aside
from the fact that the minimal area of the bounce grows
slower with decreasingM for the inside branch than for the
outside branch, there is no qualitative difference between
the two branches for this aspect of the dynamics either.

In addition we can read off from Fig. 4. that the minimal
area of bouncing dust clouds lies outside of the photon
sphere, and the maximal area of recollapsing ones between
photon sphere and horizon. This is somewhat discouraging
with regard to bouncing collapse: roughly speaking, every-
thing outside of the photon sphere is visible to an outside
observer, so these quantum corrected dynamics suggest that

(a)

(b)

FIG. 1. The quantum corrected phase space portraits for the
outside branch of the Hamiltonian as given by (10) (full green
line) as compared to their classical counterpart (dotted red line),

given by M ¼
ffiffiffi
A
2

q
tanh2 PA, and the horizon M ¼

ffiffiffi
A
2

q
(dashed

blue line), in Planck units.
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the dust cloud will never resemble anything even close to a
black hole. Furthermore the minimal area grows with
increasing β, while the maximal area decreases, suggesting
that the details of the dynamics strongly depend on the
fiducial vector.
The above suggests that if we want all dust clouds to

bounce regardless of mass, or at least those with masses

relevant for astrophysical considerations, we need to
consider the case of very high β relative to unity. For
these values of β and M a numerical treatment seems to be
quite challenging. Luckily we can estimate the integrals in
Ȟ� for the case β → ∞ by using a saddle point approxi-
mation, allowing us to check the behavior of the system
analytically.

(a) (b)

(c)

FIG. 2. The quantum corrected phase space portraits for the inside branch of the Hamiltonian as given by (10) (full green line) as

compared to their classical counterpart (dotted red line), given by M ¼
ffiffiffi
A
2

q
coth2 PA, and the horizon M ¼

ffiffiffi
A
2

q
(dashed blue line), in

Planck units.
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(a)

(c) (d)

(b)

FIG. 3. The quantum corrected trajectories for the outside branch (full green lines) and inside branch (dotted dashed yellow lines)
of the Hamiltonian (9) for different initial conditions as compared to their classical counterparts (dotted red lines) and the horizon

M ¼
ffiffiffi
A
2

q
(dashed blue lines), in Planck units.
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First we note that the factor in front of the Hamiltonians
in (5) approaches 1 when β → ∞. Further we slightly
rewrite the Hamiltonians,

Ȟ�ðPA; AÞ ¼ −
ffiffiffiffi
A
2

r
þ β2βþ1

2

2
5
2ℏ2Γð2β þ 1

2
Þ

Z
∞

0

dx

×
Z

∞

0

dy
x − y

F�ð π
2ℏ ðx − yÞÞ

ðxþ yÞ32
xy

× e
i
ℏPAðx−yÞþβ½−xþy

A þ2 lnð4A xy
xþyÞ�:

The function in the exponential multiplied by β has a single
critical point at x ¼ y ¼ A, where it takes the value
2 ln 2 − 2. The eigenvalues of its Hessian are −1=A2 and
−2=A2, meaning the critical point is a maximum. The
Hamiltonians for β → ∞ can then be approximated as

Ȟ�ðPA; AÞ ∼ −
ffiffiffiffi
A
2

r
þ

ffiffiffiffiffiffiffiffiffiffi
A3

πβℏ2

s
;

where we have used that

Γðazþ bÞ ∼
ffiffiffiffiffiffi
2π

p
e−azðazÞazþb−1

2

for a > 0 and β → ∞ [53], and

x
F�ðaxÞ

����
x¼0

¼ 1

a
:

The end result is the same for both the inside and the
outside branch. This matches our earlier observation that
the inside and outside branches show similar behavior for
higher β. The Hamiltonian furthermore does not depend on
the momentum in this limit. Since we are mainly interested
in the PA ¼ 0 region of phase space this is no obstacle;
based on the series of the complex exponential in the
Hamiltonians for x → y we can deduce that the subleading
order in the β → ∞ expansion will depend linearly on PA
and hence vanish for PA ¼ 0, leaving us with the above.
We are interested in real, positive solutions of

0 ¼ R −
R3ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβℏ2

p − 2M;

where we have replaced A by the radius of the dust cloud,
A ¼ 1

2
R2. The polynomial above has a minimum at R− ¼

− 1ffiffi
3

p ð2πβℏ2Þ14 and a maximum at Rþ ¼ 1ffiffi
3

p ð2πβℏ2Þ14.
Depending on the value of the polynomial at these extrema
we have either one, two or three solutions.
For M > 0 the minimum can never be positive, but the

maximum can be negative for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβℏ2

p
< 27M2. In this

(a) (b)

FIG. 4. The quantum corrected phase space portraits at PA ¼ 0 for the outside and inside branch of the Hamiltonian as given by (10)

for different β (green lines) as compared to the horizon M ¼
ffiffiffi
A
2

q
(dashed blue line) and the photon sphere M ¼

ffiffiffiffi
2A

p
3

(full red line), in

Planck units.
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case we have a single root with R < R− < 0, and hence no
positive solution. This reflects what we have seen in the
numerical investigation: for small β as compared to M, the
dust cloud does not bounce.
When

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβℏ2

p
> 27M2 the maximum is positive, and

we have in addition to the negative root a positive root at
R > Rþ > 3M, and one at R− < R < Rþ < 3M. Since for
R ¼ 0 the polynomial is negative, the last root has to be
positive. It is easy to see that any positive root has to fulfill
R > 2M. This also agrees with our previous results; for
higher β the dust cloud bounces with a minimal radius
outside of the photon sphere or recollapses with maximal
radius between horizon and photon sphere, depending on
the initial conditions. Furthermore, the maximal radius
grows with increasing β while the minimal radius shrinks
toward the horizon.
At

