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We propose to slightly generalize the DeWitt-Schwinger adiabatic renormalization subtractions in
curved space to include an arbitrary renormalization mass scale μ. The new predicted running for the
gravitational couplings are fully consistent with decoupling of heavy massive fields. This is a somewhat
improvement with respect to the more standard treatment of minimal (DeWitt-Schwinger) subtractions via
dimensional regularization. We also show how the vacuum metamorphosis model emerges from the
running couplings.
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I. INTRODUCTION

One of the cornerstones in quantum field theory has been
the design of regularization/renormalization schemes that
allows us to overcome ultraviolet divergences when com-
puting physical observables [1–3]. In perturbative quantum
electrodynamics we thus obtain reliable, well-proven
results such as the Lamb shift and the running of the
electromagnetic coupling constant due to vacuum polari-
zation. The renormalization process always involves an
arbitrary mass parameter μ and the possibility of rescaling
it. There is also much arbitrariness in the choice of the finite
part of the renormalization counterterms. This is also
reflected in the predicted running of the coupling constant.
However, when the masses can be neglected the leading
order beta function is uniquely fixed and one obtains βe ∼
e3=12π2 for large μ=m. In general, when masses are not
negligible, the beta function inherits a dependence on the
chosen subtraction scheme.
Another relevant feature of renormalization is the

expected decoupling of higher massive particles, as
enforced by the Appelquist-Carazzone theorem [4]. This
means that particles with mass higher than the relevant
physical energy scale should not contribute to any com-
puted observable. This ensures that for low energy physics
we do not need to know about the related very high energy
physics, hence supporting the effective field theory frame-
work. The minimal subtraction (MS) scheme in dimen-
sional regularization [5,6] is a very efficient method used to
evaluate the behavior of the running couplings. However,
MS does not fulfill the decoupling theorem and one needs

to resort to a mass-dependent scheme to capture the low
energy behavior of the beta function.
Renormalization theory has also been extended to

quantized fields in curved spacetime from the early
1970s, as reported in [7,8]. Here the main focus was the
renormalization of the energy-momentum tensor and the
evaluation of the effective action in a way consistent with
general covariance. One of the major tools is the heat-
kernel or proper-time expansion of the Feynman propagator
[9–11]. As in the case of perturbative computations in
Minkowski space, quantized fields in curved space are also
plagued with ultraviolet divergences. The DeWitt-
Schwinger expansion serves to identify the emerging
ultraviolet divergences, some of which are intrinsically
tied to the spacetime curvature and are absent in flat space.
In the evaluation of the renormalized effective action the
removal of the divergences can also be done using a mass
independent scheme, like MS in dimensional regularization
[12]. This introduces the usual μ parameter and the
associate running of the gravitational coupling constants
(see, for instance, [7,13]). As expected, the obtained
runnings do not fulfill the Appelquist-Carazzone theorem
and in consequence make it difficult to arrive at any
physical interpretation in the cosmic infrared regime.
This is specially important in discussing the cosmological
constant problem and the running of Newton’s constant
[13–15].
In this work we propose to reevaluate the effective

action, and the associated beta functions, by reexpressing
the conventional DeWitt-Schwinger adiabatic expansion
with the introduction of a novel μ scale parameter in the
definition of the adiabatic subtraction terms. The μ param-
eter is introduced in such a way that a natural decoupling
emerges in the running couplings. We also show how the
vacuum metamorphosis model [16,17], one of the most
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appealing models to account for dark energy [18,19] and to
soften the measured H0 tension [20], emerges when the μ
parameter is interpreted in terms of the Ricci scalar.
To make the paper self-contained we first introduce the

DeWitt-Schwinger (proper-time) expansion and briefly
summarize the derivation of the well-known running for
the couplings in dimensional regularization with the min-
imal prescription. To better explain the main ideas we
consider a quantized complex scalar field coupled to
external gravitational and electromagnetic fields. The
introduction of the external electromagnetic field is some-
what tangential to the main topic of the paper. However, we
introduce it in the discussion for pedagogical purposes,
since the running of the effective electric charge is a well-
established theoretical and experimental result. This per-
mits one to compare the one-loop electromagnetic behavior
with analogous results in gravity. We use units for which
c ¼ 1 ¼ ℏ. Our sign conventions for the signature of the
metric and the curvature tensor follow Refs. [7,8].

