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We extend a bottom-up holographic model, which has been used in studying the color superconductivity
in QCD, to the imaginary chemical potential (μI) region, and the phase diagram is studied on the
μI-temperature (T) plane. The analysis is performed for the case of the probe approximation and for the
background, where the backreaction from the flavor fermions is taken into account. For both cases, we
could find the expected Roberge-Weiss (RW) transitions. In the case of the backreacted solution, a bound of
the color number Nc is found to produce the RW periodicity. It is given asNc ≥ 1.2. Furthermore, we could
assure the validity of this extended model by comparing our result with that of the lattice QCD near μI ¼ 0.
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I. INTRODUCTION

The holographic approach based on the string/gauge
duality is a powerful method to study various thermody-
namical and nonperturbative properties of the Yang-Mills
theory, especially when the chemical potential (μ) of the
fundamental fermions plays an important role. Various
results have been obtained in such cases, and they could
give us many kinds of insight into the phase diagram of
QCD. (See, for example, Refs. [1–4].)
On the other hand, many nonperturbative investigations

in QCD have been performed by the lattice gauge theory.
However, the analysis has been restricted to the case of the
imaginary chemical potential, μI , to avoid the sign problem
of the fermion determinant (See, for example, Refs. [5,6]).
In QCD with μI , on the other hand, the Roberge-Weiss
(RW) phase transition and its periodicity with respect to μI
have been pointed out as a remarkable point [7]. This
observation is understood from the periodicity of the
partition function. It would be meaningful to see how this
point is realized in the holographic approach to make clear
the validity of the holographic approach.
Ten years ago, however, such a holographic investigation

was made based on the Euclidean space-time geometry

[8–10]. In Ref. [8], the periodic RW transition has been
shown by adding the two-form Kalb-Ramond field B in the
D3/D7-brane system of the type-IIB model. After that, and
also in the D4/D8-brane system in the IIA model, similar
analysis has been done in Ref. [9], and also in Refs. [10,11]
in a slightly different method. In these approaches, the
essential point is the introduction of the B field with
dB ¼ 0 and its potential VAðαÞ, where α corresponds to
the phase of the Polyakov loop [12,13]. It is introduced as1

α ¼
Z
D2

B
2πα0

: ð1:1Þ

And this parameter α discriminates the periodic vacua in
the deconfinement phase with spontaneously broken ZN
symmetry. On the other hand, μI comes from the bulk U(1)
gauge field Fð¼ Fμνdxμ ∧ dxνÞ, and it appears in the
theory being combined with α as

α −
μI
T

¼
Z
D2

�
F þ B

2πα0

�
: ð1:2Þ

The important point is that the potential VAðαÞ is
periodic under α → αþ 2π=Nc due to the gauge symmetry
of the boundary supersymmetric Yang-Mills (SYM) theory
[7].2 As a result, the total effective potential, the sum of
VAðαÞ and the probe action, is also periodic under
μI=T → μ=T þ 2π=Nc, since a finite shift of μI=T can
be absorbed into α as understood from Eq. (1.2). The role of
μI in the probe action is to control the minimum of the
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effective total potential of α as seen in the RW phase
transition [7,8].
The purpose of this paper is to extend the analysis

performed for μI in the top-down models to a bottom-up
model which has been used to study the color super-
conductivity in QCD [14–16]. Through the extension, we
could get phase diagrams for our model in the region of μI
with RW transitions. And an implication of our holographic
model is discussed. Especially, when the backreaction of
flavor fermions is included, we find a μI-dependent critical
curve of confinement/deconfinement transition. In this
case, we could show the usefulness of a simple continu-
ation, μ → iμI , in terms of the critical curve obtained for
real μ. This usefulness is supported by the fact that we can
set α ¼ 0 near μI ¼ 0.
In the next section, the extended bottom-up model is

proposed and the actions are estimated for confinement
and deconfinement phases. In Sec. III, the RW transitions
are investigated in the probe approximation, and for the
backreacted case. Then the phase diagrams are given. In
Sec. IV, the validity of the continuation near μ ¼ 0 is
discussed by comparing the critical curve near μ ¼ 0 for the
holographic model and for the dual QCD theories. A
problem related to a wide periodicity of the potential
of μI is discussed in Sec. V. Our summary is given in
the final section.