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβℏ2

p
¼ 27M2 both positive roots then join at

R ¼ Rþ ¼ 3M, the minimal radius of the bounce and the
maximal radius of the recollapse meeting at the photon
sphere.
If one finally takes the limit β → ∞, the minimal

radius gets pushed out to infinity, and the maximal radius
to the horizon. The only valid solutions are then dust
clouds stuck at the horizon, implying that one can never
choose a single β such that dust clouds with arbitrary
masses bounce.
Note that the same results can be obtained for a different

fiducial vector, see Appendix D, demonstrating a certain
robustness of the behavior described above with regard to
the quantization ambiguities.
Lastly we want to mention that the classical limit in

ACSQ is not simply ℏ → 0, but also requires taking a limit in
the family of fiducial vectors such that jΦðxÞj2 → δðx − 1Þ.
For our choice of fiducial vector this translates to
β → ∞, but obviously taking ℏ → 0 in the approximated
Hamiltonian above does not yield the classical limit.
This is because the two limits ℏ → 0 and β → ∞ cannot
simply be taken one after the other to get the classical limit,
one rather has to let β → ∞ as a function of ℏ as ℏ → 0, as
also discussed in Ref. [33]. Details can be found in
Appendix E.

VI. CONNECTING THE TWO OBSERVERS

In the last sections we have developed two different
quantum theories for OS collapse, one for the comoving
observer and one for the stationary exterior observer. When
we assume that those two theories are different sectors in a
full theory for a quantum OS model, fully covariant and
thus incorporating every possible observer, it becomes
necessary to find a way to connect the two specialized
theories. Here we want to explore a possible such con-
nection; we want to find a way to switch observers in the
quantum theory.

To this end we first note that

fR;Π�g ¼
�
1 −

Π2
�

R2

�
;

where we define Πþ ¼ R tanh P
R and Π− ¼ R coth P

R. Hence
we can express the Hamiltonian for the stationary observer
(5) as

Heff ¼ −
Π2

2R
; ð11Þ

with the modified Poisson bracket

fR;Πg ¼
�
1 −

Π2

R2

�
: ð12Þ

It is apparent that the Hamiltonian is identical to the one for
the comoving observer. The difference between the two
classical deparametrized theories is then only in the Poisson
bracket; for the comoving observer we have the usual
fR;Pg ¼ 1, and for the stationary observer we have the
above. It seems reasonable to assume that this observation
could be generalized also to other time coordinates,
corresponding to other observers.
As a side note we want to mention that in this form both

branches of the Hamiltonian are unified. The dynamics of
the outside are recovered if we restrict to jΠj < R, and the
ones of the inside for jΠj > R. It will become apparent later
that difficulties with finding a similarly unified quantum
representation hinders the construction of a quantum theory
with both branches, once again only leaving the prescrip-
tion with multivalued states to accomplish this.
In the following we want to show that the above

observation carries over from the classical theories to the
quantum theories: we will demonstrate that the quantum
theory corresponding to the stationary observer as dis-
cussed in Sec. V can also be considered as a quantization of
(6) with the modified Poisson bracket (6), reproduced in the
commutator ½R̂; Π̂�.
Note that (6) also emerges, in a slightly modified form, in

the context of noncommutative spaces for the so called
Snyder models. In fact we can exactly reproduce the
modified bracket corresponding to the anti-Snyder model
by using A ¼ 1

2
R2. For a discussion of these models,

including how they can be quantized, see Ref. [54] and
references therein. Here we will employ ACSQ to fulfill
these commutation relations.
It turns out that it is useful to follow what we did

classically; there we promoted the functions Π�ðP;RÞ to
the phase space coordinateΠ, so let us proceed analogously
for their operators.
Let us first consider the operator associated with Πþ

using the quantization map from previous sections,
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Π̂þψðxÞ ¼
1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dP

Z
∞

0

dy tanh
P
R

× e
i
ℏðx−yÞPΦ

�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼Π¼R tanhPR 1

2πℏcΦ−1

Z
∞

0

dR
Z

R

−R

dΠ
1 − Π2

R2

Z
∞

0

dy
Π
R

× e
i
ℏðx−yÞR2 ln

	
1þΠ

R
1−ΠR



Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ;

where we have expressed the inverse hyperbolic tangent in
terms of the logarithm. The last expression above looks
suspiciously like an ACSQ ofΠ in a new parametrization of
the affine group by the phase space variables as discussed in
[44]. Along the same line we can proceed for Π−,

Π̂−ψðxÞ ¼
1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dP

Z
∞

0

dy coth
P
R

× e
i
ℏðx−yÞPΦ

�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼Π¼R cothPR 1

2πℏcΦ−1

Z
∞

0

dR
Z
Rn½−R;R�

dΠ
Π2

R2 − 1

Z
∞

0

dy

×
Π
R
e

i
ℏðx−yÞR2 ln

	
Π
Rþ1

Π
R−1



Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ:

The above suggests using the quantization maps

f̂ψðxÞ¼ 1

2πℏcΦ−1

Z
∞

0

dR
R

Z
I

dΠ
j1−Π2

R2 j

×
Z

∞

0

dyfðR;ΠÞe
i
ℏðx−yÞR2 ln

���1þΠ
R

1−ΠR

���
Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ;

ð13Þ

assigning f̂ to the phase space function fðΠ; RÞ, where

I ¼ ½−R;R� or I ¼ Rn½−R;R�:

The above is indeed equivalent to ACSQ with an
alternative parametrization of the affine group by

R ∈ Rþ;
R
2
ln
��� 1þ Π

R

1 − Π
R

��� ∈ R;

leading to coherent states

hxjΠ; Ri ¼ 1ffiffiffiffi
R

p e
i
ℏx

R
2
ln

���1þΠ
R

1−ΠR

���
ψ

�
x
R

�
:

That these states indeed lead to a resolution of the
identity with the measure in (6) directly follows from the

fact that we constructed them by substitution from the
coherent states used in the previous sections. The quanti-
zation map (6) is therefore well defined. For details
see Ref. [44].
We necessarily need to restrict Π either to jΠj > R or

jΠj < R in order for the parametrization above to cover the
affine group only once. This is what we alluded to earlier: at
this point the inside and outside branch once again split up.
As one can see from how we constructed the quantiza-

tion maps (6), the operator associated with a phase space
function fðR;ΠÞ will be equivalent to one of two operators
quantized according to the ACSQ prescription we have
used in the previous chapters, one associated with
fðΠþðP;RÞ; RÞ and one with fðΠ−ðP;RÞ; RÞ, depending
on which of the maps we are using. It is then easy to see
that the operator corresponding to the Hamiltonian (6) in
these new quantization maps is equivalent to one of the
two branches of (5) quantized with the original quantiza-
tion map.
Let us now demonstrate that these quantization maps

indeed reproduce (6). R̂ still acts as a multiplication
operator,

R̂ψðxÞ ¼ cΦ0
cΦ−1

xψðxÞ:

We can then write

½R̂; Π̂� ¼ cΦ0
2πℏcΦ−1

2

Z
∞

0

dR
R

Z
I

dΠ
j1 − Π2

R2 j

Z
∞

0

dyðx − yÞ

× Πe
i
ℏðx−yÞR2 ln

���1þΠ
R

1−ΠR

���
Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼ −
icΦ0

2πcΦ−1
2

Z
∞

0

dR
R

Z
I
dΠ

Z
∞

0

dy sgn

�
1 −

Π2

R2

�

× Π
∂
∂Π e

i
ℏðx−yÞR2 ln

���1þΠ
R

1−ΠR

���
Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼ icΦ0
2πcΦ−1

2

Z
∞

0

dR
R

Z
I

dΠ
j1 − Π2

R2 j

Z
∞

0

dy

�
1 −

Π2

R2

�

× e
i
ℏðx−yÞR2 ln

���1þΠ
R

1−ΠR

���
Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼ iℏ
cΦ0
cΦ−1

dfR;Πg:
Note that to suppress any boundary terms that arise from
the partial integration we need make use of the usual
regularization of Fourier transformations for Π → �R,
corresponding to the momentum in the Fourier trans-
formation going to �∞. If we choose the inside branch
of the quantization map we also need to suppress boundary
terms at Π → �∞, corresponding to the regularization of
cothðxÞ at x ¼ 0 we made use of in the last section.
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The calculation above further suggests that one can
easily implement other modified Poisson brackets in ACSQ
by replacing the momentum in our original quantization by
the integral of the right-hand side of the modified bracket
over the new momentum, as long as the resulting function
covers the real line at least once. Aside from leading further
support to the feasibility of generalizing this procedure to
different observers, this could be of use when studying e.g.,
the aforementioned Snyder spaces, or theories with Dirac
brackets.
At this point we can conclude that the quantization map

works as designed: It reproduces the modified Poisson
brackets (6) and maps (6) to the Hamilton operators used in
Sec. V. Our quantization in Sec. V also made use of a
simple canonical transformation, but as already argued in
Ref. [55] this does not affect the underlying quantum
theory. In Appendix F we explicitly demonstrate that also
the quantum corrected considerations emerge unscathed
from the new quantum theory: the modification of the
Poisson bracket carries over as is to the quantum corrected
equations.
We have thus demonstrated that the reduced quantum

theories from Secs. IV and V can be related by modifying
the commutation relations. In ACSQ this is further equiv-
alent to switching between parametrizations of the affine
group in the quantization map.
By referencing the quantization map we still involve the

classical theory, but conceptually it would be more sat-
isfactory to discuss the relation between the quantum
theories purely at the quantum level. This is possible by
considering what we discussed above as a map T on the
operator algebra. Lastly we want to share a few observa-
tions about this map.
We know how it acts at least on operators corresponding

to phase space functions fðP;RÞ,

T ðf̂Þ ¼ f̂�;

where f�ðP;RÞ ¼ fðΠ�ðP;RÞ; RÞ, and hats exclusively
denote quantization via the original map from now on.
T has to be linear because the quantization map is, and it

has to be bijective, at least when restricted to operators
corresponding to phase space functions. Furthermore we
know that it cannot be an isomorphism: it changes the
commutation relations by construction but leaves the
identity invariant:

T ð½R̂; P̂�Þ ¼ iℏT ð1Þ ¼ iℏ1 ≠ ½T ðR̂Þ; T ðP̂Þ� ¼ ½R̂; Π̂�:

This map is furthermore not equivalent to any trans-
formation, including nonlinear ones, acting on the Hilbert
space H. This can be seen as follows. Such an equivalent
transformation T̄ would be defined by

hψ ; T ðÔÞχi ¼ hT̄ ðψÞ; Ô T̄ ðχÞi

for all ψ ; χ ∈ H and all operators Ô. For clarity we switch
from Dirac notation to explicitly writing out the scalar
product on H. The above has to hold in particular for the
identity operator 1 ¼ T ð1Þ, such that

hψ ; χi ¼ hT̄ ðψÞ; T̄ ðχÞi

It is then easy to see that T̄ has to be linear. Since linear
operators have an adjoint, one can then find from the above
that T̄ further has to be unitary. As follows directly from
Ref. [44], this is not possible. Even without reference to
Ref. [44] it leads to a contradiction, because it would imply
that T is an isomorphism of the operator algebra,

hψ ; T ð½Ô1; Ô2�Þχi ¼ hT̄ ψ ; ½Ô1; Ô2�T̄ χi
¼ hψ ; T̄ †½Ô1; Ô2�T̄ χi
¼ hψ ; ½T̄ †Ô1T̄ ; T̄ †Ô2T̄ �T̄ χi
¼ hψ ; ½T ðÔ1Þ; T ðÔ2Þ�χi:

We can thus say that the switch between the two
observers happens not at the level of the Hilbert space,
but of the operator algebra and in particular its interpre-
tation in terms of physical quantities. We want to stress that
the above rests on the fact that the modification of the
commutation relation is built into the quantization map.
Dropping this feature and sticking to the two different
Hamiltonians we used originally, there might exist a
transformation on H that maps the two Hamiltonians onto
each other. For the explicit construction of such a trans-
formation for a different system see Ref. [56].
In conclusion we can say that our two quantum theories,

each corresponding to one of the observers, can be related
by changing the quantization map in such a way that the
canonical commutation relations are modified. This rela-
tion cannot be represented as a transformation between
Hilbert spaces, and is then in particular not unitary.
This is unfortunate, since one generally expects states

representing different observer in a full quantum gravity
theory to be connected by unitary transformations. We can
offer in defense of our construction that at the level of such
deparametrized theories as we discuss here a unitary
relation between observers might not be strictly necessary,
as long as predictions made still show some form of
consistency between observers.
Here we have only demonstrated a very basic such

consistency: we have shown that both observers see a
bounce when the quantization ambiguities are chosen
accordingly. Before we can really say with confidence that
what we discussed here could be developed into a candidate
for a notion of quantum covariance, the predictions made
for each observer need to be compared more carefully.
The most obvious way forward in this regard seems to be

an application of this idea to more straightforward
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coordinate transformation than we have considered here.
Beyond its elaborate functional form, the Painlevé-
Gullstrand transformation also brings with it the further
conceptual complication of splitting up the system into
inside and outside of the horizon. It might thus be
interesting to consider models collapsing to a naked
singularity, such as the Lemaître-Tolman-Bondi model,
to circumvent the latter problem.
Furthermore, leaving the realm of black holes and

focusing on time-reparametrization invariant systems might
simplify matters further. Applying our construction to
quantum cosmology proper is not straightforward, since
there Hamiltonian constraints are generally not deparame-
trizable. However, one could as a first step discuss only
cosmological models generated by Brown-Kuchař dust. We
leave this for future work.

VII. CONCLUSIONS

In this paper we have discussed a quantum OS model
using ACSQ based on our previous classical considerations
in Ref. [6]. More specifically we have quantized two
Hamiltonians describing the flat OS model from the point
of view of two observers, one comoving with the dust and
one stationary outside of it.
Especially quantizing the latter Hamiltonian has nicely

illustrated the benefits of ACSQ. In Dirac quantization this
Hamiltonian does not even have a well defined operator due
to the occurrence of hyperbolic functions and square roots.
In ACSQ every phase space function can at least formally
be identified with an operator, and if the function is at least
semi-bounded we can even be sure that it has a self-adjoint
extension. This is particularly useful here, because the
Hamiltonian operator turns out to be a complicated integral
operator for which it is difficult to find eigenfunctions. One
can further find quantum corrected dynamics of the system
without explicitly considering the Hamilton operator by
working with the lower symbol of the Hamiltonian.
We want to emphasize again that while usually these

quantum corrected dynamics are interpreted as exact in
their own semiclassical theory [45], we have demonstrated
here that they can also be understood within the full
quantum theory; they follow from the Schrödinger equation
as approximate dynamics of coherent states.
Of course if one wants to go beyond quantum correc-

tions, directly working with the operator cannot be helped.
In particular determining how accurate the semiclassical
approximation is depends on the stability of the coherent
states. Determining this stability seems to be a problem
close in complexity to actually solving the Schrödinger
equation. Nevertheless, using the lower symbol of the
Hamiltonian is a convenient way to find quantum corrected
dynamics of a system.
The first Hamiltonian, describing the model as seen by a

comoving observer, had already been quantized using
Dirac’s prescription for canonical quantization in the

context of the Lemaître-Tolman-Bondi model in Ref. [7].
Here we have shown that for this particular Hamiltonian
ACSQ and Dirac quantization lead to the same Hamilton
operator. Further the quantum corrected dynamics found in
ACSQ exactly match those found by investigating a wave
packet in Dirac quantization in Ref. [7]. These show that
the dust cloud as seen by the comoving observer with
quantum corrections bounces at a minimal radius scaling
inversely with M

1
3, where M is the total mass of the

dust cloud.
For the second Hamiltonian, corresponding to the

exterior stationary observer, the quantum corrected dynam-
ics predict that the dust cloud as seen by the exterior
observer can also bounce, where the minimal radius also
grows larger with decreasing M. This is encouraging since
it establishes a rudimentary consistency for our approach of
switching observers in the classical canonical theory as
described in Ref. [6]. Complementary to the bounce there
emerges also a recollapse of dust clouds starting close to the
horizon and expanding away from it. These dust clouds
reach a maximal radius and then start approaching the
horizon again.
The other details of the dynamics are unfortunately less

satisfactory. The bounce is far less robust under quantiza-
tion ambiguities than for the comoving observer. For any
given mass the parameter β in the family of fiducial vectors
we used had to be chosen higher than a critical value ∝ M4

for a bounce to occur. For smaller β the quantum corrected
dynamics are qualitatively identical to the classical asymp-
totic approach to the horizon. As a consequence one can
never choose a β such that the dust cloud bounces for allM.
A feature of the bounce that we have shown to be quite

robust with regard to quantization ambiguities is the fact
that when the bounce occurs, the minimal radius is outside
of the photon sphere R ¼ 3M. As seen by the exterior
observer, the horizon never forms and the collapse never
reaches a stage that even remotely resembles a black hole.
The notion of a lifetime can then not even be defined. In a
way, this bounce evades most of the conceptual problems of
bouncing collapse somewhat elegantly by avoiding the
horizon altogether. Thereby it unfortunately directly contra-
dicts observations.
As a consequence we also have to concede that the

