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We propose a new version of the AdS=CFT correspondence, where polymer structures similar to loop
quantum cosmology spin networks can be induced on an isotropic and homogeneous flat Randall-Sundrum
II brane, corresponding to the holographic duals of closed string states living in the bulk. Such polymer
structures drive a discrete evolution of the braneworld spacetime that leads to the regularization of the big
bang singularity. The present results show that the AdS=CFT conjecture can be a possible bridge between
string theory and loop quantum gravity.
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Amidst the difficulties to obtain a quantum description of
gravity, the holographic principle emerges as a possible
guide [1,2]. Such principle, which has been supported by
observational evidence [3], appears in its most successful
form, as the so-called AdS=CFT conjecture, which has
established that a gravitational theory in the AdS5 bulk is
dual to a CFT with a UV cut-off on the bulk boundary [4].
As a definition of nonperturbative string theory, the

AdS=CFT correspondence has offered the interesting
possibility to solve gravitational singularities, by transfer
the discussion from the bulk to the dual field theory on its
boundary. However, in the important case of the big bang
singularity resolution, no clear picture has emerged by
now in this context, despite much effort has gone. See, e.g.,
[5–8] for more recent discussions on this issue. Particularly,
in [7,8] loop quantum gravity (LQG) ideas have been used
to this purpose.
The situation becomes even more cloudy if we consider

that the bulk boundary consists of a Randall-Sundrum II
brane, where the CFT is coupled to gravity [9,10]. In fact,
in such a scenario, we have no idea what the boundary
theory would be. Notwithstanding, an important hint has
been pointed out that, whatever such theory is, it should be
hot and have a nonzero energy density and pressure [11]. It
is because bulk black holes could emit Hawking radiation
that would heat the brane, which by its turn, would be
forced by the Israel equations to turn into an Friedmann-
Robertson-Lemaître-Walker (FRLW) universe driven by an
energy density that dilutes as a finite temperature CFT.
More recently, such a thermodynamical aspect of the

boundary theory has been reinterpreted by an interesting

perspective that arises when we locate the black holes on
the brane itself. In this context, the thermal radiation
emitted by such holographic black holes provides the
thermal nature of the boundary theory, assuming an
interesting place in the AdS=CFT dictionary. In fact, this
radiation corresponds to the holographic dual of gravita-
tional bremsstrahlung in the AdS5 bulk [12–14]. Such
results bring us a reformulation of the AdS=CFT corre-
spondence in the form of the so-called black hole holo-
graphic conjecture (BHHC).
In the present work, we shall demonstrate that the BHHC

can be used to introduce a regularization scheme whereby
the big bang singularity can be solved, in an AdS/CFT
scenario where the boundary theory lives on an isotropic
and homogeneous flat brane universe. In such a regulari-
zation scheme, the gravitational degrees of freedom belong-
ing to the theory on the boundary can be associated with
polymer structures similar to loop quantum cosmology
(LQC) spin networks. Such structures will appear as the
holographic duals of string states in the bulk and turn the
big bang singularity into a bounce. Such results show that
the AdS=CFT conjecture can be a possible bridge between
string theory and LQG, the two main approaches to
quantum gravity up to now.

I. SPACETIME DEGREES OF FREEDOM
ON A BRANE: A BHHC PERSPECTIVE

In field theory, a regularization scheme consists of the
determination of degrees of freedom, in such a way, those
that lead to divergences are cut out from the theory [15]. In
this sense, by considering the Bekenstein bound [16], the
discussion about the degrees of freedom present in the
theory induced on a brane must be connected with what 4D*carlosalex.phys@gmail.com
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solution, describing a black hole, we have localized on it.
Such a solution must be given by a suitable slicing of a 5D
accelerating black hole metric, known as the C-metric in
4D [17].
Several approaches have been proposed in the literature,

where induced 4D black hole metrics of the form

ds2 ¼ −FðrÞ2dt2 þ GðrÞ2dr2 þHðrÞ2dΩ2 ð1Þ
has been used [18–22]. Unfortunately, none of these
proposals has been satisfactory so far.
Among the points to be clarified, we note that all the

