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We introduce a variation of the Bose-Einstein condensate(BEC)-Skyrme model, with an altered potential
for miscible BECs that gives rise to two physical vortex strings. In the ground state of each topological
sector, the vortices are linked exactly B times, due to a recently formulated theorem, with B being the
baryon number of the solution. The model also possesses metastable states, where the vortices are
degenerate and do not lend the interpretation of the baryon number as the linking number of the vortices.

DOI: 10.1103/PhysRevD.102.045022

I. INTRODUCTION

More than a century ago, Lord Kelvin imagined that
atoms were made of knotted vortices [1], but this idea has
not been successful so far. However, recently we have made
a connection between not knots, but links of vortices and
Skyrmions in the Skyrme model [2]. Skyrmions are
solitons of the texture type in 3-dimensional space and
possess a topological degree B as they are mapped to a
3-sphere, being the target space or isospin space [3,4]. In
the large-N limit of QCD, the baryon is identified with the
Skyrmion [5,6], thus providing a solitonic approach to
nuclear physics, see, e.g., Refs. [7–9]. The Skyrmion may
also be realized in two-component Bose-Einstein conden-
sates (BECs) [10–20], see Ref. [21] for a review. In
Refs. [22–24] we introduced a potential inspired by two-
component BECs, V ∼M2jϕ1j2jϕ2j2, which deforms the
Skyrmions into a twisted vortex ring (or vorton) by
explicitly breaking the SU(2) isospin symmetry normally
possessed by Skyrmion solutions. Due to the nonlinear
sigma model constraint, jϕ1j2 þ jϕ2j2 ¼ 1, the center of
the vortex ring in one component confines the other
component; it is thus a global analog of Witten’s super-
conducting cosmic string [25]. Similar vortex rings can
also be obtained in a different asymmetric potential,

V ∼M2jϕ1j2 [26]. In addition to a vortex ring, the BEC-
inspired potential also allows for a domain wall [22–24]
into which the vortex ring can be absorbed, creating a
vortex handle—or rather a link of a handle and a dual
handle from both sides of the domain wall [27]. We would
like to stress that the Skyrmions we study here are closer to
those describing nuclei within the Skyrme model, than to
the Skyrmions in BEC, because of the derivative part of the
Lagrangian. The potential and the terminology is borrowed
from BECs and hence similar behavior is expected.
The connection between links of vortices and Skyrmions

[2] is made by means of a theorem stating that there exists
a projection of the Skyrmion field onto a 2-sphere (as
opposed to the 3-sphere that is the target space), which has
the properties that two distinct regular points are linked B
times in real physical 3-space, with B being the baryon
number or topological degree of the Skyrmion. Taking a
natural Ansatz for the Skyrmion, like the one giving rise to
a B-twisted vortex ring [22–24], produces a “physical”
vortex with winding number one and a “vacuum” vortex
with winding number B. The “vacuum” vortex is not
physical in the sense that it strays off to infinity in such
a diluted form that the total energy is finite. As mentioned,
the catch is that the points under the projection have to be
regular points, which is not always the case. In Ref. [2] we
have circumvented the issue by introducing a rotation of the
2-sphere, hence making it possible to find points which are
regular and hence giving rise to nondegenerate vortices that
thus provide the linking number Q ¼ B. One may consider
such a rotation a bit arbitrary and thus wonder about the
physical implication thereof.
In this paper, we modify the BEC-inspired potential

studied in Refs. [22–24,27] by flipping the sign of the
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potential (which is allowed in a nonlinear sigma model) and
this is suitable for the class of BECs called miscible two-
component BECs, for which both the components ϕ1 and
ϕ2 develop vacuum expectation values (VEVs) in the
vacua. The implications thereof is a rather crucial change
in the vacuum structure and indeed the model only
possesses a unique vacuum state after the altercation,
which we dub the miscible BEC-Skyrme model. This case
admits two kinds of vortices having windings in the ϕ1

and ϕ2 components as in the case of the miscible BEC
[21,28,29]. As a consequence, the above-mentioned
“vacuum” vortex is transformed into a second “physical”
vortex, thus realizing, in a physical way, the two linked
vortices proposed in Ref. [2].
Moreover there is the issue of regular points leading to

nondegenerate links of vortices versus singular points
leading to degenerate vortices in the framework of
Ref. [2]. This notion takes a very physical form in the
presence of the miscible BEC-inspired potential, as the
degenerate vortex links generally give rise to higher-energy
(metastable) states and the nondegenerate vortex links yield
stable (ground) states.
This paper is organized as follows. In Sec. II we

introduce the miscible BEC-Skyrme model and discuss
the vacuum structure of the model. In Sec. III we define the
numerical observables, explain the numerical method,
define the initial conditions used throughout the paper
and discuss the numerical results. Finally, we conclude the
paper with a discussion in Sec. IV.

