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We develop a quantum effective action for scalar-tensor theories of gravity which is both spacetime-
diffeomorphism invariant and field reparametrization (frame) invariant beyond the classical approximation.
We achieve this by extending the Vilkovisky-DeWitt formalism, treating both the scalar fields and the
components of the gravitational tensor field as coordinates describing a manifold. By using tensors
covariant under diffeomorphisms of this manifold, we show that scalar-tensor theories can be written in a
form that is manifestly frame invariant at both classical and quantum levels. In the same context, we show
that in order to maintain manifest frame invariance, we must modify the Feynman rules of theories with a
nontrivial field space. We show that one such theory is general relativity by demonstrating explicitly that it
has a nonzero field-space Riemann tensor. Thus, when constructing theories of quantum gravity, we must
deal not only with curved spacetime, but also with a curved field space. Finally, we address the
cosmological frame problem by tracing its origin to the existence of a new model function that appears in
the path-integral measure. Once this function is fixed, we find that frame transformations have no effect on
the quantization of the theory. The uniqueness of our improved quantum effective action is discussed.

DOI: 10.1103/PhysRevD.102.045014

I. INTRODUCTION

The laws of nature should not depend on the way we
choose to describe them. While there may be many
different ways of parametrizing the underlying degrees
of freedom in a theory, its physical predictions should not
depend on which parametrization one uses. This seemingly
obvious fact has historically had far-reaching conse-
quences. For example, imposing that the laws of physics
not care about the way we label space and time leads
inevitably to Einstein’s celebrated theory of relativity [1].
This idea is known as reparametrization invariance and
throughout this paper we use it as a guiding light with the
goal of developing a formalism in which reparametrization
invariance is made manifest.
When writing down a quantum field theory (QFT), we

must define a set of quantum fields in which to express it.
We are always free to reexpress the same theory in terms of
a different set of fields. This is known as a change of frame.
There has been much debate in the literature [2–19] as to
whether such a change of frame represents an observable
change to the theory or merely a change of description.

Since changes of frame correspond to field reparamet-
rizations, we expect that they should not affect any physical
observables. However, in the ordinary formulation of
QFTs, off-shell calculations of quantum corrections can
yield different results depending on the set of fields used to
perform them, as shown in the Appendix A. Furthermore, it
has been shown that when gravity is included, one can get
different predictions even for on-shell observables depend-
ing on whether the quantum effects are applied before or
after changing frame. This has become known as the
cosmological frame problem. For a historical overview
of the issue, see [20].
In light of the above issues, our aim is to develop a

formalism in which reparametrization invariance is made
manifest both on and off shell and hence does not suffer
from the cosmological frame problem. It is important to
note that whether or not a formalism is reparametrization
invariant is a consequence of its representation, not its
content. Any physical observable of the theory must be
invariant under reparametrizations, but this fact can often
be obscured by the way the theory is written down.
We emphasize that because the content of a theory has no

bearing on reparametrization invariance, this formalism
places no restrictions on which theories are allowed.
Therefore, reparametrization invariance cannot be consid-
ered a symmetry in the traditional sense and there will, in
general, be no Noether current and no gauge degrees of
freedom associated with it.
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A better point of comparison is the use of spacetime
tensors to highlight the diffeomorphism invariance of a
QFT. Although the physical predictions of any theory will
necessarily be independent of the spacetime coordinates
used to perform the calculation, the use of covariant objects
makes this fact manifest.
In this paper, we shall focus on scalar-tensor theories of

quantum gravity [21–27] with a field content that consists
of a spin-2 graviton field gμν and a set of scalar fields ϕA

(collectively denoted as ϕ) and with an action of the form

S≡
Z

d4x
ffiffiffiffiffiffi
−g

p
L

L≡ −
fðϕÞ
2

Rþ 1

2
gμνkABðϕÞ∂μϕ

A∂νϕ
B − VðϕÞ; ð1:1Þ

where g≡ detðgμνÞ. Here fðϕÞ, kABðϕÞ and VðϕÞ are the
effective Planck mass, the scalar field-space metric and the
potential, respectively. We shall refer to these three func-
tions as model functions and together they fully define our
theory at the classical level. In the context of such theories,
there are two types of transformations that amount to
nothing more than a change of description—spacetime
diffeomorphisms and field reparametrizations. We wish to
write our theory in way that is manifestly invariant under
both of these.
Spacetime diffeomorphisms consist of changing the

coordinates of spacetime,

xμ → x̃μ ¼ x̃μðxμÞ: ð1:2Þ

This is just a relabeling of the points on the spacetime
manifold and thus should not affect any physical observ-
ables. Diffeomorphism invariance is the backbone of
general relativity and, as such, has been much studied in
the literature. We will therefore not focus on it here.
Field reparametrizations involve changing the definition

of the fields of the theory by making the transformation

gμν → g̃μν ¼ g̃μνðgρσ;ϕÞ;
ϕA → ϕ̃A ¼ ϕ̃Aðgρσ;ϕÞ: ð1:3Þ

Again, this is just a relabeling of the degrees of freedom in
the theory and should not have a physical effect.
Spacetime-diffeomorphism invariance restricts the class

of field redefinitions that we have to consider. When
performing the transformation (1.3), we must maintain
the spacetime covariant structure of the fields and should
not introduce any new spacetime tensors. If we also insist
that our field redefinitions do not mix derivative and
nonderivative terms, then this restricts the admissible set
of transformations to those of the form

gμν → g̃μν ¼ Ω2ðϕÞgμν; ð1:4Þ

ϕA → ϕ̃A ¼ ϕ̃AðϕÞ: ð1:5Þ

We will refer to these transformations as a conformal
transformation and a scalar field reparametrization, respec-
tively. Together, they constitute a frame transformation.
Under such a frame transformation, the model functions in
(1.1) transform as [28]

f → f̃ ¼ Ω−2f;

V → Ṽ ¼ Ω−4V;

kAB → k̃AB ¼ KC
AKD

B½kCD − 6fðlnΩÞ;CðlnΩÞ;D
þ 3f;CðlnΩÞ;D þ 3ðlnΩÞ;Cf;D�; ð1:6Þ

where a comma ;A ≡ ∂=∂ϕA denotes differentiation with
respect to the field ϕA and KA

B ≡ ∂ϕA=∂ϕ̃B is the Jacobian
of the scalar field reparametrization.
In this paper, we will show explicitly how we can write

down a theory in a manifestly reparametrization-invariant
way by using the well-known technique of field-space
covariance [29–33], whose relevance to resolving the
cosmological frame problem was first pointed out in
[34]. We treat both the scalar fields and the components
of the graviton field as coordinates describing a manifold.
Frame transformations of the form (1.3) are then simply
diffeomorphisms of this manifold. Provided we write down
our theory in terms of objects that are both spacetime and
field-space tensors, and then fully contract any indices, the
theory will be manifestly reparametrization invariant.
With the field-space covariant technique, the theory of

general relativity (which is just a scalar-tensor theory
without the scalars) can also be expressed in terms of a
field-space manifold. This manifold is separate from the
spacetime manifold and comes with its own Riemann
tensor, Ricci tensor, and Ricci scalar. As we will see in
Sec. VI, all these curvature invariants are nonzero. Thus,
when studying quantum theories of gravity, we must
necessarily deal not only with curved spacetime, but with
a curved field space as well. We believe that this obser-
vation will be important to consider when constructing a
UV complete theory of quantum gravity and may be part of
the reason why such a construction has proven so difficult.
We shall express our reparametrization-invariant theory

using the quantum effective action [35–38]. All predictions
of the theory can be obtained from this effective action and
thus defining it is sufficient to fully define the quantum
theory. However, as we shall see in Sec. III, the ordinary
construction of the effective action depends on our choice
of parametrization.
If we can treat gravity as a classical background, the

Vilkovisky-DeWitt (VDW) formalism [39,40], reviewed in
Sec. IV, is enough to solve this problem. However, if we
wish to treat gravity as a field and place it on the same
footing as the other fields in our theory, we encounter
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ambiguities, which inevitably lead to the cosmological
frame problem.
As we shall show, these ambiguities arise from a frame-

dependent choice that must be made in the standard
approach to scalar-tensor theories of gravity. The graviton
field gμν is normally identified as the metric of spacetime.
However, gμν transforms under a field reparametrization
(1.3) whereas the metric of spacetime does not. This
identification is therefore only valid in a particular frame
[17], and thus the frame invariance of the VDW formalism
is ruined.
In this paper, we overcome the cosmological frame

problem by defining the metric of spacetime in a frame-
invariant manner. We achieve this through the introduction
of a new model function, l ¼ lðϕÞ, so that the metric of
spacetime is given by ḡμν ¼ gμν=l2. We are therefore able
to construct, for the first time, a manifestly frame and
spacetime-diffeomorphism-invariant quantum effective
action for scalar-tensor theories of gravity.
In practice, the quantum effects of a theory are usually

calculated using Feynman diagrams. However, as we shall
see in Sec. V, the usual way in which these diagrams are
calculated crucially depends on the frame in which they are
evaluated. Feynman rules, when calculated in the usual
way, are not covariant field-space tensors and thus different
parametrizations of the fields will yield different sets of
rules. We will show how the Feynman rules must be
modified in the presence of a nontrivial field space.
We adopt the following conventions throughout this

paper. Lowercase Greek letters (μ, ν, etc.) will be used for
spacetime indices, and repeated indices will imply sum-
mation in accordance with the Einstein summation con-
vention. Uppercase Latin letters (A, B, etc.) will be used for
field-space indices with repeated indices again implying
summation. Lowercase Latin letters (a, b, etc.) will be used
for configuration-space indices and will thus simultane-
ously represent both a discrete field-space index and a point
in spacetime. For such indices, we shall use the Einstein-
DeWitt notation [41] in which repeated configuration-space
indices imply summation over the discrete index and
integration over spacetime, e.g.,

