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We propose that the definition of holographic subregion complexity needs a slight modification for
supergravity solutions with warped anti–de Sitter (AdS) factors. Such warp factors can arise due to the
nontrivial dilaton profile, for example, in AdS6 solutions of type IIA supergravity. This modified definition
ensures that the universal piece of the holographic subregion complexity is proportional to that of the
holographic entanglement entropy, as is the case for supergravity solutions without warp factors. This also
means that the leading behavior at large N is the same for both these quantities, as we show for some well-
known supergravity solutions (with and without warp factors) in various dimensions. We also show that this
relation between the universal pieces suggests “universal” relations between the field theoretical analogue
of holographic subregion complexity and the sphere partition function or Weyl a-anomaly in odd or even
dimensions, respectively.
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I. INTRODUCTION

The gauge/gravity correspondence inspired holographic
observations have been a matter of great interest as they
provides ameans to study and uncover fascinating features of
strongly coupled field theories via their gravity duals [1–3].
In the landscape of quantum information theory, the holo-
graphic computations of entanglement entropy (EE) and
quantum complexity (QC) of a conformal field theory (CFT)
are prime applications of this correspondence [4–10].

A. Entanglement entropy

The EE is a “good measure” of quantum entanglement
for a pure quantum state1 and represents the amount of
information stored in a quantum system. When a system
can be divided into two subsystems, A and B, then the
definition for the EE of subsystem A (SA) follows along the
lines of von Neumann entropy:

SA ¼ −tr½ρA log ρA�; ð1:1Þ

where ρA ¼ trB½ρtotal� is the reduced density matrix of the
subsystem A obtained by tracing out the degrees of freedom
of the subsystem B from the total density matrix ρtotal of the
whole system. The holographic computation of EE of a
CFT in d-dimensional spacetime is provided by the Ryu-
Takayanagi prescription which is defined as [4,5]

SA ¼ AreaðγAÞ
4Gðdþ1Þ

N

; ð1:2Þ

where γA is a codimension 2 static minimal surface corre-

sponding to the subsystem A and Gðdþ1Þ
N is the (dþ 1)-

dimensional Newton’s gravitational constant. The quantity
computed from (1.2) is usually labeled as a holographic EE
(or HEE, for short) and we will review its computation for
several well-known supergravity solutions.
The entanglement entropy is also related to other field

theoretical quantities depending on the spacetime dimen-
sions [5,12,13]. In odd dimensions, the universal piece of
entanglement entropy for a spherical subsystem is related to
the sphere free energy defined to be (negative of) the
logarithm of the partition function of the CFT placed on a d
sphere: SA ¼ −FSd ≡ log jZSd j. In even dimensions, the
universal piece of EE is related to the Weyl anomaly ad
via the relation SA ¼ ð−1Þd2−14ad. This captures a part
of the trace of the energy-momentum tensor hTμ

μi∼
−ð−1Þd22adEd þ � � �, where Ed is the d-dimensional
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1In the case of mixed states, (logarithmic) negativity is a
better candidate to quantify quantum entanglement; see, for
example, [11].
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Euler density.2 Both the free energy and a-anomaly are
useful in the study of renormalization group flows [14–17].
The holographic computations match the corresponding
field theoretical results wherever available.

B. Quantum complexity

The QC involves minimizing the number of unitary
transformations required to transform the state of a system
from a reference state to a desired target state. It is a difficult
concept to define in aQFTand no satisfactory field theoretical
definition of complexity exists yet. But several attempts have
been made in field theory to define geometric and circuit
complexity [18–21], and path integral complexity [22,23].
In addition, there also have been numerous attempts to

define the notion of complexity holographically. Initially, it
was conjectured that the QC of a state (measured in gates)
is proportional to the volume of the Einstein-Rosen bridge
(ERB) connecting two boundaries of an eternal black
hole [6,7]

CVðtL; tRÞ ¼
VERBðtL; tRÞ
8πLAdSG

ðdþ1Þ
N

; ð1:3Þ

where VERB is defined to be the codimensional 1 maximal
volume bounded by the two spatial slices at times tL and tR
anchored at the entangled state of two CFTs that live on the
two boundaries of the eternal black hole. Another proposal
for computing QC holographically states, that it can be
obtained from the bulk action evaluated on the Wheeler-
DeWitt patch [8,9], is

CW ¼ IWDW

πℏ
· ð1:4Þ

In both these holographic proposals, the complexity depends
on thewhole state of the physical systemat the boundary. The
relation between these two “Complexity¼Volume” and
“Complexity¼Action” conjectures have been explored in
detail in [24], including the generalization to subregion
complexity, which involves reducing the boundary state to
a specific subregion of the boundary time slice. Following
these, there is yet another Complexity ¼ Volume conjecture
proposed in [10] that specifically depends on the reduced
state of the system. This involves computing the maximal
codimension 1 volumeVðγAÞ enclosed by the codimension 2
static minimal surface γA (Ryu-Takayanagi (RT) surface)
foliated into the bulk. Explicitly, it reads