II. THE MISCIBLE BEC-SKYRME MODEL

We consider the generalized Skyrme model which
contains the kinetic term, the Skyrme term [3,4] and the
BPS-Skyrme (Bogomol’nyi-Prasad-Sommerfield-Skyrme)
term [30–32]1 as well as a potential

L ¼ L2 þ c4L4 þ c6L6 − V; ð1Þ

L2 ¼ −
1

2
∂μϕ†∂μϕ; ð2Þ

L4 ¼
1

8
ð∂μϕ†∂νϕÞð∂ ½μϕ†∂ν�ϕÞ

þ 1

8
ð∂μϕ†σ2∂νϕÞð∂ ½μϕ†σ2∂ν�ϕÞ

¼ −
1

4
ð∂μϕ†∂μϕÞ2 þ 1

16
ð∂μϕ†∂νϕþ ∂νϕ†∂μϕÞ2; ð3Þ

L6 ¼
1

4
ðϵμνρσϕ†∂νϕ∂ρϕ†∂σϕÞ2; ð4Þ

where σa are the Pauli matrices, ϕ≡ ðϕ1ðxÞ;ϕ2ðxÞÞT is a
complex two-vector of scalar fields which obey the non-
linear sigma model constraint ϕ†ϕ ¼ jϕ1j2 þ jϕ2j2, the
spacetime indices μ, ν, ρ, σ run over 0 through 3 and the flat
Minkowski metric is taken to be of the mostly positive
signature. The relation between the complex 2-vector of
scalar fields, ϕ, and the chiral Lagrangian field usually used
in Skyrme-type models is given by

U ¼ ðϕ −iσ2ϕ̄ Þ ¼
�
ϕ1 −ϕ̄2

ϕ2 ϕ̄1

�
; ð5Þ

which translates the constraint ϕ†ϕ ¼ detU ¼ 1 into the
usual one in terms of U.
The Skyrme term (3) consists of a particular combination

of two operators in the chiral Lagrangian, where the
coefficients are tuned so that the fourth-order time deriva-
tive of U cancels out, see for example Ref. [33] for details.
The BPS-Skyrme term (4), likewise is a particular combi-
nation of three operators in the chiral Lagrangian at order
p6 (six derivatives), where again the coefficients are tuned
so that there is only a second-order time derivative ofU, but
no fourth order or sixth order ones (see Ref. [33]).
With the potential turned off, the target space manifold

is given by Oð4Þ=Oð3Þ ≃ SUð2Þ ≃ S3 which is a unit
3-sphere. This is due to the model without a potential
possessing O(4) symmetry, which however would sponta-
neously break to O(3) by the requirement of finite energy.
The maps with finite energy necessarily have vanishing
derivatives at spatial infinity, which effectively point
compactifies R3 to R3 ∪ f∞g ≃ S3. Hence, topological
solitons are supported with topological degree
B ∈ π3ðS3Þ ¼ Z, where B is given by

B ¼ 1

4π2

Z
d3xB; B≡ ϵijkϕ†∂iϕ∂jϕ†∂kϕ; ð6Þ

where i, j, k ¼ 1, 2, 3 are spatial indices.
In this paper we will augment the model with the

miscible BEC-inspired potential

V ¼ 1

8
M2½ðϕ†σ3ϕÞ2 − 1� ¼ −

1

2
M2jϕ1j2jϕ2j2; ð7Þ

which is the same as the BEC-inspired potential used in
Refs. [22–24], however withM2 → −M2. The previous and
current ones are called immiscible and miscible, respec-
tively, in two-component BECs. This change of the sign of
the potential has crucial influence on the vacuum structure
since the vacuum now breaks the continuous symmetry of
the model completely; therefore both complex scalars gain
VEVs and describe a miscible BEC phase.
Turning on the potential (7) explicitly breaks the sym-

metry from O(4) to

1The BPS-Skyrme term is named after the BPS-Skyrme model
of Refs. [31,32], because it possesses a saturable energy bound
(BPS bound); this model consists only of the BPS-Skyrme term
and a potential.
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G ¼ Uð1Þ × Oð2Þ ≃ Uð1Þ0 × ½Uð1Þ3⋊ðZ2Þ1;2�; ð8Þ

where the group actions defined by the above symmetries are
given by

Uð1Þ0∶ ϕ → eiωϕ; ð9Þ

Uð1Þ3∶ ϕ → eiησ
3

ϕ; ð10Þ

ðZ2Þ1;2∶ ϕ → ei
π
2
ðaσ1þbσ2Þϕ; ð11Þ

with a2 þ b2 ¼ 1. The ðZ2Þ1;2 exchanges ϕ1 and ϕ2 as

ðϕ1;ϕ2ÞT → ðeiγϕ2; e−iγϕ1ÞT; ð12Þ

with eiγ ¼ bþ ia. Uð1Þ3 is acting on ðZ2Þ1;2 transforming γ
such that they define a semidirect product which we have
denoted by ⋊.
In stark contrast to the immiscible BEC-inspired poten-

tial, the miscible version accommodates only a connected
vacuum state

ϕvac ¼
1ffiffiffi
2

p ðeiα; eiβÞT; ð13Þ

spontaneously breaking the symmetry G into a Z2 sub-
group (12) with

γ ¼ α − β; ð14Þ

which we denote by ðZ2Þα−β. The target space is thus
given by

M ¼ G=H ¼ ½Uð1Þ0 × Oð2Þ�=ðZ2Þα−β ¼ Uð1Þ1 ×Uð1Þ2;
ð15Þ

which does not allow for domain walls because of

π0ðMÞ ¼ 1; ð16Þ

but accommodates two types of vortices supported by

π1ðMÞ ¼ ðZÞ1 × ðZÞ2 ð17Þ

as the case of miscible two-component BECs [21,28,29].
The absence of the domain wall is in contrast to the case

