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Vortices in Maxwell-Chern-Simons-Higgs models with nonminimal coupling
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We investigate the presence of vortex configurations in generalized Maxwell-Chern-Simons models with
nonminimal coupling, in which we introduce a function that modifies the dynamical term of the scalar field
in the Lagrangian. We first follow a route already considered in previous works to develop the Bogomol nyi
procedure, and, in this context, we use the first-order equations to obtain a vortex with a novel behavior at
its core. We then go further and introduce a novel procedure to develop the Bogomol’nyi methodology. It
supports distinct first-order equations, and we then investigate another model, in which the vortex may
engender inversion of the magnetic flux, an effect with no precedents in the study of vortices within the

nonminimal context.
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I. INTRODUCTION

Vortices are defect structures that appear in high-
energy physics in (2,1) flat spacetime dimensions. The
first relativistic model that supports such configurations
was suggested by Nielsen and Olesen in Ref. [1] in 1973,
with the action of a complex scalar field minimally
coupled to a gauge field under a U(1) symmetry, with
the standard covariant derivative. An interesting feature of
these structures is the absence of electric charge and the
quantized character of the magnetic flux. The equations of
motion that describe vortex configurations are of second
order, and, by minimizing the energy of the system,
Bogomol’nyi found first-order equations compatible with
them in Ref. [2].

The model proposed in Ref. [1] has the dynamics of the
gauge field controlled by a Maxwell term. Nevertheless,
one can exchange it for the Chern-Simons term, as
suggested in Refs. [3-5]. The vortex configurations with
topological nature in this model are electrically charged,
such that the electric charge and the magnetic flux are both
quantized. Vortices in models with both Maxwell and
Chern-Simons terms were considered in Ref. [6]. In this
case, considering the scenario in which the fields are
minimally coupled, in order to develop the Bogomol’'nyi
procedure, one must add a neutral field [7,8]. Even so, one
cannot obtain a set of first-order equations that completely
describes the problem.
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Since we are working with planar systems, we can add an
anomalous magnetic moment contribution to the covariant
derivative, making the coupling between the gauge and
scalar fields nonminimal. The point is that the dual of F** is
a vector in (2,1) spacetime dimensions, that is, F, =
(1/2)€,,,F**, where F,, = 8,A, — 0,A,, with A, standing
for the gauge field; thus, we can change the covariant
derivate from its minimal coupling form D, = 0, + ieA,
to the nonminimal coupling described by D, =0, +
ieA, — iqF, [9-11]. This possibility was considered before
in Refs. [12-14] as a way to circumvent the presence of the
additional neutral field that appeared in Refs. [7,8]: In
Ref. [12], the author considered a nonminimal coupling,
with the inclusion of an anomalous magnetic contribution.
By doing so, he was able to obtain a set of first-order
equations that completely solve the equations of motion.
However, the solutions engendered the nontopological
character. For this reason, in Refs. [13,14], another line
of investigation was considered, with the addition of a
generalized magnetic permeability and a function to control
the anomalous magnetic contribution, both depending only
on the scalar field. When these functions are constrained in
a specific manner, it is possible to develop the Bogomol’'nyi
procedure and obtain first-order equations. In this model,
the form of the aforementioned functions may lead to
nontopological and/or topological configurations whose
charge is proportional to the magnetic flux. The physical
properties of planar systems have a long history, and
interesting lines of investigations concerning fractional
statistics and anyons appeared before, for instance, in
Refs. [15,16] and in references therein.

The presence of nonminimal coupling may be used to get
the Chern-Simons term by spontaneous symmetry breaking
in a Maxwell-Higgs model [17]. Over the years, in the
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context of models with nonminimal coupling between the
scalar and the gauge field, several works appeared in the
literature; see Refs. [18-29]. In particular, in Ref. [20],
vortex configurations were investigated in a model with
non-Abelian fields. Their associated magnetic flux is not
quantized due to their nontopological nature. However,
both the electric charge and angular momentum are
quantized. In Refs. [21,25,27], nonrelativistic models were
studied, and in Refs. [24,28,29], the authors investigated
vortices in O(3)-sigma models, which may support both
topological and nontopological profiles.

In this paper, we investigate a generalized model,
with the dynamical term of the scalar field containing a
function of the scalar field in the nonminimal coupling.
This is explained in the next section, where we calculate
some properties of the model, such as the equations of
motion, the current, and the energy-momentum tensor.
We then focus on developing a first-order formalism to
describe the vortex configurations of interest in Sec. III. In
Sec. IIT A, we follow a path similar to the one suggested in
Refs. [13,14] and develop the Bogomol’nyi procedure for
this case by minimizing the energy of the system. We
provide an example to illustrate how the aforementioned
function that drives the dynamical term of the scalar field
plays a role in the profile of the solutions. In Sec. III B, we
introduce a novel procedure to get a first-order formalism
for the model. We provide two examples that present novel
physical features in the considered scenario, such as the
absence of the monotonic behavior of the solutions and
magnetic flux inversion, an effect that appeared before in
other contexts, in particular, in the case of fractional
vortices in two-component superconductors [30], and also
in models with breaking of the Lorentz invariance [31]. We
conclude the investigation in Sec. IV, where we comment
on the main results obtained in the work and on several
possibilities of investigations related to the presence of
the generalized nonminimal coupling considered in the
present study.

II. THE MODEL

We consider a gauge field and a complex scalar field
in (2,1) flat spacetime dimensions, with metric 7,, =
diag(+,-,—) and action S= [dxL, where the
Lagrange density is

1
L= = PUR) P + 5 A,

+ M(l¢)DupD"¢ — V(lgl). (1)

As one knows, vortices in models that support the U(1)
symmetry usually arise with the presence of the minimal
coupling with the gauge field in the derivative D, =
0, +ieA,; see Refs. [1,3-5,32]. Here, we deal with
generalized models with nonminimal coupling, in which

the dual electromagnetic field appears in the derivative,
in the new form D, = 0, + ieA, — iqG(|¢|)F,, with the
function G(|¢|), in principle, arbitrary.