approaches to construct black hole solutions on a brane have
the common assumption that the radial coordinate must be
fixed by the “area gauge”HðrÞ ¼ r. Consequently, the area
of the 2-spheres surrounding the black hole behaves as
AðrÞ ¼ 4πr2, increasingmonotonically between the horizon
and the spacelike infinity.
On the other hand, a different perspective has been

driven by a more recent version of the AdS=CFT con-
jecture, proposed by Tanaka [12], and independently by
Emparan, Fabbri and Kaloper [13], which states that
for regimes above the AdS length scale: A classical 5-
dimensional gravitational theory in the bulk corresponds
to a quantum corrected (semiclassical) 4D braneworld
spacetime.
This new perspective has been named by Gregory et al.

as the “black hole holographic conjecture” (BHHC) [23]. In
the context of such idea, black hole solutions localized on
the brane, given as solutions of the classical bulk equations
in AdSDþ1 with the brane boundary conditions, cannot be
static but must consist in evaporating solutions, correspond-
ing to quantum-corrected black holes in D dimensions,
rather than classical ones. In this way, in the AdS=CFT
dictionary, extradimensional effects in the bulk will be
translated into semiclassical corrections to the boundary
theory. Some possibilities for observational confirmation of
the BHHC have been pointed in [24,25].
The use of the BHHC has led to the idea that the area

function AðrÞ of the 2- spheres, in the geometry induced on
the brane, must be considered to be not monotonic [23].
The main reason for such an assumption comes from the
presumed higher dimensional C-metric. Such a metric
would consist of an accelerating black hole being “pulled”
by a cosmic string. Since the appropriate higher-
dimensional metric for a Poincaré invariant string has a
turning point in the area function, and the “horizon” is
singular, it is expected that a braneworld black hole solution
must share such features. A turning point in the area
function of a holographic black hole also appears in [26],
where it has been demonstrated that, due to backreaction
effects, an antievaporating phase must take place at the end
of the black hole evaporation process.
It is possible to introduce a scenario, as prescribed by the

BHHC, by considering a fluctuation of a black hole metric
written in the area gauge ds2ag in the following way

ds2 ¼ H2

r2
ds2ag; ð2Þ

where we must consider an appropriate choice of the
function HðrÞ. In this case, if H=r is a twice differentiable
function of the spacetime coordinates, and 0 < H=r < ∞,
we can interpret the equation above as a conformal
transformation.
To obtain the desired scenario, a possible choice is

H2ðrÞ ¼
�
r2 þ l4

r2

�
; ð3Þ

in a way that the metric ds2 will possess a not monotonic
area function, with a turning point at r ¼ l, and singular at
r ¼ 0. In this scenario, the length l will correspond to a
high energy length scale and will enclose the information
about higher-dimensional effects, translated as semiclass-
ical corrections on the brane. A similar conformal factor
has been used in [27,28] to solve the Schwarzschild black
hole singularity.
Interestingly, due to the conformal relationship between

the metrics ds2 and ds2ag, the way how the black hole
temperature and entropy are related with the black hole
mass is the same in both spacetimes [27]. However, since
the event horizon surface area A changes by conformal
transformations, the black hole entropy-area relation must
be modified. In fact, by considering the Eq. (3), a new
radial coordinate in the ds2 spacetime will be defined as

R ¼
�
r2 þ l4

r2

�
1=2

: ð4Þ

Consequently, the rescaled event horizon area will be
given by

A ¼ 4π

�
r2þ þ l4

r2þ

�
; ð5Þ

where rþ is the black hole event horizon radius in the ds2ag
spacetime.
We can fix the bare metric ds2ag in a way that the

spacetime described by it obeys the usual Bekenstein-
Hawking entropy-area relation, in four dimensions [29]
(see, for example, the general class of braneworld black
holes introduced in [30]). In this way, we obtain for the ds2

spacetime:

S ¼
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 2A2

l

q
8

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − A2

l

q
4

þOð≥ A6
l Þ; ð6Þ

where Al ¼ 4
ffiffiffiffiffiffi
2π

p
l2.
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In the present work, we shall consider that the presence
of a turn-point in the area function of a black hole, in the
context of the BHHC, allows us to introduce a cutoff on the
degrees of freedom that can be encoded on the bulk
boundary, in a way that their counting will be given by
the expression (6). Such a cutoff will be implemented
through the parameter Al.
We must cite that the expression (6) has also appeared in

the context of loop quantum black holes [31], and has been
used to derive the LQC dynamical equations from thermo-
dynamical arguments [32]. Moreover, the present consid-
erations must be valid for regimes above the AdS length
scale. Below such scale, all dimensions must be seen on the
same footing and the full influence of the extra dimensions
must be taken into account. Other choices for the function
HðrÞ can be done in order to implement regularization
schemes different from that we have adopted here.

II COSMOLOGY AND THE BIG BANG
SINGULARITY AVOIDANCE ON A BRANE

To address the cosmological evolution of the brane
spacetime in the light of the BHHC, let us consider the
flux of Hawking radiation through the universe horizon.
For this flux, we can associate the following temperature
[33–35]:

T ¼ ð2πr̃HÞ−1: ð7Þ

In the expression above, r̃H is the physical radius associated
with the universe horizon, given for the flat universe
case by

r̃H ¼ 1

H
; ð8Þ

where we have considered an FLRW metric induced on the
brane:

ds2FRLW ¼ habdxadxb þ r̃2dΩ2
2; ð9Þ

with hab ¼ diagð−1; a2Þ, r̃ ¼ aðtÞr, and H ¼ _a=a.
As usual, we shall consider that the energy-momentum

tensor of the matter-energy contend of the boundary theory
can be written as the ones for a perfect fluid, which gives us
an amount of energy that goes through the horizon during a
time dt as [36]:

dQ ¼ Aψ ¼ Aðρþ pÞr̃H
�
1þ ρ

σ

�
dt; ð10Þ

where A ¼ 4πr̃2H, and σ is the brane tension.
Now, we observe that from a global point of view, the

universe horizon enters in the bulk, in a way that higher-
dimensional effects must be taken into account to the
calculation of its entropy. However, according to BHHC,

for regimes above the AdS length scale, such effects can be
interpreted as semiclassical corrections on the brane. In this
case, we shall borrow the expression (6) from the last
section, and use it to express the entropy associated with the
universe horizon.
In this way, by taking into account the first law of

thermodynamics, dQ ¼ TdS, and the temperature (7), we
obtain, by discarding higher-order corrections in Al:

_H ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − A2

l

q
A

ðρþ pÞ
�
1þ ρ

σ

�
; ð11Þ

which, by the use of the continuity equation, give us:

8π

3

dρ
dt

�
1þ ρ

σ

�
¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 − A2
l

q dðH2Þ
dt

: ð12Þ

Finally, by integration, we obtain the Friedmann equation:

H2 ¼ 4π

Al
cosðΘÞ; ð13Þ

where Θ ¼ �½2Al
3
ρð1þ 1

2
ρ
σÞ − α�, and α is a phase constant.

Note that, in Eq. (13), the effective density term, in the
form of a harmonic function of the classical density, bring
us a scenario where a bounce takes the place of the big bang
initial singularity, when the universe density assumes a
critical value, differently from usual braneworld cosmol-
ogy [37].
To explore the physical significance of the result above,

let us expand the right-hand side of the Eq. (13) in a Taylor
series. We get, discarding higher-order terms in Al and 1=σ
(the high energy contributions),

H2 ¼ AðαÞρ2 þ BðαÞρþ CðαÞ; ð14Þ

where

AðαÞ ¼ 4π

9

�
3 sinðαÞ

σ
− 2Al cosðαÞ

�
;

BðαÞ ¼ 8π

3
sinðαÞ;

CðαÞ ¼ 4π

Al
cosðαÞ: ð15Þ

The Eq. (14) can be written in the form

H2 ¼ 8π

3
ρtot

�
1 −

ρtot
ρc

�
; ð16Þ

where we have taken ρtot ¼ ρþ Λ, with Λ as a cosmo-
logical constant, and
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ρ−1c ¼ 1