Jaϕa ≡X
A

Z
dDxA

ffiffiffiffiffiffi
−ḡ

p
JAðxAÞϕAðxAÞ; ð1:7Þ

where D is the number of spacetime dimensions and ḡμν,
with determinant ḡ, is the metric of spacetime.
This paper is laid out as follows. We begin in Sec. II by

reviewing the construction of the field and configuration
spaces for scalar field theories. We then review the effective
action formalism in Sec. III, explicitly demonstrating that it
is dependent on the parametrization of the fields. We show
in Sec. IV how Vilkovisky and DeWitt’s reformulated
effective action resolves these issues when gravity can be
treated as a background. In Sec. V, we show the effect of

reparametrizations on ordinary quantum calculations using
Feynman diagrams and develop a method for calculating
Feynman rules in a reparametrization-invariant manner.
We show how the same geometric approach of

Vilkovisky and DeWitt can be applied to gravity in
Sec. VI, explicitly constructing the field space for general
relativity and showing that this field space is positively
curved. We add scalar fields to the theory in Sec. VII,
showing that when we do, there is an ambiguity in the
definition of the spacetime metric, which is responsible for
the cosmological frame problem. In Sec. VIII, we construct
a field space for the scalar and tensor fields, which we call
the grand field space, and use it to write down scalar-tensor
theories in a way that is manifestly invariant under a frame
transformation (1.3). We then incorporate the spacetime
dependence of the fields in order to construct a grand
configuration space in Sec. IX. This allows us to construct a
fully frame and spacetime-diffeomorphism-invariant path-
integral measure, which we can then be used to quantize the
theory in a reparametrization-invariant way. We provide a
concise description of the formalism in Sec. X, before
discussing our findings in Sec. XI.

II. COVARIANCE IN SCALAR FIELD THEORIES

Let us begin by reviewing the construction of the field
space for scalar field theories without gravity. Such theories
have actions of the form

S≡
Z

dDx
ffiffiffiffiffiffi
−g

p
L;

L≡ 1

2
gμνkABðϕÞ∂μϕ

A∂νϕ
B − VðϕÞ; ð2:1Þ

where D is the dimension of spacetime. In this section, we
will take the metric of spacetime gμν to be fixed and will not
consider any redefinitions of the form (1.4). We will relax
this assumption in Sec. VI.
As discussed in the Introduction, we could just as easily

describe this theory in terms of a different set of fields ϕ̃
and the transformation

ϕA → ϕ̃A ¼ ϕ̃AðϕÞ ð2:2Þ
is just a change of description and should therefore not
affect any calculations. In order to make this fact explicit,
we will construct a manifold known as the field space
[28–33] and treat the fields ϕ as coordinates describing that
manifold. With such a construction, the transformation
(2.2) is simply a diffeomorphism of the field space. We can
then write down the theory in a way that is explicitly
reparametrization invariant by simply building it out of
field-space covariant objects.
The field space is a Riemannian manifold, and so we can

equip it with a metric. Such a metric should satisfy the
following three properties [39]:
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(1) It should transform as a symmetric rank 2 tensor
under (2.2).

(2) It should be determined from the classical action
(2.1).

(iii) It should be Euclidean for a canonically normalized
theory.

The only quantity that satisfies these conditions is the
model function kABðϕÞ and so that is what is used in the
literature.
In this paper, we want to introduce a new expression for

the field-space metric; one that is constructive, rather than
relying on the identification of a particular term in
Lagrangian. We will thus define the field-space metric to be

GAB ≡ gμν
D

∂2L
∂ð∂μϕ

AÞ∂ð∂νϕ
BÞ ; ð2:3Þ

where D is the number of spacetime dimensions. Notice
that for the theory described by (2.1), this new prescription
still gives GAB ¼ kAB. However, this new prescription
is now constructive and can thus be applied to any field
theory—even, for example, those with higher derivative
terms.1 This constructive prescription also ensures that the
field-space metric is unique for a given theory.
With the field-space metric thus defined, we can

straightforwardly define a connection on the field-space
manifold,

ΓA
BC ≡ 1

2
GAD

�∂GBD

∂ϕC þ ∂GDC

∂ϕB −
∂GBC

∂ϕD

�
; ð2:4Þ

whereGAB is the inverse ofGAB. We can also define a field-
space covariant derivative,

∇CXA ≡ ∂XA

∂ϕC þ ΓA
CDX

D;

∇CXA ≡ ∂XA

∂ϕC − ΓD
CAXD; ð2:5Þ

and so on in the usual manner for higher-rank tensors.
When quantizing the theory, the field-space manifold

alone is not sufficient. In the path-integral formalism, we
must integrate not just over the fields, but overall configu-
rations of the fields. In order to construct this integral in a
covariant manner, we define an infinite-dimensional con-
figuration-space manifold. Each direction on this manifold
represents a different configuration of the fields and thus
we can describe it using coordinates

ϕa ≡ ϕAðxAÞ: ð2:6Þ

The lowercase Latin index a ¼ fA; xAg is a continuous
index that runs over all points in spacetime in addition to
all the scalar fields in the theory, as described in the
Introduction.
In order to define a metric for the configuration space,

we need to add one more property to the list above. The
configuration-space metric should be ultralocal, i.e., it
should be proportional to a Dirac delta function only
and contains no derivatives of the fields. We therefore
define the configuration-space metric as

Gab ≡ gμν
D

δ2S
δð∂μϕ

aÞδð∂νϕ
bÞ

¼ GABδ
ðDÞðxA − xBÞ: ð2:7Þ

Here we have defined the functional derivative with respect
to a partial derivative as

δF½∂μΦAðxÞ�
δð∂μΦAðyÞÞ

≡ lim
ϵAμ→0

F½∂μΦAðxÞþ ϵAμ δ
ðDÞðx−yÞ�−F½∂μΦAðxÞ�
ϵAμ

; ð2:8Þ

where the Dirac delta function is normalized such that

Z
dDx

ffiffiffiffiffiffi
−g

p
δðDÞðxÞ ¼ 1: ð2:9Þ

Such a definition allows δðDÞðxÞ to be diffeomorphism
invariant.Wenote thatwith this definition δΦA=δð∂μΦAÞ¼0.
The connection on the configuration-space manifold is

as follows:

Γa
bc ≡ 1

2
Gad

�
δGbd

δϕc þ δGdc

δϕb −
δGbc

δϕd

�

¼ ΓA
BCδ

ðDÞðxA − xBÞδðDÞðxA − xCÞ; ð2:10Þ

and thus the configuration-space covariant functional
derivative is

∇cXa ≡ δXa

δϕc þ Γa
cdX

d;

∇cXa ≡ δXa

δϕc − Γd
caXd; ð2:11Þ

similar to (2.5).
With the configuration-space manifold defined, it is

straightforward to write theories in a manifestly reparamet-
rization-invariant way. We simply need to build our theory
out of configuration-space tensors and ensure that all
indices are fully contracted.
It is also easy to identify quantities that are not

reparametrization invariant. Two examples of noninvariant

1In the case of a higher derivative theory, (2.3) would lead to a
Finslerian metric [42]—one that depends on both the fields and
their derivatives. We will not discuss such theories here, but will
save them for future work.
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objects are the quantum effective action and Feynman
diagrams, as we shall show in the following sections.