II. A BOTTOM-UP MODEL

A bottom-up model, which was used before to study
the superconductivity of QCD [14], is given in a slightly
modified form of the following action for the Euclidean
space-time to investigate QCD with the imaginary chemical
potential. The model consists of two parts:

S ¼ Sbu þ SFð4Þ : ð2:1Þ

The first term is given as

Sbu ¼
Z

d6x
ffiffiffiffiffiffi
−g

p ðLGravity þ LCSCÞ; ð2:2Þ

LGravity ¼
1

2κ26

�
Rþ 20

L2

�
; ð2:3Þ

L̃CSC ¼ −
1

4
F̃2 − jDμψ j2 −m2jψ j2; ð2:4Þ

F̃μν ¼ ∂μAν − ∂νAμ þ
Bμν

2πα0
; Dμψ ¼ ð∂μ − iqAμÞψ :

ð2:5Þ

This action Sbu is proposed as a gravitational model dual
to the SYM theory, which could include the strongly
interacting flavor fermions with the chemical potential μ,
when the space-time is Lorentzian where the field Bμν is

neglected. On the other hand, for the Euclidean space-time,
the field Bμν must be retained, since the phase of the
Polyakov loop plays the main role in the RW transitions.
In the gravitational part LGravity, which is dual to the pure
SYM theory, the scale L denotes the anti–de Sitter (AdS)
radius. The part given by L̃CSC is dual to the flavor fermion
system. In the case of the top-down models, it is usually
given by the D-branes. In the present bottom-up model,
however, only a part of the D-branes appears in the bulk,
and the D-brane profiles are obscure. The study of how this
model can be lifted up to some appropriate top-down
holographic theory is postponed.
In the present case, the theory is set in the Euclidean

space-time. It is obtained from the Lorentzian action by the
Wick rotation of both the time and fields. We notice here
that the Kalb-Ramond field is added through F̃μν as given
in Eq. (2.5). This form of F̃μν is implied from the D-brane
action. And ψ denotes a charged scalar, which is supposed
to be dual to the Cooper pair of the color charged fermions.
Its baryon number charge is assigned as q. We could show,
by supposing an appropriate conformal dimension and the
mass m2, that there is no nontrivial solution for ψ in the
region of small and negative μ2 [14].3 Since μ2 is negative
for imaginary μ, we can neglect ψ hereafter because we are
considering the case with imaginary chemical potential.
Then, the system can be solved by setting Ã0 ¼ ϕ̃, where

Ãμ is defined by

F̃μν ≡ ∂μÃν − ∂νÃμ: ð2:6Þ

This replacement can be justified, since B is introduced
with dB ¼ 0. In this case, we will find the same form for
the equations of motion as that of the real μ theory given in
the Lorentzian space-time. However, in the present case, we
must notice that the solution ϕ̃ is not simply a chemical
potential, but a combination of the chemical potential
and α, as found from Eq. (1.2). This fact implies that
we can obtain the solutions with ϕ̃ for μI from that of the
real μ by a replacement, μ=T → iðμI=T − αÞ.
As for the action SFð4Þ , this is necessary to study the

potential of α. Its explicit form and an effective potential
of the B field are given in Sec. II B.

A. Bulk solutions

As mentioned above, neglecting ϕ̃, we can obtain
solutions with the imaginary chemical potential μI . We
give three solutions dual to the ground states of the pure
YM fields, and they are compared. Two of them are the
solutions of LGravity only, and thus they are independent

3On this point, we can see the details in Ref. [14]. A brief
explanation is given in Appendix B.
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of μ. The third solution is constructed by considering the
backreaction from F̃2.
(1) AdS soliton solution: This represents the low-

temperature confinement phase, and it is given as

ds2 ¼ r2ðδμνdxμdxν þ fðrÞdw2Þ þ dr2

r2fðrÞ ; ð2:7Þ

where

fðrÞ ¼ 1 −
�
r0
r

�
5

; r0 ¼
2

5Rw
; ð2:8Þ

and 2πRw denotes the compactified length of w.
(2) AdS-Schwarzschild solution: This solution corre-

sponds to the high-temperature deconfinement
phase,

ds2 ¼ r2ðfdt2 þ Σ3
i ðdxiÞ2 þ dw2Þ þ dr2

r2fðrÞ ;

ð2:9Þ

where

fðrÞ ¼ 1 −
�
r0
r

�
5

; r0 ¼
2

5Rw
: ð2:10Þ

(3) Reissner-Nordstrom (RN) solution: In this case,
the backreaction of flavor is taken into account.
It represents the high-temperature deconfinement
phase.
The background of RN is given as the solution of

the following action:

SG ¼
Z

d6x
ffiffiffiffiffiffi
−g

p �
1

2κ26

�
Rþ 20

L2

�
−
1

4
F̃2

�
;

ð2:11Þ

which includes the flavor part. We get the following
RN solution:

ds2 ¼ r2ðgdt2 þ Σ3
i ðdxiÞ2 þ dw2Þ þ dr2

r2gðrÞ ;

ð2:12Þ

g ¼ 1 −
�
1 −

3μ̃2

8r2þ

��
rþ
r

�
5

−
3μ̃2r6þ
8r8

; ð2:13Þ

Ã0 ¼ ϕ̃ ¼ μ̃

�
1 −

r3þ
r3

�
: ð2:14Þ

Here rþ denotes the horizon of the charged black
hole, and the temperature is given as

T ¼ 1

4π

�
5rþ þ 9μ̃2

8rþ

�
: ð2:15Þ

Here, μ̃ is defined by

−
μ̃

T
¼
Z
D2

F̃ ¼
Z
D2

�
F þ B

2πα0

�
¼ α −

μI
T
:

ð2:16Þ

The action densities for these solutions—(1) AdS-Soliton,
(2) AdS-Schwarzschild, and (3) RN—are given as

S1=V3 ¼ −r50v2 ¼ −r50
4π

5r0

1

T
; ð2:17Þ

S2=V3 ¼ −r50v2 ¼ −r50

�
4π

5r0

�
2

; ð2:18Þ

S3=V3 ¼ −r5þ

�
1 −

3μ̃2

8r2þ

�
v2 ¼ −r5þ

�
1 −

3μ̃2

8r2þ

�
4π

5r0

1

T
;

ð2:19Þ

where v2 ¼
R β
0 dτ

R
dw and V3 ¼

R
dxdydz. In the μI − T

plane, we can find the phase diagram by comparing the
above three actions. We find that the phase of solution (2) is
not realized when solution (3) is added.

B. Potential of Kalb-Ramond field

Consider the Kalb-Ramond field B, which is introduced
in terms of α, which is defined by Eq. (1.1). The present
bottom-up model would be related to the D4/D8 model of
type-IIA string. Then the bulk action, which could provide
the potential of α, might be given as

SFð4Þ ¼ −
1

2κ26

�Z
d6x

ffiffiffi
g

p 1

12
F2
ð4Þ −

Z
B ∧ Fð4Þ

�
: ð2:20Þ

In the RN background, Eqs. (2.12)–(2.15), this action is
estimated for a constant field F123w and α. We obtain

SFð4Þ ¼ −
V4

2κ26

�
β

6r3þ
F2
123w − αF123w

�
; ð2:21Þ

where V4 ¼
R
d3xdw ¼ βV3, V3 ¼

R
dx3, and rþ is used as

the lower limit of the integration of r as
R
∞
rþ

dr. It should be
replaced by r0 in the case of solutions (1) and (2). Solving
the equation of motion of F123w, we find the solution as
F123w ¼ 3r3þα=β. Then the potential is obtained as
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SFð4Þ=V3 ≡ VA ¼ 1

2κ26

3r3þ
2

α2: ð2:22Þ

Due to the gauge symmetry of the dual SYM theory, the
above result should be written as

VA ¼ min
n∈Z

1

2κ26

3r3þ
2

�
α −

2πn
Nc

�
2

: ð2:23Þ

III. ROBERGE-WEISS TRANSITIONS

A. Probe approximation

In the probe approximation, the gauge term L̃CSC is
treated as the probe for the background given by the
gravitational part. In this case, the background actions
are given by S1 and S2, and we find the critical line of
confinement/deconfinement by comparing the two bulk
actions. Then, the critical line is found as

T ¼ 5r0
4π

: ð3:1Þ

This is independent of μI; therefore, the critical line is
common to the case of real μ. The probe part defined
by Eq. (2.4) is solved under these backgrounds. The
equations of motion of ϕ̃ are given by the ansatz
Ã ¼ Ãμdxμ ¼ ϕ̃ðrÞdt.
In the confinement phase, the background is given by

solution (1), and the equation for ϕ̃ is given as

ϕ̃00 þ
�
4

r
þ f0

f

�
ϕ̃0 ¼ 0: ð3:2Þ

We find that the allowed solution of this equation is
ϕ̃ ¼ const. This solution gives no contribution to the free
energy. On the other hand, the Kalb-Ramond field has no
meaning in the confinement phase. So there is no new
phase transition in this phase.
An interesting phenomenon is observed in the deconfine-

ment phase with the background of solution (2). In this
case, we have the equation