The generalized model to be considered here is described
by the potential V(|¢|), which includes nonlinear self-
interaction contributions of the complex scalar field ¢,
and the three functions P(|p|), M(|¢|), and G(|¢|). P(|¢|)
introduces modifications in the electromagnetic properties
of the gauge field; in general, it modifies the permittivity
and/or permeability of the medium and has been used in
several works to generalize the standard Maxwell dynam-
ics; see, e.g., Ref. [33] and references therein, where P(|¢|)
is considered a dielectric function, that can be included to
describe color confinement in quantum chromodynamics.
In a similar context, in the recent work in Ref. [34], it has
been used to trade scale invariance with an electric charge
that capture the basic feature of asymptotic freedom. It has
also been added in Refs. [35-38], and references therein,
connected to the existence of vortex configurations in
high-energy physics. In particular, in Ref. [39], a gener-
alized Maxwell-Higgs model with P(|¢|) was considered
to produce vortex solutions with the compact profile. The
other function M(|¢|) modifies the elastic properties of the
medium where the scalar field evolves and may sometimes
be seem as a conformal factor for a nontrivial metric on the
target space of the Higgs field. It was used before in
Ref. [40] and more recently in Ref. [41] in the context of
massive gauged nonlinear sigma models. In fact, in this last
work [41], the authors investigate two models, one with a
modification at the derivative of the scalar field and another
one in which a modification of the Maxwell term is
also added. Inclusion of functions of the scalar field
multiplying the Maxwell term and the covariant derivative
also appeared in other contexts, for instance, in applications
of the anti—de Sitter/conformal field theory correspondence
to condensed matter [42], in particular, in models related
to holography; in Ref. [43], the author considered an
holographic superconductor that engendered analytic treat-
ment near the phase transition, in Ref. [44], the inves-
tigation dealt with a specific holographic insulator model
with nonsingular zero temperature infrared geometry, in
Ref. [45], the electric charge transport was studied in a
strongly coupled quark-gluon plasma, and in Ref. [46], the
authors used the FEinstein-Maxwell-dilaton holographic
model to describe far-from-equilibrium evaluation of hot
and dense relativistic fluid with a critical point. The third
function G(|¢|) modifies the covariant derivative, making
the coupling of the scalar field with the gauge field not
minimal anymore. It refers to an anomalous magnetic
interaction which is available in the three-dimensional
spacetime [9-11,15,16] and was also considered, for
instance, in Refs. [12-14,19] to investigate vortices in
generalized models. Despite the general form of the above
Lagrange density, the model still supports the local U(1)
symmetry.
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We work with natural units (7 = ¢ = 1) and the dimen-
sion of the quantities involved are [x*] = &', [p] = [A4,] =
le] =&, k] =& [q]=¢"2 and [V(jg|)] =&
where £ is the dimension of energy. The three functions
G(l¢l), P(|@|), and M(|g|) are dimensionless.

The equations of motion of the fields ¢ and A, associated
to the Lagrange density (1) are

1
D,(M(|o)D ) + 2g |< P\, F,F" = M\, D,gD'p

q
- EGMF”J” + Vlﬂ) =0, (2a)

v q 14 y Z—
0, (PoDFs - 2600, ) -+ 5P =0, (20
where the current is defined as

‘]M = leM(|(p|)(¢D”(p - (pr(p> (3)
and we use the notation G|, = 9G/3|¢|, V|, = IV /9]¢,

and so on. For convenience, we write the fields as

. ~ 1
@ =|ple™ and A, =A, - za,,A, (4)

with A = A(x*). By doing so, the current in Eq. (3) takes
the form

Ju = =2elp’M(lg|)(eA, = qG(l@)F,).  (5)

The energy-momentum tensor has the form

1
Tm/ = (P - 2q2|(p|2G2M) <FMFU - E’?}wFﬂF}L)
M(2Re(D,@D,p) = 1,,D9D*p) +1,,V. (6)

where Re(z) denotes the real part of z. In particular, the
energy density, defined as p = T, has the form

1
p= (P =2¢0PGM) (15 - 3PP

+ MQ2|Dyp|* = D,pD*p) + V. (7)

To investigate the presence of vortex configurations in
the model described by the Lagrange density (1), we take
static fields and

@ = g(r)e™, Ag=h(r), and A=

 (n—a(r).
(8)

where (r,0) are the polar coordinates and n = =+1,
42,43, ... is the vorticity. Here, a(r) is dimensionless

and [g(r)] = [h(r)] = &'/2. To obtain vortex configura-
tions with finite, single-valued fields at the origin, we
impose the boundary conditions
9(0) =0, and h(0)=hy, (9)
where £ is, in principle, a real finite parameter whose value

depends on the specific model. For the functions involved
in the transformation (4), we must have

A

and A = —ga(r). (10)

lp| = g(r) p

One may be also interested in the electric field
E = (E,, E,) and magnetic field B. For fields in the form

(8), one can show that E/ = F© and B = —F'? are given,
respectively, by
a/
E—-W? and B=-L. (11)
er

By integrating the above magnetic field, one gets the
magnetic flux, which depends on the boundary conditions
associated to the specific model defined by G(|¢|), M(|¢p|).
P(|g[), and V(|g]).

The equation of motion (2a) with the fields given by (8)
takes the form

1 Md) 1P 2 ZGMG h/2 a/2
S MY 4\ Py =g GMGlyy | (B =55

1 Ga'"\? 2
+g<M+—gM|,,,><<eh—q ) - (g—th’> )
2 er r

alh’ ha 1
+ 99" MG, (— - T) =5 (Mg + Vi) = 0.

Similarly, from Eq. (2b), one gets two equations of motion.
They are the version of Gauss’ and Ampere’s laws for the
present model. They are, respectively, given by

1
— (P =2¢*¢*G’M)rl’ +2q5*GMa)’
,

2
- ( a¢ gZGM> M _2e@Mh =0, (13a)

((P 2¢°*G*M) — +2qengMh>
2
<1—"‘392GM) Kh' —

The charge density J, comes from the definition of the
current J,, in Eq. (3); it is written as

2eq*?Ma
r

=0.  (13b)
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G /
Jo = —2egZM<eh ki )
er

:l<<l—%ngM>E—
r K e

where we have used Eq. (13a) to get the expression in the
latter line. The integration of the above charge density gives
the charge of the vortex configuration. It depends on the
boundary values of the solutions, which are controlled by
G(l¢l), M(|g]), P(|¢|), and V(|g|) that define the model.

The energy density with the fields in the form (8) comes
from Eq. (7); it is given by

!/
(P- 2q2g2G2M)rh’> ,

(14)

p= %(P(g) - 2¢°5°G*(9)M(9)) (h’2 + ;;)
+M(g) (2— +elgh + g’2> +V(g). (15)

The equations of motion (12) and (13) that govern the
fields are differential equations of second order with
couplings between the functions. So, to simplify the
problem, it is of interest to find first-order equations
compatible with the aforementioned equations.

III. FIRST-ORDER FORMALISM

In this section, we focus on the first-order formalism,
that is, on the presence of first-order differential equations
that solve the equations of motion of the model. In
Refs. [12—14], the authors found first-order equations for
models with M(|¢|) = 1 and specific conditions for P(|¢|)
and G(|g|). Here, in Sec. IIT A, we extend the method to our
generalized model described by the Lagrange density in
Eq. (1). Later, in Sec. III B, we introduce a novel possibil-
ity, which arises under distinct conditions and leads to new
first-order equations that induce the presence of new vortex
configurations.

A. First case

The first possibility to find differential equations of the
first-order type, compatible with the equations of motion
(12) and (13), is to consider a generalization of the trick
first implemented in Ref. [12] and then generalized in
Refs. [13,14], considering the inclusion of a function that
drives the generalized magnetic permeability, with the
Lagrange density in the form (1) under the conditions
M(|p|) = 1, P(|g|) = G(|¢|), and ¢ = e/«. In this section,
we make an extension of his suggestion and take a general

M(|pl) and

P(lol) = £ G(lgl). (16)

S0 ¢ is not constrained to ¢ and . In this case, the Lagrange
density in Eq. (1) becomes

£ = =L Glg) FuF" + 5 ALF,,

+M(l¢|)D D9 = V(lg)). (17)

and the equation of motion (2b) take the form

ma( Gllo) (kF; = Jz)>+KF”—J”=0- (18)

This equation is compatible with J# = kF*. We remark
here that, in this case, the charge density is related to the
magnetic field by J° = kF? = —kB. Thus, the charge can
be written in terms of the magnetic flux, as

0 = —«®. (19)
By using Eq. (4), we have

26%A,|p|*M(|g])

D 7

with

fllel) =1 ——|40|2 (lp)M(lg))- (1)