CA ¼ VðγAÞ
8πLAdSG

ðdþ1Þ
N

; ð1:5Þ

where LAdS is the length scale of the anti–de Sitter (AdS)
space in consideration. This has been dubbed the
holographic subregion complexity (HSC) in the literature.
We will focus exclusively on this definition in this article to
calculate the HSC for a few well-known supergravity
solutions containing AdS4–AdS7 spacetimes.
We study the relation between HSC and HEE for various

supergravity solutions by focusing on their universal
pieces.3 We find that for solutions having a product
geometry of pure AdS spacetime and a compact manifold,
the universal piece of HSC is simply proportional to that of
theHEE.However, for solutions having awarpedAdS factor
(arising due to nontrivial dilaton profile), the application of
(1.5) does not result in such a simple relation (we show this
explicitly in the appendix for two cases), which seems an
unlikely result. Because of the fact that both the HEE and
HSC are calculated by using the same minimal RT surface,
we expect such a simple relation between these two
quantities to be a generic feature. Thus, to achieve this,
we propose (2.2) as a slight modification of (1.5) by arguing
that the warp factor needs to be taken into account in
defining the AdS length scale LAdS appearing in (1.5).
Most of the solutions we consider have well-known CFT

duals and the computation of subregion complexity on the
gravity side leads to the prediction for the associated
quantity on the CFT side, as expected from AdS=CFT
correspondence. This also means that the holographic
relation between the universal pieces of the HEE and
HSC leads to a prediction of a similar relation between the
associated CFT observables. Thus, the universal piece of
the field theoretical analogue of HSC (which wewill denote
simply as C in the following sections) can be predicted to
be proportional to the a-anomaly or the sphere free
energy for CFTs in even or odd dimensions, respectively.
This fact has not been appreciated in the literature as far as
we know, which should lead to a focused effort in
defining and computing the complexity for such dual
CFTs, providing further concrete tests of the AdS=CFT
correspondence.
The rest of this article is organized as follows. In Sec. II,

we modify the definition of HSC (1.5) to include AdS
spacetimes with warp factors. In Secs. III and IV, we
consider a few well-known 10d and 11d supergravity
solutions and find a simple relation between universal
pieces of the HEE and (modified) HSC. This relation leads
to a prediction for field theoretic complexity in terms of
either the a-anomaly or the free energy on sphere, as
discussed above. In Sec. V we end with a summary of the
results and some future directions. We also include
Appendix to collect the results of a straightforward

2In d ¼ 2, the a-anomaly is related to the central charge c
of the 2D CFT so the relation SA ∼ c is more common in
this case.

3The universal piece, in this context, refers to a term that does
not depend on the chosen subsystem, up to a logarithmic
divergence [5,13].
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application of the HSC formula (1.5), when it is different
from the modified HSC we define below.

II. REVISITING HSC

The HSC was defined in [10] by considering pure
AdSpþ1 spacetime. The supergravity solutions, which arise
in the weak gravity limit of superstring or M theory, are
product manifolds involving AdS spacetime and a compact
manifold. There can also exist nontrivial warp factors for
each component of the product manifold. In general, we
can consider the following metric (in Einstein frame) for
the full (dþ 1)-dimensional spacetime (d ¼ 9 for string
theory and d ¼ 10 for M theory):

ds2dþ1 ¼ L2
AdSFðxÞ2ds2AdSpþ1

þ L2
XGðxÞ2ds2Xd−p

; ð2:1Þ

where FðxÞ and GðxÞ are warp factors multiplying the AdS
metric4 and the metric for the compact manifold X,
respectively. Such warp factors depending on the d − p
coordinates fxg of the compact manifold X can arise due to
the nontrivial dilaton profile, as we will see later. It is well
known that in the presence of such warp factors, we get an
effective AdS radius LAdSðxÞ ¼ LAdSFðxÞ, which can no
longer be considered constant when considering the full
supergravity solution. This leads to an ambiguity in
applying (1.5) to evaluate the HSC since it is not clear
which value of LAdS to use. One way to resolve this
ambiguity is to bring LAdSðxÞ inside the integral defining
the VðγAÞ in (1.5). A similar modification was considered
in [25] to (re)define the central charge defined originally in

[26]. Thus, we are led to the following modification
of (1.5):

C̃A ¼ 1

8πGðdþ1Þ
N

Z
γA

ddx

ffiffiffiffiffiffiffi
gðdÞ

p
LAdSðxÞ

· ð2:2Þ

Here, gðdÞ denotes the determinant of the d-dimensional
metric following from (2.1) for static surfaces, i.e., t ¼ 0 in
the AdSpþ1 metric. Also, note that C̃A ≡ CA as given in