ad hoc construction to find the lifetime from the point of
view of the exterior observer in [7], leading to a lifetime
∝ M3, does not agree with the more rigorous implementa-
tion of this observer here. It is possible that this lifetime
could be recovered when one goes beyond quantum
corrections since it relies to some extent on “discrete”
states; maybe transitions between our semiclassical states
and states within the horizon are allowed in the theory
but do not emerge in the quantum corrected dynamics.
However, as mentioned above the unwieldy form of
the Hamilton operator makes such investigations quite
demanding.
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We could now start speculating that the inclusion of pre-
Hawking radiation could save the model, after all it has
been shown to also affect classical collapse quite drastically
[57]. However, in hindsight our results are not very
surprising. Our canonical formulation fixes the exterior
of the dust cloud to be exactly Schwarzschild, and imposes
the Painlevé-Gullstrand coordinate transformation between
our two observers. Under these conditions avoiding the
horizon altogether from the point of view of the exterior
observer seems to be the only straightforward way to
implement a bounce consistently between the two observ-
ers. While the matching conditions to the Schwarzschild
exterior are not implemented explicitly, they influence
our results implicitly in this way through the Painlevé-
Gullstrand transformation. However, the deeper meaning of
the photon sphere as the minimal radius remains unclear
to us.
Note that the same line of reasoning does not apply to the

comoving observer, for which why we did not find a lower
bound for the minimal radius. To find the Hamiltonian
generating the corresponding dynamics the Schwarzschild
exterior is not relevant at all, it is identical to that of a
Friedmann model.
A similar conclusion was drawn in Refs. [16–18], where

the matching conditions between an effective bouncing
interior and an arbitrary exterior was investigated. It
emerged that the surface of the collapsing body must be
in an untrapped region of the exterior at the time of the
bounce. As already mentioned at the end of Sec. II, it seems
to us that this procedure of finding an exterior to an
effective bouncing interior through matching conditions is
a very promising approach to constructing a bouncing
collapse model that is both conceptually and phenomeno-
logically consistent, as was demonstrated in the aforemen-
tioned references. Coincidentally, it potentially makes it
possible to also incorporate Hawking radiation according
to Ref. [57].
Summarizing the parts of our paper relevant for bounc-

ing collapse we can say that crucial ingredients seem to be
missing from the program, and unfortunately this paper
does not do much to fill in the blanks. These negative
results however suggest where to look next, and we still
believe that explicitly investigating the two distinguished
observers in the OS model is a promising approach.
Lastly we want to comment on some aspects of this

paper going beyond bouncing collapse. The Hamiltonian
relevant for the stationary observer is multivalued and
consists of two branches, one describing the behavior of the
dust cloud outside of the horizon and one inside. In
principle one would have to implement this Hamiltonian
in the quantum theory by also considering multivalued
states, but for our purposes this has turned out to be
irrelevant: the quantum corrected trajectories never make
use of the freedom to switch between the two branches,
which allowed us to ignore this aspect for the discussion

above. The results are the same as when we would have
ignored the inside branch from the beginning.
The quantum corrected dynamics of the inside branch

are interesting insofar as they behave very similarly to their
outside counterpart. For M and β chosen accordingly there
is a bounce and a recollapse outside of the horizon also for
the inside branch. Also the asymptotic approach to the
horizon can be obtained. The only qualitative difference
between the two branches is that one can chooseM and β in
such a way that the collapse continues through the horizon
and a bounce occurs close to the singularity followed by an
asymptotic approach to the horizon from the inside.
Why the two branches of the quantum corrected

Hamiltonian would behave so similarly when their classical
counterparts occupy completely disjunct regions of phase
space is puzzling to us. Because the most drastic departures
of the quantum corrected inside branch from the classical
trajectories occur close to PA ¼ 0, where the classical
Hamiltonian diverges, we cannot exclude the possibility
that our regularization of this branch in Sec. V has led to
this unintuitive behavior.
However, since it is not necessary to consider both

branches to find at least an internally consistent picture for
the bounce, contradicting indications we found in Ref. [6],
this is not of primary importance. The disagreement with
Ref. [6] in this respect is in our view not problematic, but
rather a cautionary tale that excessively reformulating the
classical constraints without any physical motivation can
lead to wildly different quantum theories.
We have also observed that our two reduced quantum

theories can be related by modifying the canonical com-
mutation relation. The switch between observers at the
level of these quantum theories then takes place on the
operator algebra and its intepretation as physical quantities.
It is impossible to implement it as a transformation on the
Hilbert space.
It would be interesting to see whether this construction

can be generalized beyond the present specialized case. If it
can, another feature of ACSQ could become relevant; it
seems to be relatively simple to implement at least some
modified commutation relations by changing the para-
metrization of the affine group by the phase space. This
is also of some interest for the quantization of other theories
with modified Poisson brackets or Dirac brackets, see, e.g.,
Refs. [50,51,54].
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APPENDIX A: OPERATORS TO ELEMENTARY
PHASE SPACE FUNCTIONS

Here we want to investigate the elementary phase space
functions R, P, and D ¼ RP in the context of ACSQ.
Consider first how R̂, P̂, and D̂ act on wave functions,

R̂ψðxÞ ¼ 1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dP

Z
∞

0

dye
i
ℏðx−yÞP

×Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼ 1

cΦ−1

Z
∞

0

dR

����Φ�
x
R

�����2ψðxÞ ¼ cΦ0
cΦ−1

xψðxÞ;

P̂ψðxÞ ¼ 1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dP

Z
∞

0

dy
P
R
e

i
ℏðx−yÞP

×Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼ −
iℏ
cΦ−1

Z
∞

0

dR
R

Φ
�
x
R

� ∂
∂xΦ

�
�
x
R

�
ψðxÞ

¼u¼
x
R − iℏψðxÞ0 − iℏψðxÞ

cΦ−1x

Z
∞

0

duΦðuÞΦ�ðuÞ0

≡ −iℏψðxÞ0 − iℏγ
ψðxÞ
x

;