of immiscible BEC-Skyrme model with the spontaneously
breaking of ðZ2Þ1;2 admitting a domain wall. The immis-
cible BEC-Skyrme model was shown to contain vortex
rings in Ref. [27] and when pushed toward a domain wall—
present for the immiscible BEC-inspired potential—the
vortex ring turned into a handle (in say ϕ1) on the domain
wall, albeit creating a second dual handle (in ϕ2). The two
seemingly different vortices were always present at the

same time and hence topologically the immiscible BEC-
inspired potential of Ref. [27] gives rise to a symmetry
breaking supporting only one topological number for the
vortices. In principle, in this model we can have two
independent numbers of vortices.
The parameter space of the model with c4, c6, and M is

rather large and for this reason we will choose only two
model points

2þ 4 model∶ c4 ¼ 1; c6 ¼ 0; ð18Þ

2þ 6 model∶ c4 ¼ 0; c6 ¼ 1; ð19Þ

which disentangles the effects of the Skyrme term (c4 ≠ 0)
and the BPS-Skyrme term (c6 ≠ 0).

III. SKYRMIONS AS LINKED VORTICES

A. Local observables

In order to observe the linked vortices in Skyrmions we
need some observables to identify the vortices. We will
consider the baryon charge density B, the static energy
density E ¼ −L, the potential energy (density) V as well as
a vorticity density. In order to define the latter, we will
construct a term inspired by BPS vortices in the Abelian-
Higgs model at critical coupling. Starting with the BPS
equation

F12 ¼ e2ðjϕj2 − v2Þ; ð20Þ

Dz̄ϕ ¼ 0; ð21Þ

and aiming at constructing an expression for the topological
vortex charge

Q ¼ 1

2π

Z
d2xF12; ð22Þ

we can solve for the gauge field from Eq. (21) obtaining

Az̄ ¼ −i∂ z̄ logϕ; ð23Þ

from which we can readily construct F12:

F12 ¼ −2iFzz̄ ¼ −2∂z∂ z̄ log jϕj2 ¼ −
1

2
ð∂2

1 þ ∂2
2Þ log jϕj2;

ð24Þ

which is an expression for the topological vortex charge
density for a vortex pointing in the x3 direction. A simple
extension of the charge density to cover a vortex pointing in
any direction in R3 can thus be made as

Q1;2 ¼
1

2

X
i

ϵijkFjk ¼ −ð∂2
1 þ ∂2

2 þ ∂2
3Þ log jϕ1;2j2; ð25Þ
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where we have added a label for the two complex fields in
our model.
For definiteness, we will define the total energy by the

integral expression

EB ¼
Z

d3xE ¼ −
Z

d3xL; ð26Þ

where the subscript B labels the topological sector at hand.

B. Numerical method

In order to explore the model, we need to find numerical
solutions to the equations of motion, which we will solve
by using the arrested Newton flow method [34] for a cubic
1003 lattice, where the spatial derivatives are discretized
using a standard finite difference scheme with a fourth-
order 5-point stencil. The arrested Newton flow is updated
in the “time direction” using a fourth-order Runge-Kutta
method.

C. Initial conditions

In this paper, the linked vortices will naturally be
physical due to the potential (7). Nevertheless, it is not
a priori guaranteed that the linked vortices are not
degenerate, obscuring the interpretation that the linking
number is equal to the topological degree of the Skyrmions,
as proved by the theorem given in Ref. [2]. One could
expect that increasing the coupling of the potential M2,
would eventually force the linked vortices to be non-
degenerate. This will be investigated numerically in the
next subsection.
As initial conditions we use both the rational map

approximations of Ref. [35], whose linked vortices were
interpreted and studied in Ref. [2], and composite
Skyrmions constructed from lower-charge solutions using
the symmetric product Ansatz

Uprod ¼ U1U2 þ U2U1

detðU1U2 þU2U1Þ
: ð27Þ

As already mentioned in the introduction, the linked
vortices in Ref. [2] naturally contain a vacuum vortex,
which is not particularly physical, because it extends to
infinity in R3 although its flux is diluted such that the
energy is finite. In Ref. [2] we introduced a rotation of the
2-sphere after applying the Hopf map to a Skyrmion map,
which effectively eliminated the degeneracy of the linked
vortices, allowing for the interpretation of the linking
number as the topological charge or baryon number of
the Skyrmions.
In this paper, we do not need to perform such a rotation

of the 2-sphere, but it is necessary to rotate the standard
frame of a Skyrmion such that the vacuum is compatible
with the potential (7) used here. That is, a normal Skyrmion
is a map ϕ∶ R3 → S3 with the vacuum chosen to be

Ustandard frame
vac ¼ 12; ð28Þ

which translates to the vacuum in ϕ:

ϕstandard frame
vac ¼

�
1

0

�
; ð29Þ

which is obviously not the vacuum (13) in this model, i.e.,
with the potential (7), but is indeed compatible with a
normal pion mass term trð12 − UÞ or any generalization
thereof. Therefore, for all initial conditions, which are
constructed to match the standard frame, we perform the
following rotation

ϕ̃ ¼ 1ffiffiffi
2

p
�

1 1

−1 1

�
ℜðϕÞ þ ℑðϕÞ; ð30Þ

which is an SO(4) transformation transforming the standard
frame vacuum (29) into

ϕ̃vac ¼
1ffiffiffi
2

p
�

1

−1

�
: ð31Þ

This corresponds to the vacuum of this model in Eq. (13)
with α ¼ 0 and β ¼ π.
The initial conditions are now ready to be studied using

the numerical method described in the previous subsection
and the results will be given next.