(1.5) when LAdSðxÞ is constant since VðγAÞ ¼R
γA
ddx

ffiffiffiffiffiffiffi
gðdÞ

p
and γA denotes the RT surface whose area

computes the HEE via the relation (1.2).
As discussed in the Introduction, one motivation for the

modified definition (2.2) is that the universal piece of C̃A is
proportional to that of SA whereas a direct application of
(1.5) does not guarantee that (see Appendix). Such a simple
relation between SA and CA is implicit in [10] and has been
further explored in [27–29] where AdS spacetimes are
considered without any explicit embeddings in string or M
theory. We revisit those calculations both for HEE and HSC
now in the context of the generic metric with warped AdS
factor given in (2.1) to prove the proportionality claim.
In order to compute HEE, we consider a subsystem A

realized as a round sphere: ρ2 ¼ Pp−1
i¼1 ðxiÞ2 ≤ R2. The

embedding of this static (t ¼ 0) RT surface into the bulk is
specified by the profile ρ ¼ ρðzÞ. The surface area of the
RT surface then reads

AreaðγAÞ ¼
Z

dd−pxLAdSðxÞp−1LXðxÞd−p
ffiffiffiffiffiffiffiffiffiffiffiffi
gðd−pÞ

q
VolðSp−2Þ

Z
R

z0

dz
ρðzÞp−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0ðzÞ2

p
zp−1

· ð2:3Þ

In the above integral we have introduced a UV cutoff z0 to regularize the area functional.5 Solving the Euler-Lagrangian
equation obtained from the above area function we find ρðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
. This leads to the following expression for

HEE [4,5]:

SA ¼ AreaðγAÞ
4Gðdþ1Þ

N

¼ VolðSp−2Þ
4Gðdþ1Þ

N

Z
dd−pxLAdSðxÞp−1LXðxÞd−p

ffiffiffiffiffiffiffiffiffiffiffiffi
gðd−pÞ

q Z
R

z0

dz
ρðzÞp−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0ðzÞ2

p
zp−1

≈
VolðSp−2Þ
4Gðdþ1Þ

N

I ðd−pÞ ×

8<
:

ð−1Þn−1
�
n−3

2

n−1

�
log

�
2R
z0

�
p ¼ 2n

ð−1Þn
2n

�
n−1

2

n

�
−1

p ¼ 2nþ 1
; ð2:4Þ

where we have denoted the (d − p)-dimensional integral as I ðd−pÞ and kept only the universal piece of the z-integral, i.e.,
log term for even p-dimensional case and constant term for odd one [5,13].

4We will take the AdS metric to be of the form ds2AdSpþ1
¼ 1

z2 ð−dt2 þ dx⃗2 þ dz2Þ, with dx⃗2 ¼ Pp−1
i¼1 ðdxiÞ2 ¼ dρ2 þ ρ2ds2Sp−2 .

5The z0 can be related to the lattice spacing in the discretized version of the dual field theory [30].
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Now we can compute the HSC for the RT surface specified above using (2.2)

C̃A ¼ 1

8πGðdþ1Þ
N

Z
γA

ddx

ffiffiffiffiffiffiffi
gðdÞ

p
LAdSðxÞ

¼ 1

8πGðdþ1Þ
N

Z
dd−px

1

LAdSðxÞ
LAdSðxÞpLXðxÞd−p

ffiffiffiffiffiffiffiffiffiffiffiffi
gðd−pÞ

q
VolðSp−2Þ

Z
R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρp−2

zp

≈
VolðSp−2Þ
8πGðdþ1Þ

N

I ðd−pÞ ×

8<
:

ð−1Þnπ
2ð2n−1Þ p ¼ 2n

ð−1Þn
2n log

�
R
z0

�
p ¼ 2nþ 1

; ð2:5Þ

where we have again kept only the universal pieces [10,29].
Note that the nature of universal pieces in (2.5) is opposite
to those obtained for HEE in (2.4). It is now straightforward
to show that the universal pieces of SA and C̃A are
proportional independent of the integral over the compact
manifold by comparing (2.4) and (2.5):

Cp ¼
8<
:

−1
4ð2n−1Þ

�
n−3

2

n−1

�
−1 SA

logð2Rz0Þ
p ¼ 2n

1
2π

�
n−1

2

n

�
SA p ¼ 2nþ 1

· ð2:6Þ

Recall that we denote the universal piece of HSC (or,
equivalently its field theoretical analogue) simply by C
with the subscript p denoting the spacetime dimension of
the (dual) CFT. Since these relations are independent of

I ðd−pÞ and Gðdþ1Þ
N , they do not depend on the explicit

embedding in string theory or M theory and are valid for
any generic holographic CFT dual in p dimensions. In this
sense, they are universal relations and we will rewrite them
purely from the CFT point of view in Sec. V.
We will now show a few explicit examples of the above

relations in the following sections for some well-known
supergravity solutions.

III. STRING THEORY SOLUTIONS

In this section, we study the relation between the HEE
and HSC of the 10-dimensional supergravity solutions of
the forms AdS5 × X5 and AdS6 × Y4 and what that entails
for associated field theoretical quantities.

