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We investigate the presence of vortex configurations in generalized Maxwell-Chern-Simons models with
nonminimal coupling, in which we introduce a function that modifies the dynamical term of the scalar field
in the Lagrangian. We first follow a route already considered in previous works to develop the Bogomol’nyi
procedure, and, in this context, we use the first-order equations to obtain a vortex with a novel behavior at
its core. We then go further and introduce a novel procedure to develop the Bogomol’nyi methodology. It
supports distinct first-order equations, and we then investigate another model, in which the vortex may
engender inversion of the magnetic flux, an effect with no precedents in the study of vortices within the
nonminimal context.
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I. INTRODUCTION

Vortices are defect structures that appear in high-
energy physics in (2,1) flat spacetime dimensions. The
first relativistic model that supports such configurations
was suggested by Nielsen and Olesen in Ref. [1] in 1973,
with the action of a complex scalar field minimally
coupled to a gauge field under a Uð1Þ symmetry, with
the standard covariant derivative. An interesting feature of
these structures is the absence of electric charge and the
quantized character of the magnetic flux. The equations of
motion that describe vortex configurations are of second
order, and, by minimizing the energy of the system,
Bogomol’nyi found first-order equations compatible with
them in Ref. [2].
The model proposed in Ref. [1] has the dynamics of the

gauge field controlled by a Maxwell term. Nevertheless,
one can exchange it for the Chern-Simons term, as
suggested in Refs. [3–5]. The vortex configurations with
topological nature in this model are electrically charged,
such that the electric charge and the magnetic flux are both
quantized. Vortices in models with both Maxwell and
Chern-Simons terms were considered in Ref. [6]. In this
case, considering the scenario in which the fields are
minimally coupled, in order to develop the Bogomol’nyi
procedure, one must add a neutral field [7,8]. Even so, one
cannot obtain a set of first-order equations that completely
describes the problem.

Since we are working with planar systems, we can add an
anomalous magnetic moment contribution to the covariant
derivative, making the coupling between the gauge and
scalar fields nonminimal. The point is that the dual of Fμν is
a vector in (2,1) spacetime dimensions, that is, Fμ ¼
ð1=2ÞϵμνλFνλ, where Fμν ¼ ∂μAν − ∂νAμ, with Aμ standing
for the gauge field; thus, we can change the covariant
derivate from its minimal coupling form Dμ ¼ ∂μ þ ieAμ

to the nonminimal coupling described by Dμ ¼ ∂μ þ
ieAμ − iqFμ [9–11]. This possibility was considered before
in Refs. [12–14] as a way to circumvent the presence of the
additional neutral field that appeared in Refs. [7,8]: In
Ref. [12], the author considered a nonminimal coupling,
with the inclusion of an anomalous magnetic contribution.
By doing so, he was able to obtain a set of first-order
equations that completely solve the equations of motion.
However, the solutions engendered the nontopological
character. For this reason, in Refs. [13,14], another line
of investigation was considered, with the addition of a
generalized magnetic permeability and a function to control
the anomalous magnetic contribution, both depending only
on the scalar field. When these functions are constrained in
a specific manner, it is possible to develop the Bogomol’nyi
procedure and obtain first-order equations. In this model,
the form of the aforementioned functions may lead to
nontopological and/or topological configurations whose
charge is proportional to the magnetic flux. The physical
properties of planar systems have a long history, and
interesting lines of investigations concerning fractional
statistics and anyons appeared before, for instance, in
Refs. [15,16] and in references therein.
The presence of nonminimal coupling may be used to get

the Chern-Simons term by spontaneous symmetry breaking
in a Maxwell-Higgs model [17]. Over the years, in the
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context of models with nonminimal coupling between the
scalar and the gauge field, several works appeared in the
literature; see Refs. [18–29]. In particular, in Ref. [20],
vortex configurations were investigated in a model with
non-Abelian fields. Their associated magnetic flux is not
quantized due to their nontopological nature. However,
both the electric charge and angular momentum are
quantized. In Refs. [21,25,27], nonrelativistic models were
studied, and in Refs. [24,28,29], the authors investigated
vortices in Oð3Þ-sigma models, which may support both
topological and nontopological profiles.
In this paper, we investigate a generalized model,

with the dynamical term of the scalar field containing a
function of the scalar field in the nonminimal coupling.
This is explained in the next section, where we calculate
some properties of the model, such as the equations of
motion, the current, and the energy-momentum tensor.
We then focus on developing a first-order formalism to
describe the vortex configurations of interest in Sec. III. In
Sec. III A, we follow a path similar to the one suggested in
Refs. [13,14] and develop the Bogomol’nyi procedure for
this case by minimizing the energy of the system. We
provide an example to illustrate how the aforementioned
function that drives the dynamical term of the scalar field
plays a role in the profile of the solutions. In Sec. III B, we
introduce a novel procedure to get a first-order formalism
for the model. We provide two examples that present novel
physical features in the considered scenario, such as the
absence of the monotonic behavior of the solutions and
magnetic flux inversion, an effect that appeared before in
other contexts, in particular, in the case of fractional
vortices in two-component superconductors [30], and also
in models with breaking of the Lorentz invariance [31]. We
conclude the investigation in Sec. IV, where we comment
on the main results obtained in the work and on several
possibilities of investigations related to the presence of
the generalized nonminimal coupling considered in the
present study.

II. THE MODEL

We consider a gauge field and a complex scalar field
in (2,1) flat spacetime dimensions, with metric ημν ¼
diagðþ;−;−Þ and action S ¼ R d3xL, where the
Lagrange density is

L ¼ −
1

4
PðjφjÞFμνFμν þ κ

4
ϵλμνAλFμν

þMðjφjÞDμφDμφ − VðjφjÞ: ð1Þ

As one knows, vortices in models that support the Uð1Þ
symmetry usually arise with the presence of the minimal
coupling with the gauge field in the derivative Dμ ¼
∂μ þ ieAμ; see Refs. [1,3–5,32]. Here, we deal with
generalized models with nonminimal coupling, in which

the dual electromagnetic field appears in the derivative,
in the new form Dμ ¼ ∂μ þ ieAμ − iqGðjφjÞFμ, with the
function GðjφjÞ, in principle, arbitrary.
The generalized model to be considered here is described

by the potential VðjφjÞ, which includes nonlinear self-
interaction contributions of the complex scalar field φ,
and the three functions PðjφjÞ, MðjφjÞ, and GðjφjÞ. PðjφjÞ
introduces modifications in the electromagnetic properties
of the gauge field; in general, it modifies the permittivity
and/or permeability of the medium and has been used in
several works to generalize the standard Maxwell dynam-
ics; see, e.g., Ref. [33] and references therein, where PðjφjÞ
is considered a dielectric function, that can be included to
describe color confinement in quantum chromodynamics.
In a similar context, in the recent work in Ref. [34], it has
been used to trade scale invariance with an electric charge
that capture the basic feature of asymptotic freedom. It has
also been added in Refs. [35–38], and references therein,
connected to the existence of vortex configurations in
high-energy physics. In particular, in Ref. [39], a gener-
alized Maxwell-Higgs model with PðjφjÞ was considered
to produce vortex solutions with the compact profile. The
other function MðjφjÞ modifies the elastic properties of the
medium where the scalar field evolves and may sometimes
be seem as a conformal factor for a nontrivial metric on the
target space of the Higgs field. It was used before in
Ref. [40] and more recently in Ref. [41] in the context of
massive gauged nonlinear sigma models. In fact, in this last
work [41], the authors investigate two models, one with a
modification at the derivative of the scalar field and another
one in which a modification of the Maxwell term is
also added. Inclusion of functions of the scalar field
multiplying the Maxwell term and the covariant derivative
also appeared in other contexts, for instance, in applications
of the anti–de Sitter/conformal field theory correspondence
to condensed matter [42], in particular, in models related
to holography; in Ref. [43], the author considered an
holographic superconductor that engendered analytic treat-
ment near the phase transition, in Ref. [44], the inves-
tigation dealt with a specific holographic insulator model
with nonsingular zero temperature infrared geometry, in
Ref. [45], the electric charge transport was studied in a
strongly coupled quark-gluon plasma, and in Ref. [46], the
authors used the Einstein-Maxwell-dilaton holographic
model to describe far-from-equilibrium evaluation of hot
and dense relativistic fluid with a critical point. The third
function GðjφjÞ modifies the covariant derivative, making
the coupling of the scalar field with the gauge field not
minimal anymore. It refers to an anomalous magnetic
interaction which is available in the three-dimensional
spacetime [9–11,15,16] and was also considered, for
instance, in Refs. [12–14,19] to investigate vortices in
generalized models. Despite the general form of the above
Lagrange density, the model still supports the local Uð1Þ
symmetry.