D̂ψðxÞ ¼ 1

2πℏcΦ−1

Z
∞

0

dR
Z

∞

−∞
dP

Z
∞

0

dyPe
i
ℏðx−yÞP

×Φ
�
x
R

�
Φ�

�
y
R

�
ψðyÞ

¼ −
iℏ
cΦ−1

Z
∞

0

dRΦ
�
x
R

� ∂
∂xΦ

�
�
x
R

�
ψðxÞ

¼u¼
x
R − iℏ

cΦ0
cΦ−1

xψðxÞ0 − iℏψðxÞ
cΦ−1

Z
∞

0

du
u
ΦðuÞΦ�ðuÞ0

≡ −iℏ
cΦ0
cΦ−1

xψðxÞ0 − iℏλψðxÞ;

where we have used the identities
R∞
−∞dPPe

iðx−yÞP¼
−2πiδ0ðx−yÞ and

R∞
−∞ dPeiðx−yÞP ¼ 2πδðx − yÞ. Further-

more we have assumed that the fiducial vector is also
square integrable with regard to the measure x−2dx, such
that cΦ0 is finite. Note that for real fiducial vectors γ
vanishes and λ takes the value cΦ0 =2c

Φ
−1. The partial

integrations that have to be performed above do not lead
to boundary terms, since the fiducial vector vanishes at zero
and at infinity due to cΦ−1 being finite.
Further we want to compute the lower symbols for these

operators,

Ř ¼ cΦ0
cΦ−1

Z
∞

0

dx
R

x

����Φ�
x
R

�����2 ¼ cΦ−3c
Φ
0

cΦ−1
R;

P̌ ¼ −iℏ
Z
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dx
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i
ℏPxΦ�
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�� ∂
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γ

x
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RP −

iℏ
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dvðjΦðvÞj2Þ0 ¼ P;

Ď ¼ −iℏ
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dx
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i
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��
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x
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e

i
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¼v¼

x
R cΦ−3c

Φ
0

cΦ−1
RP − iℏλ − iℏ

cΦ0
cΦ−1

Z
∞

0

dvvΦ�ðvÞΦðvÞ0

≡ cΦ−3c
Φ
0

cΦ−1
D − iℏα;

where we used the same behavior for ΦðxÞ at the bounda-
ries as above to find P̌. The factor α is always real, and for
real fiducial vectors it vanishes.

APPENDIX B: QUANTUM CORRECTED
DYNAMICS

Suppose our to be quantized classical theory has a
Hamiltonian HðP;RÞ. The time evolution in the quantum
theory is then given by the Schrödinger equation

iℏ
d
dt

jψðtÞi ¼ ĤjψðtÞi:

Let us further assume that one can choose jΦi such that the
ACS jP; Ri are approximately stable under the time evolu-
tion above, jP;R; ti ≈ jPðtÞ; RðtÞi with jP;R; 0i ¼ jP; Ri.
We want to compare the trajectories of these approximately
stable ACS to the dynamics generated by Ȟ.
We have seen above that the parameters RðtÞ and PðtÞ

can be extracted from jPðtÞ; RðtÞi by computing the lower
symbols of the phase space functions R, P, and D. Because
the momentum operator on the half line cannot be made
self-adjoint, we will use here R and D. Since the lower
symbols are simply the expectation values of operators with
regard to the ACS, their time evolution follows a Heisenberg
equation,

_RðtÞ ¼ cΦ−1
cΦ−3c

Φ
0

_̌RðtÞ

¼ i
ℏ

cΦ−1
cΦ−3c

Φ
0

hPðtÞ; RðtÞj½Ĥ; R̂�jPðtÞ; RðtÞi; ðB1Þ

_DðtÞ ¼ cΦ−1
cΦ−3c

Φ
0

_̌DðtÞ

¼ i
ℏ

cΦ−1
cΦ−3c

Φ
0

hPðtÞ; RðtÞj½Ĥ; D̂�jPðtÞ; RðtÞi: ðB2Þ
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These equations of motion can indeed be rewritten in terms of the lower symbol of the Hamiltonian Ȟ as follows. First, let
us write out the lower symbol of the commutator between Ĥ and R̂, suppressing the time dependency of RðtÞ and PðtÞ,

hP;Rj½Ĥ; R̂�jP;Ri ¼ −
cΦ0

2πℏcΦ−1
2

Z
∞

0

dR̄
Z

∞

−∞
dP̄

Z
∞

0

dx
Z

∞

0

dy
HðP̄; R̄Þ
RR̄

ðx − yÞ

× e
i
ℏðx−yÞðP̄−PÞΦ

�
x
R̄

�
Φ�

�
x
R

�
Φ�

�
y
R̄

�
Φ
�
y
R

�
:

Replacing

ðx − yÞei
ℏðx−yÞðP̄−PÞ ¼ iℏ

∂
∂Pe

i
ℏðx−yÞðP̄−PÞ

we recognize

hP; Rj½Ĥ; R̂�jP;Ri ¼ −iℏ
cΦ0
cΦ−1

∂
∂P ȞðP;RÞ:

Analogously we proceed for D,

hP;Rj½Ĥ; D̂�jP;Ri ¼ −
icΦ0

2πcΦ−1
2

Z
∞

0

dR̄
Z

∞

−∞
dP̄

Z
∞

0

dx
Z

∞

0

dy
HðP̄; R̄Þ

RR̄

× e−
i
ℏðxPþyP̄ÞΦ�

�
x
R

�
Φ�

�
y
R̄

��
−x

∂
∂xþ y

∂
∂y

�
e

i
ℏðxP̄þyPÞΦ

�
x
R̄

�
Φ
�
y
R

�
: ðB3Þ

We first perform a partial integration, flipping the x-derivative. No boundary terms are produced since the fiducial vector
vanishes at infinity and the origin. This is not an additional restriction on the fiducial vector, it follows from cΦ−1 being finite.
We then focus on the terms in the integral that have derivatives acting on them,