Notice that Eq. (20) must be considered with Eq. (2a) under
the condition (16), which is of second order. To simplify the
problem, we develop the Bogomol’nyi procedure for this
case. The expression in Eq. (20) allows us to show that the
energy density in Eq. (7) becomes

= M(|ol) [(C%Icol)2 +(1lel)* + (O2lel)?

e2A§|¢|2] Fif (lel)
fo) 1 4elpPM(jo])

2 A|g|?

fllel)

V(o).
(22)

We then introduce the notation 9, = 0, & i0, and A, =
A| £ iA, and write the above expression as

—M(|¢)((ao|€0|) + [Pl + 2 )

p B 2e, VDM GeDY
17 pPM (o)) 7o)
2elgM(lg)e"Adlel _x [VpDsUoD) i, 5

FoD oPM(l) © 7
(23)
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To write the latter three contributions as a single derivative
in the above expression, we impose the constraint

a( [VobsloD _ _2¢tolol) .
dlpl \ \/ loM(lgl) ky/ f(lel)

It is satisfied by the potential

4ol M (o) oMo
) (/o Ww)) - @

Notice that we have an indefinite integral in the above
expression, so an integration constant will appear in the
process. The energy is then given by integrating the energy
density in the plane, which we denote by X:

:/Zd2x<M(|(p|)<(ao|€0|)2+

£l 2
2P M (o) ( <

+ Eé'ijai (A]
e

Since the squared terms in the integral are non-negative, the
energy is bounded:

K/dzxeijal- (AJ
€Jx

where the potential must obey Eq. (25). If the solutions
satisfy the first-order equations

V(lgl) =

. A 2
) n IEAi|(P| )
ARy

V(M) \’
flel)

w)) (26)

M (lgl)

E > EB - ’ (27)

V(I¢|)f(|¢|)>

@M (lgl)

Dolo] = 0. (284)

ie;\i|¢| 0 28b
o ey = (280)
R iy IS 0. s

then the energy is minimized to E = Ep. The first-order
equation (28a), in particular, is satisfied by static configu-
rations. In this case, A, = A, and Eq. (20) leads to

Vel.f (o))
M(lol)

with the potential obeying Eq. (25). We remark that this
first-order formalism was developed without requiring ¢
and A, to obey specific expressions.

AO_

=t (29)

To show that the first-order equations solve the equations
of motion in this case, we first notice that the equation of
motion for the gauge field (18) is satisfied; thus, we have to
deal with only Eq. (2a), which becomes

Du(M(\fﬂl)DWp)

(ManWD 0+ 35 GlolFuP” Vw) =0

2Jg] 2e
(30)

We can use the condition J# = xF* with Eq. (4) to show
that

) KMIw\ gk
= F0< 2| |2M2 +ZG\¢\ +M‘¢‘(8ﬂ|(p|8"|gy|)

2|<p|2

+ AA (M(/, +— |¢|2M2G|,,,|> (31)

and

ieAH|p|M
D,(MDip) = % <aﬂ <M8”|(p| + %)
ie

A (o0 + =) )

To verify that the first-order equations are compatible with
the aforementioned equation of motion, we use (28a) and
(28b) with the terms written in the form (31) and (32) to
obtain

M‘(p‘D (pD g0+2 G‘(p‘F F*H

M 22 2
:F2<& £i¥e >+ 200 3 &

4e2|(p|2M2+2e lo] f2
<M(p —f|(ﬂ| GMM‘(/]‘ + |(,0|2M2G|¢) (33)
and
212
Q@ F elp\M
Dﬂ(MD”(p) = —( TONE 4 F,
lpl \4e*lp’M ~— Vf

i (8- ()
(34)

By substituting these terms in the equation of motion (30),
the terms with A; vanish, so we have

K2 KZM‘ | qK
F? ? =G
0<4ez|(p3M + 8€2|(p|2M2 + de t/)>

elo|M 1
Fo—-V,, =0. 35
7 Fo 5 Vil (35)

+
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The first-order equation (28c) can be combined with the
above expression to lead us to the very same Eq. (24),
which is solved by the potential in the form (25), and this
completes the proof.

We now turn our attention to the case of fields that
engender rotational symmetry, as displayed in Eq. (8). In
this case, Eq. (20) that arises from J# = xF* leads to the
equations

ka'  2e*¢*M(g)h

PR U (36a)
, 2eg*M(g)a
I (36b)
where
7o) =1-22 26 g)my) (37)

is a non-negative function. The equation of motion for the
scalar field (12) becomes

1 1 e
(rMg') +3 <M+—qu, +q—g3M2G¢>
K

r 12 2
0y @ 1 ”
X | e“h —2) 73 (M|(/,|g + Vw) =0. (38)

By using Egs. (36) to eliminate 4 and /’, one can show
that the energy density in Eq. (15) simplifies to

_ , , @°F *f(g)a”
p=Mlg) (““/ +er(9)> 4etr’g?M(g)

+V(g). (39)

So, one must solve Eqs. (36) and (38) to calculate the
solutions and then substitute them in the above expression
to find the corresponding energy density. Nevertheless, we
have only two first-order equations, Eqs. (36). Thus, since
we have three functions to calculate: a(r), g(r), and h(r),
we need an additional first-order equation to fulfill our
purpose. To solve this issue, we develop the Bogomol’nyi
procedure for our model in Eq. (17) under the condition
JI = kF*. The above energy density can be written in the
form

p=mio)(o = T’@)

*flg) (d  2eg
4e*g*M(g) \er  k f(9)

1k [Vigflg) , _29Mlg)
:F"<€29 M) i ) 40

M<g>v<g>>2

To make the latter term become a total derivative, we
impose the constraint

i V_f __Zeng
() e

By solving it, one shows that

v =1 ([a2h). @

where f is as in Eq. (37). These results are compatible with
Egs. (24) and (25). If the potential has the above form, one
can write the energy density as

_ ) ag \*, ©flg)
p=M(g) (g - —(g)> + 12M()

(@ 200 M@V 1,
<erj: ; 9 ) E-W.(43)

where W = W(a, g) is an auxiliary function given by

xa [V(g)f(g)

@9 ==\ M)
_ 2y gM(g)
=2 /dg f(g)' (44)

We have used Eq. (42) to get the above Eq. (44). Since the
integral of the energy density in Eq. (43) gives the energy,
one can see the energy is bounded:

E> Ep = 2a|W(a(o0), g(e0)) — W(a(0), g(0))|.  (45)
Notice that, differently from what occurs in the general
procedure Eq. (27), we can show there is a surface term that
gives the energy, given by W(a, g).

The configurations with minimum energy appear when
we take the squared terms equal to zero. In this case, we get
the first-order equations

991
a  2eg MV
er ok \ f
__A4egM gM
= (falp)

We emphasize here the presence of the function f in
Eq. (46a). In models with minimal coupling, we get this
equation only with f = 1, i.e., ¢ = ag/r, which leads only

045018-6



VORTICES IN MAXWELL-CHERN-SIMONS-HIGGS MODELS ...

PHYS. REV. D 102, 045018 (2020)

to an integer power-law behavior near the origin for g(r)
(see Ref. [32]). Since we now have a general f in the form
(37), we may consider functions G(g) and M(g) to obtain
distinct behaviors around the origin. Furthermore, the
above first-order equation (46b) allows us to conclude that
a(r) is amonotonically decreasing (increasing) function for
the upper (lower) sign. For topological solutions, we have
that g(r) is monotonically increasing, connecting g = 0 and
g=wv, and both a(r) and &'(r) do not change sign,
oppositely as we will see in the models of the next section.
In the case of nontopological solutions, the sign of a'(r) is
constant, but a(r) changes along its path, so g(r) increases
up to a maximum value and then smoothly decreases
toward g = 0.