ANDRADE, BAZEIA, MARQUES, and MENEZES PHYS. REV. D 102, 045018 (2020)

045018-2



We work with natural units ðℏ ¼ c ¼ 1Þ and the dimen-
sion of the quantities involved are ½xμ� ¼ ξ1, ½φ� ¼ ½Aμ� ¼
½e� ¼ ξ−1=2, ½κ� ¼ ξ−1, ½q� ¼ ξ1=2, and ½VðjφjÞ� ¼ ξ−3,
where ξ is the dimension of energy. The three functions
GðjφjÞ, PðjφjÞ, and MðjφjÞ are dimensionless.
The equations of motion of the fields φ and Aμ associated

to the Lagrange density (1) are

DμðMðjφjÞDμφÞ þ φ

2jφj
�
1

2
PjφjFμFμ −MjφjDμφDμφ

−
q
e
GjφjFμJμ þ V jφj

�
¼ 0; ð2aÞ

ϵλμν∂μ

�
PðjφjÞFλ −

q
e
GðjφjÞJλ

�
− Jν þ κFν ¼ 0; ð2bÞ

where the current is defined as

Jμ ¼ ieMðjφjÞðφ̄Dμφ − φDμφÞ ð3Þ

and we use the notation Gjφj ¼ ∂G=∂jφj, V jφj ¼ ∂V=∂jφj,
and so on. For convenience, we write the fields as

φ ¼ jφjeiΛ and Aμ ¼ Ãμ −
1

e
∂μΛ; ð4Þ

with Λ ¼ ΛðxμÞ. By doing so, the current in Eq. (3) takes
the form

Jμ ¼ −2ejφj2MðjφjÞðeÃμ − qGðjφjÞFμÞ: ð5Þ

The energy-momentum tensor has the form

Tμν ¼ ðP − 2q2jφj2G2MÞ
�
FμFν −

1

2
ημνFλFλ

�
þMð2ReðDμφDνφÞ − ημνDλφDλφÞ þ ημνV; ð6Þ

where ReðzÞ denotes the real part of z. In particular, the
energy density, defined as ρ≡ T00, has the form

ρ ¼ ðP − 2q2jφj2G2MÞ
�
F2
0 −

1

2
FλFλ

�
þMð2jD0φj2 −DλφDλφÞ þ V: ð7Þ

To investigate the presence of vortex configurations in
the model described by the Lagrange density (1), we take
static fields and

φ ¼ gðrÞeinθ; A0 ¼ hðrÞ; and A ¼ θ̂

er
ðn − aðrÞÞ;

ð8Þ
where ðr; θÞ are the polar coordinates and n ¼ �1;
�2;�3;… is the vorticity. Here, aðrÞ is dimensionless

and ½gðrÞ� ¼ ½hðrÞ� ¼ ξ−1=2. To obtain vortex configura-
tions with finite, single-valued fields at the origin, we
impose the boundary conditions

að0Þ ¼ n; gð0Þ ¼ 0; and hð0Þ ¼ h0; ð9Þ

where h0 is, in principle, a real finite parameter whose value
depends on the specific model. For the functions involved
in the transformation (4), we must have

jφj ¼ gðrÞ and Ã ¼ −
θ̂

er
aðrÞ: ð10Þ

One may be also interested in the electric field
E ¼ ðEx; EyÞ and magnetic field B. For fields in the form
(8), one can show that Ei ¼ Fi0 and B ¼ −F12 are given,
respectively, by

E ¼ −h0r̂ and B ¼ −
a0

er
: ð11Þ

By integrating the above magnetic field, one gets the
magnetic flux, which depends on the boundary conditions
associated to the specific model defined by GðjφjÞ,MðjφjÞ,
PðjφjÞ, and VðjφjÞ.
The equation of motion (2a) with the fields given by (8)

takes the form

1

r
ðrMg0Þ0 þ

�
1

4
Pjφj − q2g2GMGjφj

��
h02 −

a02

e2r2

�

þ g

�
M þ 1

2
gMjφj

���
eh −

qGa0

er

�
2

−
�
a
r
− qGh0

�
2
�

þ qg2MGjφj

�
ah0

r
−
ha0

r

�
−
1

2
ðMjφjg02 þ V jφjÞ ¼ 0:

ð12Þ

Similarly, from Eq. (2b), one gets two equations of motion.
They are the version of Gauss’ and Ampère’s laws for the
present model. They are, respectively, given by

1

r
ððP − 2q2g2G2MÞrh0 þ 2qg2GMaÞ0

−
�
1 −

2qe
κ

g2GM

�
κa0

er
− 2e2g2Mh ¼ 0; ð13aÞ

�
ðP − 2q2g2G2MÞ a

0

er
þ 2qeg2GMh

�0

−
�
1 −

2qe
κ

g2GM

�
κh0 −

2eg2Ma
r

¼ 0: ð13bÞ

The charge density J0 comes from the definition of the
current Jμ in Eq. (3); it is written as
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J0 ¼ −2eg2M
�
eh −

qGa0

er

�

¼ 1

r

��
1 −

2qe
κ

g2GM

�
κa
e
− ðP − 2q2g2G2MÞrh0

�0
;

ð14Þ

where we have used Eq. (13a) to get the expression in the
latter line. The integration of the above charge density gives
the charge of the vortex configuration. It depends on the
boundary values of the solutions, which are controlled by
GðjφjÞ, MðjφjÞ, PðjφjÞ, and VðjφjÞ that define the model.
The energy density with the fields in the form (8) comes

from Eq. (7); it is given by

ρ ¼ 1

2
ðPðgÞ − 2q2g2G2ðgÞMðgÞÞ

�
h02 þ a02

e2r2

�

þMðgÞ
�
a2g2

r2
þ e2g2h2 þ g02

�
þ VðgÞ: ð15Þ

The equations of motion (12) and (13) that govern the
fields are differential equations of second order with
couplings between the functions. So, to simplify the
problem, it is of interest to find first-order equations
compatible with the aforementioned equations.

III. FIRST-ORDER FORMALISM

In this section, we focus on the first-order formalism,
that is, on the presence of first-order differential equations
that solve the equations of motion of the model. In
Refs. [12–14], the authors found first-order equations for
models with MðjφjÞ ¼ 1 and specific conditions for PðjφjÞ
andGðjφjÞ. Here, in Sec. III A, we extend the method to our
generalized model described by the Lagrange density in
Eq. (1). Later, in Sec. III B, we introduce a novel possibil-
ity, which arises under distinct conditions and leads to new
first-order equations that induce the presence of new vortex
configurations.

A. First case

The first possibility to find differential equations of the
first-order type, compatible with the equations of motion
(12) and (13), is to consider a generalization of the trick
first implemented in Ref. [12] and then generalized in
Refs. [13,14], considering the inclusion of a function that
drives the generalized magnetic permeability, with the
Lagrange density in the form (1) under the conditions
MðjφjÞ ¼ 1, PðjφjÞ ¼ GðjφjÞ, and q ¼ e=κ. In this section,
we make an extension of his suggestion and take a general
MðjφjÞ and

PðjφjÞ ¼ qκ
e
GðjφjÞ; ð16Þ

so q is not constrained to e and κ. In this case, the Lagrange
density in Eq. (1) becomes

L ¼ −
qκ
4e

GðjφjÞFμνFμν þ κ

4
ϵλμνAλFμν

þMðjφjÞDμφDμφ − VðjφjÞ; ð17Þ

and the equation of motion (2b) take the form

ϵμνλ∂μ

�
q
e
GðjφjÞðκFλ − JλÞ

�
þ κFν − Jν ¼ 0: ð18Þ

This equation is compatible with Jμ ¼ κFμ. We remark
here that, in this case, the charge density is related to the
magnetic field by J0 ¼ κF0 ¼ −κB. Thus, the charge can
be written in terms of the magnetic flux, as

Q ¼ −κΦ: ð19Þ

By using Eq. (4), we have

κFμ ¼ −
2e2Ãμjφj2MðjφjÞ

fðjφjÞ ; ð20Þ

with

fðjφjÞ ¼ 1 −
2qe
κ

jφj2GðjφjÞMðjφjÞ: ð21Þ

Notice that Eq. (20) must be considered with Eq. (2a) under
the condition (16), which is of second order. To simplify the
problem, we develop the Bogomol’nyi procedure for this
case. The expression in Eq. (20) allows us to show that the
energy density in Eq. (7) becomes

ρ ¼ MðjφjÞ
�
ð∂0jφjÞ2 þ ð∂1jφjÞ2 þ ð∂2jφjÞ2

þ e2Ã2
1jφj2

fðjφjÞ þ e2Ã2
2jφj2

fðjφjÞ
�
þ κ2F2

0fðjφjÞ
4e2jφj2MðjφjÞ þ VðjφjÞ:

ð22Þ

We then introduce the notation ∂� ¼ ∂1 � i∂2 and Ã� ¼
Ã1 � iÃ2 and write the above expression as

ρ ¼ MðjφjÞ
�
ð∂0jφjÞ2 þ

����∂�jφj þ
ieÃ�jφjffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞp ����2

�

þ κ2fðjφjÞ
4e2jφj2MðjφjÞ

 
F0 �

2e
κ
jφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞMðjφjÞ

fðjφjÞ

s !2

� 2ejφjMðjφjÞϵijÃj∂ijφjffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞp ∓ κ

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞfðjφjÞ
jφj2MðjφjÞ

s
ϵij∂iÃj:

ð23Þ
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To write the latter three contributions as a single derivative
in the above expression, we impose the constraint

d
djφj

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞfðjφjÞ
jφj2MðjφjÞ

s !
¼ −

2e2jφjMðjφjÞ
κ
ffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞp : ð24Þ

It is satisfied by the potential

VðjφjÞ ¼ 4e4jφj2MðjφjÞ
κ2fðjφjÞ

�Z
djφj jφjMðjφjÞffiffiffiffiffiffiffiffiffiffiffiffi

fðjφjÞp �
2

: ð25Þ

Notice that we have an indefinite integral in the above
expression, so an integration constant will appear in the
process. The energy is then given by integrating the energy
density in the plane, which we denote by Σ:

E ¼
Z
Σ
d2x

 
MðjφjÞ

�
ð∂0jφjÞ2 þ

����∂�jφj þ
ieÃ�jφjffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞp ����2

�

þ κ2fðjφjÞ
4e2jφj2MðjφjÞ

 
F0 �

2e
κ
jφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞMðjφjÞ

fðjφjÞ

s !2

∓ κ

e
ϵij∂i

 
Ãj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞfðjφjÞ
jφj2MðjφjÞ

s !!
: ð26Þ

Since the squared terms in the integral are non-negative, the
energy is bounded:

E ≥ EB ¼
����� κe
Z
Σ
d2xϵij∂i

 
Ãj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞfðjφjÞ
jφj2MðjφjÞ

s !�����; ð27Þ

where the potential must obey Eq. (25). If the solutions
satisfy the first-order equations

∂0jφj ¼ 0; ð28aÞ

∂�jφj þ
ieÃ�jφjffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞp ¼ 0; ð28bÞ

F0 �
2e
κ
jφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞMðjφjÞ

fðjφjÞ

s
¼ 0; ð28cÞ

then the energy is minimized to E ¼ EB. The first-order
equation (28a), in particular, is satisfied by static configu-
rations. In this case, A0 ¼ Ã0 and Eq. (20) leads to

A0 ¼ � 1

ejφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞfðjφjÞ

MðjφjÞ

s
; ð29Þ

with the potential obeying Eq. (25). We remark that this
first-order formalism was developed without requiring φ
and Aμ to obey specific expressions.

To show that the first-order equations solve the equations
of motion in this case, we first notice that the equation of
motion for the gauge field (18) is satisfied; thus, we have to
deal with only Eq. (2a), which becomes

DμðMðjφjÞDμφÞ

−
φ

2jφj
�
MjφjDμφDμφþ qκ

2e
GjφjFμFμ − V jφj

�
¼ 0:

ð30Þ
We can use the condition Jμ ¼ κFμ with Eq. (4) to show
that

MjφjDμφDμφþ qκ
2e

GjφjFμFμ

¼ F2
0

�
κ2Mjφj

4e2jφj2M2
þ qκ

2e
Gjφj

�
þMjφjð∂μjφj∂μjφjÞ

þ e2jφj2
f2

ÃiÃ
i

�
Mjφj þ

2eq
κ

jφj2M2Gjφj

�
ð31Þ

and

DμðMDμφÞ ¼ φ

jφj
�
∂μ

�
M∂μjφj þ ieÃμjφjM

f

�

þ ieÃμM

f

�
∂μjφj þ ieÃμjφj

f

��
: ð32Þ

To verify that the first-order equations are compatible with
the aforementioned equation of motion, we use (28a) and
(28b) with the terms written in the form (31) and (32) to
obtain

MjφjDμφDμφþ qκ
2e

GjφjFμFμ

¼ F2
0

�
κ2Mjφj

4e2jφj2M2
þ qκ
2e

Gjφj

�
þ 2e2jφj2

f2
ÃiÃ

i

×

�
Mjφj −

eq
κ
jφj2GMMjφj þ

eq
κ
jφj2M2Gjφj

�
ð33Þ

and

DμðMDμφÞ ¼ −
φ

jφj
�

κ2F2
0

4e2jφj3M � ejφjMffiffiffi
f

p F0

þ e2jφjÃiÃ
i

�
M
f2

−
1ffiffiffi
f

p d
djφj

�jφjMffiffiffi
f

p
���

:

ð34Þ
By substituting these terms in the equation of motion (30),
the terms with Ãi vanish, so we have

F2
0

�
κ2

4e2jφj3M þ κ2Mjφj
8e2jφj2M2

þ qκ
4e

Gjφj

�

� ejφjMffiffiffi
f

p F0 −
1

2
V jφj ¼ 0: ð35Þ
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The first-order equation (28c) can be combined with the
above expression to lead us to the very same Eq. (24),
which is solved by the potential in the form (25), and this
completes the proof.
We now turn our attention to the case of fields that

engender rotational symmetry, as displayed in Eq. (8). In
this case, Eq. (20) that arises from Jμ ¼ κFμ leads to the
equations

κa0

er
þ 2e2g2MðgÞh

fðgÞ ¼ 0; ð36aÞ

κh0 þ 2eg2MðgÞa
rfðgÞ ¼ 0; ð36bÞ

where

fðgÞ ¼ 1 −
2qe
κ

g2GðgÞMðgÞ ð37Þ

is a non-negative function. The equation of motion for the
scalar field (12) becomes

1

r
ðrMg0Þ0 þ g

f2

�
M þ 1

2
gMjφj þ

qe
κ
g3M2Gjφj

�

×

�
e2h2 −

a2

r2

�
−
1

2
ðMjφjg02 þ V jφjÞ ¼ 0: ð38Þ

By using Eqs. (36) to eliminate h and h0, one can show
that the energy density in Eq. (15) simplifies to

ρ ¼ MðgÞ
�
g02 þ a2g2

r2fðgÞ
�
þ κ2fðgÞa02
4e4r2g2MðgÞ þ VðgÞ: ð39Þ

So, one must solve Eqs. (36) and (38) to calculate the
solutions and then substitute them in the above expression
to find the corresponding energy density. Nevertheless, we
have only two first-order equations, Eqs. (36). Thus, since
we have three functions to calculate: aðrÞ, gðrÞ, and hðrÞ,
we need an additional first-order equation to fulfill our
purpose. To solve this issue, we develop the Bogomol’nyi
procedure for our model in Eq. (17) under the condition
Jμ ¼ κFμ. The above energy density can be written in the
form

ρ ¼ MðgÞ
�
g0 ∓ ag

r
ffiffiffiffiffiffiffiffiffi
fðgÞp �

2

þ κ2fðgÞ
4e2g2MðgÞ

 
a0

er
� 2eg

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðgÞVðgÞ

fðgÞ

s !2

∓ 1

r

 
κ

e2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðgÞfðgÞ
MðgÞ

s
a0 −

2gMðgÞffiffiffiffiffiffiffiffiffi
fðgÞp g0a

!
: ð40Þ

To make the latter term become a total derivative, we
impose the constraint

d
dg

 ffiffiffiffiffiffiffiffiffi
Vf
g2M

s !
¼ −

2e2gM
κ
ffiffiffi
f

p : ð41Þ

By solving it, one shows that

VðgÞ ¼ 4e4g2M
κ2f

�Z
dg

gMffiffiffi
f

p
�

2

; ð42Þ

where f is as in Eq. (37). These results are compatible with
Eqs. (24) and (25). If the potential has the above form, one
can write the energy density as

ρ ¼ MðgÞ
�
g0 ∓ ag

r
ffiffiffiffiffiffiffiffiffi
fðgÞp �

2

þ κ2fðgÞ
4e2g2MðgÞ

×

 
a0

er
� 2eg

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðgÞVðgÞ

fðgÞ

s !2

� 1

r
W0; ð43Þ

where W ¼ Wða; gÞ is an auxiliary function given by

Wða; gÞ ¼ −
κa
e2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðgÞfðgÞ
MðgÞ

s

¼ 2a
Z

dg
gMðgÞffiffiffiffiffiffiffiffiffi
fðgÞp : ð44Þ

We have used Eq. (42) to get the above Eq. (44). Since the
integral of the energy density in Eq. (43) gives the energy,
one can see the energy is bounded:

E ≥ EB ¼ 2πjWðað∞Þ; gð∞ÞÞ −Wðað0Þ; gð0ÞÞj: ð45Þ

Notice that, differently from what occurs in the general
procedure Eq. (27), we can show there is a surface term that
gives the energy, given by Wða; gÞ.
The configurations with minimum energy appear when

we take the squared terms equal to zero. In this case, we get
the first-order equations

g0 ¼ � ag
r

1ffiffiffi
f

p ; ð46aÞ

−
a0

er
¼ � 2eg

κ

ffiffiffiffiffiffiffiffi
MV
f

s

¼ ∓ 4e3g2M
κ2f

�Z
dg

gMffiffiffi
f

p
�
: ð46bÞ

We emphasize here the presence of the function f in
Eq. (46a). In models with minimal coupling, we get this
equation only with f ¼ 1, i.e., g0 ¼ ag=r, which leads only
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to an integer power-law behavior near the origin for gðrÞ
(see Ref. [32]). Since we now have a general f in the form
(37), we may consider functions GðgÞ and MðgÞ to obtain
distinct behaviors around the origin. Furthermore, the
above first-order equation (46b) allows us to conclude that
aðrÞ is a monotonically decreasing (increasing) function for
the upper (lower) sign. For topological solutions, we have
that gðrÞ is monotonically increasing, connecting g ¼ 0 and
g ¼ v, and both aðrÞ and a0ðrÞ do not change sign,
oppositely as we will see in the models of the next section.
In the case of nontopological solutions, the sign of a0ðrÞ is
constant, but aðrÞ changes along its path, so gðrÞ increases
up to a maximum value and then smoothly decreases
toward g ¼ 0.
If the solutions obey these first-order equations, the

energy is minimized to E ¼ EB, with EB given by Eq. (45).
By solving the above equations, one can find h through
Eq. (36a) combined with the latter equation given above.
We then have

h ¼ � 1

eg

ffiffiffiffiffiffi
Vf
M

r

¼ ∓ 2e
κ

�Z
dg

gMffiffiffi
f

p
�
: ð47Þ

Equations (46) and (47) are compatible with Eqs. (28) and
(29). For models with GðgÞ, MðgÞ, and VðgÞ obeying the
constraint (41), i.e., for potentials in the form (42),
Eqs. (46) and the above one completely solve the problem.
To find aðrÞ and gðrÞ, one must solve the first-order
equations (46). The remaining solution hðrÞ is found by
substituting gðrÞ in Eq. (47); it has the same sign of the
vorticity. We note that the upper signs represent configu-
rations with positive vorticity, and the lower ones do it for
negative vorticity. They are related by the changes aðrÞ →
−aðrÞ and hðrÞ → −hðrÞ; gðrÞ remains the same in both
scenarios. For simplicity, we work with only positive
vorticity here.
We now illustrate our procedure with a generalization of

the models considered in Refs. [12–14], given by

GðgÞ ¼ κ

2qe
1 −M2ðgÞð1 − αg2Þ1−γ

g2MðgÞ ; ð48Þ

where α and γ are parameters such that α has the dimension
of energy and γ is dimensionless. From Eq. (37), we obtain
fðgÞ ¼ M2ðgÞð1 − αg2Þ1−γ . Notice that, in principle, MðgÞ
is arbitrary, restricted only by the non-negative character of
the energy density. For the above function, by taking
M ¼ 1, α ¼ 1=v2, and γ ¼ 0, one recovers the model in
Ref. [12], in which GðgÞ ¼ κ=ð2qev2Þ. On the other hand,
by taking M ¼ 1 and α ¼ 1=v2, one gets the model
in Refs. [13,14], where GðgÞ ¼ κð1 − ð1 − g2=v2Þ1−γÞ=
ð2qeg2Þ. For a general MðgÞ, the above equation can be
substituted in Eq. (42) to obtain the potential

VðgÞ ¼ 4e4g2ð1 − αg2Þγ−1
κ2α2ð1þ γÞ2MðgÞ ðC − ð1 − αg2Þðγþ1Þ=2Þ2: ð49Þ

Here,C is an integration constant. AssumingMðgÞ does not
modify the minimum g ¼ v of the potential, we have to be
careful with the sign of α. We deal with α > 0, by taking
α ¼ 1=v2. In this case, the above potential does not need a
C ≠ 0 to support symmetry breaking. So, for simplicity, we
take C ¼ 0. By doing this, the above expression simplifies,
becoming

VðgÞ ¼ 4e4v4g2

κ2ð1þ γÞ2MðgÞ
�
1 −

g2

v2

�
2γ

: ð50Þ

To find the solutions, one must solve the first-order
equations (46), which, in this model, can be written as

g0 ¼ ag
rMðgÞ

�
1 −

g2

v2

�ðγ−1Þ=2
; ð51aÞ

−
a0

er
¼ 4e3v2g2

κ2ð1þ γÞMðgÞ
�
1 −

g2

v2

�ð3γ−1Þ=2
: ð51bÞ

Notice that one must suggest a function MðgÞ to obtain the
solutions. The function hðrÞ in Eq. (47) is given in terms of
the known gðrÞ as

hðrÞ ¼ 2ev2

κð1þ γÞ
�
1 −

g2ðrÞ
v2

�ðγþ1Þ=2
: ð52Þ

At the origin, since gð0Þ ¼ 0, we have hð0Þ ¼ 2ev2=
ðκð1þ γÞÞ. Note that h does not depend explicitly on
MðgÞ. However, MðgÞ modifies the profile of gðrÞ, which
must be substituted in the above equation. Moreover, the
electric field depends onMðgÞ, since it is given by Eq. (11).
The auxiliary function in Eq. (44) takes the form

Wða; gÞ ¼ −
2v2a
ð1þ γÞ

�
1 −

g2

v2

�ðγþ1Þ=2
: ð53Þ

So, the energy does not depend on MðgÞ, since it depends
only on the boundary values of aðrÞ and gðrÞ, with E ¼ EB,
where EB is as in Eq. (45). On the other hand, the energy
density is modified byMðgÞ, because this function changes
the solutions aðrÞ and gðrÞ such that the energy density is
changed. This can be straightforwardly seen by writing the
energy density in Eq. (39) in terms of the solutions aðrÞ and
gðrÞ, in the form

ρ ¼ 2g2

MðgÞ
�
1 −

g2

v2

�
γ−1

×

�
a2

r2
þ 4e4v4

κ2ð1þ γÞ2
�
1 −

g2

v2

�
γþ1
�
; ð54Þ

where we have used the first-order equations (51).
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Notice that one must solve Eqs. (51) and substitute the
solutions in the above equation to calculate the energy
density. However, one must be careful to take the appro-
priate boundary conditions as they are related to the
topological or nontopological nature of the vortex con-
figurations. So, we review the simplest case, which appears
for M ¼ 1 and was studied in Refs. [12–14]. In particular,
in Ref. [12], as M ¼ 1 and γ ¼ 0, the energy density
becomes

ρ ¼ 2g2
�
a2

r2

�
1 −

g2

v2

�−1
þ 4e4v4

κ2

�
: ð55Þ

Hence, to ensure the finiteness of the energy, one must
impose að∞Þ → a∞ and gð∞Þ → 0. This means that the
vortex solutions found by Torres engender nontopological
character. The model investigated in Ref. [12] was gener-
alized in Refs. [13,14], with the inclusion of a generalized
magnetic permeability driven by the scalar field. ForM ¼ 1
and γ ¼ 1, one recovers the pure Chern-Simons model,
with the energy density given by

ρ ¼ 2g2
�
a2

r2
þ e4v4

κ2

�
1 −

g2

v2

�
2
�
; ð56Þ

which was studied in Refs. [3–5] and may lead to
topological [að∞Þ → 0 and gð∞Þ → v] or nontopological
[að∞Þ → a∞ and gð∞Þ → 0] solutions. For M ¼ 1 and
γ > 1, one can see from Eq. (54) that topological solutions
are supported by the model, i.e., að∞Þ → a∞ and
gð∞Þ → v. Surprisingly, the very same model supports
nontopological solutions, að∞Þ → a∞ and gð∞Þ → 0,
since the global factor g2 goes to zero and protects the
energy against divergences. By using Eqs. (53) and (45),
one can show that, in this case, the topological solutions has
energy E ¼ 4πv2n=ð1þ γÞ, while the nontopological sol-
utions engender energy E ¼ 4πv2ðn − a∞Þ=ð1þ γÞ.
We now show that our model with M ≠ 1 supports

vortex configurations. Considering the function GðgÞ in
Eq. (48), one can take, for instance,

MðgÞ ¼
�
1 −

g2

v2

�ðσ−1Þ=2
; ð57Þ

where σ is a dimensionless parameter. This makes the first-
order equations (51) become

g0 ¼ ag
r

�
1 −

g2

v2

�ðγ−σÞ=2
; ð58aÞ

−
a0

er
¼ 4e3v2g2

κ2ð1þ γÞ
�
1 −

g2

v2

�ð3γ−σÞ=2
: ð58bÞ

Notice that, for σ ≠ γ, the above equations are similar to the
ones found in Refs. [13,14]. A particular case is σ ¼ γ, in

which GðgÞ ¼ 0, such that the Maxwell and the dual field
Fμ term in the derivative D that governs the nonminimal
coupling vanish, so the gauge and scalar fields are
minimally coupled and we get a model that falls in the
class of generalized pure Chern-Simons models investi-
gated in Ref. [47].
As we commented before, the functionMðgÞ in Eq. (57)

supports solutions with similar behavior to the ones found
in Refs. [13,14]. Next, we introduce a function that leads to
novel vortex configurations, with

MðgÞ ¼
�
λþ ð1 − λÞ g

2

v2

��
1 −

g2

v2

�ðγ−1Þ=2
; ð59Þ

where λ is a dimensionless parameter such that λ ∈ ð0; 1�.
Notice that λ ¼ 1 recovers Eq. (57) with σ ¼ γ. For a
general λ, we get from Eq. (48) that

GðgÞ ¼ κ

2qe
1 − ðλþ ð1 − λÞg2=v2Þ2
g2ðλþ ð1 − λÞg2=v2Þ

�
1 −

g2

v2

�ð1−γÞ=2
:

ð60Þ

One must take into account that this function also drives the
generalized magnetic permeability PðgÞ, since they are
related as in Eq. (16). We remark that, differently from what
occurs in the models in Refs. [12–14], the above function is
non-negative in the interval where the topological solutions
exist, g ∈ ½0; v�. Notice that λ ¼ γ ¼ 1 recovers the stan-
dard pure Chern-Simons model [3–5]. The potential in
Eq. (50) takes the form

VðgÞ ¼ 4e4v4g2

κ2ð1þ γÞ2
�
λþ ð1 − λÞ g

2

v2

�−1�
1 −

g2

v2

�ð3γþ1Þ=2
:

ð61Þ

Its minima are located at g ¼ 0 and g ¼ v. The first-order
equations (51) are

g0 ¼ ag
r

�
λþ ð1 − λÞ g

2

v2

�−1
; ð62aÞ

−
a0

er
¼ 4e3v2g2

κ2ð1þ γÞ
�
λþ ð1 − λÞ g

2

v2

�−1�
1 −

g2

v2

�
γ

: ð62bÞ

We now investigate the behavior of the solutions near the
origin. For r ≈ 0, one can take aðrÞ ¼ n − aoðrÞ and
gðrÞ ¼ goðrÞ for small ao and go to show that the above
equations lead to

aoðrÞ ∝ r½2ðnþλÞ�=λ and goðrÞ ∝ rn=λ: ð63Þ

Notice that the presence of λ in the power of these functions
occurs due to the factor ðλþ ð1 − λÞg2=v2Þ−1 in Eq. (62a).
So, since λ is a real positive parameter, we get a real number
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in the power of r. To find hðrÞ, one must solve the above
first-order equations and substitute the known gðrÞ in
Eq. (52). The energy density in Eq. (54) becomes

ρ ¼ 2g2
�
λþ ð1 − λÞ g

2

v2

�−1�
1 −

g2

v2

�ðγ−1Þ=2

×

�
a2

r2
þ 4e4v4

κ2ð1þ γÞ2
�
1 −

g2

v2

�
γþ1
�
: ð64Þ

We see from the above equation that the model supports
finite energy nontopological and topological solutions for
γ ≥ 1. Here, we deal with only topological solutions, such
that að∞Þ ¼ 0 and gð∞Þ ¼ v. From Eqs. (53) and (45), it is
straightforward to show that the energy of the topological
solutions is given by E ¼ 4πjnjv2=ð1þ γÞ. Moreover, by
integrating the magnetic field in Eq. (11), one can show that
the flux is Φ ¼ 2πn=e, so both the magnetic flux and the
charge in Eq. (19) are quantized.
We then use numerical procedures to solve the involved

first-order equations and find the profiles of aðrÞ, gðrÞ, and
hðrÞ. They can be seen in Fig. 1, where we plot these
functions for e ¼ κ ¼ q ¼ v ¼ n ¼ γ ¼ 1 and some values
of λ. One can see that, as λ decreases, the plateau that
appears in each one of the solutions becomes wider. Notice
that, even though the solutions behave distinctively near the
origin, the tails of the solutions are very similar for the
several values of λ. By using these solutions, we calculate

the associated electric and magnetic fields and the energy
density. These quantities are displayed in Figs. 2 and 3.
Notice that they have a hole around the origin, whose
deepness and width become larger as λ decreases.
Notice the results in Figs. 1–3 are for α ¼ 1=v2 > 0 and

C ¼ 0 in Eq. (49). One may also obtain well-defined vortex
configurations for C ≠ 0; this will be explored in the next
section, in which we present a new manner to develop a
first-order formalism for models described by the Lagrange
density in Eq. (1).

B. Second case

In the previous section, we have dealt with the first-order
formalism that can be developed under the condition Jμ ¼
κFμ for the Lagrange density in Eq. (1), a generalization of
the models investigated in Refs. [12–14]. We, however,
have found a distinct pathway that leads us to first-order
equations compatible with the equations of motion (12) and
(13) for the model in Eq. (1). Instead of constraining PðjφjÞ
and GðjφjÞ as in the previous case, the trick here is to take

PðjφjÞ ¼ 2q2jφj2G2ðjφjÞMðjφjÞ; ð65Þ

which makes the Lagrange density in Eq. (1) become

L ¼ −
q2

2
jφj2G2ðjφjÞMðjφjÞFμνFμν

þ κ

4
ϵλμνAλFμν þMðjφjÞDμφDμφ − VðjφjÞ: ð66Þ

One can expand the above expression to show that the
Maxwell term vanishes and the Lagrangian density can be
written as

L ¼ κ

4
ϵλμν
�
Aλ þ

2iq
κ

GðjφjÞMðjφjÞðφ̄Dλφ − φDλφÞ
�
Fμν

þMðjφjÞDμφDμφ − VðjφjÞ; ð67Þ

FIG. 1. The solutions aðrÞ and gðrÞ of Eq. (62) (left) and the
function hðrÞ in Eq. (52) (right) for e ¼ κ ¼ q ¼ v ¼ n ¼ γ ¼ 1
and λ ¼ 0.01, 0.25, 0.5, 0.75, and 1. The thickness of the lines
decreases with λ, and the dashed line represents λ ¼ 1, which is
the pure Chern-Simons model.

FIG. 2. The intensity of the electric (left) and the magnetic
(right) fields in Eq. (11) for the solutions of Eq. (62) with e ¼
κ ¼ q ¼ v ¼ n ¼ γ ¼ 1 and λ ¼ 0.01, 0.25, 0.5, 0.75, and 1. The
thickness of the lines decreases with λ, and the dashed line
represents λ ¼ 1, which is the pure Chern-Simons model.

FIG. 3. The energy density in Eq. (64) for the solutions
of Eq. (62) with e ¼ κ ¼ q ¼ v ¼ n ¼ γ ¼ 1 and λ ¼ 0.01,
0.25, 0.5, 0.75, and 1. The thickness of the lines decreases with
λ, and the dashed line represents λ ¼ 1, which is the pure
Chern-Simons model.
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which is a generalization of the Chern-Simons model
investigated in Ref. [48].
The equation of motion for the gauge field (2b) with

Eq. (4) becomes

κϵλμν∂μðÃλ

ffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞ

p
Þ ¼ 2e2Ãνjφj2MðjφjÞffiffiffiffiffiffiffiffiffiffiffiffi

fðjφjÞp ; ð68Þ

where

fðjφjÞ ¼ 1 −
4qe
κ

jφj2GðjφjÞMðjφjÞ: ð69Þ

To calculate the solutions, one must solve Eqs. (68) and
(2a) under the condition (65). Even though Eq. (68) is of
first order, one can see that Eq. (2a) is of second order. In
order to get first-order equations that describe the system,
we develop the Bogomol’nyi procedure, similarly as was
done in the previous case in Sec. III A. The condition (65)
makes the energy density in Eq. (7) become

ρ ¼ MðjφjÞð2jD0φj2 −DλφDλφÞ þ VðjφjÞ: ð70Þ

By setting ν ¼ 0 in Eq. (68), one gets an expression for Ã0,
which we use in the above equation to obtain

ρ ¼ MðjφjÞ½ð∂0jφjÞ2 þ ð∂1jφjÞ2 þ ð∂2jφjÞ2

þ e2Ã2
1jφj2 þ e2Ã2

2jφj2� þ
κ2fðjφjÞ

4e2jφj2MðjφjÞ
× ðϵij∂iðÃj

ffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞ

p
ÞÞ2 þ VðjφjÞ: ð71Þ

It can be rewritten in the form

ρ ¼ MðjφjÞðð∂0jφjÞ2 þ j∂�jφj þ ieÃ�jφjj2Þ

þ κ2fðjφjÞ
4e2jφj2MðjφjÞ

 
ϵij∂iðÃj

ffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞ

p
Þ

� 2e
κ
jφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞMðjφjÞ

fðjφjÞ

s !
2

� 2ejφjMðjφjÞϵijÃj∂ijφj

∓ κ

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞfðjφjÞ
jφj2MðjφjÞ

s
ϵij∂iðÃj

ffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞ

p
Þ: ð72Þ

By using the constraint in Eq. (24) with fðjφjÞ given as in
Eq. (69), we have

E ¼
Z
Σ
d2x

 
MðjφjÞðð∂0jφjÞ2 þ j∂�jφj þ ieÃ�jφjj2Þ

þ κ2fðjφjÞ
4e2jφj2MðjφjÞ

 
ϵij∂iðÃj

ffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞ

p
Þ

� 2e
κ
jφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞMðjφjÞ

fðjφjÞ

s !
2

∓ κ

e
ϵij∂i

 
ÃjfðjφjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞ

jφj2MðjφjÞ

s !!
: ð73Þ

Similarly to the previous case investigated in Sec. III A, the
energy is bounded, that is,

E≥EB ¼
�����κe
Z
Σ
d2xϵij∂i

 
ÃjfðjφjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞ

jφj2MðjφjÞ

s !�����: ð74Þ

If the fields satisfy the first-order equations

∂0jφj ¼ 0; ð75aÞ

∂�jφj þ ieÃ�jφj ¼ 0; ð75bÞ

∂iðϵijÃj

ffiffiffiffiffiffiffiffiffiffiffiffi
fðjφjÞ

p
Þ � 2e

κ
jφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞMðjφjÞ

fðjφjÞ

s
¼ 0; ð75cÞ

then the energy is minimized to E ¼ EB. To comply with
Eq. (75a), we consider static configurations. In this case,
we get from Eq. (68) that