ϕ̃00 þ 4

r
ϕ̃0 ¼ 0: ð3:3Þ

This equation is solved as

ϕ̃ ¼ μ̃

�
1 −

r30
r3

�
: ð3:4Þ

This solution provides a nontrivial contribution to the free
energy as shown below. The probe action is given as

SECS ¼ −
Z

dx6
ffiffiffiffiffiffi
−g

p �
−
1

4
F̃2

�
ð3:5Þ

¼
Z

dx5
Z

∞

r0

dr
r4

2
ðϕ̃0Þ2 ð3:6Þ

¼
Z

dx3Vf; ð3:7Þ

where

SECS=V3 ¼ Vf ¼
3

2

�
4π

5

�
3

Tμ̃2: ð3:8Þ

Then μ̃ is replaced by μI and α by Eq. (2.16), and we obtain

Vf ¼ 3

2

�
4πT
5

�
3

ðα − μI=TÞ2: ð3:9Þ

Now, from this Vf and Eq. (2.23), where rþ is replaced
by r0ð¼ 4πT=5Þ, we find

Veff ¼ VA þ VfðαÞ

¼ min
n∈Z

1

2κ26

3

2

�
4πT
5

�
3
�
α −

2πn
Nc

�
2

þ 3

2

�
4πT
5

�
3

ðα − μI=TÞ2: ð3:10Þ

From this effective potential, we can see the Roberge-
Weiss transition for the state defined by the value of α. An
example of this transition is read from Fig. 1, in which we
can see the transition from hαi ¼ 0 to the hαi ¼ 2π=3
vacuum state—namely, from the phase (b0) to (b1) in
Fig. 2. The resultant phase diagram obtained from the
above Veff is shown in Fig. 2. Here, the relative ratio of
the probe term and the B term VA is set by the relation
1=2κ26 ¼ 10 for simplicity.
Finally, we give an effective potential under the

quenched approximation of the gauge field configurations
which provide the real Polyakov loop. This potential is
obtained from Eq. (3.10) by considering the functions at
α ¼ 2πn where n ∈ Z, and it is found by picking up the
minimum parts,

Vð0Þ
eff ¼ min

n∈Z

3

2

�
4πT
5

�
3

ð2πn − μI=TÞ2: ð3:11Þ

This potential has the period 2π with respect to μI=T as
expected, and it is shown in Fig. 3. This period can be
understood from the phase of the boundary condition
imposed on the fundamental fermions of the theory. In
the present article, this potential is not used; however, this
periodicity is seen, for example, in the calculation of the
chiral condensate in the gauge configurations of the real
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Polyakov loops [5,6]. This point is given more discussion
in Sec. V.

B. Backreacted case

When the backreaction of the flavor part is taken into
account, the deconfinement background is replaced by the
RN solution (3), since S3 < S2. The action S3 is given in
Eq. (2.19). We notice that the μ̃ dependence of S3
also comes from rþ. Actually, by using Eq. (2.15), rþ is
written as

rþ ¼ 2πT
5

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

45μ̃2

8
=ð2πTÞ2

r !
: ð3:12Þ

This solution is useful for jμ̃j=T <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π2=45

p
ð¼ 2.65Þ

due to the reality of rþ. For jμ̃j=T >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π2=45

p
, the

system becomes unstable and decays to the stable confine-
ment phase expressed by solution (1), the AdS-soliton
background.
To observe the RW transitions, it is helpful to see the

phase diagram for α ¼ 0—namely, for μ̃ ¼ μI. This dia-
gram is obtained by comparing S3 with S1 for α ¼ 0, and
it is shown in Fig. 4. The unstable region of solution
(3) mentioned above is shown by region (B) in this figure
for α ¼ 0, and the regions (A) for the Reissner-Nordstrom
deconfinement phase and (C) for the AdS soliton confine-
ment phase are also shown. Since region (C) must be
replaced by the confinement phase of (B), the deconfine-
ment region (A) is restricted to the definite region of jμIj=T,
jμIj=T ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π2=45

p
, as mentioned above. This restriction

comes from the backreaction.

a

b0 b1 b2b 1

A1 A2B1B2

4 2 0 2 4
I T

0.5

1.0

1.5

2.0
T

FIG. 2. Phase diagram for probe approximation. The horizontal
critical line separates the confinement and deconfinement phases.
In the large-T deconfinement phase, the RW transitions are
shown by the vertical critical lines. The points A1 ∼ B2 represent
tricritical points.