III. NONCOVARIANCE OF THE ORDINARY
EFFECTIVE ACTION

The ordinary effective action formalism [35–38] funda-
mentally stems from the one-particle irreducible (1PI)
approach in QFT. Through its application, it is possible
to define an action that inherently incorporates all quantum
effects beyond tree level, in principle allowing us to study
radiative corrections nonperturbatively.
The starting point for the derivation of the effective

action is the generating functional for 1PI diagrams,

Z½J�≡ exp

�
i
ℏ
W½J�

�

¼
Z

½Dϕ�M½ϕ� exp
�
i
ℏ
S½ϕ� þ Jaϕa

�
; ð3:1Þ

defined in the presence of an external source field Ja ≡
JAðxAÞ (also collectively denoted as J). Here the functional
integral element is ½Dϕ�≡Q

x;A dϕ
AðxÞ, and M½ϕ� is the

measure of the configuration space for the quantum fields
ϕa. We have also reintroduced the reduced Planck constant
ℏ as a means of keeping track different orders of quantum
loops. The generating functional is reminiscent of the
partition function in statistical mechanics, which is a
weighted sum of Boltzmann factors over the different
microstates of the system. In a similar vein, the generating
functional is defined as a weighted integral over all possible
configurations of the quantum fields ϕa of the system.
From the generating functional, it is possible to arrive at

the effective action via the Legendre transformation,

Γ½φ� ¼ W½J� þ iℏJaφa; ð3:2Þ

where the φa (collectively denoted as φ) are themean fields
and Ja ¼ Ja½φ� is considered to be a functional of φ. In the
presence of the source terms Ja, the mean fields and the
sources are related by

φa ¼ −iℏ
δW½J�
δJa

; Ja ¼ −
i
ℏ
δΓ½φ�
δφa : ð3:3Þ

The usefulness of the effective action is thus that extrem-
izing it generates the quantum-corrected equations of
motion.
Already at this point, it is possible to observe that this

construction lacks covariance. Since φa is not a configu-
ration-space vector, Jaφa is a frame-dependent expression
and thus all three equations (3.1)–(3.3) are sensitive to the
way in which we parametrize the fields in our theory. This
is a major drawback for this approach and once we shall
return to, but for now, let us proceed in order to illustrate

how the ordinary effective action is usually derived and
pave the way for the derivation of the covariant expression.
The effective action Γ½φ� satisfies the following implicit

functional integro-differential equation:

exp

�
i
ℏ
Γ½φ�

�

¼
Z

½Dϕ�M½ϕ�exp
�
i
ℏ

�
S½ϕ�þδΓ½φ�

δφa ðφa−ϕaÞ
��

: ð3:4Þ

Equation (3.4) may be derived by substituting (3.2) and
(3.3) in (3.1). Evidently, solving (3.4) exactly is prohibi-
tively hard. Fortunately, it is possible to solve for Γ½φ�
in a perturbative loopwise expansion with the help of
the background field method [43], where we split the
quantum field ϕa into a background component, which we
treat classically, and a quantum perturbation. Similarly,
we expand Γ½φ� ¼ S0½φ� þ ℏΓð1Þ½φ� þ ℏ2Γð2Þ½φ� þ � � �. At
each loop order, the path integral can be evaluated
explicitly. In detail, at one- and two-loop order, we have

Γð1Þ½φ� ¼ i lnM½φ� − i
2
ln det S;ab½φ�; ð3:5Þ

Γð2Þ½φ� ¼ 1

8
ΔabΔcdS;abcd−

1

12
ΔabΔcdΔefS;aceS;bdf; ð3:6Þ

where a comma ;a ≡ δ=δϕa indicates a functional deriva-
tive with respect to the field ϕa and

Δab ≡
�

δ2S
δϕaδϕb

�−1
ð3:7Þ

is the propagator.
As we shall explore in detail in Sec. V, (3.6) can be

represented graphically by the Feynman diagrams

ð3:8Þ

Note that Γð2Þ½φ� contains only 1PI graphs. Other possible
one-particle reducible diagrams, such as

ð3:9Þ

evaluate to zero and so do not contribute to the final
expression (3.8).
For our theory to be fully reparametrization invariant, we

require that the effective action be a scalar under repar-
ametrizations of the mean fields

φa → φ̃a ¼ φ̃aðφÞ: ð3:10Þ
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We saw above that the explicit dependence of the generat-
ing functional on the fields φa spoils the covariance, and as
a result, such a transformation will not leave (3.5) and (3.6)
invariant. This occurs because the difference φa − ϕa does
not transform as a vector in configuration space, spoiling

the covariance of the term δΓ½φ�
δφa ðφa − ϕaÞ in (3.4).

Similarly, the presence of ordinary functional derivatives
in (3.5) and (3.6) induces extra terms in the expression for
Γð1Þ and Γð2Þ, which means that the expression for the
effective action is not a configuration-space scalar. The
parametrization dependence of the effective action can be
seen explicitly in Appendix A.

IV. VILKOVISKY AND DEWITT’S SOLUTION:
THE COVARIANT EFFECTIVE ACTION

The VDW effective action formalism [29,39,40,44–47]
was developed in order to address the problems of non-
covariance of the ordinary effective action that were out-
lined in the previous section. Unlike the conventional
approach, this formalism does not unduly privilege a
particular frame. In this section, we review the key results
of the VDW formalism.
As noted in Sec. III, the noninvariance of the ordinary

effective action stems from the term δΓ
δφa ðϕa − φaÞ in (3.4),

which is not a configuration-space scalar. Vilkovisky’s
proposal [39] was therefore to replace the difference
ϕa − φa with a two-point quantity Σa½φ;ϕ� that transforms
as a vector with respect to the mean field φ, a scalar with
respect to the quantum field ϕ and satisfies Σa½ϕ;ϕ� ¼ 0.
Making this replacement in (3.4) gives

exp

�
i
ℏ
Γ½φ�

�

¼
Z

½Dϕ�M½ϕ�exp
�
i
ℏ

�
S½ϕ�þδΓ½φ�

δφa Σa½φ;ϕ�
��

: ð4:1Þ

There are no frame-dependent terms in (4.1) and therefore
this newly defined action is fully frame invariant.
Vilkovisky’s original proposal was to use Σa½φ;ϕ� ¼

σa½φ;ϕ�, where σa½φ;ϕ� is the tangent vector to the
geodesic connecting φ and ϕ evaluated at φ. The affinely
normalized tangent vector can be found by solving

σb½φ;ϕ�∇bσ
a½φ;ϕ� ¼ σa½φ;ϕ�; ð4:2Þ

along with the boundary conditions

σa½φ;ϕ�jφ¼ϕ ¼ 0;

∇bσ
a½φ;ϕ�jφ¼ϕ ¼ δABδ

ðDÞðxA − xBÞ≡ δab; ð4:3Þ

where∇a is the covariant derivative as defined in (2.11) and
is taken to act on the first argument φ. It is possible to

expand σa½φ;ϕ� in terms of the configuration-space con-
nection Γa

bc½φ� as

−σa½φ;ϕ� ¼ −ðφa − ϕaÞ

þ 1

2
Γa
bc½φ�ðφb − ϕbÞðφc − ϕcÞ þ � � � : ð4:4Þ

However, σa is not the only possible choice of two-point
quantity that satisfies the required properties to make the
action frame invariant. In fact, any superposition of tangent
vectors

Σa½φ;ϕ� ¼ ðC−1½φ�Þab σb½φ;ϕ� ð4:5Þ

will do. We therefore need to introduce another requirement
to fix the matrix Ca

b.
For theories with a flat configuration space, we can

always go to a frame in which the metric is Euclidean and
all the connections vanish. In such a frame, there should be
no nontrivial field-space effects and thus the VDWeffective
action should agree with the ordinary effective action
calculated in the previous section. It can be shown [48]
that this requirement forces us to choose Ca

b ¼ δab for such
theories. However, for theories with nonzero configuration-
space curvature, no such frame exists and so a different
condition is required to fix Ca

b.
The choice made by DeWitt [40] is the condition of

vanishing tadpoles

hΣa½φ;ϕ�iΣ ¼ 0; ð4:6Þ

where the expectation value is defined as

hF½φ;ϕ�iΣ ¼ exp
�
−
i
ℏ
Γ½φ�

�Z
½Dϕ�M½ϕ�F½φ;ϕ�

× exp

�
i
ℏ

�
S½ϕ� þ δΓ½φ�

δφa Σa½φ;ϕ�
��

: ð4:7Þ

This choice was made for two main reasons. First, it allows
the effective action to be calculated perturbatively as a sum
of 1PI Feynman diagrams [49]. Second, when the formal-
ism is extended to gauge theories, (4.6) is vital in ensuring
that the resulting effective action is independent of the
choice of gauge-fixing conditions [44,48].
In order to satisfy (4.6), we find that we require [40]

Ca
b½φ� ¼ h∇bσ

a½φ;ϕ�iΣ
¼ hδab −

1

3
Ra
cbd½φ�σc½φ;ϕ�σd½φ;ϕ� þ…iΣ: ð4:8Þ

Here Ra
cbd is the Riemann tensor of the configuration-

space manifold. Notice that the Riemann tensor for a flat
manifold is Ra

cbd ¼ 0, and thus we recover Vilkovisky’s
original proposal in this case.
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We can use the background field method to expand (4.1)
perturbatively, exactly as we did for the ordinary effective
action (3.4). This gives us the following equations for the
one- and two-loop corrections to the VDW effective
action [48]:

Γð1Þ½φ� ¼ −
i
2
ln det∇a∇bS; ð4:9Þ

Γð2Þ½φ� ¼ 1

8
ΔabΔcd∇ða∇b∇c∇dÞS

−
1

12
ΔabΔcdΔefð∇ða∇c∇eÞSÞð∇ðb∇d∇fÞSÞ;