A0 ¼ � 1

ejφj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðjφjÞ
MðjφjÞ

s
: ð76Þ

Notice that the results in Eqs. (68)–(76) are obtained
without suggesting the form of the fields.
To show that the above first-order equations solve the

equations of motion, we notice that the equation of motion
for the gauge field is Eq. (68), with f now given as in
Eq. (69). The equation of motion for the scalar field (2a)
has the new form

DμðMðjφjÞDμφÞ þ iκfjφj
4ejφjFμDμφ

−
φ

2jφj ðMjφjDμφDμφ − V jφjÞ ¼ 0: ð77Þ

The terms involved in the above expression may be
rewritten with the fields in the form of Eq. (4) as
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DμðMðjφjÞDμφÞ ¼ φ

jφj ð∂μðM∂μjφj þ ieÃμjφjMÞ

þ ieÃμMð∂μjφj þ ieÃμjφjÞÞ: ð78Þ

We also have

FμDμφ ¼ −
2e2ÃμφjφjM

κf
ð∂μjφj þ ieÃμjφjÞ; ð79aÞ

DμφDμφ ¼ ∂μjφj∂μjφj þ e2ÃμÃ
μjφj2: ð79bÞ

The first-order equations (75), obtained with the
Bogomol’nyi procedure, arise with the use of Gauss’
law, which is Eq. (68) with ν ¼ 0. So, we must show that
Eqs. (75) are compatible with the equation of motion for
scalar field (77) and Ampère’s law in Eq. (68). First, we
deal with the scalar field. By considering Eqs. (75a) and
(75b), we can rewrite (78) as

DμðMðjφjÞDμφÞ ¼ −
φ

jφj
�
e2Ã2

0jφjM ∓ 2e3Ã0jφj3M
κf

− e2ÃiÃ
ijφj2

�
Mjφj −

Mfjφj
2f

��
: ð80Þ

Moreover, by making use of Eqs. (79), we have

iκfjφj
4ejφjFμDμφ ¼ e2ÃμÃ

μφjφjMfjφj
2f

; ð81aÞ

MjφjDμφDμφ ¼ MjφjðÃμÃ
μ þ ÃiÃ

iÞ: ð81bÞ

By substituting the three latter equations in Eq. (77), the
terms with Ãi vanish. So, we have

e2Ã2
0jφj
�
M −

jφjMfjφj
2f

þ 1

2
jφjMjφj

�

∓ 2e3Ã0jφj3M
κf

−
1

2
V jφj ¼ 0: ð82Þ

From Eq. (76), one can eliminate Ã0 in the above equation
to obtain Eq. (24), which is satisfied by the potential in the
form (25) with f now given as in Eq. (69).
The next step in the proof is to show that the first-order

equations (75) and (76) are compatible with the Ampère’s
law that arises from Eq. (68) for ν ≠ 0, which reads

ϵij∂jðÃ0

ffiffiffi
f

p
Þ − ϵij∂0ðÃj

ffiffiffi
f

p
Þ ¼ −

2e2Ãijφj2M
κ
ffiffiffi
f

p : ð83Þ

By using the first-order equations (75) and (76), one can
show the above equation simplifies to Eq. (24), which is
solved by the potential in the form (25), and this concludes
the proof.

We then go on and consider the fields with rotational
symmetry, as given in the form (8). This makes the charge
density (14) with the condition in Eq. (65) be

J0 ¼
κ

er

��
1 −

2qe
κ

g2GM

�
a

�0
: ð84Þ

So, it is not proportional to the magnetic field as the case in
the previous section, and we cannot ensure the charge is
related to the magnetic flux. Since the charge depends
on the boundary conditions, we will work it out in the
examples. Before doing this, however, we first develop
the first-order formalism with the fields given by Eq. (8). In
this case, Gauss’ and Ampère’s laws are given by Eq. (68),
that is,

κfa0

er
−
2qa
r

ðg2GMÞgg0 þ 2e2g2Mh ¼ 0; ð85aÞ

κfh0 − 2qehðg2GMÞgg0 þ
2eg2Ma

r
¼ 0; ð85bÞ

where f is henceforth given by the expression

fðgÞ ¼ 1 −
4qe
κ

g2GðgÞMðgÞ: ð86Þ

We emphasize that this definition is different from the
one of the previous case, in Eq. (37). Note that the
equations of motion (85) related to the gauge field are
of first order. Nevertheless, they are not enough to solve the
problem, since we must calculate three functions: aðrÞ,
gðrÞ, and hðrÞ. The third equation is given by (12), which
simplifies to

1

r
ðrMg0Þ0 þ g

f

�
M þ 1

2
gMjφj þ

2qe
κ

g3M2Gjφj

�

×

�
e2h2 −

a2

r2

�
−
1

2
ðV jφj þMjφjg02Þ ¼ 0: ð87Þ

Notice, however, that the above equation of motion is of
second order. Thus, we need to find additional conditions
to obtain first-order equations that solve the problem.
Similarly as in the case investigated in the previous section,
we develop the Bogomol’nyi procedure here. To do so, we
write the energy density in Eq. (15) for the constraint in
Eq. (65):

ρ ¼ MðgÞ
�
e2g2h2 þ g02 þ a2g2

r2

�
þ VðgÞ: ð88Þ

To eliminate h, we use Eq. (85a) in the above equation
to get
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ρ ¼ MðgÞ
�
g02 þ a2g2

r2

�

þ κ2fðgÞ
4e4r2g2MðgÞ ða

ffiffiffiffiffiffiffiffiffi
fðgÞ

p
Þ02 þ VðgÞ: ð89Þ

One can show that the above equation can be written as

ρ ¼ MðgÞ
�
g0 ∓ ag

r

�
2

þ κ2fðgÞ
4e2g2MðgÞ

 
1

er
ða

ffiffiffiffiffiffiffiffiffi
fðgÞ

p
Þ0 � 2eg

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðgÞVðgÞ

fðgÞ

s !2

∓ 1

r

 
κ

e2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðgÞfðgÞ
MðgÞ

s
ða

ffiffiffiffiffiffiffiffiffi
fðgÞ

p
Þ0 − 2gMðgÞg0a

!
:

ð90Þ

To make the latter term become a total derivative, we
impose the constraint in Eq. (41), whose solution is given
by the potential in Eq. (42). We emphasize, however, that
the function f is now given by Eq. (86). So, one may think
that the potential here must have the same form as the one
in the previous section, but this is not true because the
function f is different. In this case, we can write the energy
density as

ρ ¼ MðgÞ
�
g0 ∓ ag

r

�
2

þ κ2fðgÞ
4e2g2MðgÞ

×

 
1

er
ða

ffiffiffiffiffiffiffiffiffi
fðgÞ

p
Þ0 � 2eg

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðgÞVðgÞ

fðgÞ

s !2

� 1

r
W0;

ð91Þ

where W ¼ Wða; gÞ is an auxiliary function given by

Wða; gÞ ¼ −
κafðgÞ
e2g

ffiffiffiffiffiffiffiffiffiffiffi
VðgÞ
MðgÞ

s

¼ 2a
ffiffiffiffiffiffiffiffiffi
fðgÞ

p �Z
dg

gMðgÞffiffiffiffiffiffiffiffiffi
fðgÞp �

; ð92Þ

where we have used the expression in Eq. (42) for the
potential. By integrating the energy density in Eq. (91), one
gets that the energy is bounded exactly as in Eq. (45) with
W given as in the above equation. Notice that the function
Wða; gÞ is associated to a surface term that comes from the
integration and appears only for fields in the form (8),
differently from the general procedure in Eq. (74). The
energy is minimized to E ¼ EB if the following first-order
equations are satisfied:

g0 ¼ � ag
r
; ð93aÞ

−
a0

er
¼ � g

f

�
fga2

2er2
þ 2e

κ

ffiffiffiffiffiffiffiffi
MV

p �

¼ � g
f

�
fga2

2er2
−
4e3gM
κ2

ffiffiffi
f

p
�Z

dg
gMffiffiffi
f

p
��

: ð93bÞ

Notice that the above first-order equation (93a) is different
from (46a), since its right side presents only a linear term
in g. Surprisingly, Eq. (93a) is the very same which arises
in the first-order formalism for vortices in models with
minimal coupling [32], so the function gðrÞ near the origin
is always a power-law function, in the form

gðrÞ ∝ rjnj: ð94Þ

On the other hand, the first-order equation (93b) presents
two terms, with one of them depending on a2, oppositely
from Eq. (46b), in which the right side shows only g and r.
Depending on the sign of fg, the term in a2 may compete
with the other one. This is interesting, because, as we will
show next, it brings novel configurations to light; it does
not appear in the usual approach taken in Refs. [12–14] nor
in models with minimal coupling in the form investigated in
Ref. [32], in which a0=ðerÞ is equal to a function of g.
Furthermore, since the behavior of gðrÞ near the origin is
given by the above equation, one can show that, in this
regime, the function f must behave as fg=f ∝ gm=jnj−1,
with m > 2, to make the magnetic field B ¼ −a0=ðerÞ
finite. The function hðrÞ is obtained from Eq. (85a):

h ¼ � 1

eg

ffiffiffiffiffi
V
M

r

¼ ∓ 2e
κ
ffiffiffi
f

p
�Z

dg
gMffiffiffi
f

p
�
: ð95Þ

We emphasize that this first-order formalism is compatible
with Eqs. (68)–(76). In the above equations (93) and (95),
the upper (lower) sign describes configurations with posi-
tive (negative) vorticity. One can relate these possibilities
by making the changes aðrÞ → −aðrÞ and hðrÞ → −hðrÞ.
For simplicity, we deal with only positive vorticity.
Since we are now dealing with novel first-order equa-

tions, we investigate a simple model, with

GðgÞ ¼ κ

4qe
1 −M2ðgÞð1 − αg2Þ1−γ

g2MðgÞ ; ð96Þ

so the function that controls the magnetic permeability is
given by Eq. (65), which reads