6 4 2 2 4 6 6 4 2 2 4 6

1

2

3

4

5

6

2

4

6

8

Veff Veff

FIG. 1. Veff for μI=T ¼ 0 (left) and μI=T ¼ 0.6a (right).

15 10 5 5 10 15
I T

50

100

150

200

Veff
0

FIG. 3. Vð0Þ
eff .
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Now we study the RW transitions in the deconfinement
phase of region (A) by reviving α. In the present case, the
effective potential is given as

Veff ¼ VA þ VRN
f ¼ min

n∈Z

1

2κ26

3r3þ
2

�
α −

2πn
Nc

�
2

þ VRN
f :

ð3:13Þ

The first term, VA, is obtained in Eq. (2.23) for the
background of RN, and the second term is given as

SRN ¼ 1

2κ26

Z
d6x

ffiffiffiffiffiffi
−g

p �
Rþ 20

L2
−
1

4
F̃2

�
¼
Z

dx3VRN
f :

ð3:14Þ

Using Eq. (2.19), we find

VRN
f ¼ −

1

2κ26
r5þ

�
1 −

3μ̃2

8r2þ

�
4π

5r0

1

T
: ð3:15Þ

This potential is the part dual to the combined system
of SYM fields and flavor fermions with an imaginary
chemical potential μI .
Here, we notice that VA also depends on μ̃ through rþ.

This fact can be interpreted as a kind of backreaction to the
Kalb-Ramond potential from the flavor fermions. In order
to understand this backreaction, we restrict the region of
jμIj to the region of small jμI=T − αj. Then we can expand
Veff in the series of −ðμI=T − αÞ2. The expanded potential
is retained up to the order of jμI − α=βj2, and we obtain

VA¼min
n∈Z

1

2κ26

�
64π3

125
−
27π

50

�
α−

μI
T

�
2
�
T3

�
α−

2πn
Nc

�
2

þ��� ;

ð3:16Þ

VRN
f ¼ 1

2κ26

�
−
1024π5

3124
þ 96π3

125

�
α −

μI
T

�
2
�
T3 þ � � � :

ð3:17Þ

We find that this result is almost equal to the probe
approximation, except that the coefficient of VA is slightly
modified. In fact, we can see similar behavior of the
potential to that of the probe approximation. Then we
could find the expected RW transitions in this case also.
Furthermore, the qualitative behaviors of the potential are
maintained even if the full form of the potential is used. So,
we show here the RW transitions in terms of the full form of
the potential.
In Fig. 5, the effective potential with two values

of μI=T is shown in order to display the RW transition
from hαi ¼ 0 to hαi ¼ awith the period a, which should be
set as 2π=Nc. It is easy to find other periodic transitions.
The resultant phase diagram with the RW transitions is
shown in Fig. 6.
Here, we should notice that the periodicity of μI=T

in Veff implies jμI=Tj < π=Nc. This and the constraint
jμIj=T ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π2=45

p
given above leads to the constraint

Nc > 1.18: ð3:18Þ

In spite of the fact that Nc must be a large integer to justify
the holographic approach, we are allowed to use the
holography up to Nc ¼ 2 at this stage.

IV. COMPARISON WITH QCD NEAR μ = 0

As shown above, the μ-dependent critical line obtained
for real μ can be continued to the imaginary μ region
and used there. The form of the critical line near μ ¼ 0 is
given as [17]

T
T0

¼ 1 − a

�
μ

T0

�
2

þ � � � ; ð4:1Þ

where T0 denotes the critical temperature at μ ¼ 0,
and a is a dimensionless constant, which depends on
the parameters of the theory. It has been obtained also in
the lattice QCD for μ2 < 0 without bothering with the
sign problem. Then it is meaningful to compare the result
obtained in lattice QCD with the holographic result
given here.
For the probe approximation, we find a ¼ 0, since the

critical line is independent of μ. So, we consider the RN
background case, where the μ-dependent critical curve is
obtained from the equation S1 ¼ S3. And we find

a ¼ 15

32π2
¼ 0.0475: ð4:2Þ

(A) Stable R N

(C) AdS Soliton

(B) Unstable R N

I T

T

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5

(a) (b) (c)