II. EFFECTIVE ACTION, DEWITT-SCHWINGER
EXPANSION, AND MINIMAL SUBTRACTION

We start from the classical Einstein-Maxwell theory

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−Λþ R

16πG
−

1

4q2
FμνFμν

�
þ SM ð1Þ

coupled to a quantized charged scalar field described by the
action

SM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ððDμϕÞ†Dμϕþm2jϕj2 þ ξRjϕj2Þ; ð2Þ

with Dμ ¼ ∇μ þ iAμ. The most relevant physical objects
are the renormalized energy-momentum tensor hTμνi and
the one-loop effective action Seff for the matter field, related
by 2ffiffiffiffi−gp δSeff

δgμν ¼ hTμνi. The effective action can be formally

expressed in terms of the Feynman propagator Seff ¼
−iTr logð−GFÞ. The propagator satisfies the Klein-
Gordon type equation

ð□x þm2 þ ξRÞGFðx; x0Þ ¼ −jgðxÞj−1=2δðx − x0Þ: ð3Þ

In general, the above formal expression for the effective
action is divergent. To explicitly identify the ultraviolet
divergences, one can express the Feynman propagator as an
integral in the proper time s

GFðx; x0Þ ¼ −i
Z

∞

0

dse−im
2shx; sjx0; 0i; ð4Þ

where m2 is understood to have an infinitesimal negative
imaginary part (m2 ≡m2 − iϵ). The kernel hx; sjx0; 0i can
be expanded in powers of the proper time as follows:

hx;sjx0;0i¼ i
Δ1=2ðx;x0Þ
ð4πÞ2ðisÞ2 exp

σðx;x0Þ
2is

X∞
j¼0

ajðx;x0ÞðisÞj ð5Þ

[Δðx; x0Þ is the Van Vleck-Morette determinant and σðx; x0Þ
is the proper distance along the geodesic from x0 to x].
Therefore, the effective Lagrangian, defined as Seff ¼R
d4x

ffiffiffiffiffiffi−gp
Leff , has the following asymptotic expansion:

Leff ¼
2i

2ð4πÞ2
X∞
j¼0

ajðxÞ
Z

∞

0

e−ism
2ðisÞj−3ds: ð6Þ

The first coefficients anðx; x0Þ are given, in the coincidence
limit x → x0, by [7,8]

a0ðxÞ ¼ 1; a1ðxÞ ¼ −ξ̄R;

a2ðxÞ ¼
1

180
RαβγδRαβγδ −

1

180
RαβRαβ

−
1

6

�
1

5
− ξ

�
□Rþ 1

2
ξ̄2R2 −

1

12
FμνFμν; ð7Þ

where ξ̄ ¼ ξ − 1
6
. We remark that all dependence on

the mass is factored out in the exponential in (4) [or,
equivalently, in (6)]. Furthermore, all DeWitt-Schwinger
coefficients an are polynomial functions of the basic
objects: curvature tensors Rαβγδ, Fμν (and their covariant
derivatives), and the metric tensor gμν. The removal of
divergences is usually done via dimensional regularization
and minimal subtraction.
In n spacetime dimensions the corresponding expression

(6) can be expanded as

Leff ≈
2i

2ð4πÞn=2
�
m
μ

�
n−4X∞

j¼0

ajðxÞm4−3jΓ
�
j −

n
2

�
; ð8Þ

where one has introduced an arbitrary mass scale μ to
maintain the initial units of Leff as ðlengthÞ4. μ is an
arbitrary scale, totally independent ofm. As n → 4, the first
three terms diverge with simple poles in 1=ðn − 4Þ.
Subtracting the terms with poles one obtains an asymptotic
expression for the renormalized effective Lagrangian. This
also requires that the original classical Lagrangian be
modified, up to total derivatives, by the addition of higher
derivative terms of the form α1C2 þ α2R2, where α1
and α2 are dimensionless coupling constants. Here C2 ≡
RμναβRμναβ − 2RμνRμν þ 1

3
R2 is the square of the Weyl

tensor. Demanding that the total effective Lagrangian,
including the classical part, be μ independent leads to
the following beta functions (see for instance [13])
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βMS
Λ ¼ m4

16π2
; βMS

κ ¼ −
m2ξ̄

4π2
; βMS

q ¼ q3

48π2
;

βMS
α1 ¼ −

1

960π2
; βMS

α2 ¼ −
1

16π2
ξ̄2; ð9Þ

where κ−1 ¼ 8πG. The unsatisfactory point of the above
results is the absence of decoupling for heavy massive
fields.