If the solutions obey these first-order equations, the
energy is minimized to £ = Ep, with E given by Eq. (45).
By solving the above equations, one can find 4 through
Eq. (36a) combined with the latter equation given above.
We then have

h=xy /Y
eg\ M

x(fe)

Equations (46) and (47) are compatible with Eqs. (28) and
(29). For models with G(g), M(g), and V(g) obeying the
constraint (41), i.e., for potentials in the form (42),
Egs. (46) and the above one completely solve the problem.
To find a(r) and g¢(r), one must solve the first-order
equations (46). The remaining solution A(r) is found by
substituting ¢(r) in Eq. (47); it has the same sign of the
vorticity. We note that the upper signs represent configu-
rations with positive vorticity, and the lower ones do it for
negative vorticity. They are related by the changes a(r) —
—a(r) and h(r) - —h(r); g(r) remains the same in both
scenarios. For simplicity, we work with only positive
vorticity here.

We now illustrate our procedure with a generalization of
the models considered in Refs. [12—-14], given by

Kk 1=M*(g)(1 = ag?)"7
g°M(g)

where a and y are parameters such that o has the dimension
of energy and y is dimensionless. From Eq. (37), we obtain
f(g) = M?*(g)(1 — ag?)'~7. Notice that, in principle, M(g)
is arbitrary, restricted only by the non-negative character of
the energy density. For the above function, by taking
M =1, a=1/v% and y = 0, one recovers the model in
Ref. [12], in which G(g) = k/(2gev?). On the other hand,
by taking M =1 and a = 1/v%, one gets the model
in Refs. [13,14], where G(g) = k(1 — (1 — ¢g*/v*)!77)/
(2geg?). For a general M(g), the above equation can be
substituted in Eq. (42) to obtain the potential

G(g) =

 2ge ’ (48)

B 4e* (1 —ag?)r~!

V(g) _ K2a2<1 - 7,)2M<g) _ aQZ)(}’-H)/Z)z' (49)

(c-Q

Here, C is an integration constant. Assuming M (g) does not
modify the minimum g = v of the potential, we have to be
careful with the sign of a. We deal with a > 0, by taking
a = 1/v?. In this case, the above potential does not need a
C # 0 to support symmetry breaking. So, for simplicity, we
take C = 0. By doing this, the above expression simplifies,
becoming

4et vt g

O =S  (E)

To find the solutions, one must solve the first-order
equations (46), which, in this model, can be written as

ag 92 (r=1)/2
g/ - 1 ) )
rM(g) v

/ 46302 2 2\ (37-1)/2
4 _$<1_9_> . (51b)

Cer (1+y)M(g) 22

(51a)

Notice that one must suggest a function M(g) to obtain the
solutions. The function A(r) in Eq. (47) is given in terms of
the known g(r) as

h(r) =

k(1 +7y) 2

2 2 +1)/2
2ev (l_g(r))<7 )/ . (52)
v
At the origin, since g(0) =0, we have h(0) = 2ev?/
(k(1+7y)). Note that 2 does not depend explicitly on
M(g). However, M(g) modifies the profile of g(r), which
must be substituted in the above equation. Moreover, the
electric field depends on M(g), since it is given by Eq. (11).
The auxiliary function in Eq. (44) takes the form

2124 P\ 172
W(a,g) = _m <1 - ?) . (53)

So, the energy does not depend on M(g), since it depends
only on the boundary values of a(r) and g(r), with E = Ej,
where Ep is as in Eq. (45). On the other hand, the energy
density is modified by M(g), because this function changes
the solutions a(r) and g(r) such that the energy density is
changed. This can be straightforwardly seen by writing the
energy density in Eq. (39) in terms of the solutions a(r) and
g(r), in the form

292 92 y—1
pP = 1——2
M(yg v

a? 4etp* g\ !
AP AL (5 A0 L T 71
<(ermr(-R) ) o

where we have used the first-order equations (51).
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Notice that one must solve Egs. (51) and substitute the
solutions in the above equation to calculate the energy
density. However, one must be careful to take the appro-
priate boundary conditions as they are related to the
topological or nontopological nature of the vortex con-
figurations. So, we review the simplest case, which appears
for M = 1 and was studied in Refs. [12—14]. In particular,
in Ref. [12], as M =1 and y =0, the energy density

becomes
a2 A\ detr?
p:2gz<—2 <1——2> +— > (55)
r v K

Hence, to ensure the finiteness of the energy, one must
impose a(o0) — a,, and g(co) — 0. This means that the
vortex solutions found by Torres engender nontopological
character. The model investigated in Ref. [12] was gener-
alized in Refs. [13,14], with the inclusion of a generalized
magnetic permeability driven by the scalar field. For M = 1
and y = 1, one recovers the pure Chern-Simons model,
with the energy density given by

a2 641)4 92 2

v

which was studied in Refs. [3-5] and may lead to
topological [a(c0) — 0 and g(c0) — ] or nontopological
[a(0) = ag and g(o0) — 0] solutions. For M =1 and
y > 1, one can see from Eq. (54) that topological solutions
are supported by the model, ie., a(o) — a, and
g(oo0) — v. Surprisingly, the very same model supports
nontopological solutions, a(o0) = a,, and g(eo) — 0,
since the global factor g> goes to zero and protects the
energy against divergences. By using Egs. (53) and (45),
one can show that, in this case, the topological solutions has
energy E = 4xv°n/(1 + y), while the nontopological sol-
utions engender energy E = 4zv*(n — ay,)/(1 + 7).

We now show that our model with M # 1 supports
vortex configurations. Considering the function G(g) in
Eq. (48), one can take, for instance,

uig) = (1-5)""" 57

where o is a dimensionless parameter. This makes the first-
order equations (51) become

2\ (r=0)/2
;49 9
~Y (-9 : 58
9= < 1;2> (58a)
/ 431202 2\ (3y—0)/2
209 ( _9_2> . (58b)
er k*(1+4y) v

Notice that, for ¢ # y, the above equations are similar to the
ones found in Refs. [13,14]. A particular case is ¢ =y, in

which G(g) = 0, such that the Maxwell and the dual field
F* term in the derivative D that governs the nonminimal
coupling vanish, so the gauge and scalar fields are
minimally coupled and we get a model that falls in the
class of generalized pure Chern-Simons models investi-
gated in Ref. [47].