FIG. 4. Phase diagram of the backreacted case for r0 ¼ 1 and
α ¼ 0. The lines (a), (b), and (c) represent jμIj=T ¼ π=3, π=2,
and π, respectively.
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In the lattice QCD, the coefficient is obtained by the form

a ¼ κN2
c: ð4:3Þ

For confinement transition, we find many simulation
results. We pick up several examples, to compare with
the holographic result, however, where Nc is assumed to
be large. The examples of estimations of κ from lattice
QCD data in the 2þ 1 and 2þ 1þ 1 flavor systems are
0.0066� 20 [18], 0.013� 0.003 [19], 0.0135� 0.002
[20], 0.0149� 0.0021 [21], and 0.020� 0.004 [22].
Comparing this with Eq. (4.2) and using Eq. (4.3), we

find Nc ¼ 1.76 for κ ∼ 0.0153. This is consistent with the
result Nc ≥ 1.2 obtained in our backreacted case.
In addition, there is the estimation of κ by using the

Polyakov loop extended Nambu–Jona-Lasinio (NJL)
model with the mean-field approximation as κχ ¼ 0.017�
0.001 [23]; it should be noted that this value is estimated
from the isospin chemical potential, but κ should be exactly
same in both cases, at least in the mean-field approxima-
tion. In the case of the PNJL model, there is the estimation
of κ for the confinement-deconfinement crossover line as
0.004� 0.001 and 0.003� 0.001; the former one is evalu-
ated from the Polyakov loop, and the latter one uses the
quark number holonomy [24].

V. MORE ABOUT THE PERIODICITY

In the previous section, we discussed possible connections
between lattice QCD simulations near μ2 ¼ 0. In this
section, we discuss deeper properties of the periodicity
appearing in QCD. In full QCD, we should have the RW
periodicity as explained and demonstrated above. It is,
however, well known that we should have the 2π periodicity
for μI=T ¼ θ instead of the Roberge-Weiss (RW) periodicity
in the lattice QCD simulation when we fix gauge configu-
rations at μ ¼ 0 or the pure gauge limit where dynamical
quarks are not taken into account; the latter one corresponds
to the quenched limit. In this case, any quantities such as the
pressure, the entropy density, and the cumulant lose the RW
periodicity, and thus the minimal period becomes 2π because
the grand canonical partition function does not have the RW
periodicity. It should be noted that we need the Polyakov
loop phase flip to consider the RW periodicity in the limits as
discussed in Refs. [25,26].
The 2π periodicity has been used in the calculation of the

dual quark condensation. The actual definition of the dual
quark condensation is given by

I T

T

(a)

(b0) (b1) (b2)(b 1)

A0 A1 A2

2 1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

FIG. 6. Phase diagram for RW transitions under the backreacted
background solution for Nc ¼ 3. In the RN deconfinement phase,
the phases are separated by the vertical critical lines into the
regions ðb − 1Þ ∼ ðb2Þ for hαi ¼ −2π=3, 0, 2π=3, 4π=3. The area
(a) corresponds to the AdS soliton confinement phase. The points
A1 and A2 represent the tricritical points.
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FIG. 5. Full form of Veff for the RN backreacted case. The left plot shows μI=T ¼ 0, and the right displays μI=T ¼ 0.6a with the
period of a ¼ 2π=25.
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ΣðnÞ ¼
Z

2π

0

dϕ
2π

σðϕÞeinθdϕ; ð5:1Þ

where σðϕÞ is the chiral condensate with the phase of the
boundary condition, 0 ≤ ϕ ≤ 2π, which is related with the
dimensionless imaginary chemical potential as