6

�
2Al cosðαÞ −

3 sinðαÞ
σ

�
; ð17Þ

1 −
2Λ
ρc

¼ sinðαÞ; ð18Þ

cosðαÞ ¼ 2AlΛ
3

�
1 −

Λ
ρc

�
: ð19Þ

The Raychaudhuri equation can also be obtained for this
case

_H ¼ −4πðρtot þ ptotÞ
�
1 −

2ρtot
ρc

�
; ð20Þ

where ptot ¼ p − Λ.
If we take the limit where Al → 0 in the Eqs. (17), (18),

and (19), and substitute the results in the Eqs. (16) and (20),
we recover the usual braneworld cosmology equations [37],
as expected (preserving the condition Λ < ρc).
On the other hand, if we fix l ¼ βlAdS in Al, for β ≠ 0, we

can obtain

ρc ¼ 2σ

�
1þ π

2β2

�
1=2

; ð21Þ

and

Λ ¼ 2σ

��
1þ π

β4

�
1=2

− 1

�
: ð22Þ

In the limit where we have a small cosmological constant
(β ≫ 1) [38,39], we also get

ρc ≈ 2σ > 0: ð23Þ

From such a result, ρc assumes the role of a critical energy
density in the Eqs. (16) and (20), which have semiclassical
corrections similar to that appears in LQC [40–42].

III. POLYMER STRUCTURES ON A BRANE AND
THEIR HOLOGRAPHIC DUALS

In order to investigate the microscopic structure of the
bounce, we have that using the techniques introduced by
Singh and Soni [43], we can obtain from the Raychaudhuri
equation (20), the following Hamiltonian for gravity:

Hgrav ¼
−3V
32πλ2

ð2 − eip
ffiffiffi
Δ

p
− e−ip

ffiffiffi
Δ

p
Þ; ð24Þ

with p as the conjugate momentum to the volume V.
Moreover,

λ ¼ ð3=ð32πρcÞÞ1=2; Δ ¼ 6π=ρc; ð25Þ

where λ and Δ possess dimensions of length squared, and
ρc is a constant-energy density to be provided by the
underlying theory [43].
In the present work, ρc is equal to twice the brane

tension, according to equation (23). Consequently, we
obtain

Δ ¼ 3π

σ
: ð26Þ

It is important to observe that, the Hamiltonian (24) is
not defined in terms of the conjugate momentum to the
volume p, but in terms of its complex exponentials. Here, it
is a key point since such exponentials consist of holono-
mies, the building blocks of spin networks in LQG.
As emphasized in [43], the appearance of such holon-

omies is not possible in the case of the usual braneworld
cosmology. But in the present scenario, it makes the
microscopic description of the brane spacetime naturally
related to the polymer quantization methodology [44]. In
fact, simply promoting the exponentials in the Hamiltonian
(24) to operators, we obtain:

Ĥgrav ¼
−3V

32πGλ2
½2I −beip ffiffiffi

Δ
p

−be−ip ffiffiffi
Δ

p
�; ð27Þ

where in the equation above, the shift operatorsbe�ip
ffiffiffi
Δ

p
are

defined by their action on the states ψxn ¼ eipxn , in the
momentum representation:

be�ip
ffiffiffi
Δ

p
ψx ¼ e�i

ffiffiffi
Δ

p
peipx ¼ eiðx�

ffiffiffi
Δ

p Þp ¼ ψx� ffiffiffi
Δ

p : ð28Þ

As we can observe, the action of the shift operators will
correspond to a finite displacement equals to

ffiffiffiffi
Δ

p
.