As we commented before, the function M(g) in Eq. (57)
supports solutions with similar behavior to the ones found
in Refs. [13,14]. Next, we introduce a function that leads to
novel vortex configurations, with

M(g) = <,1+ (1-2) %) <1 —i—z)(y_l)/z, (59)

where A is a dimensionless parameter such that 4 € (0, 1].
Notice that 4 =1 recovers Eq. (57) with ¢ =y. For a
general 4, we get from Eq. (48) that

Ll —(A+ (1=2)g/v*)? (1 92>(1—7)/2

U2

99 = 24e "+ (1=Dg /)

(60)

One must take into account that this function also drives the
generalized magnetic permeability P(g), since they are
related as in Eq. (16). We remark that, differently from what
occurs in the models in Refs. [12—14], the above function is
non-negative in the interval where the topological solutions
exist, g € [0, v]. Notice that A =y = 1 recovers the stan-
dard pure Chern-Simons model [3-5]. The potential in
Eq. (50) takes the form

4ot vt ? 2\ -1 2\ (3r+1)/2
s (i a-a%) (-5
k(1 +7) v v

(61)

V(g) =

Its minima are located at g = 0 and g = v. The first-order
equations (51) are

=2 (i+a-0%)"

r v

d 432 A\ A\
_ = “Z () 1-1= 1-=1. 62b
or K2<1+y>(+( %2) < ) (620)

(62a)

We now investigate the behavior of the solutions near the
origin. For r~0, one can take a(r) =n-—a,(r) and
g(r) = g,(r) for small a, and g, to show that the above
equations lead to
a,(r) o r2HA/2and g, (r) o« /2. (63)
Notice that the presence of 4 in the power of these functions
occurs due to the factor (A + (1 —1)g?/v?)~! in Eq. (62a).
So, since 4 is a real positive parameter, we get a real number
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1 1

0.51 0.51

FIG. 1. The solutions a(r) and g(r) of Eq. (62) (left) and the
function A(r) in Eq. (52) (right) fore =k =g¢=v=n=y =1
and 4 = 0.01, 0.25, 0.5, 0.75, and 1. The thickness of the lines
decreases with 4, and the dashed line represents A = 1, which is
the pure Chern-Simons model.

in the power of r. To find %(r), one must solve the above
first-order equations and substitute the known g(r) in
Eq. (52). The energy density in Eq. (54) becomes

2\ -1 2\ (r-1)/2
g g
,,zzgz(ﬁ(]—z)p) (1——2>

v

a2 4oty P2\
ey v (L)), 64
X(r”:«z(lw)z( ) ) (64)

We see from the above equation that the model supports
finite energy nontopological and topological solutions for
y > 1. Here, we deal with only topological solutions, such
that a(oco) = 0 and g(o0) = v. From Egs. (53) and (45), it is
straightforward to show that the energy of the topological
solutions is given by E = 4z|n|v?/(1 + y). Moreover, by
integrating the magnetic field in Eq. (11), one can show that
the flux is ® = 2zn/e, so both the magnetic flux and the
charge in Eq. (19) are quantized.

We then use numerical procedures to solve the involved
first-order equations and find the profiles of a(r), g(r), and
h(r). They can be seen in Fig. 1, where we plot these
functions fore = k = ¢ = v = n =y = 1 and some values
of A. One can see that, as A decreases, the plateau that
appears in each one of the solutions becomes wider. Notice
that, even though the solutions behave distinctively near the
origin, the tails of the solutions are very similar for the
several values of A. By using these solutions, we calculate

FIG. 2. The intensity of the electric (left) and the magnetic
(right) fields in Eq. (11) for the solutions of Eq. (62) with e =
k=qg=v=n=y=1and1=0.01,0.25,0.5,0.75, and 1. The
thickness of the lines decreases with A, and the dashed line
represents 4 = 1, which is the pure Chern-Simons model.

the associated electric and magnetic fields and the energy
density. These quantities are displayed in Figs. 2 and 3.
Notice that they have a hole around the origin, whose
deepness and width become larger as 4 decreases.

Notice the results in Figs. 1-3 are for @ = 1/v?> > 0 and
C = 0in Eq. (49). One may also obtain well-defined vortex
configurations for C # 0O; this will be explored in the next
section, in which we present a new manner to develop a
first-order formalism for models described by the Lagrange
density in Eq. (1).

B. Second case

In the previous section, we have dealt with the first-order
formalism that can be developed under the condition J# =
xF* for the Lagrange density in Eq. (1), a generalization of
the models investigated in Refs. [12—-14]. We, however,
have found a distinct pathway that leads us to first-order
equations compatible with the equations of motion (12) and
(13) for the model in Eq. (1). Instead of constraining P(|¢|)
and G(|¢|) as in the previous case, the trick here is to take

P(lol) = 2¢*|ol*G*(lp) M (o). (65)

which makes the Lagrange density in Eq. (1) become

2
q )
L=-% PG (lp))M(||)F,, F*

K
+ ZGAMDAAF;W + M(‘(p|),Du(pD”§0 - V(|§0|) (66)

One can expand the above expression to show that the
Maxwell term vanishes and the Lagrangian density can be
written as

K 2i _ R
£ =y (422G 1o Mo @D - D) ) o
+ M(lo]) DD - V(o). (67)

FIG. 3. The energy density in Eq. (64) for the solutions
of Eq. (62) with e=xk=¢g=v=n=y=1 and 1=0.01,
0.25, 0.5, 0.75, and 1. The thickness of the lines decreases with
A, and the dashed line represents 4 = 1, which is the pure
Chern-Simons model.
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which is a generalization of the Chern-Simons model
investigated in Ref. [48].

The equation of motion for the gauge field (2b) with
Eq. (4) becomes

2R pPM(lg)

ke, (A, v/ (o)) oD

, (68)
where

fllol) = 1= |oPGa)M(a). (69

To calculate the solutions, one must solve Egs. (68) and
(2a) under the condition (65). Even though Eq. (68) is of
first order, one can see that Eq. (2a) is of second order. In
order to get first-order equations that describe the system,
we develop the Bogomol’nyi procedure, similarly as was
done in the previous case in Sec. III A. The condition (65)
makes the energy density in Eq. (7) become

p = M(lg)2IDoo|* = D,9D'p) + V(lgl).  (70)

By setting v = 0 in Eq. (68), one gets an expression for Ay,
which we use in the above equation to obtain

p = M(l¢)[(Dole])* + (9:l9])* + (a]0])?

25 2 2% 2 Kzf(|(/’|)
+ ?Al|g)* + e*A3g| ]+M
< (€70,(A/F (o) + V([gl). (71)

It can be rewritten in the form

p=M(oD((Dolp])* +|0+l0] + ieAlp|]?)

Kzf(|(0|) €iO(A.
4€2|(p|2M(|(p|)< al(Aj f(el))

2e,  V(le))M(le])
=N T

x [VUeDfle g 4
F o\ ToPam(ep © AV el): (72)

By using the constraint in Eq. (24) with f(|@|) given as in
Eq. (69), we have

2
) + 2e|gp|M(|g|)eA ;0|

E= Ldzx (M(|fﬂ|)((ao|(/’|)2 + 104 lo| + ieAlpl|)

> f(lol)
4e*|p|*M(lo|)

(eif@,-(ﬁ,- f(lol)

L2 v<|¢|>M<|<o\>>2

< N TR D
V(lol)
|¢|2M<|w>>>' 7

Similarly to the previous case investigated in Sec. III A, the
energy is bounded, that is,

F Sl (A,-f(lfPI)

V(o)
|¢|2M<|¢|>> ' 7

If the fields satisfy the first-order equations

E>Ep= |g/d2x€’jai (A]fﬂ(ﬂ')
z

gl =0, (750
Olg| + ieALlp| =0, (75b)
0 A, /o) ¢ loly [ ) o0, (750

then the energy is minimized to E = Ep. To comply with
Eq. (75a), we consider static configurations. In this case,
we get from Eq. (68) that

1 Ve
Ao = =501\ Mo

: (76)

Notice that the results in Eqs. (68)—(76) are obtained
without suggesting the form of the fields.