� ∂
∂x xþ y

∂
∂y

�
e−

i
ℏðx−yÞPΦ�

�
x
R

�
Φ
�
y
R

�
¼

�
1þ P

∂
∂P − R

∂
∂R

�
e−

i
ℏðx−yÞPΦ�

�
x
R

�
Φ
�
y
R

�
:

The only step left is now to commute the derivative in R
with the remaining factor 1=R in the integral by using

1

R

�
1 − R

∂
∂R

�
fðRÞ ¼ −R

∂
∂R

fðRÞ
R

;

It follows for (B3),

hP;Rj½Ĥ; D̂�jP;Ri ¼ −iℏ
cΦ0
cΦ−1

�
P

∂
∂P − R

∂
∂R

�
ȞðP;RÞ:

Inserting these results into the Heisenberg equations of
motion (B1) and (B2) gives

_RðtÞ ¼ 1

cΦ−3

∂
∂P ȞðP;RÞ:

_DðtÞ ¼ 1

cΦ−3

�
P

∂
∂P − R

∂
∂R

�
ȞðP;RÞ;

and replacing D ¼ RP we find

_PðtÞ ¼ −
1

cΦ−3

∂
∂R ȞðP; RÞ:

Indeed we see that the dynamics of stable ACS are governed
by the effective quantum corrected Hamiltonian Ȟ.
For centered fiducial vectors as discussed in Sec. III
one does not even need to rescale the lower symbol, since
cΦ−3 ¼ 1.
It should be noted that the stability of ACS is far from a

trivial problem. Since the accuracy of the semiclassical
approximation as discussed here depends on this approxi-
mate stability, this topic certainly deserves further inves-
tigation. Here we do not explicitly consider this problem
since we will not go beyond the quantum corrected phase
space picture.
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APPENDIX C: FOURIER TRANSFORM OF THE
SQUARES OF THE HYPERBOLIC COSECANT

AND COTANGENT

Let us start with the integral

Iþðx − yÞ ¼ −
Z

∞

−∞
dP̄A

e−
i
ℏP̄Aðx−yÞ

cosh2 P̄A
;

and solve it using contour integration. We can close the
contour in the lower half plane for x − y > 0 and in the
upper half plane for x − y < 0. The hyperbolic cosine is
zero at P̄0

A ¼ iπ
2
ð2kþ 1Þ, k ∈ Z, and behaves close to these

roots as cosh2 P̄A ∼ −ðP̄A − P̄0
AÞ2 such that the integrand

above has second order poles there. The residue at these
poles is then − i

ℏ ðx − yÞe π
2ℏð2kþ1Þðx−yÞ. This gives us

Iþðx − yÞ ¼ −
2π

ℏ
jx − yj

X∞
k¼0

e−
π
2ℏð2kþ1Þjx−yj

¼ −
2π
ℏ jx − yj

e
π
2ℏjx−yj − e−

π
2ℏjx−yj

¼ −
π
ℏ ðx − yÞ

sinh ð π
2ℏ ðx − yÞÞ ;

where we recognized the geometric series.
Analogously we proceed with the second integral

I−ðx − yÞ ¼
Z

∞

−∞
dP̄A

e−
i
ℏP̄Aðx−yÞ

sinh2 P̄A
:

An important difference to the first integral is that strictly
speaking I− does not converge due to a singularity of the
integrand at P̄A ¼ 0. We will regularize this integral by
taking the average over two contour integrals, one where
the contour on the real line is deformed to include P̄A ¼ 0
and one where we exclude it. The integrand has second
order poles at P̄0

A ¼ iπk, where sinh2 P̄A ∼ ðP̄A − P̄0
AÞ2, the

residue is − i
ℏ ðx − yÞeπ

ℏkðx−yÞ, and we close the contours as
above. The integral is then

I−ðx − yÞ ¼ −
2π

ℏ
jx − yj

�
1

2
þ
X∞
k¼1

e−
π
ℏkjx−yj

�
¼ −

π

ℏ
jx − yj 1þ e−

π
ℏjx−yj

1 − e−
π
ℏjx−yj

¼ −
π
ℏ ðx − yÞ

tanh ð π
2ℏ ðx − yÞÞ ;

where the first term in the sum had to be weighted with 1
2

due to the regularization described above.

APPENDIX D: BOUNCING BEHAVIOR FOR A
DIFFERENT FIDUCIAL VECTOR

To make sure our characterization of the bounce in
Sec. V is robust we want to also check a different fiducial
vector. We choose

ΦðxÞ ¼ e−
ln2 x
4σ

ð2πσx2Þ14 ;

where σ is a positive real parameter. Note that the classical
limit for this fiducial vector involves taking the limit σ → 0.
The relevant constants are given by

cΦα ¼ e
σ
2
ð2þαÞ2 :

This fiducial vector is not centered, so we have to rescale
Ȟ� accordingly.
For the lower symbol of the Hamiltonians (5) we also

need the following integral:Z
∞

0

dĀffiffiffiffī
A

p Φ�
�
x
Ā

�
Φ
�
y
Ā

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσxy
p

Z
∞

0

dĀ
ffiffiffiffī
A

p
e−

1
4σðln2 xAþln2 yAÞ

¼ðxyÞ14e9σ
8
− 1
8σðlnx−lnyÞ2 :

This gives us

e−
3σ
4 Ȟ�ðPA; AÞ ¼ −

ffiffiffiffi
A
2

r
þ e−

σ
8

4ℏ2
ffiffiffiffiffiffi
πσ

p
Z

∞

0

dx

×
Z

∞

0

dy
x − y

F�ð π
2ℏ ðx − yÞÞ

e
i
ℏPAðx−yÞ

ðxyÞ14
× e−

1
4σ½12ðlnxA−lnyAÞ2−ln2 xA−ln2 yA�:

The function in the exponential multiplied by 1=σ has a
single critical point at x ¼ y ¼ A, where it vanishes. The
eigenvalues of its Hessian are −1=A2 and −1=2A2, meaning
the critical point is a maximum. Using the saddle point
approximation the Hamiltonians for σ → 0 can then be
estimated as

Ȟ�ðPA; AÞ ∼ −
ffiffiffiffi
A
2

r
þ

ffiffiffiffiffiffiffiffiffiffi
2σA3

πℏ2

s
:

Under the identification β ¼ 1=2σ we recover all results
from the fiducial vector used in Sec. V.