A. AdS5 × X5

The AdS5=CFT4 is the most well-studied AdS=CFT
correspondence. Many 4d N ≥ 1 super conformal field
theories (SCFTs) have been constructed that have type IIB
string theory duals on AdS5 × X5, where X5 is a compact
five-dimensional Sasaki-Einstein manifold. [1,2,31] The
10d supergravity metric in general reads

ds2 ¼ L2

�
−dt2 þ dx⃗2 þ dz2

z2

�
þ L2ds2X5

; ð3:1Þ

where dx⃗2 ¼ P
3
i¼1ðdxiÞ2 ¼ dρ2 þ ρ2ds2S2 with VolðS2Þ ¼

4π. The self-dual five-form flux quantization relation is
given by

L4

l4s
¼ 4π4N

VolðX5Þ
· ð3:2Þ

We will also need

Gð10Þ
N ¼ ð2πlsÞ8

32π2
ð3:3Þ

relating the 10d gravitational constant to string length ls.
We follow the generic calculation done in the previous

section to compute HEE here. That is, we consider a
spherical subsystem A given by ρ2 ¼ P

3
i¼1ðxiÞ2 ≤ R2,

whose embedding into the bulk is ρ ¼ ρðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
.

This leads to the following expression for HEE:

SA ¼ AreaðγAÞ
4Gð10Þ

N

¼ 8π2L8

ð2πlsÞ8
VolðX5ÞVolðS2Þ

Z
R

z0

dz
ρðzÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0ðzÞ2

p
z3

≈
2π3N2

VolðX5Þ2
VolðX5Þ

�
−
1

4
−
1

2
log

�
2R
z0

�
þ R2

2z20
þOðz20Þ

�

≈ −
π3N2

VolðX5Þ
log

�
2R
z0

�
· ð3:4Þ
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The coefficient of the log term is the universal piece,
which is equal to the 4d Weyl anomaly as follows:

SA
logð2Rz0 Þ

¼ −4a4d ⇒ a4d ¼
π3N2

4VolðX5Þ
· ð3:5Þ

Note the N2 dependence that matches the a-anomaly at
large N for 4d SCFTs [32,33].

Now, we proceed to compute the volume enclosed by the
embedding RT surface, which is given by

VðγAÞ¼L9VolðX5ÞVolðS2Þ
Z

R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρ2

z4
· ð3:6Þ

Since LAdS ¼ L is a constant, C̃A ¼ CA and the HSC can be
easily evaluated to be

C̃A ¼ VðγAÞ
8πLGð10Þ

N

¼ L9ð4πÞ
Lð2πlsÞ8

VolðX5Þð4πÞ
Z

R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρ2

z4

≈ VolðX5Þ
π2N2

VolðX5Þ2
�
π

6
þ R3

9z30
−

R
2z0

þOðz0Þ
�
≈

π3N2

6VolðX5Þ
· ð3:7Þ

We again keep only the universal piece in the last step,
which is the R-independent term here. Comparing it with
(3.4), we obtain a relation between the 4d Weyl anomaly
and C4d:

C̃A ¼ −
1

6

SA
logð2Rz0 Þ

⇒ C4d ¼
2

3
a4d: ð3:8Þ

B. AdS6 × Y4

The 5dN ¼ 1 SCFTs have seen a lot of activity recently
and have been engineered in both type IIA and type IIB
string theory. One of the simplest classes of 5d
SCFTs is that of Seiberg theories whose gravity duals
are given by massive type IIA string theory on AdS6 × S4

[34–36]. The 10d supergravity metric in string frame
explicitly reads

ds2 ¼ L2

ðsin αÞ13
�
−dt2 þ dx⃗2 þ dz2

z2

�

þ 4L2

9ðsin αÞ13 ðdα
2 þ cos2αds2S3=Zn

Þ; ð3:9Þ

where dx⃗2 ¼ P
4
i¼1ðdxiÞ2 ¼ dρ2 þ ρ2ds2S3 with VolðS3Þ ¼

2π2 and α ∈ ð0; π
2
�. The dilaton and four-form flux quan-

tization relation are given by

e−2ϕ ¼ 3ð8 − NfÞ32
ffiffiffiffiffiffiffi
nN

p

2
ffiffiffi
2

p
π

ðsin αÞ53 ð3:10Þ

L4

l4s
¼ 18π2nN

8 − Nf
· ð3:11Þ

We again choose a spherical subsystem A and following
the RT prescription, we find the entanglement entropy6 [37]

SA ¼ AreaðγAÞ
4Gð10Þ

N

¼ 2

ð2πÞ6l8s

Z
d8xe−2ϕ

ffiffiffiffiffiffiffi
gð8Þ

q

¼ ð8 − NfÞ32
ffiffiffiffi
N

p

33
ffiffiffiffiffiffi
2n

p
π3

�
18π2nN
8 − Nf

�
2
Z π

2

0

dαsin
1
3αcos3α

Z
R

z0

dz
ρðzÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0ðzÞ2

p
z4

¼ 3 × 4πn
3
2N

5
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð8 − NfÞ
p 9

20

�
2

3
−
R
z0

þ R3

3z30

�
≈
9

ffiffiffi
2

p
πn

3
2N

5
2

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − Nf

p · ð3:12Þ

We again keep the universal piece in the last step. The above result satisfies the relation SA ¼ −FS5 , where FS5 is the S
5

free energy of the Seiberg theories, as shown in [37].