To show that the above first-order equations solve the
equations of motion, we notice that the equation of motion
for the gauge field is Eq. (68), with f now given as in
Eq. (69). The equation of motion for the scalar field (2a)
has the new form

ixf )
D,(M D* F, D¢
(M (lg|) D )  Zefp) THP"0
% -

The terms involved in the above expression may be
rewritten with the fields in the form of Eq. (4) as
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D, (M(Jg|) D) = - (0,(M¥ || + ieA|g|M)

o]
+ ieA,M(0"|p| + ieA"|p))). (78)
We also have
2¢%A M -
bty = = 22O () ieivgl), (790
K
D,pD!p = 8,|p|0"|p| + €*A,A%|g]*. (79b)

The first-order equations (75), obtained with the
Bogomol'nyi procedure, arise with the use of Gauss’
law, which is Eq. (68) with v = 0. So, we must show that
Eqgs. (75) are compatible with the equation of motion for
scalar field (77) and Ampere’s law in Eq. (68). First, we
deal with the scalar field. By considering Eqgs. (75a) and
(75b), we can rewrite (78) as

3% 113
@ ( 5 2e°Aglp|*M
D,(M(|p|) D+ :——<eA oM F ——"F—
W (M(|o|) D" ) o] olol f
S Mf
2% Ail 02 ||
— e AiA |(p| (Mq,— 2f )) (80)
Moreover, by making use of Egs. (79), we have
ixf|y) A A lpI M,
F, Dty = , 81
el " 2f (S
M,,D,pD"¢ = M, (A, A" + A,AT).  (81b)

By substituting the three latter equations in Eq. (77), the
terms with A; vanish. So, we have

252 oM fly 1
ol (3 =254 olat,
283 Ap|gPM 1
— =V, =0. 82
+ K’f 2 lol ( )

From Eq. (76), one can eliminate A, in the above equation
to obtain Eq. (24), which is satisfied by the potential in the
form (25) with f now given as in Eq. (69).

The next step in the proof is to show that the first-order
equations (75) and (76) are compatible with the Ampere’s
law that arises from Eq. (68) for v # 0, which reads

_ZeZAi\(p|2M
V' f

By using the first-order equations (75) and (76), one can
show the above equation simplifies to Eq. (24), which is
solved by the potential in the form (25), and this concludes
the proof.

€10;(Ao/f) — €704(A;/f) = (83)

We then go on and consider the fields with rotational
symmetry, as given in the form (8). This makes the charge
density (14) with the condition in Eq. (65) be

2 !/
Jo = — ((1 —ﬁgZGM) a> . (84)
er K

So, it is not proportional to the magnetic field as the case in
the previous section, and we cannot ensure the charge is
related to the magnetic flux. Since the charge depends
on the boundary conditions, we will work it out in the
examples. Before doing this, however, we first develop
the first-order formalism with the fields given by Eq. (8). In
this case, Gauss’ and Ampere’s laws are given by Eq. (68),
that is,

kfad 2qa

(°GM),d +2¢*¢*Mh =0,  (85a)
er r .
2eg*M
kfH —2qeh(PGM),d + =L =% —0, (85b)
where f is henceforth given by the expression
4qe 5
flg) =1-==g"G(g)M(g). (86)

We emphasize that this definition is different from the
one of the previous case, in Eq. (37). Note that the
equations of motion (85) related to the gauge field are
of first order. Nevertheless, they are not enough to solve the
problem, since we must calculate three functions: a(r),
g(r), and h(r). The third equation is given by (12), which
simplifies to

1 g 1 2ge 5.,
;(ng')'-l—?(M-l-EgMM—i—TgM G‘(p‘

a? 1
: (ezhz - 7) =5 (Vig +Mj19%) = 0. (87)

Notice, however, that the above equation of motion is of
second order. Thus, we need to find additional conditions
to obtain first-order equations that solve the problem.
Similarly as in the case investigated in the previous section,
we develop the Bogomol’nyi procedure here. To do so, we
write the energy density in Eq. (15) for the constraint in
Eq. (65):

2.2

p=mio) (&g -+ L) 1. 69

To eliminate 7, we use Eq. (85a) in the above equation
to get
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292>

(aV/f(9)?+V(g).  (89)

p=M(g) <9’2 +

f(9)
de*r’g*M(g)

One can show that the above equation can be written as

), 2eg [M(g)V(9) ’
fl) +— i) )

(90)

p=M(g) (d ¥ a—rg>2
flg) (1
+ 4ezgzM(g) (er (a

@
q:__
reg

To make the latter term become a total derivative, we
impose the constraint in Eq. (41), whose solution is given
by the potential in Eq. (42). We emphasize, however, that
the function f is now given by Eq. (86). So, one may think
that the potential here must have the same form as the one
in the previous section, but this is not true because the
function f is different. In this case, we can write the energy
density as

ag\? K2
p:M(g)(dq:%) “‘4629]2(](‘29)
1 20 MgV 1
X er(a flg) £ X f(9) :l:rW’

(1)

where W = W(a, g) is an auxiliary function given by

kaf(g) |V(g)

e*g \[ M(g)

=2a\/f(g < F> (92)

where we have used the expression in Eq. (42) for the
potential. By integrating the energy density in Eq. (91), one
gets that the energy is bounded exactly as in Eq. (45) with
W given as in the above equation. Notice that the function
W(a, g) is associated to a surface term that comes from the
integration and appears only for fields in the form (8),
differently from the general procedure in Eq. (74). The
energy is minimized to E = Ej if the following first-order
equations are satisfied:

W(a,g) = -

| = + 7619 R 93a
g
r

_a_’ i€<fa2+2€\/—)

er f \2er

qg(f qa 4e3gM / gM

=+Z - dg . 93b

2l ([a'R)). o)
Notice that the above first-order equation (93a) is different
from (46a), since its right side presents only a linear term
in g. Surprisingly, Eq. (93a) is the very same which arises
in the first-order formalism for vortices in models with
minimal coupling [32], so the function g(r) near the origin
is always a power-law function, in the form

g(r) e rll, (94)

On the other hand, the first-order equation (93b) presents
two terms, with one of them depending on a2, oppositely
from Eq. (46b), in which the right side shows only g and r.
Depending on the sign of f,, the term in a* may compete
with the other one. This is interesting, because, as we will
show next, it brings novel configurations to light; it does
not appear in the usual approach taken in Refs. [12—14] nor
in models with minimal coupling in the form investigated in
Ref. [32], in which a'/(er) is equal to a function of g.
Furthermore, since the behavior of g(r) near the origin is
given by the above equation, one can show that, in this
regime, the function f must behave as f,/f o g"/I"I=!,
with m > 2, to make the magnetic field B = —d'/(er)
finite. The function A (r) is obtained from Eq. (85a):

(e e

We emphasize that this first-order formalism is compatible
with Egs. (68)—(76). In the above equations (93) and (95),
the upper (lower) sign describes configurations with posi-
tive (negative) vorticity. One can relate these possibilities
by making the changes a(r) — —a(r) and h(r) — —h(r).
For simplicity, we deal with only positive vorticity.

Since we are now dealing with novel first-order equa-
tions, we investigate a simple model, with

Kk 1—M*(g)(1—ag?)'™7
4qe g*M(g) ’

so the function that controls the magnetic permeability is
given by Eq. (65), which reads

& (1=M*(g)(1 —ag®)'7)?
8e? g*M(g) '

Glg) = (96)

P(g) = (©7)

Here, a is a parameter with the dimension of energy and
y > 1 is a dimensionless parameter. In this model, one
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obtains from Eq. (86) that f(g) = M?(g)(1 — ag®)'~7. This
makes the potential in Eq. (42) be written as

B de*? (1 — ag?)r!