D. Numerical results

We are now ready to present the numerical results in the
2þ 4 and 2þ 6 models for various values of M, with M2

the coefficient of the miscible BEC-inspired potential.
Starting with the topological sector B ¼ 1, the soliton

solution called the Skyrmion, is spherically symmetric
without the potential (i.e., for M ¼ 0). The spherical
symmetry means that a spatial SO(3) rotation can be
undone by an SU(2) isospin (internal) rotation. Once
M ≠ 0 is turned on, the spherical symmetry is explicitly
broken. The numerical results for B¼1 withM¼0;1;…;7
are shown Fig. 1 for both (a) the 2þ 4 model and (b) the
2þ 6 model. This figure and all the remaining figures of
the same type in this paper are composed of 4 columns
showing isosurfaces of the topological baryon charge
density, of the total energy density, of the potential and
of the vorticities defined in Eq. (25), respectively. The color
scheme utilized in the first 3 columns is the one used for
standard Skyrmions, where the three real components ℑϕ1,
ℜϕ2 and ℑϕ2 are normalized

0
B@

n1
n2
n3

1
CA≡ 1

ðℑϕ1Þ2 þ jϕ2j2

0
B@

ℑϕ1

ℜϕ2

ℑϕ2

1
CA; ð32Þ
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where n1 þ in2 ¼ expðiHÞ is mapped to the hue H and n3
determines the lightness, such that n3 ¼ 1 is white, n3¼−1
is black and n3 ¼ 0 is a color determined by H: H ¼ 0 is
red,H ¼ 2π=3 is green andH ¼ 4π=3 is blue. The intent is
simply to show how the surfaces are mapped to the target
space S3. The last column in each panel of Fig. 1 shows the
vorticities given in Eq. (25) such that the vorticity density in
ϕ1 (ϕ2) is given by Q1 (Q2) and shown with red (blue)
surfaces. All the isosurfaces are shown at half-maximum
of the corresponding observable, except for the vorticities,
which are shown at a quarter of the maximum vorticity.
Figure 1(a) shows the B ¼ 1 Skyrmion for various

values of M in the 2þ 4 model. It is interesting to note
that the vorticities in the 4th column are present with
the potential turned off (M ¼ 0).2 Although both the
potential (3rd column) and the vorticities clearly show

the 1-Skyrmion contains a pair of linked vortices for
M > 0, and hence with linking number 1—in accord with
the theorem of Ref. [2], the linked vortices do not quite
show themselves in the topological baryon charge density
or the total energy density for the 2þ 4 model [Fig. 1(a)].
All that happens is that the baryon charge density and
energy density isosurfaces are slightly deformed, which is
expected due to the broken SU(2) symmetry.
Figure 1(b) shows the B ¼ 1 Skyrmion for various

values in the 2þ 6 model. In comparison with the 2þ 4
model, the total energy density isosurface (at half-
maximum density) is quickly transformed from a sphere
into the shape given by two linked vortices, see the
2nd column of Fig. 1(b)—this happens around M ≲ 3.
To some extent the linked vortices also become visible in
the baryon charge density, see the first column of the figure.
We now turn to the case of the B ¼ 2 Skyrmion, which

without a potential is torus shaped. Figures 2(a) and 2(b)
show the results for various masses M in the 2þ 4 model
and 2þ 6 model, respectively. More precisely, we start
with the standard B ¼ 2 Skyrmion transformed by Eq. (30)

FIG. 1. The B ¼ 1 Skyrmion in the miscible BEC-Skyrme (a) 2þ 4model (b) 2þ 6model. The four columns show isosurfaces of: the
topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2 (with red and blue,
respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a different value of the
potential parameter M2.

2The standard frame would make one of the vortices a
“vacuum” vortex and the other a “physical” vortex, see Ref. [2].
The transformation (30) is thus equivalent to one of the rotations
of the 2-sphere performed in Ref. [2].
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as the initial guess. We notice that the vorticities (4th
column) are degenerate even for M ¼ 0 and so is the
potential energy (3rd column) once turning on a finite
potential, M ¼ 1. In order to define what we mean by
degenerate, let us make the following definition:

Definition 1. Vortex links are degenerate, if they pos-
sess a mathematical junction which makes the counting of
the linking number impossible.
For a detailed discussion of the linking number, see

Ref. [2]. In particular, the vortex links are not necessarily
degenerate, if at a given level set, the isosurfaces merely
touch each other. That is, if the vortices do not touch each
other by increasing the level-set value from 1=2 to a higher

FIG. 2. The metastable B ¼ 2 Skyrmion in the miscible BEC-
Skyrme (a) 2þ 4model (b) 2þ 6model. The four columns show
isosurfaces of: the topological baryon charge density B, the
energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2

(with red and blue, respectively). The color scheme used for the
first 3 columns is described in the text. Each row corresponds to a
different value of the potential parameter M2.