III. ADIABATIC DEWITT-SCHWINGER
SUBTRACTIONS: MASSLESS CASE

The DeWitt-Schwinger expansion can also be regarded
as an adiabatic expansion in number of derivatives of the
metric and the external fields. This is even more explicit in
its counterpart expansion in local-momentum space [21].
The high frequency behavior of the Feynman propagator is
captured by the DeWitt-Schwinger expansion, irrespective
of the background dynamics. Therefore, the renormaliza-
tion of the effective action can also be performed simply by
subtracting off all (DeWitt-Schwinger) terms up and
including the fourth adiabatic order [7]

Ldiv ¼
2i

2ð4πÞ2
X2
j¼0

ajðxÞ
Z

∞

0

e−ism
2ðisÞj−3ds: ð10Þ

However, as stressed in [22], the DeWitt-Schwinger sub-
tractions are in general ill defined for m ¼ 0, due to an
infrared divergence in the integration of the heat kernel.
More precisely, the DeWitt-Schwinger representation of the
Feynman propagator can be regarded as a special case of
the Hadamard expansion, corresponding to a particular
choice of the undetermined biscalar coefficient ω0 in the
Hadamard representation [22]. The DeWitt-Schwinger
expansion corresponds to the choice ω0 ¼ ωM

0 þ αa1þ
a2
m2 þ a3

m4 � � �. ωM
0 is the constant value in Minkowski space

(see for instance [23]). In some special situations, as in the
evaluation of trace anomalies, one can bypass this potential
problem by taking the massless limit at the end of the
calculation [8]. The result turns out to be finite.
Here we take a different route. When m ¼ 0 one can

alternatively bypass this infrared issue by introducing a
mass scale parameter μ. It can also serve to define the
necessary (but arbitrary) renormalization point. We note
that this is somewhat similar to the introduction of the
arbitrary length scale λ ∼ 1=μ in the logarithm term

Vðx; x0Þ log σðx;x0Þ
λ2

of the Hadamard expansion [24]. For
massive fields, the natural length scale is λ ∼m−1.
However, for massless fields one is forced to introduce
the arbitrary scale λ.
In the DeWitt-Schwinger expansion one can naturally

replace the mass parameter m2 in (10) by an arbitrary μ2

parameter and redefine the DeWitt coefficients ai → āi to
keep consistency within each adiabatic order. The new
proposed LdivðμÞ reads

LdivðμÞ ¼
2i

2ð4πÞ2
X2
j¼0

ājðxÞ
Z

∞

0

e−isμ
2ðisÞj−3ds; ð11Þ

where the first coefficients āi of the expansion are

ā0ðxÞ ¼ 1; ā1ðxÞ ¼ a1ðxÞ þ μ2;

ā2ðxÞ ¼ a2ðxÞ þ ξ̄Rμ2 þ 1

2
μ4: ð12Þ

Now we can separate from expression (11) a
μ-independent divergent term and a finite μ-dependent
term by computing the finite expression

LdivðμÞ − Ldivðμ0Þ ¼ δΛ þ δGRþ δσa2; ð13Þ

where δΛ ¼ −1
ð8πÞ2 ðμ4 − μ40Þ; δG ¼ 1

16π2
ξ̄ðμ2 − μ20Þ; and

δσ ¼ −1
16π2

logðμ2=μ20Þ. A consequence of the introduction
of the arbitrary scale μ is the natural emergence of the
renormalization group flow [25]. The beta functions are
obtained by requiring μ independence of the effective
Lagrangian

Leff ¼ −ΛðμÞ þ 1

2
κðμÞR −

1

4q2ðμÞFμνFμν

þ α1ðμÞC2 þ α2ðμÞR2 þ α3ðμÞEþ α4ðμÞ□R

− ðδΛðμÞ þ δGðμÞRþ δσðμÞa2Þ þ � � � : ð14Þ

E ¼ RμναβRμναβ − 4RμνRμν þ R2 is the integrand of the
Gauss-Bonet topological invariant. Note that the omitted
terms in the third line of (14) are independent of μ. The
results for the beta functions are

βΛ ¼ μ4

16π2
; βκ ¼

ξ̄μ2

4π2
;

βq ¼
q3

48π2
; β1 ¼

−1
960π2

; β2 ¼
−ξ̄2

16π2
;

β3 ¼
1

2880π2
; β4 ¼

1
5
− ξ

48π2
: ð15Þ

We have included for completeness all coupling con-
stants. This agrees with the results obtained in [26] for
Friedmann-Lemaitre-Robertson-Walker spacetimes using a
similar generalization of the usual adiabatic regularization
method [27], via the introduction of an analogous off-shell
scale μ. (For a recent use of this generalization see [28]).
We also have exact agreement for the dimensionless
coupling constants obtained from MS, as displayed in
(9). Hadamard renormalization also leads to a similar result
for the running of the electric coupling constant [24,29].
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IV. MASSIVE CASE, DECOUPLING AND
RUNNING GRAVITATIONAL CONSTANTS