ϕ ¼ θ þ π: ð5:2Þ

In the heavy quark mass regime, it has a clear relation with
the Polyakov loop by using the Dirac mode expansion
[5,6]. Since the dual quark condensate is calculated from
the chiral condensate, this quantity may bridge the chiral
and the Polyakov loop dynamics in QCD. Details of the
dual quark condensate have been discussed in the lattice
QCD simulation [5,6], the Dyson-Schwinger equation [27],
and QCD effective models [28–30]. In principle, we can
investigate the Polyakov loop behavior at μ ¼ 0 from the
ϕ-dependent chiral condensate even if calculation of the
Polyakov loop is difficult or impossible.
In the strict probe limit of the holographic model, we also

face the same situation of the lattice QCD simulation in the
quenched limit: we only have the 2π trivial periodicity. For
consistency between the holographic model and the lattice
QCD simulation in both limits, we should reproduce the 2π
periodicity in addition to the RW periodicity. Also, it is
good to calculate the dual quark condensate in the holo-
graphic model to discuss the relation between the chiral
condensate and the Polyakov loop. In addition, if we can
understand how to control the boundary condition in the
holographic model, we will contact with the ZNc

twisted
QCD, an interesting QCD-like theory in the viewpoint of
the sign problem appearing in the lattice simulation. One
possibility for introducing the 2π trivial periodicity in the
probe limit is imposing a 2π periodic form of θ in the
mapping of μ from A0: we need special care for the 2π
periodicity issue of the dimensionless imaginary chemical
potential.

VI. SUMMARY

We have studied here the phase structure and phase
transition behaviors ranging from real to imaginary chemi-
cal potential, using a bottom-up holographic model that
was introduced to investigate color superconductivity in
QCD. From the general framework of QCD, one knows
that the QCD partition function possesses a certain perio-
dicity, the Roberge-Weiss (RW) periodicity, at the imagi-
nary chemical potential region. Our interest was to see how
the analytic continuation of the chemical potential works.
To this end, we have computed the effective potential of the
model by including the Kalb-Ramond field in the bulk.
Unlike the previous studies based on a top-down approach,
there is an advantage of our bottom-up approach in that one
can evaluate the effect of backreaction. As a result, we have
observed the RW periodicity as well as the 2π periodicity

appropriately. We have further investigated the behavior of
the critical line near μ ¼ 0 and tried to see the validity of
our analysis. Our results have been compared with those
obtained from lattice QCD and effective models such as the
Polyakov loop extended NJL model.
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APPENDIX A: ROBERGE-WEISS PERIODICITY
IN THE OPERATOR FORMALISM

Since the Roberge-Weiss periodicity must be indepen-
dent of the gauge fixing condition except for the global
topology of gauge configuration, the mechanism of the
periodicity seems to result strongly from the quark side.
In this appendix, we present a brief demonstration of the
mechanism in the operator formalism. In the path-integral
representation, the periodicity is related to the boundary
condition along imaginary time. Therefore, we omit the
spatial degrees of freedom in the following discussions.
Let us begin with a single-fermion system. The coherent

states are defined by

jξi ¼ ð1 − ξa†Þj0i ¼j0i−ξj1i;

hξj ¼ 1

i
h0jðξ − aÞ ¼ 1

i
ðh0jξ − h1jÞ: ðA1Þ

Using the integration rule
R
dξξ ¼ i, the trace of an

operator O is calculated asZ
dξhξjOj − ξi ¼h0jOj0iþh1jOj1i ¼trO: ðA2Þ

This leads to the antiperiodic boundary condition in a path-
integral representation [31].
In a particle-antiparticle system, the coherent states

which satisfy

ajξ; ξ̄i ¼ξjξ; ξ̄i; bjξ; ξ̄i ¼ ξ̄jξ; ξ̄i;
hξ; ξ̄ja ¼ hξ; ξ̄jξ; hξ; ξ̄jb ¼ hξ; ξ̄jξ̄ ðA3Þ

are constructed as follows:

jξ; ξ̄i ¼ ð1 − ξa†Þð1 − ξ̄b†Þj0; 0i
¼ j0; 0i−ξj1; 0i−ξ̄j0; 1iþξ̄ξj1; 1i; ðA4Þ

hξ; ξ̄j ¼ 1

i2
h0; 0jðξ̄ − bÞðξ − aÞ

¼ 1

i2
ðh0; 0jξ̄ξþ h1; 0jξ̄ − h0; 1jξþ h1; 1jÞ: ðA5Þ
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Corresponding to boundary conditions as ψðβÞ ¼ −σψð0Þ
and ψ̄ðβÞ ¼ −σ�ψ̄ð0Þ in the path-integral representation,
the calculation of the trace is modified as

trσO ¼
Z

dξdξ̄hξ; ξ̄jOj−σξ;−σ�ξ̄i ðA6Þ

¼ h0; 0jOj0; 0i þ σh1; 0jOj1; 0i
þ σ�h0; 1jOj0; 1iþh1; 1jOj1; 1i: ðA7Þ

(This reduces to the normal trace in the case of σ ¼ 1.)
Note that

j−σξ;−σ�ξ̄i ¼eiγða†a−b†bÞj−ξ;−ξ̄i ðσ ¼ eiγÞ; ðA8Þ

and then we obtain

trσO ¼ trðOeiγða†a−b†bÞÞ: ðA9Þ

Now, the grand potential Zðβ; μÞ of the SUðNÞ local
gauge theory is invariant under the ZN transformation
associated with the ZN-twisted boundary condition at
τ ¼ β [7]. This is expressed, in the operator formalism, as