FIG. 3. The stable B ¼ 2 Skyrmion in the miscible BEC-
Skyrme (a) 2þ 4model (b) 2þ 6model. The four columns show
isosurfaces of: the topological baryon charge density B, the
energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2

(with red and blue, respectively). The color scheme used for the
first 3 columns is described in the text. Each row corresponds to a
different value of the potential parameter M2.

SVEN BJARKE GUDNASON and MUNETO NITTA PHYS. REV. D 102, 045022 (2020)

045022-6



value of the maximum density, then they are not degenerate
by definition 1.
According to definition 1, the B ¼ 2 Skyrmion shown in

Fig. 2 is degenerate until a sufficiently high value of the
potential parameter is reached: i.e., at M ∼ 5 for the 2þ 4
model and M ∼ 9 for the 2þ 6 model the degeneracy is
broken spontaneously and the vortex links fall into a
nondegenerate state where the linking number is clearly
two—this can be seen from the potential (3rd column) and
the vorticities (4th column) of the figure. For the 2þ 4
model, the baryon charge and the total energy densities are
only slightly deformed, whereas for the 2þ 6 model once
the degeneracy is broken, the baryon charge shows clear
signs of the linked vortices inside the Skyrmion and the
energy density takes the same shape as the potential—i.e.,
as two doubly linked vortices.
One could now expect that the degenerate soliton

becomes unstable for a sufficiently large M and decays
into the nondegenerate state. This begs the question, what is
the phase diagram of these two states as function of M. In
particular, which is the stable state for smaller values ofM.
In order to investigate this, we will use the B ¼ 2 Skyrmion
with broken degeneracy [see the last lines of Figs. 2(a)
and 2(b)] as the initial guess and decrease M to zero—and
while doing so, we calculate the total energy. The result is
shown in Fig. 3 and for both models, the linked vortices are
nondegenerate all the way asM tends to zero, thus allowing
one to count the topological degree as the linking number
of the two vortex species, see Ref. [2]. In order to conclude
which of the two solutions is the stable one, we plot the
energies in Fig. 4. Indeed, the solutions with nondegenerate
vortices turn out to be the stable ones. For the stable
solutions, the linked vortices are visible in the energy
density from M ≳ 3 in the 2þ 6 model, whereas for the
2þ 4 model they are only barely visible at M ¼ 6.
One could posit that starting with the (transformed)

rational map approximated Skyrmion is the reason for

ending up in the metastable state. Hence, we have per-
formed a scattering of two B ¼ 1 Skyrmions in the
attractive channel. The initial state was prepared by means
of the asymmetric product Ansatz of two 1-Skyrmions,
which was then transformed into the frame compatible with
this model’s vacuum using Eq. (30). Surprisingly, the result
forM ¼ 1 was the metastable “degenerate” state instead of
the stable ground state.
We will now consider the B ¼ 3 topological sector,

for which the results are shown in Fig. 5. The M ¼ 0 row
of Fig. 5(a) [Fig. 5(b)] shows the normal tetrahedrally

����model

����model

�
degenerate

nondegenerate

����

��	�

����

��
�

����

����

����

��
�

����

����

����

�� �� �� �	 �� �
 �� �� �� �


FIG. 4. Energy of degenerate versus nondegenerate B ¼ 2 Sky-
rmion solutions for both the 2þ 4 model and the 2þ 6 model.

FIG. 5. The B ¼ 3 Skyrmion in the miscible BEC-Skyrme
(a) 2þ 4 model (b) 2þ 6 model. The four columns show
isosurfaces of: the topological baryon charge density B, the
energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2
(with red and blue, respectively). The color scheme used for the
first 3 columns is described in the text. Each row corresponds to a
different value of the potential parameter M2.
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symmetric Skyrmion in the 2þ 4 (2þ 6) model. The triply
linked vortex lines are visible in the 4th column of the
figure and they are not degenerate for this soliton solution.
Turning on a finite M yields the potential energy (3rd
column) in a similar shape as the vorticities (4th column).
For M ¼ 1 it may look like the potential (3rd column)
shows signs of degeneracy, but this is merely an illusion
due to the level set and is not a degeneracy according to
definition 1; this can be seen by inspecting the vorticities in
the fourth column of the figure. In the 2þ 4 model, the
energy density isosurface changes for large values of M
(i.e., M ∼ 4–7), but instead of becoming similar to the
shape of the potential isosurface (3rd column) it separates
into four lumps centered at the corners of the tetrahedron
with hints of the vortex lines sticking out. In contrast, for
the 2þ 6 model, the energy density isosurface becomes

very similar in shape to that of the potential energy for large
values of M (i.e., M ∼ 4–7), see the second column of
Fig. 5. This can be traced back to the perfect fluid
properties of the BPS-Skyrme term [36].
We now turn to the B ¼ 4 sector, where the Skyrmion

solution forM ¼ 0 is octahedrally symmetric (which is the
dual symmetry of the cube). First we obtain solutions for
various values of M using the initial data which are
transformed rational map solutions for the 2þ 4 model
in Fig. 6 and for the 2þ 6model in Fig. 7. In both the 2þ 4
and the 2þ 6 model, the solution obtained for small values
ofM is degenerate according to definition 1, see the 3rd and
4th columns of Figs. 6 and 7, respectively. The critical
value of the mass parameter is Mcrit ∼ 4.3 for the 2þ 4
model and Mcrit ∼ 6 for the 2þ 6 model. Interestingly, the
breaking of degeneracy that happens at this value of M is