6This calculation is to be done in the Einstein frame, so we need to use gEμν → e−
ϕ
2gsμν ⇒

ffiffiffiffiffiffiffiffiffiffi
gð8Þ;E

p
→ e−2ϕ

ffiffiffiffiffiffiffiffiffiffi
gð8Þ;s

p
.
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We now compute HSC using the modified definition
(2.2) here7 because, as is clear from the metric (3.9) and
dilaton profile (3.10), the AdS radius is not constant but
depends on the α coordinate of the compact manifold as
follows (in the Einstein frame):

LAdSðxÞ ¼
L

sin
1
6 α

e−
ϕ
4: ð3:13Þ

This leads to the same large N scaling for HSC as that
of HEE:

C̃A ¼ 1

8πGð10Þ
N

Z
d9x

e−
9
4
ϕ

ffiffiffiffiffiffiffi
gð9Þ

p
Lðsin−1

6αÞe−ϕ
4

¼ 2

ð2πÞ7Ll8s

Z
d9xe−2ϕsin

1
6α

ffiffiffiffiffiffiffi
gð9Þ

q

¼ ð8 − NfÞ32
ffiffiffiffi
N

p

33
ffiffiffiffiffiffi
2n

p
2π4

�
18π2nN
8 − Nf

�
2
Z π

2

0

dαsin
1
3αcos3α

Z
R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρ3

z5

¼ 6n
3
2N

5
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð8 − NfÞ
p 9

20

�
3

16
þ 1

4
log

�
R
z0

�
−

R2

4z20
þ R4

16z40

�
≈

27
ffiffiffi
2

p
n

3
2N

5
2

80
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − Nf

p log

�
R
z0

�
· ð3:14Þ

We have again kept the universal piece in the last step,
which gives the expected relation between free energy
and C5d:

C̃A

logðRz0Þ
¼ 3

16π
SA ⇒ C5d ¼ −

3

16π
FS5 : ð3:15Þ

IV. M-THEORY SOLUTIONS

In this section, we again verify that the HEE and HSC are
proportional for SCFTs with well-known supergravity
duals arising in the weak gravity limit of M theory and
discuss what that means for the corresponding field
theoretical quantities.

A. AdS4 × Y7

The AdS4=CFT3 correspondence was put on a concrete
footing after the discovery of N ¼ 6 Aharony-Bergman-
Jafferis-Maldacena theory [38] describing the low energy
limit of a stack of N M2-branes placed at the tip of the cone
over S7=Zk. In the large N limit, Aharony-Bergman-
Jafferis-Maldacena theory is dual to M theory on
AdS4 × S7=Zk. After this discovery, a large number of
3dN ≥ 2 SCFTs with M-theory duals have been identified

by replacing S7=Zk with Y7, a compact (tri-)Sasaki-
Einstein seven-manifold. Following [39], we can write
the general metric for the 11D supergravity solution as

ds2 ¼ L2

4

�
−dt2 þ dx⃗2 þ dz2

z2

�
þ L2ds2Y7

; ð4:1Þ

where dx⃗2 ¼ P
2
i¼1ðdxiÞ2 ¼ dρ2 þ ρ2dθ2 with 0 ≤ θ < 2π

and the four-form flux quantization condition that relates
the geometric length scale L to Planck length lp:

L6

l6p
¼ ð2πÞ6N

6VolðY7Þ
· ð4:2Þ

We will also use the relation of the 11D gravitational
constant to lp:

Gð11Þ
N ¼ ð2πlpÞ9

32π2
· ð4:3Þ

Following the RT prescription for a spherical subsystem
A, we find for HEE

SA ¼ AreaðγAÞ
4Gð11Þ

N

¼ 2

ð2πÞ7
L9

l9p

Z
2π

0

dθ
Z

R

z0

dzVolðY7Þ
ρðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0ðzÞ2

p
ð2zÞ2

≈
VolðY7Þ
2ð2πÞ6

� ð2πÞ6N
6VolðY7Þ

�3
2

�
−1þ R

z0

�
≈ −

ffiffiffi
2

p
π3N

3
2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3VolðY7Þ

p ; ð4:4Þ

where we keep only the universal piece (R-independent term) in the last step. It is a well-known fact that the HEE as given in
(4.4) matches the S3 free energy of the dual SCFTs in the large N limit via SA ¼ −FS3 [40–42].