Zðβ; μÞ ¼
X
A

Z
½dξdξ̄�hA; ξ; ξ̄jOjA;−σξ;−σ�ξ̄i; ðA10Þ

in which the label A denotes a set of quantum numbers
other than the quark occupation and

hA; ξ; ξ̄j ¼ hAj
�
⨂
N

i¼1

hξi; ξ̄ij
�
;

½dξdξ̄� ¼ dξ1dξ̄1 � � � dξNdξ̄N; ðA11Þ

O ¼ e−βðH−μ
P

N
i¼1

ða†i ai−b†i biÞÞ;

σ ¼ ei
2πk
N ðk ∈ f0; 1;…; N − 1gÞ: ðA12Þ

(For simplicity, the degree of freedom associated with the
Dirac spinor components is suppressed.) Applying the
relation (A9) and taking account of the commutativity
among H, a†i ai, and b

†
i bi, one immediately derives the RW

periodicity:

Zðβ; μÞ ¼
X
A

Z
½dξdξ̄�

× hA; ξ; ξ̄je−βðH−ðμþi2πkβN Þ
P

N
i¼1

ða†i ai−b†i biÞÞjA;−ξ;−ξ̄i
ðA13Þ

¼ Z

�
β; μþ i

2πk
βN

�
: ðA14Þ

APPENDIX B: PARAMETERS RELATED
TO ψ IN LCSC

In order to understand the role of ψ , we consider the
equations of motion, which are solved in the Lorentzian
space-time in Ref. [14]. For the bulk solution (2) given in
Sec. II A, they are given as

ψ 00 þ
�
6

r
þ f0

f

�
ψ 0 þ 1

r2f

�
q2ϕ2

r2f
−m2

�
ψ ¼ 0; ðB1Þ

ϕ00 þ 4

r
ϕ0 −

2q2ψ2

r2f
ϕ ¼ 0; ðB2Þ

where A ¼ Aμdxμ ¼ ϕðrÞdt and ψ ¼ ψðrÞ are assumed.4

The conformal dimension of the scalar, say Δ, is related
to the mass as

Δ ¼ 1

2

�
dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p �
: ðB3Þ

Here we suppose that the scalar is dual to the Cooper pair,
so the dimension is expected to be Δ ¼ 2 × d−1

2
¼ d − 1,

which is realized for m2 ¼ −ðd − 1Þ. We notice here that
d ¼ 5 andm2 ¼ −4. Then the asymptotic forms of ϕ and ψ
are expected as

ϕ ¼ μ −
d̄
r3
; ψ ¼ Jc

r
þ C
r4
; ðr → ∞Þ; ðB4Þ

where μ, d̄, Jc, and C denote the chemical potential, charge
density, source, and the vacuum expectation value of the
dual operator of ψ , respectively.
Here we set the mass of the scalar as m2 ¼ −4.

This is within the Breitenlohner-Friedman (BF) bound,
m2 > −d2=4 ¼ −25=4. However, in the present case, the
mass is effectively deformed by the background and ϕ. As a
result, the effective mass, which depends on r, becomes
smaller than the BF bound in some region of r. When such
a region exists, an instability could occur. To rescue this
instability, the condensate of ψ is needed. This is the reason
why we could find a nontrivial solution, ψ ≠ 0. As a result,
we find the condensation of the Cooper pair.
In the case of an AdS-Schwarzschild solution, the

effective mass is written as

m2
eff ¼ m2 −

q2ϕ2

r2f
: ðB5Þ

We understand from this relation that, for enough large qμ,
we could find the Cooper pair condensation. On the other
hand, it would be impossible to realize such a condensation
for imaginary μ, since q2μ2 < 0.

4We notice that the Euclidean equations are obtained by
making the replacement ϕ → iϕ.
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