ð4:10Þ

where Δab ¼ ð∇a∇bSÞ−1 is the covariant propagator and
the parentheses ð…Þ denote symmetrization with respect to
the indices enclosed. Notice that Γð1Þ and Γð2Þ are both now
invariant under a frame transformation (3.10) as expected.
It was noted in [48,49] that the VDW effective action

defined in (4.1) does not generate the covariant correlation
functions of φ in its current form. In order to achieve this,
we must instead define

exp

�
i
ℏ
Γ̃½φ;φ0�

�

¼
Z

½Dϕ�M½ϕ�

×exp

�
i
ℏ

�
S½ϕ� þ δΓ̃½φ;φ0�

δφa ðΣa½φ0;ϕ�−Σa½φ0;φ�Þ
��

;

ð4:11Þ

where φ0 is an arbitrary base point.
The effective action in (4.11) depends explicitly on the

base point φ0, and so one may question its uniqueness.
However, as shown in [49], this explicit dependence of
Γ̃½φ;φ0� on φ0 gets cancelled against the implicit depend-
ence of φ ¼ φðφ0Þ evaluated at the same base point, i.e.,

δ

δφa
0

Γ̃½φðφ0Þ;φ0� ¼ 0: ð4:12Þ

Hence, Γ̃½φðφ0Þ;φ0� is independent of φ0.
As a consequence, one may consider a simplified

scheme, in which φ0 is identified with φ, such that
Σa½φ0;φ� vanishes on the rhs of (4.11). In this simplified
scheme, we recover the VDW effective action, where
Γ½φ� ¼ Γ̃½φ;φ�. However, when calculating higher order
n-point correlation functions, the above identification of φ0

with φ must be made only after any covariant differ-
entiation with respect to φ in order to avoid introducing
spurious terms.

For brevity, we shall only present the VDW effective
action (4.1) in this paper. Nevertheless, it is straightforward
to introduce a base point and generalize to (4.11) by simply
making the replacement,

Σa½φ;ϕ� → Σa½φ0;ϕ� − Σa½φ0;φ�: ð4:13Þ

It is important to note that, on shell, we have δΓ
δφa ¼ 0, in

which case the expressions for the ordinary effective action
(3.4) and the VDW effective action (4.1) are identical.
Thus, we are guaranteed to get the same results for on-shell
observables regardless of whether we use the ordinary
effective action (3.4) or the VDW effective action (4.1).
This also means that any parametrization dependence that
arises when using the ordinary effective action must vanish
when the calculations are performed on shell. We show
some examples of this in Appendix A.
The fact that the VDW formalism remains covariant off

shell is important for a few reasons, even if off-shell
quantities will never appear in observables. First, from a
geometric point of view, we expect covariance to be
satisfied for the entirety of the configuration space, not just
the geodesics. The ordinary approach is parametrization-
independent only for a severely restricted subspace (the on-
shell region), and so theVDWapproach is required to restore
covariance for the whole configuration space. Second, off-
shell formulations of QFTs have many important applica-
tions, such as in supersymmetry [50] and the analysis of
quantum anomalies [51]. Finally, inflationary observables
are often computed in the slow-roll approximation [52].
Such an approximation forces us to perform calculations in
the off-shell regime.

V. COVARIANT FEYNMAN RULES

In the previous section, we showed how the quantum
effective action can be constructed in a fully covariant way.
However, in practice, radiative corrections are often calcu-
lated perturbatively with the help of Feynman diagrams. As
we will show in this section, usual Feynman diagrams are
also inherently noncovariant. As such, their form depends
on the parametrization used to calculate them. They should
therefore be replaced with an alternative, fully covariant
method of calculating Feynman rules. Such a covariant
expansion was first developed by Honerkamp [53–55] in
the context of chiral pion theories, but can be readily
extended to any scalar field theory as shown below. In this
section, we provide an explicit derivation of the formalism
before applying it to specific examples in Appendices A, B,
and C.
We first review how ordinary Feynman diagrams may be

employed to calculate correlation functions (as well as
S-matrix elements through the Lehmann-Symanzik-
Zimmermann reduction formula [56]). The derivation
can be found in most textbooks on QFT (see, e.g., [57]),
but our treatment here most closely follows [58,59].
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In the path-integral formulation of QFT, a correlation
function in the presence of a source J is given by

hϕaϕb…;Ji¼
R ½Dϕ�M½ϕ�ðϕaϕb…Þei

ℏS½ϕ0þϕ�þJaϕa

R ½Dϕ�M½ϕ�ei
ℏS½ϕ0þϕ�þJaϕa ; ð5:1Þ

where ϕ0 is an arbitrary point around which we quantize—
usually taken to be the classical vacuum. This can be
calculated using the generating functional Z½J� defined in
(3.1). In terms of this generating functional, the correlation
function becomes

hϕaϕb…; Ji ¼ 1

Z½J�
�

δ

δJa

δ

δJb
…

�
Z½J�: ð5:2Þ

In order to perform perturbative calculations, we use a
Taylor series expansion of the action

S½ϕ0 þ ϕ� ¼
X
N

SðNÞ
a1…aNϕ

a1…ϕaN ; ð5:3Þ

where

SðNÞ
a1…aN ¼ 1

N!

δNS
δϕa1…δϕaN

				
ϕ0

: ð5:4Þ

The constant term Sð0Þ gives factors which cancel out in
(5.1) and therefore we will therefore ignore it. We will also

take ϕ0 to be the classical vacuum so that we have Sð1Þa ¼ 0.
The lowest order nontrivial term in our expansion is
therefore

S½ϕ0 þ ϕ� ≈ Sð2Þabϕ
aϕb; ð5:5Þ

about which we shall expand the generating func-
tional Z½J�.
We must also Taylor expand the path-integral measure.

Using Vilkovisky’s suggestion of M½ϕ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detGab

p
, we

find [29]

M½φ0 þ φ� ¼ 1þ δðDÞð0Þ
Z

dDx
ffiffiffiffiffiffi
−g

p
Tr lnGAB½ϕðxÞ�

þ… : ð5:6Þ

From this expansion, we see that all nontrivial effects of the
measure are proportional to δðDÞð0Þ. This is a simple
divergence equal to the total volume of the spacetime
manifold and, as such, will be removed by our regulari-
zation procedure. Therefore, the functional form of the
measure will have no impact on perturbative results and so
we can set M ¼ 1.
With this knowledge, and the expansion given in (5.4),

we can write

Z½J� ¼ exp

�
i
ℏ

X
N>2

SðNÞ
a1…aN

δ

δJa1
…

δ

δJaN

�

×
Z

½Dϕ�e i
ℏ2
Sð2Þab ϕ

aϕbþJaϕa

: ð5:7Þ

The functional integral is now Gaussian and so can be
calculated explicitly. The result is

Z½J� ¼ N exp

�
i
ℏ

X
N>2

SðNÞ
a1…aN

δ

δJa1
…

δ

δJaN

�

× exp ð−iℏJaΔabJbÞ; ð5:8Þ

where Δab is the inverse of Sð2Þab , often known as the
propagator, and N is an irrelevant normalization factor.
Expanding out the two exponentials, we see that the

correlation function (5.2) is

hϕaϕb…;Ji¼ N
Z½J�

�
δ

δJa

δ

δJb
…

�

×
Y
N>2

�X∞
VN¼0

1

VN!

�
i
ℏ
SðNÞ
a1…aN

δ

δJa1
…

δ

δJaN

�
VN
�

×
X∞
P¼0

1

P!
ð−iℏJcΔcdJdÞP: ð5:9Þ

Feynman diagrams [60] are a beautiful graphical way to
keep track of the nonzero terms in (5.9). If we represent
each propagator by a line,

ð5:10Þ

and each term of the expansion (5.3) with a vertex,

ð5:11Þ

then each term in (5.9) can be expressed as a diagram with
P propagators and VN vertices of order N. Calculating the
correlation function then simply amounts to summing up
all possible diagrams with the correct number of external
legs. Finally, it can easily be shown that the prefactor N

Z½J� on
the rhs of (5.9) has the effect of removing all diagrams that
are not fully connected.
The above derivation is very elegant and has been used

extensively in QFT calculations. However, it is not repar-
ametrization invariant. This is because, as we have seen, the
quantity ϕa is not a configuration-space vector. Therefore,
it will not transform in a covariant manner and cannot be
contracted to form reparametrization-invariant quantities.
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This means that the individual terms on the rhs of (5.3)
will change under a field redefinition. Although the full
sum will remain invariant (since the lhs is a configuration-
space scalar), the individual terms will mix into each other
and hence any finite truncation of the sum will not be
invariant. Moreover, the term Jaϕa in (3.1), as well as the
definition of the correlation function (5.1), is not field
covariant. As such, their form is dependent on our choice of
parametrization. Some examples of the parametrization
dependence of ordinary Feynman calculations are shown in
Appendix A.
It is therefore clear that a new, covariant approach to