PðgÞ ¼ κ2

8e2
ð1 −M2ðgÞð1 − αg2Þ1−γÞ2

g2MðgÞ : ð97Þ

Here, α is a parameter with the dimension of energy and
γ ≥ 1 is a dimensionless parameter. In this model, one
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obtains from Eq. (86) that fðgÞ ¼ M2ðgÞð1 − αg2Þ1−γ . This
makes the potential in Eq. (42) be written as

VðgÞ ¼ 4e4g2ð1 − αg2Þγ−1
κ2α2ð1þ γÞ2MðgÞ ðC − ð1 − αg2Þðγþ1Þ=2Þ2; ð98Þ

where C is an integration constant. Similarly to the case
investigated in the previous section, we first considerC ¼ 0

and α ¼ 1=v2. Notice that the specific model investigated
in Ref. [48] is recovered for MðgÞ ¼ ð1 − g2=v2Þ2 and
γ ¼ 3. We then consider a new model, with

MðgÞ ¼
�
1þ λ

g2

v2

�
σ=2
�
1 −

g2

v2

�ðγ−1Þ=2
; ð99Þ

where λ is a non-negative dimensionless parameter. The
above potential in Eq. (98) simplifies to

VðgÞ ¼ 4e4v4g2

κ2ð1þ γÞ2
�
1þ λ

g2

v2

�−σ=2�
1 −

g2

v2

�ð3γþ1Þ=2
:

ð100Þ

Its minima are located at g ¼ 0 and g ¼ v. We must solve
Eqs. (93) with the upper signs. Note, however, that the
first-order equation (93a) does not change with MðgÞ and
GðgÞ. On the other hand, the first-order equation (93b)
takes the form

−
a0

er
¼ σλa2g2

ev2r2

�
1þ λ

g2

v2

�−1

þ 4e3v2g2

κ2ðγ þ 1Þ
�
1þ λ

g2

v2

�−σ�
1 −

g2

v2

�
γ

: ð101Þ

By knowing the solutions, one can calculate hðrÞ from
Eq. (95), which leads us to

hðrÞ ¼ 2ev2

κð1þ γÞ
�
1þ λ

g2ðrÞ
v2

�−σ=2�
1 −

g2ðrÞ
v2

�ðγþ1Þ=2
:

ð102Þ

At the origin r ¼ 0, since gð0Þ ¼ 0, we have hð0Þ ¼
2ev2=ðκð1þ γÞÞ. To check if this function has critical
points outside the origin, we take the derivative of the
above expression with respect to r. Since g0 > 0, we take
hg ¼ 0, which leads us to

g̃ ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

λ

λσ þ γ þ 1

σ − ðγ þ 1Þ

s
: ð103Þ

If 0 < g̃ < v, the solution hðrÞ presents a critical point. By
using this argument, one can show that this function
supports a global maximum for σ < 0 and λ > λc, with

λc ¼
γ þ 1

jσj ; ð104Þ

which leads to an internal structure in the electric field. The
auxiliary function Wða; gÞ is calculated from Eq. (92); it
has the form

Wða; gÞ ¼ −
2v2a
ð1þ γÞ

�
1þ λ

g2

v2

�
σ=2
�
1 −

g2

v2

�ðγþ1Þ=2
:

ð105Þ

The energy density is calculated from Eq. (89). We make
use of the first-order equations (93a) and (101) to get the
expression

ρ ¼ 2g2
�
1 −

g2

v2

�ðγ−1Þ=2�
1þ λ

g2

v2

�−σ=2

×

�
a2

r2

�
1þ λ

g2

v2

�
σ

þ e4v4

κ2ð1þ γÞ2
�
1 −

g2

v2

�
γþ1
�
:

ð106Þ

To find the above energy density, one must solve the first-
order equations (93a) and (101) and then substitute the
solutions in the above expression. In order to calculate the
solutions, though, one must be careful with the boundary
conditions, which are associated to the topological char-
acter of the vortex. From the above equation, we see that
the energy is finite for topological solutions, in which
að∞Þ → 0 and gð∞Þ → v, and also for nontopological
solutions, with að∞Þ → a∞ and gð∞Þ → 0.
For simplicity, we calculate only topological solutions

here. By using Eqs. (105) and (45), one can use the
aforementioned boundary conditions to show their energy
is E ¼ 4πjnjv2=ð1þ γÞ. Moreover, by integrating the
magnetic field in Eq. (11), one can see that the flux
associated to topological solutions is Φ ¼ 2πn=e. The
charge density in Eq. (84) becomes

J0 ¼
κ

2er

�
aþ a

�
1þ λ

g2

v2

�
σ
�0
: ð107Þ

By integrating it, one can show that Q ¼ −2πnκ=e.
Notice that both Q and E are quantized and also, even
though we have J0 ≠ −κB, the charge is proportional to the
flux: Q ¼ −κΦ.
Unfortunately, we were not able to calculate the ana-

lytical solutions of Eqs. (93a) and (101). So, we use
numerical procedures and display the profiles of aðrÞ,
gðrÞ, and hðrÞ for e ¼ κ ¼ q ¼ v ¼ n ¼ γ ¼ 1 and some
values of σ and λ in Fig. 4. We see that, for σ < 0, aðrÞ is
not monotonically decreasing: It increases near the origin
until a maximum at amax > n and then decrease toward
zero. This behavior appeared before in Ref. [48], in a
minimally coupled model with a specific modification in
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the Chern-Simons term. A similar behavior occurs in the
function hðrÞ. The solution gðrÞ, although it presents
changes in the sign of its second derivative, always
increases in the interval ½0; v�. We plot the electric and
magnetic fields in Fig. 5. The electric field may change its
sign for λ > λc, where λc is as in Eq. (104). For the
magnetic field, the flip on its sign, which is evidence of a
magnetic flux inversion, occurs for any positive value of λ.
This feature, although it appears in the scenario of Lorentz
violation in minimally coupled models (see Ref. [31]), is
novel in models with nonminimal coupling. It is also of
interest in condensed matter and has appeared before in the

study of fractional vortices in two-component supercon-
ductors [30].
We can show that, by numerical integration for positive

vorticity, the total flux is positive and quantized: Φ ¼
2πn=e. The energy density and the charge density can be
seen in Fig. 6. Notice that the energy density presents a hole
around the origin that gets deeper as λ increases. The charge
density has a peak that gets taller as λ increases. The case
σ > 0 leads to topological solutions with the usual mon-
otonic behavior. However, as λ increases, the hole in the
center of both the magnetic field and energy density
vanishes, becoming a maximum. Moreover, the parameter
λ modifies the behavior of the charge density, which may
present a change in its sign.
We now consider a distinct possibility for Eq. (98), in

which α ≤ 0. So, we choose α ¼ −β2, where β is a para-
meter with the dimension of the square root of energy.
We consider MðjφjÞ ¼ 1, as in the models studied in
Refs. [13,14]. In this situation, however, we cannot take
C ¼ 0 as before, because we would not have the proper
set of minima that are connected by the solution gðrÞ
with topological nature. In this situation, to ensure the
potential presents a set of minima at g ¼ v, we take C ¼
ð1þ β2v2Þðγþ1Þ=2. The potential in Eq. (98) takes the form

VðgÞ¼ 4e4g2ð1þβ2g2Þγ−1
κ2β4ð1þ γÞ2

× ðð1þβ2v2Þðγþ1Þ=2− ð1þβ2g2Þðγþ1Þ=2Þ2: ð108Þ

For γ ¼ 1, we get the well-known sixth-order power-
law potential VðgÞ ¼ e4g2ðv2 − g2Þ2=κ2 that is found in
the study of pure Chern-Simons models with minimal
coupling [3–5].

FIG. 5. The intensity of the electric (left) and the magnetic
(right) fields in Eq. (11) for the solutions of Eqs. (93a) and (101)
with e ¼ κ ¼ q ¼ v ¼ n ¼ γ ¼ 1, σ ¼ −1 (top) and 1 (bottom),
and λ ¼ 1, 2, 3, 4. The dashed lines represent the case λ ¼ 0, and
the thickness of the lines increases with λ.