Now we want to generalize the previous analysis to
massive fields. Therefore, instead of (11) and (10) we
should write

LdivðμÞ¼
2i

2ð4πÞ2
X2
j¼0

ājðxÞ
Z

∞

0

e−isfðμ2;m2ÞðisÞj−3ds: ð16Þ

The simplest choice for the function fðμ2; m2Þ is
fðμ2; m2Þ ¼ m2 þ μ2. This choice is univocally singular-
ized if we demand that the mass m2 is factored out in the
form of an exponential e−ism

2

, as in the conventional
DeWitt-Schwinger expansion (10). Furthermore, for m ¼
0 we have to recover (11). Hence

LdivðμÞ¼
2i

2ð4πÞ2
X2
j¼0

ājðxÞ
Z

∞

0

e−isðm2þμ2ÞðisÞj−3ds; ð17Þ

ā0ðxÞ ¼ 1, ā1ðxÞ ¼ a1ðxÞ þ μ2, and ā2ðxÞ ¼ a2ðxÞ þ
ξ̄Rμ2 þ 1

2
μ4 are kept mass independent. Note that any

other expression for f implies dependence on the mass
of the redefined DeWitt coefficients āi. Even more, any
other choice for f implies a nonpolynomial dependence of
the coefficients āi on m2.
The corresponding beta function for the electric charge

obtained from (17) is

βq ¼
q3

48π2
μ2

m2 þ μ2
; ð18Þ

while the result for the dimensionless gravitational con-
stants are similarly

β1 ¼ −
1

960π2
μ2

m2 þ μ2
; β2 ¼ −

ξ̄2

16π2
μ2

m2 þ μ2
;

β3 ¼
1

2880π2
μ2

m2 þ μ2
; β4 ¼

1
5
− ξ

48π2
μ2

m2 þ μ2
: ð19Þ

The difference between (18)–(19) and (15) is that the
former approaches the latter in the limit μ ≫ m while it
approaches to zero quadratically in the limit μ ≪ m. This is
equivalent to the decoupling of very massive charged
particles in scalar electrodynamics.
Concerning the dimensionfull gravitational constants,

the decoupling is also absent in dimensional regularization.
This makes it not trivial to assign some physical meaning to
the μ parameter. However, within the proposed DeWitt-
Schwinger framework and from (17) we get the following
beta functions:

βΛ ¼ 1

16π2
μ6

m2 þ μ2
; βκ ¼

ξ̄

4π2
μ4

m2 þ μ2
: ð20Þ

For large values of the scale μ ≫ m the mass can be
ignored, while heavy particles m ≫ μ decouple and
the beta functions tend to zero. Note that the decoupling
of the dimensionfull gravitational constants, in contrast with
the dimensionless ones, is a highly nontrivial issue [30–34].
The running of the cosmological and Newton’s gravi-

tational constants are given by (Λ ¼ Λc=8πG, where Λc is
the traditional cosmological constant)

ΛðμÞ ¼ Λ0 þ
1

64π2

�
ðμ4 − μ40Þ − 2m2ðμ2 − μ20Þ

þ 2m4 log

�
m2 þ μ2

m2 þ μ20

��
ð21Þ

GðμÞ ¼ G0

1þ ξ̄G0

π ðμ2 − μ20 −m2 logðm2þμ2

m2þμ2
0

ÞÞ
; ð22Þ

while the running for the dimensionless gravitational
constants are

αiðμÞ ¼ αi0 þ
σi
4π2

log

�
m2 þ μ2

m2 þ μ20

�
; ð23Þ

where σ1 ¼ − 1
430

, σ2 ¼ − ξ̄2

8
, σ3 ¼ 1

1440
, and σ4 ¼ ð1=5−ξÞ

24
.