Feynman diagrams is required if we are to calculate
quantum corrections in a fully covariant manner. The
simplest way to achieve such invariance is to replace the
coordinate ϕa with a configuration-space vector, much like
we did in Sec. IV. However, in contrast to the previous
section, we will employ Vilkovisky’s original choice and
choose it to be the tangent vector in configuration space
σa½ϕ0;ϕ0 þ ϕ�. We shall therefore calculate the covariant
correlation functions

hσaσb…; Jiσ ¼
R ½Dσ�ðσaσb…Þei

ℏS½ϕ0þϕ�þJaσaR ½Dσ�ei
ℏS½ϕ0þϕ�þJaσa

; ð5:12Þ

where the suppressed arguments of σa are ½ϕ0;ϕ0 þ ϕ� in
all cases. Notice that ½Dϕ�M½ϕ� ¼ ½Dσ� and thus the
measure is trivial in this case.
We note that σa½ϕ0;ϕ0 þ ϕ� ¼ ϕa þOðϕ2Þ, and there-

fore the correlation functions (5.1) and (5.12) have the same
pole structure. This means that the renormalized on-shell

S-matrix elements

YE
I¼1

lim
k2I→m2

I

k2I −m2
I

Z
1
2

I

hσaðk1Þσbðk2Þ…; 0iσ

¼
YE
I¼1

lim
k2I→m2

I

k2I −m2
I

Z
1
2

I

hϕaðk1Þϕbðk2Þ…; 0i ð5:13Þ

are identical [61]. Here E is the number of external fields in
the correlation function, and mI and ZI are the (renormal-
ized) mass and wave function renormalization of particle I,
respectively. Off shell, however, the correlation functions
(5.1) and (5.12) will not be equal in general.
Note that we should continue to use the correlation

functions (5.12) to calculate S-matrix elements even in the
presence of field-space curvature. The correlation functions
of DeWitt’s modified two-point quantity Σ give only linear
combinations of (5.13), as can be seen from (4.5), and
therefore should not be used.
Let us modify the definition of the generating function to

make it frame invariant,

Z̃½J� ¼
Z

½Dσ�ei
ℏS½ϕ0þϕ�þJaσa½ϕ0;ϕ0þϕ�: ð5:14Þ

We then find that the correlation functions are given by

hσaσb…; Jiσ ¼
1

Z̃½J�
�

δ

δJa

δ

δJb
…

�
Z̃½J�: ð5:15Þ

Finally, we consider an alternative, but equivalent, covar-
iant expansion of the action [39], given by

S½ϕ0 þ ϕ� ¼
X
N

S̃ðNÞ
a1…anσ

a1 ½ϕ0;ϕ0 þ ϕ�…σan ½ϕ0;ϕ0 þ ϕ�;

ð5:16Þ

where

S̃ðNÞ
a1…an ¼

1

N!
∇ða1…∇anÞSjϕ0

ð5:17Þ

and ð� � �Þ refers to symmetrization over all indices. Now,
since σa is a genuine field-space vector, all S̃ðNÞ are fully
covariant field-space tensors, and every term in (5.16) is
independently reparametrization invariant.
We can repeat the same derivation as above to calculate

the correlation functions graphically by using Feynman
diagrams. Now, however, the Feynman rules must be
calculated covariantly with the propagator being given by

ð5:18Þ

and the vertex factors given by

ð5:19Þ

Notice that the Feynman rule is symmetrized over its
indices. This is because only the symmetrized version of
(5.17) appears in (5.16). For (5.11), this symmetrization
had no effect since the ordinary functional derivative is
already symmetric. However, for theories with curved field
space, covariant functional derivatives do not commute and
as a result, this symmetrization is vital in fixing the order of
differentiation.
In Appendices A, B, and C, we perform some explicit

calculations using the covariant Feynman approach, dem-
onstrating its relation to results obtained in the ordinary
approach.

VI. THE GEOMETRIC STRUCTURE OF GRAVITY

So far, we have treated gravity as a background and have
not considered the metric gμν to be a field. However, the
Vilkovisky-DeWitt covariant approach explored in the
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previous sections can be readily applied to tensor fields
[17,39,62]. We therefore promote gμν to become a fully
dynamical field. Doing so will lead us to the construction of
the field space for gravitational theories. This space is a
Riemannian manifold and is distinct from the manifold of
spacetime. The goal of this section is to illustrate the
geometrical features of gravity as described by general
relativity.
We begin by examining the action for general relativity,

described by the Einstein-Hilbert action,

S ¼ −
1

2

Z
dDx

ffiffiffiffiffiffi
−g

p
R: ð6:1Þ

We use the standard definitions

Γα
μν ¼

gαβ

2
ðgβν;μ þ gμβ;ν − gμν;βÞ;

Rα
μβν ¼ Γα

νμ;β − Γα
βμ;ν þ Γα

βλΓλ
νμ − Γα

νλΓλ
βμ;

Rμν ¼ Rα
μαν;

R ¼ gμνRμν ð6:2Þ
for the spacetime Christoffel symbols, Riemann tensor,
Ricci tensor, and Ricci scalar, respectively.
This action is, famously, nonrenormalizable [63,64].

Because of this, the construction of a UV-complete quan-
tum theory of gravity has yet to be achieved and remains
one of the most important open problems in physics.
Performing such a construction is far beyond the scope
of this paper and, as such, we make no attempt to solve the
issue of nonrenormalizability. However, we believe that the
issues identified in this section, in particular the curvature
of the field space of GR, will be important to consider in
any future worked aimed at solving these problems.
For D-dimensional gravity, the DðDþ 1Þ=2 degrees of

freedomof the field spacewill be represented by an unordered
pair of spacetime indices ðμνÞ. In order to maintain consis-
tencywith theposition of the indices,we take the fundamental
field to be gμν. Thismeans that δgμν is a contravariant vector in
field space and δgμν is a covariant vector.
As discussed in Sec. II, the field-space metric can be

explicitly calculated from the classical action (6.1) by using
(2.3). However, there is a subtlety with gravity, stemming
from its gauge freedom. This freedom requires us to add to
the action a gauge-fixing term of the form

SGF ¼ −
γ

2

Z
dDx

ffiffiffiffiffiffi
−g

p
χμgμνχν: ð6:3Þ

Here, χμ ¼ 0 is the gauge-fixing condition and γ is a non-
negative constant. When we apply (2.3) to the sum of (6.1)
and (6.3), we get the metric2

GðμνÞðρσÞ ¼
1

2
ðgμρgσν þ gμσgρν − αgμνgρσÞ; ð6:4Þ

where α ¼ αðχμ; γÞ is a constant that depends on the gauge-
fixing condition χμ and the constant γ. For example, in de
Donder gauge gρσΓμ

ρσ ¼ 0, we have α ¼ 2 − γ.
Because χμ and γ are both arbitrary, we need another

condition to fix α. The condition we choose is

ðG−1ÞðμνÞðρσÞ ¼ GðμνÞðρσÞ ≡ gαμgβνgκρgλσGðαβÞðκλÞ; ð6:5Þ

where ðG−1ÞðμνÞðρσÞ is the inverse metric satisfying

GðμνÞðρσÞðG−1ÞðρσÞðκλÞ ¼ 1

2
ðδμρδνσ þ δμσδνρÞ: ð6:6Þ

Mathematically, this condition is useful, since it means that
there is no difference between raising ðμνÞ indices with the
spacetime metric or the field-space metric.
The inverse metric can be calculated from (6.6) and is

found to be

ðG−1ÞðμνÞðρσÞ ¼1

2

�
gμρgνσþgμσgρν−

2α

Dα−2
gμνgρσ

�
: ð6:7Þ

The solution to (6.5) is therefore3

α ¼ 4

D
: ð6:8Þ

Thus, in four dimensions, (6.4) reduces to

GðμνÞðρσÞ ¼ Pμνρσ ≡ 1

2
ðgμρgσν þ gμσgρν − gμνgρσÞ; ð6:9Þ

where Pμνρσ is Vilkovisky’s metric for gravity, derived in
[39] by different considerations.
Note that this differs from the DeWitt metric [67], which

imposes a time slicing condition and focuses only on the
spatial part of the spacetime metric. In contrast, our
calculation considers all components of the spacetime
metric equally. This allows the metric (6.9) to transform
as a tensor under diffeomorphisms of the full spacetime.
We note that the metric (6.9) can be projected onto the

space of gauge orbits if one wants to maintain manifest
gauge invariance of the VDW effective action [39]. While
gauge dependence of the effective action is an important
topic, and indeed was one of the original motivations for
Vilkovisky’s work, it runs parallel to our objective of frame
invariance and has been much studied in the literature
[29,44,46,68,69]. For simplicity, we shall therefore ignore

2Note that we can also arrive at (6.4) up to an irrelevant
normalization simply by enforcing that GðμνÞðρσÞ transforms as a
spacetime tensor and is symmetric under μ ↔ ν and ρ ↔ σ.

3The solution α ¼ 0 also allows satisfies this equation.
However, we choose to use the solution in (6.8), since it agrees
with Vilkovisky’s original calculation [39] in D ¼ 4, as well as
other results in the literature [65,66].