V(g) = (1721 (C—(1- a92)(7+1)/2)2’ (98)

where C is an integration constant. Similarly to the case
investigated in the previous section, we first consider C = 0
and a = 1/v%. Notice that the specific model investigated
in Ref. [48] is recovered for M(g) = (1 — ¢*/v*)* and
y = 3. We then consider a new model, with

M(g) = (1 +/1i—2)6/2<1 —%) R 0o

v

where 1 is a non-negative dimensionless parameter. The
above potential in Eq. (98) simplifies to

At pt P 2\ —0/2 2N\ (37+1)/2
V(g) = T (1+2% 1-Z :
K*(1+7y) v v

(100)

Its minima are located at ¢ = 0 and g = v. We must solve
Eqgs. (93) with the upper signs. Note, however, that the
first-order equation (93a) does not change with M(g) and
G(g). On the other hand, the first-order equation (93b)
takes the form

a/ 0'/10292 92 -1
- = ) 1+AF

er ev-r

432 2\ A\7
— = (1 +1%= 1-=]. 101
+K%w+n< " #> < #> (101

By knowing the solutions, one can calculate i(r) from
Eq. (95), which leads us to

h(r) = K(iefy) <1 +/1921)(2r)>—a/2 (1 _@) (}/+l)/2‘

(102)

At the origin r =0, since g(0) =0, we have h(0) =
2ev?/(k(1 +7v)). To check if this function has critical
points outside the origin, we take the derivative of the
above expression with respect to r. Since ¢ > 0, we take
h, = 0, which leads us to

i 1lo+y+1
=y -———.
g do—(r+1)

If 0 < § < v, the solution A (r) presents a critical point. By
using this argument, one can show that this function
supports a global maximum for ¢ < 0 and 1 > 4., with

(103)

_y+1

A
o]

, (104)

which leads to an internal structure in the electric field. The
auxiliary function W(a, g) is calculated from Eq. (92); it
has the form

2024 P\ P\ r+D/2
Wi(a,qg) = — 1+1%= 1-= .
(.9) <1+y>('+ #> ( #>

(105)

The energy density is calculated from Eq. (89). We make
use of the first-order equations (93a) and (101) to get the
expression

2\ (r—1)/2 2\ —0/2
g g

a2 72\° g 2\
—(1+1% —— (1= .
<(E(B) +miir (-8))
(106)

To find the above energy density, one must solve the first-
order equations (93a) and (101) and then substitute the
solutions in the above expression. In order to calculate the
solutions, though, one must be careful with the boundary
conditions, which are associated to the topological char-
acter of the vortex. From the above equation, we see that
the energy is finite for topological solutions, in which
a(0) - 0 and g(o0) - v, and also for nontopological
solutions, with a(e0) — a,, and g(c0) — 0.

For simplicity, we calculate only topological solutions
here. By using Egs. (105) and (45), one can use the
aforementioned boundary conditions to show their energy
is E = 4zx|n|v?/(1+y). Moreover, by integrating the
magnetic field in Eq. (11), one can see that the flux
associated to topological solutions is ® = 2zn/e. The
charge density in Eq. (84) becomes

2\ o\ /
_ < g
Jo—zer<a+a<1+lvz) >

By integrating it, one can show that Q = —2znk/e.
Notice that both Q and E are quantized and also, even
though we have J, # —«B, the charge is proportional to the
flux: Q = —k®.

Unfortunately, we were not able to calculate the ana-
lytical solutions of Egs. (93a) and (101). So, we use
numerical procedures and display the profiles of a(r),
g(r), and h(r) fore =k =g =v=n =y =1 and some
values of ¢ and 4 in Fig. 4. We see that, for 6 < 0, a(r) is
not monotonically decreasing: It increases near the origin
until a maximum at a,,, > n and then decrease toward
zero. This behavior appeared before in Ref. [48], in a
minimally coupled model with a specific modification in

(107)
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FIG. 4. The solutions a(r) and g(r) of Egs. (93a) and (101)
(lefty and the function h(r) in Eq. (102) (right) for
e=k=q=v=n=y=1, c=-1 (top) and 1 (bottom),
and 1 =1, 2, 3, 4. The dashed lines represent the case 4 = 0,
and the thickness of the lines increases with A.

the Chern-Simons term. A similar behavior occurs in the
function A(r). The solution g(r), although it presents
changes in the sign of its second derivative, always
increases in the interval [0, v]. We plot the electric and
magnetic fields in Fig. 5. The electric field may change its
sign for A > 1., where 4. is as in Eq. (104). For the
magnetic field, the flip on its sign, which is evidence of a
magnetic flux inversion, occurs for any positive value of A.
This feature, although it appears in the scenario of Lorentz
violation in minimally coupled models (see Ref. [31]), is
novel in models with nonminimal coupling. It is also of
interest in condensed matter and has appeared before in the

FIG. 5. The intensity of the electric (left) and the magnetic
(right) fields in Eq. (11) for the solutions of Egs. (93a) and (101)
withe=xk=¢gq=v=n=y=1,0=—1 (top) and 1 (bottom),
and 1 = 1, 2, 3, 4. The dashed lines represent the case 4 = 0, and
the thickness of the lines increases with A.

0

-0.44

N -0.41

FIG. 6. The energy density in Eq. (106) (left) and the charge
density in Eq. (107) (right) for the solutions of Egs. (93a) and
(101) with e=xk=¢gq=v=n=y=1, 6 =—1 (top) and 1
(bottom), and A = 1, 2, 3, 4. The dashed lines represent the case
A =0, and the thickness of the lines increases with A.

study of fractional vortices in two-component supercon-
ductors [30].

We can show that, by numerical integration for positive
vorticity, the total flux is positive and quantized: @ =
27n/e. The energy density and the charge density can be
seen in Fig. 6. Notice that the energy density presents a hole
around the origin that gets deeper as 4 increases. The charge
density has a peak that gets taller as A increases. The case
o > ( leads to topological solutions with the usual mon-
otonic behavior. However, as A increases, the hole in the
center of both the magnetic field and energy density
vanishes, becoming a maximum. Moreover, the parameter
A modifies the behavior of the charge density, which may
present a change in its sign.

We now consider a distinct possibility for Eq. (98), in
which a < 0. So, we choose a = —f#?, where f3 is a para-
meter with the dimension of the square root of energy.
We consider M(|p|) =1, as in the models studied in
Refs. [13,14]. In this situation, however, we cannot take
C = 0 as before, because we would not have the proper
set of minima that are connected by the solution g(r)
with topological nature. In this situation, to ensure the
potential presents a set of minima at g = v, we take C =
(14 p?0?)r+1)/2_ The potential in Eq. (98) takes the form

4 4.2 1_|_ﬂ2 2\r—1
O T
X (14420702 — (14 p2g7) I H02)2,

(108)

For y =1, we get the well-known sixth-order power-
law potential V(g) = e*¢?(v? — ¢*)?/x?* that is found in
the study of pure Chern-Simons models with minimal
coupling [3-5].
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In the first-order equations (93), only Eq. (93b) changes
with the above potential, becoming

I VY
Cer <_ er? Ay +1)

er 1 +p*g
x((1—%ﬂ2v2)0+1V2——(14—ﬂ292)0+lw2)>- (109)

By knowing the solutions a(r) and g(r), one may calculate
the function £(r) that comes from Eq. (95), such that

2e(1 4 PgP)r02
hr) = k(1 +7)
% ((1 _|_/)721}2)(y+1)/2 _ (1 +ﬁ292)(}/+1)/2).