FIG. 4. The solutions aðrÞ and gðrÞ of Eqs. (93a) and (101)
(left) and the function hðrÞ in Eq. (102) (right) for
e ¼ κ ¼ q ¼ v ¼ n ¼ γ ¼ 1, σ ¼ −1 (top) and 1 (bottom),
and λ ¼ 1, 2, 3, 4. The dashed lines represent the case λ ¼ 0,
and the thickness of the lines increases with λ.

FIG. 6. The energy density in Eq. (106) (left) and the charge
density in Eq. (107) (right) for the solutions of Eqs. (93a) and
(101) with e ¼ κ ¼ q ¼ v ¼ n ¼ γ ¼ 1, σ ¼ −1 (top) and 1
(bottom), and λ ¼ 1, 2, 3, 4. The dashed lines represent the case
λ ¼ 0, and the thickness of the lines increases with λ.
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In the first-order equations (93), only Eq. (93b) changes
with the above potential, becoming

−
a0

er
¼ g2

1þβ2g2

�
−
β2ðγ−1Þa2

er2
þ4e3ð1þβ2g2Þð3γ−1Þ=2

β2κ2ðγþ1Þ

× ðð1þβ2v2Þðγþ1Þ=2− ð1þβ2g2Þðγþ1Þ=2Þ
�
: ð109Þ

By knowing the solutions aðrÞ and gðrÞ, one may calculate
the function hðrÞ that comes from Eq. (95), such that

hðrÞ ¼ 2eð1þ β2g2Þðγ−1Þ=2
κβ2ð1þ γÞ

× ðð1þ β2v2Þðγþ1Þ=2 − ð1þ β2g2Þðγþ1Þ=2Þ: ð110Þ

So, we have hð0Þ ¼ 2eð1þ β2v2Þðγþ1Þ=2=ðκβ2ð1þ γÞÞ.
As in the previous example, we check if the function
hðrÞ supports a global maximum at some point. By taking
hg ¼ 0, we get

g̃ ¼ 1

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ β2v2Þ

�
γ − 1

2γ

�
2=ðγþ1Þ

− 1

s
: ð111Þ

So, for values of β and γ that lead to 0 < g̃ < v, the function
hðrÞ present a null derivative, defining a point of maximum.
This condition is attained for β > βc, with

βc ¼
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2γ

γ − 1

�
2=ðγþ1Þ

− 1

s
: ð112Þ

For β in the aforementioned range, the electric field
engenders a change of sign due to the existence of a
maximum in h.
The auxiliary functionWða; gÞ in Eq. (92) takes the form

Wða; gÞ ¼ −
2að1þ β2g2Þð1−γÞ=2

β2ð1þ γÞ
× ðð1þ β2v2Þðγþ1Þ=2 − ð1þ β2g2Þðγþ1Þ=2Þ:

ð113Þ

One can combine Eqs. (89), (93a), and (109) to show that
the energy density can be written as

ρ ¼ 2g2
�
a2

r2
þ 4e2ð1þ β2g2Þγ−1

κ2β4ð1þ γÞ2

× ðð1þ β2v2Þðγþ1Þ=2 − ð1þ β2g2Þðγþ1Þ=2Þ2
�
: ð114Þ

We can see that the above energy density leads to finite
energy for both topological and nontopological solutions.
As before, we deal with only topological configurations,

which require að∞Þ → 0 and gð∞Þ → v to attain the finite
character of the energy. These boundary conditions may be
used with Eqs. (113) and (45) to show that the topological
solutions have energy E ¼ 4πjnjðð1þ β2v2Þðγþ1Þ=2 − 1Þ=
ðβ2ðγ þ 1ÞÞ. Differently from the previous example, one
can integrate the magnetic field in Eq. (11) to show that the
magnetic flux is quantized regardless of the values of the
parameter γ, such that Φ ¼ 2πn=e. The charge density in
Eq. (84) takes the form

J0 ¼
κ

2er
ðaþ að1þ β2g2Þ1−γÞ0: ð115Þ

By integrating the above expression, one can show the
topological solutions engender charge Q ¼ −2πκn=e.
We were not able to find the analytical solutions of the

first-order equations (93a) and (109). So, we use numerical
methods and plot the profiles of aðrÞ, gðrÞ, and hðrÞ in
Fig. 7 for e ¼ κ ¼ q ¼ v ¼ n ¼ 1, γ ¼ 3, and some values
of β. Notice that, similarly to the previous model, we see
that aðrÞ is not monotonically decreasing as usual. Near the
origin, it increases as r gets larger, until it reaches a
maximum value and then starts decreasing toward the
boundary condition. This behavior becomes more evident
as one increases β. As we have commented before, the
behavior of gðrÞ for configurations with n ¼ 1 near the
origin is gðrÞ ∝ r [see Eq. (94)]. However, we see that, as β
increases, the change in the second derivative along its path
becomes more visible, presenting an inflection point.

FIG. 7. The solutions aðrÞ and gðrÞ of Eqs. (93a) and (109)
(left) and the function hðrÞ in Eq. (110) (right) for e ¼ κ ¼
q ¼ v ¼ n ¼ 1, γ ¼ 3, and β2 ¼ 0.5, 1, 1.5, and 2. The thickness
of the lines increases with β.

FIG. 8. The intensity of the electric (left) and the magnetic
(right) fields in Eq. (11) for the solutions of Eqs. (93a) and (109)
with e ¼ κ ¼ q ¼ v ¼ n ¼ 1, γ ¼ 3, and β2 ¼ 0.5, 1, 1.5, and 2.
The thickness of the lines increases with β.
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Regarding the function hðrÞ, as we have explained above, it
has a minimum at r ≠ 0 for β > βc, with βc as in Eq. (112).
By making use of the aforementioned solutions, we also

plot the corresponding electric and magnetic fields (11) in
Fig. 8. Notice that the magnetic field is negative around
the origin, with a valley getting deeper as β increases.
This means that the vortex engenders a magnetic flux
inversion. Notwithstanding that, the total flux is positive
and quantized, given by Φ ¼ 2πn=e. In the electric field,
the inversion of sign occurs only for β > βc, with βc as in
Eq. (112). The energy density (114) and the charge density
(115) are plotted in Fig. 9. Notice that the charge density
may also engender a change of sign, depending on the β
chosen, while the energy density is always non-negative.

IV. CONCLUSION

In this paper, we have investigated vortex configurations
in a class of generalized Maxwell-Chern-Simons models
with a complex scalar field nonminimally coupled to
the gauge field. The general model is described by the
Lagrange density (1), which, in addition to the potential
VðjφjÞ, presents the functions PðjφjÞ that control a gener-
alized magnetic permeability MðjφjÞ, which was not
introduced in previous works and drives the dynamical
term of the scalar field, and GðjφjÞ, that controls the term
that gives rise to the nonminimal coupling. The main
properties are calculated, such as the equations of motion,
the current, and the energy-momentum tensor. By con-
sidering static configurations with the fields given as in
Eq. (8), we show that the equations of motion are of second
order. In order to simplify the problem, we focused on
developing a first-order formalism to describe the configu-
rations of interest.
First, we have followed the suggestion described in

Refs. [12–14], considering the condition Jμ ¼ κFμ, which
imposes a constraint between PðjφjÞ and GðjφjÞ. In this
situation, we showed that the electric charge is related to
the magnetic flux. Then, we developed the Bogomol’nyi
procedure for the model, which allowed us to find

first-order equations whose solutions minimize the energy
of the system and are compatible with the equations of
motion. By taking specific functions GðjφjÞ and MðjφjÞ,
we introduced a novel model that modifies the behavior of
the gðrÞ near the origin, which engenders a plateau whose
width is controlled by a parameter in the function MðjφjÞ.
Moreover, oppositely to the model in Refs. [13,14], the
magnetic permeability is non-negative. This model support
magnetic and electric fields and the energy density with a
ringlike shape whose internal radius is governed by the
aforementioned parameter.
We have also introduced a novel manner to obtain a first-

order formalism, in which PðjφjÞ is constrained by GðjφjÞ
and MðjφjÞ. In this case, the Bogomol’nyi procedure is
also developed. So, we get minimal energy configurations
that come from first-order equations compatible with the
equations of motion. Interestingly, the first-order equa-
tion (93a) is the very same as the one that arises in the study
of vortices in models with minimal coupling, such as the
ones in Refs. [1–5,32]. So, near the origin, there is only one
possible behavior for g, in the form gðr ≈ 0Þ ∝ rjnj. On the
other hand, the first-order equation (93b) brings a novel
feature to the problem: the presence of a term with aðrÞ.
This new term competes with the one that depends on the
potential and may cause significant changes in the profile of
aðrÞ. We then provided specific examples in which aðrÞ is
not monotonically decreasing and both the magnetic and
electric fields may present a change of sign. Even though a
magnetic flux inversion occurs, the total flux is positive.
Moreover, these unusual features do not modify the
positiveness of the energy density, such that the energy
is positive.
There are several distinct possibilities of extending the

present work, among them the case of vortices controlled
by non-Abelian gauge symmetries [49], the presence of
magnetic monopoles with Abelian charges [50], the case
of nonrelativistic dynamics [21,27,51,52], and the study of
vortices in Bose-Einstein condensates [53,54]. Some issues
of current interest are now under consideration, and we
hope to report on them in the near future.
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