FINN, KARAMITSOS, and PILAFTSIS PHYS. REV. D 102, 045014 (2020)

045014-10



this complication in the remainder of the paper. The
configuration-space metric (6.9) is good enough to achieve
our goal of manifest reparametrization invariance.
We are now equipped to determine the curvature

of the field space for gravity. The expressions for the
curvature tensors are identical to those for spacetime, but
with spacetime indices replaced with field-space indices.
Thus, the field-space Christoffel symbols and Riemann
tensor are given as

ΓðαβÞ
ðμνÞðρσÞ ¼

1

2
Pαβγδð∂ðμνÞPγδρσ þ ∂ðρσÞPμνγδ − ∂ðγδÞPμνρσÞ;

ð6:10Þ

RðμνÞðαβÞðρσÞðγδÞ ¼ ∂ðρσÞΓ
ðμνÞ
ðγδÞðαβÞ − ∂ðγδÞΓ

ðμνÞ
ðρσÞðαβÞ

þ ΓðμνÞ
ðρσÞðκλÞΓ

ðκλÞ
ðγδÞðαβÞ − ΓðμνÞ

ðγδÞðκλÞΓ
ðκλÞ
ðρσÞðαβÞ;

ð6:11Þ

respectively, where ∂ðμνÞ ≡ ∂=∂gμν. Correspondingly, the
field-space Ricci tensor and Ricci scalar for gravity are
given by

RðαβÞðγδÞ ¼ RðμνÞðαβÞðμνÞðγδÞ;

R ¼ PαβγδRðαβÞðγδÞ: ð6:12Þ

To cope with the complexity of this calculation, we
employed the symbolic computer algebra system
CADABRA2 [70,71]. In this way, we find the following
explicit forms for the Riemann tensor RðμνÞðαβÞðρσÞðγδÞ
(shown in Appendix D), the Ricci tensor:

RðμνÞðρσÞ ¼
1

4
gμνgρσ −

D
8
gμρgνσ −

D
8
gμσgνρ ð6:13Þ

and the Ricci scalar

R ¼ D
4
−
D2

8
−
D3

8
: ð6:14Þ

These tensors are all nonzero (except whenD ¼ 1, which is
expected since one-dimensional curvature is impossible).
Therefore, this shows that gravity has a genuinely curved
field space. Indeed, we can see from (6.14) that the field
space is always negatively curved. It would be interesting
to explore whether this negative curvature is the origin for
the nonconvergence of the path integral for pure gravity.

VII. THE COSMOLOGICAL FRAME PROBLEM
IN SCALAR-TENSOR THEORIES

After studying scalar field theories and gravitational
theories separately, we now wish to combine the methods
of the previous sections and look at theories with both
scalar fields and gravity. In the following two sections, we

will therefore construct a covariant formalism for scalar-
tensor theories with an action of the form (1.1).
However, before we do so, we must address the

cosmological frame problem, which stems from a subtlety
regarding spacetime-diffeomorphism invariance in scalar-
tensor theories. Diffeomorphism invariance is normally
achieved by identifying the graviton field gμν as the metric
of spacetime and thus defining the spacetime line element as

ds2 ¼ gμνdxμdxν: ð7:1Þ

However, when gμν is taken to be a dynamical field, the rhs
of (7.1) is no longer reparametrization invariant. Indeed, it
picks up a conformal factor Ω2 under a conformal trans-
formation (1.4). In contrast, the spacetime line element ds2

is a measurable quantity and so must be invariant under
reparametrizations of the fields.
Previous authors [10,17,72] have dealt with this (either

explicitly or implicitly) by choosing a “preferred frame” in
which the frame-dependent relation (7.1) holds. Different
choices of this preferred frame lead to different quantum
corrections for otherwise identical theories, even when
these corrections are calculated on shell.
In order to avoid the cosmological frame problem, we

shall use a different, frame invariant, definition of the
metric of spacetime. The most general such definition that
does not require the introduction of any new spacetime
tensors and has no momentum dependence is

ḡμν ≡ gμν
l2ðϕðxÞÞ ; ð7:2Þ

where ḡμν is the metric of spacetime and l is a (generally
spacetime dependent) length scale. In this paper, we will
restrict ourselves to the case where l depends on x only
through the scalar fields ϕ in which case lðϕÞ represents
another nonsingular model function in our theory.4

Provided that l transforms as

l → l̃ ¼ Ωl ð7:3Þ

under conformal transformations (1.4) and does not trans-
form under scalar field redefinitions (1.5), then ḡμν is frame
invariant. Thus, we may define a spacetime line element

ds̄2 ¼ ḡμνdxμdxν; ð7:4Þ

which is both frame and diffeomorphism invariant. This
line element is also dimensionless, in contrast to the
standard definition, and therefore qualifies as an observable
according to the Buckingham-π theorem [73]. Previous

4Note that if we do not make this assumption, then lðxÞ would
act as a new field in the theory and we would have to quantize it
accordingly.
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authors [9,74–76] have defined similar frame-invariant line
elements, but have assumed a particular form of l. To the
best of our knowledge, we are the first to identify lðϕÞ as a
freely selectable model function that must be specified
when defining a scalar-tensor theory.
At first glance, it may appear that l has no physical

meaning. After all, it does not appear anywhere in the
classical action (1.1) and so will have no effect on any
classical observable. However, as we will show below, l
does appear in the functional measure of the path integral
and therefore the choice of l will have an observable
impact at the quantum level.
Specifying a particular form of lðϕÞ is mathematically

equivalent to specifying a preferred frame in the ordinary
approach. The frame in which the metric of spacetime
ḡμν ¼ gμν is the one in which lðϕÞ ¼ 1, which we shall
refer to as the metric frame. The effects of a nontrivial lðϕÞ
are therefore equivalent to the so-called frame discriminant
calculated in [17].
However, in our formalism the metric frame is no more

preferred than any other and thus we are able to write down
a scalar-tensor theory of gravity without ever singling out a
particular frame. This distinction, although subtle, is vital
in constructing a unique, reparametrization-invariant effec-
tive action. In addition, by defining a reparametrization-
invariant spacetime line element (7.4), we can see explicitly
how the form of lðϕÞ affects the theory, as we will show in
the following sections.
Note that in general the Einstein frame and the metric

frame are different, and it is not always possible to choose a
frame both with minimal coupling fðϕÞ ¼ 1, and with
lðϕÞ ¼ 1. Because of this, themetric ḡμν will not, in general,
obey Einstein’s equations even in the Einstein frame. This is
to be expected. Einstein’s equations are the equations of
motion that arise upon varying the action with respect to the
gravitational tensor field gμν. It is therefore this tensor field
that obeys Einstein’s equations (in the Einstein frame), and it
is gμν that will form part of our grand field space.
Let us therefore clarify the difference between ḡμν and

gμν. The metric ḡμν is the metric of spacetime and therefore
appears in the spacetime line element (7.4) as well as in the
construction of all spacetime-invariant objects. Conversely,
gμν is a field, on the same footing as the scalar fields ϕ, and
thus appears in all equations of motion as well as in
Feynmann diagrams. When solving the equations of
motion to calculate the field configuration, it is gμν that
must be calculated and thus Einstein’s equations may still
be used (provided one works in the Einstein frame).

VIII. THE GRAND FIELD SPACE

In this section, we will construct an augmented field-
space manifold that incorporates both the scalar fields ϕA

and the gravitational tensor field gμν [17,77]. To this end,
we shall define the following coordinate chart:

ΦI ¼
�
gμν

ϕA

�
; ð8:1Þ

where I ¼ fμν; Ag. We call this augmented space the grand
field space.
As mentioned in the Introduction, any physical observ-

able should be invariant under reparametrizations of the
fields. Such reparametrizations are nothing but diffeomor-
phisms of the grand field space. In fact, the transformations
(1.3) can be reexpressed in this notation as

ΦI → Φ̃IðΦÞ: ð8:2Þ

We now equip our grand field space with a metric. We
wish to define the metric in such a way that both spacetime-
diffeomorphism invariance and invariance under (8.2)
remain manifest. To do so, we first define the invariant
Lagrangian

L̄ ¼ lDL ð8:3Þ

such that

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L ¼

Z
dDx

ffiffiffiffiffiffi
−ḡ

p
L̄: ð8:4Þ

This definition allows L̄ to be invariant under both
spacetime diffeomorphisms and (8.2). This is in contrast
to the standard Lagrangian L, which picks up a conformal
factor under the conformal transformation (1.4).
We can now define the metric of the grand field space in

a way analogous to (2.3). Explicitly, we have

GIJ ¼
ḡμν
D

∂2L̄
∂ð∂μΦIÞ∂ð∂νΦJÞ : ð8:5Þ

It is important to note that the effective Planck length l is
now part of the definition of the field-space metric, since it
appears in the definition of ḡμν.
For the scalar-tensor theory described by (1.1) in four

dimensions, the field-space metric is

GIJ ¼ l2

�
fPμνρσ − 3

4
f;Bgμν

− 3
4
f;Agρσ kAB

�
; ð8:6Þ

where Pμνρσ is defined in (6.9).
We note that, as discussed in Sec. VI, the metric (8.6)

does not follow directly from (8.5), unless the gauge-fixing
term takes the specific form discussed in Sec. VI [c.f. (6.8)].
However, previous works [29,44,46,48,68,69] have shown
that one can define a projected field-space metric from GIJ
in (8.6), such that the resulting VDW effective action is
independent of the gauge-fixing condition. One can there-
fore use the techniques developed in these works in order
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construct this projected field-space metric (8.6) in a
unique way.
This metric can be used to define a frame-invariant field-

space line element, given by

dσ2 ¼ GIJdΦIdΦJ: ð8:7Þ

By construction, this line element is both spacetime-diffeo-
morphism invariant and frame invariant. We can also define
the connection on the grand field space as