FIG. 6. The metastable B ¼ 4 Skyrmion in the miscible BEC-Skyrme 2þ 4 model. The four columns show isosurfaces of: the
topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2 (with red and blue,
respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a different value of the
potential parameter M2.
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only partial. That is, the degeneracy of the blue vortices
breaks spontaneously, but that of the red vortices sustains,
see the fourth column in Figs. 6 and 7. The lower-in-energy
metastable state, with only the red vortices being degen-
erate, can be seen for M ¼ 5 in Fig. 6 and for M ¼ 7 in
Fig. 7. If we continue to increase the massM, we expect to
be able to break the lower-in-energy metastable state with
only the red vortices being degenerate, and indeed that
happens at M0

crit ∼ 5.4 in the 2þ 4 model. For the 2þ 6

model, we have not been able to find this critical value of
the mass parameter; by increasingM toM ¼ 15, the lower-
in-energy metastable state is still metastable. Beyond that
value of the mass parameter, we do not trust the accuracy of
the code for the lattices used in these simulations.
Figure 8 shows the lower-in-energy metastable states,

where only the red vortices are degenerate while the blue
vortices are nondegenerate, see the fourth column of the
figure. Figure 9 shows the stable nondegenerate soliton

solution, which is nondegenerate in both the red (ϕ1) and
blue (ϕ2) vortices. In order to back up our claim, we
calculate the energies for the different metastable and the
stable solutions as functions of M and the result is shown
in Fig. 10. It is clear both from the energies in Fig. 10 and
from inspecting the baryon charge (1st column) and
energy (2nd column) isosurfaces of Figs. 6–9, that the
M ¼ 0 solution is energetically and physically the same
solution. Nevertheless, the vorticities plots are clearly
different in Figs. 6–7 versus Fig. 8 versus Fig. 9. This is
because, for vanishing potential, the difference is merely a
rotation of the 2-sphere in the language of Ref. [2], which
is a subgroup of O(4) and hence does not change the
energy or the physics of the Skyrmion with massless
pions. Once, the potential (7) is turned on, this rotation is
no longer a symmetry and the potential picks out the
nondegenerate vortex links as the ground state. Perhaps
surprisingly, there are metastable states with residual

FIG. 7. The metastable B ¼ 4 Skyrmion in the miscible BEC-Skyrme 2þ 6 model. The four columns show isosurfaces of: the
topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2 (with red and blue,
respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a different value of the
potential parameter M2.
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FIG. 8. The lower-in-energy metastable B ¼ 4 Skyrmion in the miscible BEC-Skyrme (a) 2þ 4 model (b) 2þ 6 model. The four
columns show isosurfaces of: the topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in
ϕ1;2 (with red and blue, respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a
different value of the potential parameter M2.
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FIG. 9. The stable B ¼ 4 Skyrmion in the miscible BEC-Skyrme (a) 2þ 4model (b) 2þ 6model. The four columns show isosurfaces
of: the topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2 (with red and blue,
respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a different value of the
potential parameter M2.

LINKED VORTICES AS BARYONS IN THE MISCIBLE BEC- … PHYS. REV. D 102, 045022 (2020)

045022-11



degeneracy or even partial residual degeneracy left. This
was not expected.
Although the fully degenerate state shown in Figs. 6

and 7 is clearly heavier on the energy graph 10(a) than the
other two solutions, the difference between the lower-in-
energy metastable state of Fig. 8 and the stable non-
degenerate solution of Fig. 9 is actually so small, that
we have plotted the difference between the energies of the
degenerate and the nondegenerate states in Fig. 10(b).
Clearly the partially degenerate solution with only the red
vortices being degenerate, has almost the same energy as
the nondegenerate stable solution. This was not expected in
the model with the potential (7) turned on.
We will now summarize the numerical results so far. The

B ¼ 1 case does not possess degeneracy in any frame, see
Ref. [2], but the second vortex is not necessarily physical,
as it can go off to infinity as a “vacuum” vortex. For B ¼ 2
the standard frame after the transformation (30) turns out to
give a degenerate solution. Cranking up the potential
parameter turns this metastable degenerate state into an
unstable state and the true nondegenerate “ground state” is
found. For B ¼ 3 the found solution does not possess
degeneracy. For B ¼ 4 the standard frame after rotation
yields a metastable state with degeneracy which is higher in
energy than another metastable state with partial degen-
eracy. The stable solution, however, in all cases is the
nondegenerate one.
Since we have shown the first four Skyrmion solutions

in great detail, we will only depict the stable ones of the
next four Skyrmions (B ¼ 5 through B ¼ 8) and only for
M ¼ 0, 5: For the 2þ 4 (2þ 6) model the results are
shown in Fig. 11 (Fig. 12). The stable Skyrmions without
the potential (i.e., withM ¼ 0) have dihedral D2d, dihedral
D4d, icosahedral and dihedral D6d symmetry, respectively.
It turns out that for B ¼ 5, there is a stable solution