7See Appendix for the naive application of the definition (1.5).
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Now, we proceed to compute the volume enclosed by the
embedding RT surface, which is given by

VðγAÞ ¼ 2πL10

Z
R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρVolðY7Þ
ρ

ð2zÞ3 · ð4:5Þ

Since LAdS ¼ L
2
, we have C̃A ¼ CA and so the HSC turns

out to be

C̃A ¼ VðγAÞ
8πðL

2
ÞGð11Þ

N

≈
VolðY7Þ
2ð2πÞ7

� ð2πÞ6N
6VolðY7Þ

�3
2

�
−
1

4
−
1

2
log

�
R
z0

�
þ R2

4z20

�

≈ −
ffiffiffi
2

p
π2N

3
2

12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3VolðY7Þ

p log

�
R
z0

�
· ð4:6Þ

Note that C̃A also scales as N
3
2 just like SA. In this case, the

universal piece is the coefficient of the logarithmic term and
hence, comparing it with SA, we get the following relation:

C̃A

logðRz0Þ
¼ 1

4π
SA ⇒ C3d ¼ −

1

4π
FS3 : ð4:7Þ

The above relation implies that in the large N limit, C3d is
proportional to the S3 free energy for the 3d SCFTs having
M-theory duals.

B. Uplift of NATD of AdS5 × S5
Let us now consider the M-theory uplift of the solution

obtained by applying non-Abelian T duality (NATD) to
AdS5 × S5.8 The details are in [25,44] and we collect here
only the relevant expressions including the 11D metric

ds2 ¼ e−
2
3
Φds2AdS5 þ e

4
3
Φ
�
dy − 2

L4cos4α

α032
dθ

�
2

þ e−
2
3
Φ
�
4L2ðdα2 þ sin2αdθθ2Þ þ α02dβ2

L2cos2α
þ e2ΦL4β2cos4αðdξ2sin2χ þ dχ2Þ

α0

�
; ð4:8Þ

where we use the AdS5 metric given in (3.1) and
e−2Φ ¼ L2

α03 cos
2 αðL4 cos4 αþ α02β2Þ. The flux quantization

condition gives the following relation:

L4 ¼ 2
8
γN

2
γα02; ð4:9Þ

where γ is introduced by scaling the coordinate y →

ðL2

α0 Þγ
ffiffiffiffi
α0

p
y due to an ambiguity in the uplifting procedure.

We will also use (only in this subsection) Gð11Þ
N ¼ α092

following [25], relating the 11D gravitational constant to
string tension α0.
To compute HEE, we again consider a spherical sub-

system and following the RT prescription, we have the
surface area integral given by

AreaðγAÞ¼4L8VolðS2Þ
Z

R

z0

dz
Z

2π

0

dydθdξ
Z

π

0

dβdχ
Z π

2

0

dα×

�
L2

α0

�
γ ffiffiffiffi

α0
p

β2cos3αsinαsinχ
ρðzÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þρ0ðzÞ2

p
z3

· ð4:10Þ

Again, setting ρðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
as in the previous examples, we get for HEE

SA ¼ AreaðγAÞ
4Gð11Þ

N

¼ L8
ffiffiffiffi
α0

p

α092

�
L2

α0

�
γ 4π6

3
VolðS2Þ

Z
R

z0

dz
ρðzÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0ðzÞ2

p
z3

≈
28ð1þ

2
γÞπ7N1þ4

γ

3

�
−
1

4
−
1

2
log

�
2R
z0

�
þ R2

2z20
þOðz20Þ

�
≈ −

28ð1þ
2
γÞπ7N1þ4

γ

6
log

�
2R
z0

�
· ð4:11Þ

We have kept the universal piece in the last step, which should equal the 4d Weyl anomaly:

SA
logð2Rz0 Þ

¼ −4a4d ⇒ a4d ¼
28ð1þ

2
γÞπ7N1þ4

γ

24
· ð4:12Þ

8We consider here only the case of S5. Other cases discussed in [25] yield similar results as one can verify. More generic backgrounds
have also been considered in [43] along with their CFT duals. It would be interesting to compute their HSC explicitly.
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Note that a4d ¼ π
8
c, where c is the central charge for this

solution obtained in [25]. For γ ¼ 4, we have the usual N2

scaling of 4d and for γ ¼ 2, we haveN3 scaling reminiscent
of 6d, that we will see in the next example.
Now, we compute the HSC but since the AdS radius

LAdSðxÞ ¼ e−
1
3
Φ is coordinate dependent, we use the

modified definition of complexity (2.2) to obtain9

C̃A ¼ 1

8πGð11Þ
N

4L8
ffiffiffiffi
α0

p �
L2

α0

�
γ 16π7

3

Z
R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρ2

z4

≈
28ð1þ

2
γÞπ6N1þ4

γ

6

�
π

6
þ R3

9z30
−

R
2z0

þOðz0Þ
�

≈
28ð1þ

2
γÞπ7N1þ4

γ

36
· ð4:13Þ

We again keep only the universal piece (R-independent
term) in the last step. Comparing it with (4.11), we obtain a
relation between the 4d Weyl anomaly and C4d:

CA ¼ −
1

6

SA
logð2Rz0 Þ

⇒ C4d ¼
2

3
a4d: ð4:14Þ

This is the same relation that we got for the AdS5 × X5

solution. In fact, this relation is universal for AdS5 and is

independent of the uplift to either string theory or M theory
as expected from the general discussion of Sec II.