V. RELATION WITH OTHER APPROACHES

It is interesting to briefly consider the massless limit for
the predicted running for the Newton constant, as given by
(22): GðμÞ ¼ G0ð1þ ðξ̄=πÞG0ðμ2 − μ20ÞÞ−1. This expres-
sion has the same form as the one obtained within a very
different approach. The asymptotic safety framework of
quantum gravity predicts a similar behavior for the running
of Newton’s constant [35] (see also [36]).
Even though the above renormalization prescription does

not give us a uniquely physical interpretation for μ, it
supports the idea that indeed it can be linked to some
physical scale, such as the conventional momentum scaling
pi → spi in flat space particle scattering associated with
the scaling μ → sμ0. In curved spacetime the scaling of μ
should be linked, by dimensional reasons, to the scaling of
the metric gμν → s−2gμν, and hence to the scaling of the
curvature R → s2R [37]. Therefore, while the dependence
on μ of the renormalized electric charge has the same form
as the dependence of the measured charge on the square of
the momentum transfer in electron scattering, the depend-
ence of the renormalized Λ or κ on μ is expected to be
traded to the curvature dependence of the observable
gravitational constants. One possible way of choosing a
natural mass/length scale in a cosmological setting is to
make μ proportional to the Hubble parameterH, or μ2 to be
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proportional to the Ricci scalar R. Here we are more
interested in the infrared behavior of the runnings, and
hence in the low curvature regime. The runnings obtained
above are somewhat similar to the generic form of the
running proposed in the running vacuum models [38] (see
also [13,28,39] for a connection with cosmological obser-
vations and smoothing of data tensions). The connection
between μ2 and R has also been previously suggested
in [31].
Let us analyze with more details the consequences of the

assumption μ2 ∝ R. For computational purposes it is
convenient to choose μ2 ¼ ξ̄R. We also select the reference
point μ0 ¼ 0 and assume that

Λ0 ¼ 0; αi0 ¼ 0; ð24Þ

and keep κ0 ¼ ð1=8πG0Þ, where G0 is the measured
Newton’s constant. These renormalization conditions can
be understood as our definition of the physical gravitational
constants in the very infrared limit point. The effective
Lagrangian is well approximated, in the adiabatic limit of
our late-time expanding Universe, by (here we are consid-
ering a single real scalar field)

Leff ¼ −ΛðμÞ þ 1

2
κðμÞRþ α1ðμÞC2 þ α2ðμÞR2

þþα3ðμÞEþ α4ðμÞ□R: ð25Þ

Taking into account the running derived in (21)–(23) for all
gravitational coupling constants and the conditions (24),
the above effective action can be rewritten in the form

Leff ¼
1

2
κ0Rþ 1

64π2

�
m2ξ̄Rþ 3

2
ξ̄2R2

− ðm4 þ 2m2ξ̄Rþ 2a2Þ log
�
m2 þ ξ̄R

m2

��
: ð26Þ

Remarkably, this coincides with the action proposed by
Parker and Raval in [16,17], and known as the vacuum
metamorphosis model [18,19], on the basis of the
R-summed form of the Feynman propagator [40–42].
Here only the measured Newton’s constant G0 appears
in the action. The semiclassical dynamics of (26) provides
negative pressure to suddenly accelerate the Universe at a
rate compatible with observations (it softens also the H0

tension [20]) for an ultralow mass scalar field, of the same
order as the current expansion rate of the Universe
(m ∼H0), in accordance with the underlying decoupling

mechanism displayed above. This provides further evi-
dence for the connection between the parameter μ in
our proposed physical renormalization scheme with the
physical scale R.

VI. CONCLUSIONS AND FINAL COMMENTS

We have generalized the DeWitt-Schwinger renormali-
zation subtractions to include an arbitrary renormalization
mass scale μ, and in such a way to ensure the decoupling of
heavy masses. This is a somewhat improvement with
respect to the more common treatment of the DeWitt-
Schwinger expansion via dimensional regularization and
minimal subtraction. We have also analyzed the new
predicted running for the gravitational couplings.
As a by-product of our proposal, and because of the

natural decoupling, the obtained runnings could be of
interest for the issue of the cosmological constant problem.
To see this in the conventional way let us assume that
Λ0 ¼ 0. Following the standard approach, i.e., dimensional
regularization and MS, any massive particle will contribute

as ΛMSðμÞ ∼m4 logðμ2m2Þ (see, for instance, [13,14]) and
taking the characteristic scale of the Standard Model gives
the well-known extremely high contribution Λ ∼ 1046 eV4.
This is in conflict with the observed current energy density
Λobs ∼ 10−11 eV4 (see [13] for a detailed discussion).
However, if we now use (21) we obtain an extremely
low value. More generally, in the limit of large massesm ≫
μ ∼H0 (all the standard model particles) the term m4

decouples and we get ΛDSðμÞ ∼ μ6

m2 þOð 1
m4Þ. This heuristic

discussion suggests that the origin of the accelerated
expansion could be more naturally found in ultralow
masses. This requires the identification of μ2 as a time-
dependent scale proportional to the Ricci scalar, as also
reinforced in the more quantitative arguments displayed in
this work. Further work is required to make more definite
statements.
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