which possesses nondegenerate vortex links, see Figs. 11(a)

and 12(a), as well as an unstable solution with degenerate
links (not shown). The energies of the two branches of
solutions are shown in Fig. 15(a) and the situation is very
similar to that of the B ¼ 2 Skyrmion.
For the B ¼ 6, 7 Skyrmions, we only find a stable

solution shown in Figs. 11(b), 11(c), 12(b), and 12(c) for
the 2þ 4 model and the 2þ 6 model, respectively.
Whereas the B ¼ 7 solution is clearly nondegenerate, the
B ¼ 6 solution looks almost degenerate, see the fourth
column of the figures for M ¼ 0. This turns out to be an
artifact of the level set and indeed the degeneracy according
to definition 1 is not present.
The last Skyrmion solution is the B ¼ 8 solution, for

which the stable Skyrmion in this model is shown in
Figs. 11(d) and 12(d) for the 2þ 4 model and the 2þ 6
model, respectively. For all the Skyrmion solutions in the
2þ 4 model, see Fig. 11, the vortex links are less visible
than in the 2þ 6model, see Fig. 12, even for largeM. That
being said, the deformations of the Skyrmion solutions in
the 2þ 4model are definitely visible for large values ofM,
but in the 2þ 6 model, the shape of the energy density
(2nd column) converges quickly to that of the potential
(3rd column), which by comparison to the vorticities
(4th column) represents the two flavors of vortex, which
when nondegenerate are linked exactly B times [2].
The story for the first seven baryon numbers (one

through seven) was that the solutions with degenerate
vortices had higher energies than solutions with nonde-
generate vortices. For the B ¼ 8 Skyrmion it turns out to be
more complicated. First of all, there exists both a fullerene-
like solution, which is predicted by the rational map
approximation [35] as well as a solution that is made up
of two cubes attached to each other [7]. In the Skyrme
model with a standard pion mass there are in fact two
solutions, which are made of two cubes (B ¼ 4 solutions)
next to each other: One is a translation of the first, whereas
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FIG. 10. (a) Energy of degenerate versus nondegenerate B ¼ 4 Skyrmion solutions for both the 2þ 4 model and the 2þ 6 model.
There is a degenerate state with almost the same energy as the nondegenerate state, where only the red vortex (ϕ1) is degenerate, but the
blue vortex (ϕ2) is nondegenerate. (b) The energy difference between the degenerate states and the nondegenerate “ground state.”
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FIG. 11. The stable (a) B ¼ 5, (b) B ¼ 6, (c) B ¼ 7, (d) B ¼ 8 Skyrmions in the miscible BEC-Skyrme 2þ 4 model.
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FIG. 12. The stable (a) B ¼ 5, (b) B ¼ 6, (c) B ¼ 7, (d) B ¼ 8 Skyrmions in the miscible BEC-Skyrme 2þ 6 model. The four
columns show isosurfaces of: the topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in
ϕ1;2 (with red and blue, respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a
different value of the potential parameter M2.
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in the second solution the translated copy is rotated by
90 degrees around the axis joining them. Both of these
B ¼ 8 Skyrmions have lower energy than the fullerene-like
dihedrally symmetric solution, once a pion mass is turned
on [7] and the critical value for the mass turns out to be
rather small. In this model, on the other hand, the solutions
with the two cubes are not lower in energy for any value of
the potential parameter M. Furthermore, only the first
version of the two cubes exist; that is, the one where the
B ¼ 4 solutions are translated copies of each other, see
Figs. 13(a), 13(b), 14(a), and 14(b). By that, we mean that
the twisted solution where one of the cubes is rotated by
90 degrees around the axis joining them, does not exist in

this model as it collapses into a fullerene-like solution, see
Figs. 13(c) and 14(c), albeit with higher energy than the
original D6d symmetric solution predicted by the rational
map approximation—this is because this fullerene-like
solution is fully degenerate at small M. This collapse of
the twisted double cube B ¼ 8 Skyrmion has been
observed also in other Skyrme-like models, see
Ref. [34]. The existence of another fullerene-like solution
has also been observed in Ref. [34]. Of course, such
existence or nonexistence of the different solutions and
which one is the global minimizer of the energy functional,
is very dependent on the model and in particular on the
potential.

FIG. 13. The metastable B ¼ 8 Skyrmions in the miscible BEC-Skyrme 2þ 4 model. The three metastable solutions are: (a) two
degenerate cubes, (b) two nondegenerate cubes, and (c) a fully degenerate fullerene-like solution. The four columns show isosurfaces of:
the topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2 (with red and blue,
respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a different value of the
potential parameter M2.
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The energies of the different B ¼ 8 solutions are shown
in Figs. 15(b)–(d). It turns out that the D6d dihedrally
symmetric (which is the symmetry only at M ¼ 0)
fullerene-like solution is the global minimizer of the
energy functional for all values of M studied in this
paper—even though it is partially degenerate. The lowest-
lying metastable state is another fullerene like structure,
which is fully degenerate. The highest-energy solutions
are given by two cubes joined together. It turns out there
are indeed two different B ¼ 8 solutions made of cubes,
but the difference is not whether they are rotated with
respect to each other or not. The difference between them

is whether the vorticities are degenerate or not. As one
could guess by now, the one with degenerate vorticities
has the highest energy and is unstable above M ∼ 2.1
for both the 2þ 4 and the 2þ 6 models, see Figs. 13(a)
and 14(a). A lower-lying B ¼ 8 solution made of B ¼ 4
cubes has nondegenerate vorticities and is metastable for
all the values of M studied, see Figs. 13(b) and 14(b).
Although this solution may look degenerate, it is not
according to definition 1; the vorticities are just going very
close to one another for the red vortices (ϕ1). The mystery
remains, however, that the stable solution seems to have
partially degenerate vortices.