ΓI
JK ¼ 1

2
GIL½∂JGLK þ ∂KGJL − ∂LGJK�; ð8:8Þ

where ∂I ≡ ∂=∂ΦI . The form of the connection can then be
used to construct the field-space covariant derivative

∇JXI ¼ ∂XI

∂ΦJ þ ΓI
JKX

K;

∇JXI ¼
∂XI

∂ΦJ − ΓK
JIXK; ð8:9Þ

with straightforward generalization to higher order tensors.
Anything constructed out of field-space tensors and the
field-space covariant derivative will be invariant under (8.2)
provided all indices are properly contracted.

IX. THE GRAND CONFIGURATION SPACE

We now wish to extend the geometric construction of the
grand field space in order to take into account the spacetime
dependence of the fields. This means that each coordinate
now comes with a spacetime argument,

Φi ≡ΦIðxIÞ: ð9:1Þ

As in Sec. II, the lowercase Latin index i ¼ fI; xIg is a
continuous index and runs over all points in spacetime as
well as all the fields in our theory.
In order to maintain both manifest diffeomorphism and

frame invariance, we will make use of the invariant
spacetime metric (7.2) and define the spacetime line
element as in (7.4). We will also use the corresponding
invariant volume element when performing spacetime
integrals and from now on, integrations of repeated
configuration-space indices will be performed as

XiYi ≡X
I

Z
dDxI

ffiffiffiffiffiffi
−ḡ

p
XIðxIÞYIðxIÞ: ð9:2Þ

This choice of spacetime metric directly affects the
definition of both the functional derivative and the func-
tional determinant, and we will be explicit in defining them
such that their dependence on the metric is made clear.
With the help of the spacetime metric ḡμν, we can define

functional differentiation as follows:

δ̄F½ΦðxÞ�
δ̄ΦðyÞ ≡ lim

ϵ→0

F½ΦðxÞþϵδ̄ðDÞðx−yÞ�−F½ΦðxÞ�
ϵ

; ð9:3Þ

where we have defined

δ̄ðDÞðxÞ≡ lDδðDÞðxÞ ð9:4Þ

such that

Z
dDx

ffiffiffiffiffiffi
−ḡ

p
δ̄ðDÞðxÞ ¼ 1: ð9:5Þ

With the definition (9.4), δ̄ðDÞðxÞ is both diffeomorphism
and frame invariant. As a result, functional derivatives
defined as in (9.3) will inherit their transformation proper-
ties from the functional F and field Φ.
Notice that in general ḡμν depends on all of the grand

field-space coordinates ΦI and therefore so does δ̄ðDÞðxÞ.
This means that derivatives of the form

δ̄

δ̄Φi δ̄
ðDÞðxÞ ≠ 0 ð9:6Þ

will be nonzero. This is not just a consequence of the
definition (7.2). Even with the standard noninvariant
definitions (i.e., with gμν identified as the metric), the
diffeomorphism-invariant Dirac delta function cannot be
treated as a constant once the metric is dynamical.
The condition (9.6) causes the functional derivative (9.3)

not to commute. This is not a problem. As the calculation in
Sec. V shows, Feynman rules must be calculated in a
symmetric way and therefore there is no ambiguity stem-
ming from the order of derivatives. Furthermore, δ̄ðDÞðxÞ
has no dependence on ∂μΦi and so the definition of the
configuration-space metric (2.7) can be generalized
straightforwardly as shown below.
The choice of metric ḡμν also affects how we take the

functional determinant, since for an infinite-dimensional
matrix, the determinant involves an integral over the
continuous degrees of freedom. We must therefore explic-
itly choose which volume measure we will use to count
them. Using the invariant volume element derived from
(7.4), the functional determinant is given by

detðMxyÞ≡ exp

�
i
Z

dDx
ffiffiffiffiffiffi
−ḡ

p
lnðMÞxx

�
: ð9:7Þ

We have written both the functional derivative and the
functional determinant with an overbar to emphasize that
these are defined with respect to the metric ḡμν. Using any
other metric (e.g., gμν) would lead to a nonequivalent
definition and, in general, would not maintain diffeomor-
phism and frame invariance.
These definitions allow us to define the metric of the

grand configuration space as follows:
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Gij ≡ ḡμν
D

δ̄2S
δ̄ð∂μΦiÞδ̄ð∂νΦjÞ

¼ GIJðxIÞδ̄ðDÞðxI − xJÞ: ð9:8Þ

The uniqueness of the configuration-space metric was
questioned by DeWitt (see discussion in Sec. 14 of [40]).
Indeed, without the introduction of the model function l,
there would be an ambiguity as to which spacetime metric
shouldbeused in the definition (9.8) [17]. In our prescription,
however, l is a fundamental part of the theory, no less
important than f, kAB, or V. Therefore, for a given theory, l
must have a fixed functional form and hence the definition
(9.8) is unique. Nonetheless, as we discuss below, one needs
to take care in eliminating any further dependence of the
effective action on gauge-fixing conditions.
With the help of the grand configuration-space metric,

we may write down the line element of the grand configu-
ration space as

DΣ2½Φ�≡ GijDΦiDΦj

¼
Z

dDx
ffiffiffiffiffiffi
−ḡ

p
GIJðxÞDΦIðxÞDΦJðxÞ: ð9:9Þ

We can also construct the configuration-space connection,
given by the Christoffel symbols

Γi
jk ≡ 1

2
Gil

�
δ̄Gjl

δ̄Φk þ
δ̄Glk

δ̄Φj −
δ̄Gjk

δ̄Φl

�
ð9:10Þ

and hence a covariant functional derivative

∇̄jXi ¼ δ̄Xi

δ̄Φj þ Γi
jkX

k;

∇̄jXi ¼
δ̄Xi

δ̄Φj − Γk
jiXk; ð9:11Þ

with straightforward generalization to higher order tensors.
The invariant configuration-space line element allows us

to construct an invariant path-integral volume element

½D̄Φ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGijÞ

q
: ð9:12Þ

Note that the functional integral element ½D̄Φ� ¼Q
x;I dΦIðxÞ is the product of integral elements at every

point in spacetime. How these points are counted depends
crucially on the metric of spacetime and therefore ½D̄Φ�
will depend on the model function l. We have highlighted
this by denoting it with an overbar to emphasize the choice
of ḡμν as the metric of spacetime.
We can see the dependence explicitly using the identityQ
i Ai ¼ exp ðPi lnðAiÞÞ, which holds for discrete prod-

ucts and can be extrapolated to continuous products.
We therefore have

½D̄Φ� ¼ exp

�X
I

Z
dDx

ffiffiffiffiffiffiffiffiffiffiffiffi
−ḡðxÞ

p
lnðDΦIðxÞÞ

�
: ð9:13Þ

Finally, we must ensure that gauge fixing is done in a
reparametrization-invariant manner. We therefore modify
the gauge-fixing term (6.3) to be

SGF½Φ� ¼ −
γ

2

Z
dDx

ffiffiffiffiffiffi
−ḡ

p
χμðΦÞḡμνχνðΦÞ: ð9:14Þ

Defined in this way, the gauge-fixing condition χμðΦÞ is a
grand configuration-space scalar.
We note that the gauge-fixing condition is, in general, a

function of not only the tensor field gμν, but also the scalar
fields ϕ. Even if a gauge condition χμ that depends only on
gμν is chosen in some frame (e.g., the De Donder gauge
used earlier), it will pick up a dependence on ϕ after a
frame transformation.
At this stage, one may worry whether the gauge-fixing

term in (9.14) will threaten the uniqueness of (9.8). However,
previous works in the literature [29,44,46,48,68,69] have
shown that it is possible to define a projected configuration-
space metric leading to an effective action which is inde-
pendent of the gauge-fixing condition. Therefore, one can
employ the techniques developed in these earlier works, as
well as the model function lðϕÞ to define such a projected
configuration-space metric in a well-defined and unique
manner.
Gauge fixing also requires us to include the Faddeev-

Poppov determinant [78] in our path-integral measure. This
can be defined in a frame-invariant way as

VFP ¼ det

�
δ̄χμðxÞ
δ̄ξνðyÞ

�
; ð9:15Þ

where ξμ are the gauge parameters. With this term included,
we see that the path-integral measure is

M½Φ� ¼ VFP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGijÞ

q
: ð9:16Þ

We can use the above constructions to define a diffeo-
morphism and frame-invariant effective action,

exp

�
i
ℏ
Γ½φ�

�

¼
Z

½D̄Φ�M½Φ� exp
�
i
ℏ

�
S½Φ� þ δ̄Γ½φ�

δ̄φi Σi½φ;Φ�
��

;

ð9:17Þ

where φ ¼ ðgμν;ϕÞ collectively denotes the grand fields of
(8.1) and S½Φ� includes both the classical action (1.1) and
the gauge-fixing term (9.14). The effective action defined in
this way satisfies the important property
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Γ½φ;lðϕÞ; fðϕÞ; kABðϕÞ; VðϕÞ�
¼ Γ½φ̃ðφÞ; l̃ðϕÞ; f̃ðϕÞ; k̃ABðϕÞ; ṼðϕÞ�: ð9:18Þ

In (9.18), the transformations of φ̃, l̃, and (f̃, k̃AB, Ṽ) are
given by (8.2), (7.3), and (1.6), respectively. Thus, by
construction, Γ is manifestly frame invariant.
Given that the configuration-space metric Gij depends

on the definition of ḡμν, there will be nontrivial effects of
the model function lðϕÞ at the quantum level arising from
the measure (9.12).
These effects are equivalent to those calculated in [17].