C. AdS7 × X4

The 6d SCFTs are strongly interacting non-Lagrangian
theories describing the low energy limit of N M5-branes.
At large N, the N ¼ ð2; 0Þ SCFTs are dual to M theory on
AdS7 × S4=Γ, where the compact manifold X4 can only be
an orbifold of the four-sphere S4 with Γ being a discrete
subgroup of SUð2Þ [1,45].10 The metric of this 11d
supergravity solution explicitly reads

ds2 ¼ L2

�
−dt2 þ dx⃗2 þ dz2

z2

�
þ L2

4
ds2S4=Γ; ð4:15Þ

where dx⃗2¼P
5
i¼1ðdxiÞ2¼dρ2þρ2ds2S4 with VolðS4Þ¼ 8π2

3
.

The four-form flux quantization relation is given by

L3

l3p
¼ 8πjΓjN· ð4:16Þ

Similar to the previous examples, we choose a spherical
geometry of the subsystem A with the profile of the
corresponding RT surface being ρðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
, which

leads to

SA ¼ AreaðγAÞ
4Gð11Þ

N

¼ 2

ð2πÞ7
L9

l9p

Z
R

z0

dzVolðS4ÞVolðS
4=ΓÞ

24
ρðzÞ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ0ðzÞ2

p
z5

≈
1

8ð2πÞ7
8π2

3

8π2

3jΓj ½8πjΓjN�3
�
9

32
þ 3

8
log

�
2R
z0

�
−
3R2

4z20
þ R4

4z40
þOðz20Þ

�
≈
4N3jΓj2

3
log

�
2R
z0

�
; ð4:17Þ

where we keep only the universal piece in the last step with the famousN3 scaling [40]. The coefficient of the log term in SA
is proportional to the 6d Weyl anomaly:

SA
logð2Rz0 Þ

¼ 4a6d ⇒ a6d ¼
1

3
N3jΓj2: ð4:18Þ

This matches the a-anomaly at large N for 6d SCFTs, at least the N3jΓj2 factor [47–49].11
Now, we can compute the complexity (C̃A ¼ CA here) following steps similar to the previous examples and

it reads

CA ¼ VðγAÞ
8πLGð11Þ

N

¼ 2

ð2πÞ8
L10

Ll9p

8π2

3

8π2

3jΓj
1

24

Z
R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρ4

z6

≈
1

9 · 2ð2πÞ4jΓj ½8πjΓjN�3
�
−

π

10
þ R5

25z50
−

R3

6z30
þ 3R
8z0

þOðz0Þ
�
≈ −

8N3jΓj2
45

· ð4:19Þ

11The exact coefficient seems to depend on a “scheme-dependent” definition of the 6d Euler density, or equivalently, the choice of
renormalization of the anomaly contribution of the free N ¼ ð2; 0Þ tensor multiplet. We do not attempt to fix this coefficient here.

10The N ¼ ð1; 0Þ SCFTs also have interesting M-theory duals with warped AdS7 factors (see [46] and references therein). They
satisfy the same universal relation but we do not consider such metrics here.

9See Appendix for the naive result from the definition (1.5).
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We have again kept only the universal piece in the last step
and comparing with the SA result in (4.17), we obtain

CA ¼ −
2

15

SA
logð2Rz0 Þ

⇒ C6d ¼ −
8

15
a6d: ð4:20Þ

The above relation implies that C6d is proportional to the 6d
a-anomaly in the large N limit.

V. DISCUSSION

We have obtained holographic subregion complexity by
computing the codimension 1 maximal volume enclosed by
the codimension 2 Ryu-Takayanagi surface in AdSpþ1 with
p ¼ 3, 4, 5, 6 for specific supergravity solutions, most of
which are known to have explicit SCFT duals. We found
that the universal piece of HSC is proportional to that of
HEE calculated holographically via the RT prescription for
those AdS backgrounds without warp factors, as has been
expected in the literature.12 However, we observe that in
case of gravity duals with nontrivial warp factors (due to a
nontrivial dilaton profile) modifying the AdS part of the
supergravity backgrounds, the expected proportionality
between the universal pieces of HSC and HEE does not
hold anymore. In order to retain this simple relation, we
propose a modification of the holographic formula to
compute complexity as explained in Sec. II. The existence
of a warp factor implies that there is an effective non-
constant LAdSðxÞ depending on the warp factor, leading us
to the modified definition of complexity in (2.2). This
simple fact drastically affects the computation of the
volume enclosed by the codimension 2 RT surface, as
one can contrast the calculations of HSC using (1.5) in
Appendix with those using (2.2) in Secs. III and IV.
The relation between the universal pieces of HEE and