FIG. 14. The metastable B ¼ 8 Skyrmions in the miscible BEC-Skyrme 2þ 6 model. The three metastable solutions are: (a) two
degenerate cubes, (b) two nondegenerate cubes, and (c) a fully degenerate fullerene-like solution. The four columns show isosurfaces of:
the topological baryon charge density B, the energy density E, the potential V, and the vorticities Q1;2 in ϕ1;2 (with red and blue,
respectively). The color scheme used for the first 3 columns is described in the text. Each row corresponds to a different value of the
potential parameter M2.

SVEN BJARKE GUDNASON and MUNETO NITTA PHYS. REV. D 102, 045022 (2020)

045022-16



IV. DISCUSSION

In this paper, we have considered the miscible BEC-
Skyrme model, which is the generalized Skyrme model
with fourth-order and sixth-order derivative terms aug-
mented by the BEC-inspired potential, but with the
opposite overall sign of the potential compared with the
previously considered immiscible BEC-Skyrme model.
The symmetries of the Lagrangian are unchanged, but
the vacuum state is now connected and hence the continu-
ous symmetry is completely broken. The interesting point
is that, unlike the immiscible BEC Skyrme model, this
model possesses two physical vortex strings: one in ϕ1 and
another in ϕ2, with ϕ1;2 being the two complex fields of the
(nonlinear sigma) model. These two vortex lines have been
proven in Ref. [2] to have linking number Q ¼ B equal to
the baryon number, i.e., the topological degree of the
Skyrmion, under the condition that a certain projection is

regular. It so happens that choosing a standard frame for the
Skyrmion often yields a situation which is not regular, and
the vortex lines degenerate—thus making it impossible to
define the linking number (this has no consequence for the
definition of the baryon number). The potential at hand in
this model makes such a degeneracy energetically unfav-
orable and hence for large enough potential parameter, M,
the model naturally possesses Skyrmion solutions which
are made of nondegenerate vortex lines that are linked
exactly B times, with B being the topological degree of the
Skyrmions.
The general lesson learned is that if both flavors of

vortex (i.e., both the red and the blue vortices) are
degenerate, then the solution is a metastable state. A lower
energy solution can be found where the degeneracy is
broken in one or both flavors of vortex. We can thus make
the following conjecture:
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FIG. 15. Energy of degenerate versus nondegenerate (a) B ¼ 5 and (b) B ¼ 8 Skyrmion solutions for both the 2þ 4 model and the
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Conjecture 1. The lowest-energy Skyrmion solution in
the miscible BEC-Skyrme model has nondegenerate vor-
tices in both vortex species for all values of M and for all
topological degrees B.
The conjecture is verified by the calculations in the
topological sectors B ¼ 1 through B ¼ 7 in this paper.
A curious exception seems to occur for the B ¼ 8

topological sector, where the lowest-energy solution we
have found—for any value of the potential parameter M—
turns out to be partially degenerate. That is, the red vortices
(i.e., those of ϕ1) are degenerate, whereas the blue vortices
(i.e., those of ϕ2) are nondegenerate. We did find a
Skyrmion solution in this topological sector with non-
degenerate vortices, which is a solution made of two B ¼ 4
cubes joined together. It turned out, however, to have a
higher energy than the partially degenerate fullerene-like
solution. It would be interesting if this is an exception, or
there actually exists a lower-energy solution for the B ¼ 8
sector that we somehow did not find. As an argument in
favor of this hypothesis, we found that the difference in
energy between the nondegenerate and the partially degen-
erate Skyrmion solutions in the B ¼ 4 sector turned out to
be extremely small. Therefore, increasing the potential
parameter, M, may not be a viable technique in such a
situation, as incredibly large values of M could be needed
for finding the lowest-energy state (if such a state exists).

Other approaches for searching for the lowest-energy state
may be needed.
It would be interesting to study the case in which a

“Josephson (or Rabi) term” ϕ�
1ϕ2 þ c:c: is added to the

potential. In the case of two-component BECs, this term
induces a sine-Gordon soliton stretching between two types
of vortices, exhibiting vortex confinement [37–44]. Several
aspects of vortices in this case have been studied extensively,
in particular, in two spatial dimensions, such as a vortex
lattice [39], confinement [40,42], dynamics of vortices [41],
collisions of vortices [44], as well as the phase structure [43].
In our case, two linked vortex lines will be connected by a
minimal-surface soliton sheet, like a soap film.
In Ref. [2] we found that there exists a certain projection

with which a baryon contains linked vortices. In this paper,
we have shown that with a certain potential, those linked
vortices can become physical.
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