APPENDIX E: CLASSICAL LIMIT

The classical limit in ACSQ involves not only ℏ → 0, but
also taking a limit in your family of fiducial vectors such
that jΦðxÞj2 → δðx − 1Þ. For our choice of fiducial vector
in Sec. V this can be achieved by β → ∞. Taking these two
limits one after the other does not produce the correct
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classical limit anymore, in contrast to Sec. IV. The easiest
way to obtain the correct classical limit, as also discussed in
[33], is to let β → ∞ as a function of ℏ when taking ℏ → 0.
Let us take a closer look at the definition of the lower
symbol to find this relation:

f̌ ¼ 1

2πℏcΦ−1

Z
∞

0

dA0
Z

∞

−∞
dP0

AfðP0
A; A

0ÞjhP0
A; A

0jPA; Aij2:

To obtain he original phase space function from the lower
symbol we then need to take the limits mentioned above in
such a way that

jhP0
A; A

0jPA; Aij2
2πℏcΦ−1

→ δðA − A0ÞδðPA − P0
AÞ

For the fiducial vector chosen here we have

jhP0
A; A

0jPA; Aij2
2πℏcΦ−1

¼ 2β − 1

4πβℏ

�
1

4

� ffiffiffiffiffi
A0

A

r
þ

ffiffiffiffiffi
A
A0

r �2

þ AA0

4β2ℏ2
ðPA − P0

AÞ2
�−2β
ðE1Þ

Since the lower symbol of 1 is again 1, the above is
normalized with regard to integration over the half plane.
For A ¼ A0 and PA ¼ P0

A it reads

1

2πℏcΦ−1
jhPA; AjPA; Aij2 ¼

2β − 1

4πβℏ

and thus diverges regardless of how exactly β depends on ℏ
when ℏ → 0. For the correct classical limit to emerge we
now only need (E1) to vanish when A ≠ A0 or PA ≠ P0

A
when the limit is taken. Note to this end that

1

4

� ffiffiffiffiffi
A0

A

r
þ

ffiffiffiffiffi
A
A0

r �2

> 1

for all A; A0 > 0where A ≠ A0. Since the second term in the
bracket in (E1) is non negative, (E1) then always vanishes
exponentially for β → ∞, as long as we do not let β depend
on ℏ logarithmically. For A ¼ A0 and PA ≠ P0

A we only
require that the product βℏ does not diverge. Then the term
in the bracket is bigger than 1 and the whole expression
vanishes again in the limit. The above requirements can be
fulfilled by demanding that β ∝ 1=ℏ for ℏ → 0, but other
choices are also possible.

APPENDIX F: QUANTUM CORRECTED
DYNAMICS WITH MODIFIED
COMMUTATION RELATIONS

Here we want to check whether our investigations of the
lower symbol of the Hamiltonian from Sec. V carries over
to the alternate quantization map leading to modified
commutation relations constructed in Sec. VI. We have
already noted in Sec. VI that one can identify operators to
phase space functions fðΠ; RÞ in the new parametrization
with operators to f�ðP;RÞ ¼ fðΠ�ðP;RÞ; RÞ in the old
parametrization by using

jP;Riold ¼ jΠ�ðP;RÞ; Rinew:

We write this identification as f̑

f̑ ¼ f̂�;

where the rounded hat denotes the quantization map using
the new parametrization, and the usual hat the old one.
From the above straightforwardly follows that one can also
identify lower symbols,

f̆ðΠ�ðP;RÞ; RÞ ¼ hΠ�ðP;RÞ; Rjf̑ jΠ�ðP;RÞ; Rinew
¼ hP; Rjf̂�jP;Riold
¼ f̌�ðP;RÞ:

At the level of the lower symbols the reparametrization
emerges as the original coordinate transformation on
phase space.
This allows us to write,

_RðtÞ ¼ 1

cΦ−3

∂
∂P Ȟ�ðP;RÞ ¼

1

cΦ−3

∂
∂P H̆ðΠ�ðP;RÞ; RÞ;

_PðtÞ ¼ −
1

cΦ−3

∂
∂R Ȟ�ðP;RÞ ¼ −

1

cΦ−3

∂
∂R H̆ðΠ�ðP;RÞ; RÞ:

We can see that we can easily arrive at the old equations of
motion from the new lower symbol of the Hamiltonian by
identifying Π ¼ Π�, completely analogous to the classical
case. Furthermore we can now see how the equations of
motion look in the new phase space variables. To this end
we identify

P̆ ¼ P̌� ¼ P;

where P̆ is given by

P̆ ¼ R
2
ln

���� 1þ Π
R

1 − Π
R

����:
We then get the equations of motion
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_RðtÞ ¼ 1

cΦ−3

�
1 −

Π2

R2

� ∂
∂Π H̆ðΠ; RÞ;

_ΠðtÞ ¼ −
1

cΦ−3

�
1 −

Π2

R2

� ∂
∂R H̆ðΠ; RÞ;

from a coordinate transformation ðR; PÞ to ðΠ; RÞ. The
form of these equations is completely equivalent to the
classical equations of motion with the modified Poisson
brackets (6).
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