(110)

So, we have h(0) = 2e(1 + f20>)r 2/ (kf(1 +7)).
As in the previous example, we check if the function
h(r) supports a global maximum at some point. By taking
hg =0, we get

~_1 }/—1 2/(r+1)
g_ﬁ\/(1+ﬂzvz)<2—y> —1.  (111)

So, for values of f and y thatlead to 0 < § < v, the function
h(r) present a null derivative, defining a point of maximum.
This condition is attained for § > f3., with

1 2y \2/(r+1)
R \/(7) ~1.
v y—1

For f in the aforementioned range, the electric field
engenders a change of sign due to the existence of a
maximum in A.

The auxiliary function W(a, g) in Eq. (92) takes the form

(112)

2a(1 + fg?) 11

(1 +7)
X (1 po?)r 02 — (14 p2g2) 0 DP2).
(113)

W(a.g) = -

One can combine Egs. (89), (93a), and (109) to show that
the energy density can be written as

a2 462 1 +ﬂ292 y—1
p=2¢g (_2 + 2( I )2
r KB (1+7y)

X (14 Fa) 02 (1 +ﬂ292)<’“>/2)2)- (114)

We can see that the above energy density leads to finite
energy for both topological and nontopological solutions.
As before, we deal with only topological configurations,

1.5
A d
Ny

0+ - 0+ -
0 1 2 0 1 2

FIG. 7. The solutions a(r) and g(r) of Egs. (93a) and (109)
(left) and the function h(r) in Eq. (110) (right) for e = x =
g=v=n=1,y=23,and > = 0.5, 1, 1.5, and 2. The thickness
of the lines increases with f.

which require a(o0) — 0 and g(o0) — v to attain the finite
character of the energy. These boundary conditions may be
used with Egs. (113) and (45) to show that the topological
solutions have energy E = 4z|n|((1 + p*0?)r+D/2 1)/
(f*(y +1)). Differently from the previous example, one
can integrate the magnetic field in Eq. (11) to show that the
magnetic flux is quantized regardless of the values of the
parameter y, such that ® = 2zn/e. The charge density in
Eq. (84) takes the form

K
_ 1+ BRP)7Y.
Jo=5-(a+a(l + f¢)7)

(115)
By integrating the above expression, one can show the
topological solutions engender charge Q = —2zkn/e.

We were not able to find the analytical solutions of the
first-order equations (93a) and (109). So, we use numerical
methods and plot the profiles of a(r), g(r), and h(r) in
Fig. 7fore = x =g = v =n = 1,y = 3, and some values
of /5. Notice that, similarly to the previous model, we see
that a(r) is not monotonically decreasing as usual. Near the
origin, it increases as r gets larger, until it reaches a
maximum value and then starts decreasing toward the
boundary condition. This behavior becomes more evident
as one increases . As we have commented before, the
behavior of g(r) for configurations with n = 1 near the
origin is g(r)  r [see Eq. (94)]. However, we see that, as 8
increases, the change in the second derivative along its path
becomes more visible, presenting an inflection point.

=

==
0 i 2 0 i 2
FIG. 8. The intensity of the electric (left) and the magnetic

(right) fields in Eq. (11) for the solutions of Egs. (93a) and (109)
withe=k=g=v=n= 1,)/:3,andﬁ2 =0.5,1, 1.5, and 2.
The thickness of the lines increases with f.
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144 0

0

0 0.75 15 0 1 2

FIG. 9. The energy density in Eq. (114) (left) and the charge
density in Eq. (115) (right) for the solutions of Eqgs. (93a) and
(109) withe=xk=g=v=n= l,y:3,andﬂ2 =0.5,1, 1.5,
and 2. The thickness of the lines increases with f.

Regarding the function /(r), as we have explained above, it
has a minimum at r # O for f > f., with . as in Eq. (112).

By making use of the aforementioned solutions, we also
plot the corresponding electric and magnetic fields (11) in
Fig. 8. Notice that the magnetic field is negative around
the origin, with a valley getting deeper as S increases.
This means that the vortex engenders a magnetic flux
inversion. Notwithstanding that, the total flux is positive
and quantized, given by ® = 2zn/e. In the electric field,
the inversion of sign occurs only for f > ., with 3. as in
Eq. (112). The energy density (114) and the charge density
(115) are plotted in Fig. 9. Notice that the charge density
may also engender a change of sign, depending on the f
chosen, while the energy density is always non-negative.

IV. CONCLUSION

In this paper, we have investigated vortex configurations
in a class of generalized Maxwell-Chern-Simons models
with a complex scalar field nonminimally coupled to
the gauge field. The general model is described by the
Lagrange density (1), which, in addition to the potential
V(|e|), presents the functions P(|¢|) that control a gener-
alized magnetic permeability M(|p|), which was not
introduced in previous works and drives the dynamical
term of the scalar field, and G(|¢|), that controls the term
that gives rise to the nonminimal coupling. The main
properties are calculated, such as the equations of motion,
the current, and the energy-momentum tensor. By con-
sidering static configurations with the fields given as in
Eq. (8), we show that the equations of motion are of second
order. In order to simplify the problem, we focused on
developing a first-order formalism to describe the configu-
rations of interest.

First, we have followed the suggestion described in
Refs. [12-14], considering the condition J# = xF*, which
imposes a constraint between P(|¢p|) and G(|@|). In this
situation, we showed that the electric charge is related to
the magnetic flux. Then, we developed the Bogomol’nyi
procedure for the model, which allowed us to find

first-order equations whose solutions minimize the energy
of the system and are compatible with the equations of
motion. By taking specific functions G(|¢|) and M(|¢|),
we introduced a novel model that modifies the behavior of
the g(r) near the origin, which engenders a plateau whose
width is controlled by a parameter in the function M(|¢p|).
Moreover, oppositely to the model in Refs. [13,14], the
magnetic permeability is non-negative. This model support
magnetic and electric fields and the energy density with a
ringlike shape whose internal radius is governed by the
aforementioned parameter.

We have also introduced a novel manner to obtain a first-
order formalism, in which P(|¢|) is constrained by G(|¢|)
and M(|g|). In this case, the Bogomol’'nyi procedure is
also developed. So, we get minimal energy configurations
that come from first-order equations compatible with the
equations of motion. Interestingly, the first-order equa-
tion (93a) is the very same as the one that arises in the study
of vortices in models with minimal coupling, such as the
ones in Refs. [1-5,32]. So, near the origin, there is only one
possible behavior for g, in the form g(r ~ 0)  r/"l. On the
other hand, the first-order equation (93b) brings a novel
feature to the problem: the presence of a term with a(r).
This new term competes with the one that depends on the
potential and may cause significant changes in the profile of
a(r). We then provided specific examples in which a(r) is
not monotonically decreasing and both the magnetic and
electric fields may present a change of sign. Even though a
magnetic flux inversion occurs, the total flux is positive.
Moreover, these unusual features do not modify the
positiveness of the energy density, such that the energy
is positive.

There are several distinct possibilities of extending the
present work, among them the case of vortices controlled
by non-Abelian gauge symmetries [49], the presence of
magnetic monopoles with Abelian charges [50], the case
of nonrelativistic dynamics [21,27,51,52], and the study of
vortices in Bose-Einstein condensates [53,54]. Some issues
of current interest are now under consideration, and we
hope to report on them in the near future.
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