Consequently, the Hamiltonian (27) gives us that the brane
spacetime degrees of freedom can be associated with a
polymer structure, defined by a graph, in the form of a
regular lattice

γ ffiffiffi
Δ

p ¼ fx ∈ Rjx ¼ n
ffiffiffiffi
Δ

p
; ∀ n ∈ Zg: ð29Þ

Such polymer structure, which is similar to spin networks
in LQC [45], brings us a discreteness in the position x, with
a discreteness parameter

ffiffiffiffi
Δ

p
, which from the Eq. (26) is

defined by the brane tension. It imposes superselection
rules for the gravitational sector on the brane, in a way that
the universe will evolve through discrete increments of the
scale factor (or some a function of it, such as an area or
volume).
Such superselection rules will also affect the string

dynamics in the bulk. It is because, we remember that
the brane couples gravitationally to the bulk through closed
strings, that leaves and cross the brane, and whose
couplings, gs, are related with the brane tension as gs ∼
1=σ [46]. In this case, from the Eq. (26), we obtain
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gs ∼ Δ: ð30Þ

in a way that, the spectrum of closed string modes in the
bulk will be constrained by the discrete spacetime evolution
on the brane.

IV. REMARKS AND CONCLUSIONS

In the present work, we have shown that, in the AdS/CFT
context, spacetime degrees of freedom of the gravitational
theory on the AdS boundary can be described in terms of
polymer structures, similar to LQC spin networks, which
correspond to the holographic duals of string states living in
the bulk. Such a description of the boundary theory
provides us with superselection rules to gravity in a way
that the cosmological evolution in a AdS=CFT scenario
becomes free from the big bang singularity, which is
replaced by a bounce.
We note that the quantum gravity effects will make the

bounce to occur before the universe gets in a regime below
the AdS length scale, avoiding scenarios where the BHHC
should not be valid. In fact, from the Eqs. (23) and (26), the
discreteness parameter

ffiffiffiffi
Δ

p
, that will correspond to the

minimal size of the universe in the present scenario, is such
that

ffiffiffiffi
Δ

p
≈ 8; 89lAdS.

Some issues related to the results found out in the present
letter deserve more discussion in future works. At first, we
must remember that, from the bulk point of view, the big
bang singularity is produced by the uncontrolled back-
reaction of the dilaton field, as it diverges when the closed
string coupling vanishes [47–49]. However, Eq. (30) tells
us that the discrete spacetime evolution on the brane
constraints gs to assume only finite nonvanishing values.
Consequently, the string modes that would lead to the
dilaton divergency and, consequently, to the big bang
singularity, must be cut out. The future analysis must
improve our understanding of how the string dynamics in
the bulk is affected by the discrete evolution of the brane
spacetime.
Second, it is needed to note that the polymer structures

found out here differ from those appear in LQC, only
because they are defined in terms of the brane tension, and

not in terms of the Barbero-Immirzi parameter. Such a fact
may be interesting for future discussions of an ancient
problem in LQG, the so-called Immirzi ambiguity [50]. It is
because the brane tension can be dynamically determined
[46]. The present results can match the concern by several
authors that a solution to the Immirzi ambiguity problem
could stay in a possible dynamical determination of the
Barbero-Immirzi parameter [51–53].
Thirdly, the semiclassical results presented in the

Eqs. (13), (16) and (20) can be easily extended to the
case of non-flat universes. However, since the LQC
methods have been shown robust only for the flat universe
case [54], in the present work we can advocate the big bang
singularity resolution only in this situation. On the other
hand, the present results have opened the doors for future
connections between LQC and AdS=CFT, where more
general cases can be analyzed.
At last, based on the present results, a reformulation of

the AdS=CFT conjecture can be proposed, where the 4D
gravitational theory on the brane must be promoted from a
semiclassical theory, as prescribed by the BHHC, to a
quantum gravity theory. In this case, a possible connection
between string theory and LQG can be traced through the
following holographic correspondence, relating a gravita-
tional theory in the AdS5 bulk to a CFT coupled to gravity
on the brane: A classical 5-dimensional spacetime in the
AdS5 bulk, described by string theory, must correspond to a
quantum 4D braneworld spacetime described by spin
networks.
Further investigations must deepen such connection, by

considering for example the relationship between string
theory and more general spin network states, as those
appear in full LQG. Moreover, the conjecture above can be
used to analyze other situations where quantum gravity
must be important, as for the case of black holes.
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