HSC is of great importance as it enables us to predict the
behavior of the corresponding field theoretical quantity. We
find that at large N, in odd dimensional CFTs, the universal
piece of the field theoretical analogue of HSC (Cp) is
proportional to the sphere free energy FSp, whereas for even
dimensional CFTs, it is proportional to the Weyl a-
anomaly. We can write a general relation for these
quantities, as it straightforwardly follows from (2.6) and
the relation of SA to FSp or a-anomaly [13]:

Cp ¼
8<
:

−1
2π

�
n−1

2

n

�
FSp p ¼ 2nþ 1

ð−1Þn
2n−1

�
n−3

2

n−1

�
−1
ap p ¼ 2n

: ð5:1Þ

Note that these relations hold irrespective of the explicit
nature of the dual gravity theory whether embedded in
string theory or M theory. We take this universal relation
(for a given p, of course) as a justification for the
modification we propose for the holographic prescription
to compute HSC.
Even though a satisfactory and universal definition of

complexity in field theory is lacking at present, the definition
involving path integral optimization [22,23] seems to be
promising as it could lead to application of localization
techniques for computing complexity. These techniques
have been remarkably successful in obtaining exact results
for F’s and a’s in SCFTs in various dimensions [52], which
we used to compare holographic results in the large N limit.
Another set of universal relations can be obtained between
field theoretic complexities across dimensions by employing
the results of [53]. For example, C3d ¼ − 32

27
ðg − 1ÞC5d,

given that FS3 ¼ − 8
9
ðg − 1ÞFS5 for 5d theories defined on

S3 × Σg with a topological twist on Σg [54].
We also note that our analysis was restricted to sub-

systems defined by spherical surfaces. But there have also
been considerable interest in singular surfaces as these lead
to the appearance of more universal pieces including log2

behavior, as discovered in [55–58]. It would be interesting
to revisit the relation between such universal pieces of HEE
and HSC explicitly in this context.
It is also worth mentioning that many proposals have

been given which relate the HSC with other information
theoretical quantities, like the Fisher information metric
and the Bures metric (fidelity susceptibility) [59–62]. These
are standard notions of distances in quantum information
theory [63–65] and arise holographically when one con-
siders an excitation of the dual spacetime geometry. For
example, the Fisher information metric is defined to be the
difference between the RT volumes of the excited geometry
and background geometry, considering up to second order
perturbation about the background geometry. In this paper,
we have considered only pure AdS geometries without any
excitations so it would be interesting to see how the second
order variations of HSC and HEE relate to each other and
whether one can still relate these metrics to well-studied
calculable properties like the free energy or a-anomaly of
the dual CFTs.
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APPENDIX: NAIVE COMPLEXITY CALCULATIONS

This appendix collects the computation of HSC using the expression (1.5) for the examples in Secs. III B and IV B with
nontrivial warp factors leading to different large N scaling compared to HEE. This, in part, led us to modify (1.5) to the
expression given in (2.2).

1. AdS6 × Y4

Here is the result one would get by naively using the formula (1.5) to compute the HSC:

CA ¼ VðγAÞ
8πLGð10Þ

N

¼ 2

ð2πÞ7Ll8s

Z
d9xe−

9
4
ϕ

ffiffiffiffiffiffiffi
gð9Þ

q

¼ ð8 − NfÞ2716N 9
16

18 × 2
11
16 × 3

7
8π

33
8 n

7
16

�
18π2nN
8 − Nf

�
2
Z π

2

0

dαsin
3
8αcos3α

Z
R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρ3

z5

¼ 2
5
163

9
8n

25
16N

41
16

π
1
8ð8 − NfÞ 5

16

128

297

�
3

16
þ 1

4
log

�
R
z0

�
−

R2

4z20
þ R4

16z40

�

≈
32 × 2

5
16n

25
16N

41
16

33 × 3
7
8π

1
8ð8 − NfÞ 5

16

log

�
R
z0

�
· ðA1Þ

We kept the universal piece in the last line, which has a different large N scaling as compared to SA in (3.12).

2. Uplift of NATD of AdS5 × S5
The following is the result obtained by naively using the formula (1.5) to compute the HSC:

CA ¼ VðγAÞ
8πLGð11Þ

N

¼ L8
ffiffiffiffi
α0

p

2πα092

�
L2

α0

�
γ

ð4πÞ
Z

2π

0

dydθdξ
Z

π

0

dβdχ ×
Z π

2

0

dαe−
1
3
Φβ2cos3α sin α sin χ

Z
R

z0

dz
Z ffiffiffiffiffiffiffiffiffi

R2−z2
p

0

dρ
ρ2

z4

≈ 2 × 28ð1þ
2
γÞπ3N1þ4

γð24
γN

1
γÞ12

Z π
2

0

dα
Z

π

0

dββ2cos4α sin α

�
π

6
þ R3

9z30
−

R
2z0

þOðz0Þ
�

≈
22ð4þ

9
γÞπ7N1þ 9

2γ

45
· ðA2Þ

We again have the universal piece in the last line with a different large N scaling when compared to SA in (4.11).
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