However, here we provide an alternative interpretation.
Instead of arising from a mismatch between the frame that
we choose to work in and some preferred frame in which
the theory is quantized, the “frame discriminant” is a
simply the one-loop effects of the model function lðϕÞ.
In our approach, the choice of measure does not introduce
an ambiguity in the definition of the effective action.
Instead, it is part of the theory itself. Therefore, theories
with different measures will have different but unique
effective actions.

X. SUMMARY OF THE FRAME
COVARIANT FORMALISM

In this section, we summarize our frame covariant
formalism for scalar-tensor theories. To fully specify a
scalar-tensor theory, we require the following four model
functions:
(1) The effective Planck length l
(2) The effective Planck mass f
(3) The scalar field-space metric kAB
(4) The scalar potential V

In detail, with these model functions, the classical action is
given by

S½Φ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
−
fR
2

þ kAB
2

∂μϕ
A∂μϕB − V

�

þ SGF½Φ�; ð10:1Þ

where Φ are the grand fields given by (8.1), spacetime
indices are contracted with gμν, and SGF is given by (9.14).
We can then extract the metric of the grand configuration
space, Gij, from the classical action using

Gij½Φ� ¼ ḡμν
D

δ̄2S½Φ�
δ̄ð∂μΦIðxIÞÞδ̄ð∂νΦJðxJÞÞ

; ð10:2Þ

where ḡμν ¼ gμν=l2 is the metric of spacetime as given
in (7.2).
We can calculate the quantum effects of this theory

in two equivalent ways. One way is to use the VDW
action Γ½φ�. This can be calculated from the implicit
equation (9.17).

An alternative way in which quantum corrections can be
calculated is through the use of covariant Feynman dia-
grams as described in Sec. V. In this approach, Feynman
rules are calculated in a covariant manner with the
propagators given by

ð10:3Þ

and the vertices given by

ð10:4Þ

where Φ0 is the base point of the perturbation, usually
taken to be the classical vacuum. Feynman diagrams can
then be calculated in the usual way.
Both of the above approaches agree with the standard

calculation for on-shell observables, but they additionally
preserve reparametrization invariance off shell.

XI. CONCLUSIONS

We have developed a covariant formalism for scalar-
tensor theories of quantum gravity. By extending the
Vilkovisky-DeWitt effective action and the geometric
structure of the configuration space, we have constructed
a quantum field theory that is manifestly frame and
spacetime-diffeomorphism invariant.
This is in contrast to previous approaches, which required

us to identify a preferred frame in which the expression for
the ordinary effective action (3.4) holds. The noncovariance
of (3.4) leads to an inequivalence in the standard approach
between theories with different choices of preferred frame.
This is the root of the cosmological frame problem.
Our formalism resolves this issue by identifying a new

model function lðϕÞ that relates the spacetime metric ḡμν
and the gravitational tensor field gμν. Choosing the form of
lðϕÞ in our formalism is equivalent to choosing a preferred
frame in the conventional approach but does not unduly
privilege a particular frame.
In addition, we have seen how the choice of spacetime

metric affects the contraction of DeWitt indices, the
definition of functional determinants as well as the nor-
malization of the Dirac delta function, and the definition of
functional derivatives. In many cases, the l dependence in
these definitions will cancel out and the results of calcu-
lations using our conventions will reduce to those obtained
using the standard definitions involving gμν. Indeed, we see
that the only dependence of l in (9.17) that does not cancel
is in the definition of the configuration-space metric (9.8).
However, the conventions we have laid out in this paper

are essential if we want to keep both diffeomorphism
invariance and frame invariance manifest. Without a
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frame-invariant definition of the spacetime metric, it would
be impossible to define configuration-space tensors that
transform correctly. For example, the standard functional
derivative δF=δΦi does not transform as a configuration-
space vector, even if F is a configuration-space scalar. In
addition, in order to obtain frame covariant correlation
functions from the effective action, wemust use the covariant
functional derivatives as defined in (9.11).
The freedom of choosing a preferred frame still exists in

our formalism. However, it is now explicitly part of the
content of the theory, captured by the model function l, as
opposed to being expressed by singling out a particular
parametrization. After all, the relation between the tensor
field gμν and the metric of spacetime ḡμν is a physical one
and not just a convention. Two theories with the same
classical action, but a different relation between gμν and ḡμν
cannot be related by a frame transformation (8.2) and will,
in general, give rise to different quantum predictions.
Our formalism therefore draws a clear dividing line

between the content of a theory and its representation. Once
we have picked a particular form for the model functions f,
kAB, V, and l, we have uniquely specified our QFT and
therefore all of its physical predictions. However, we may
still change the representation of the theory by performing a
frame transformation (8.2). The model functions will be
different after this change of frame, but the QFT as defined
by Γ½φ� will still have the same functional form as shown in
(9.18) and will make the same predictions.
We note that when l is treated as a model function,

the definition (9.8) determines the configuration-space
metric in a way that does not depend on the parametrization
and does not rely on any preferred frame. Although we
have not discussed it here in detail, previous works
[29,44,46,48,68,69] have shown that any dependence on
the gauge-fixing condition can also be removed. Hence, the
configuration-space metric for a scalar-tensor theory can be
uniquely defined. Once the configuration space has been
defined, the definition (9.17) fully determines the VDW
effective action. Consequently, the VDWeffective action is
uniquely determined from the four model functions f, kAB,
V, and l.
Since the covariant quantum effective action (9.17) is

frame invariant and the ordinary effective action (3.4) is
not, it is clear that they can only agree in at most one frame.
This frame is one in which l ¼ 1 and additionally all the
scalar fields are canonically normalized. However, such a
canonical frame does not exist for theories with intrinsic
field-space curvature. Thus, for such theories, the usual
approach is not suitable in any frame and we must adopt the
formalism developed in this paper in order to maintain
reparametrization invariance.
This observation may be important for the development

of a UV-complete quantum theory of gravity. The Einstein-
Hilbert action for gravity (6.1) is nonrenormalizable, which
has long prevented such a theory being constructed. As we

have shown in Sec. VI, general relativity features a curved
field space. This curvature alters the calculation of quantum
corrections and must therefore be taken into account in
order to UV complete the theory.
By identifying the model function l, we have identified

the source of the cosmological frame problem. It is not
possible to write down a unique effective action without
specifying the form of l, and any formalism that does not
include this model function will have an inherent ambiguous
choice of frame. Any frame transformation that does not take
into account the transformation of l will lead to a different
theory with different quantum predictions. This implies that
the classical action is not sufficient to fully define a QFT.
In this paper, we have taken reparametrization invariance

as a fundamental guiding light. We argue that a theory
should not depend on the way it is parametrized, and
therefore Lagrangians related by a frame transformation are
different expressions of the same underlying theory. Based
on this idea, we have developed a formalism in which the
invariance of physical predictions under such field repar-
ametrizations is made manifest. Our formalism can be used
to derive a quantum effective action that is manifestly
invariant under frame transformations that include l.
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APPENDIX A: THEORY WITH A COMPLEX
SCALAR FIELD

As an example to highlight the parametrization depend-
ence of the standard formulation of QFTs, we consider the
example of a single complex scalar field ϕ with action

S ¼
Z

d4x½∂μϕ∂μϕ −m2jϕj2 − λjϕj4�: ðA1Þ

We choose our parameters withm2<0 so that the vacuum is

hϕi ¼ 1ffiffiffi
2

p ρ0 ≡
ffiffiffiffiffiffiffiffiffi
−m2

2λ

r
: ðA2Þ

This theory has Uð1Þ symmetry ϕ → eiθϕ, which is
spontaneously broken by the vacuum (A2). Therefore, the
perturbations will have two modes, a massive Higgs mode
and a massless Goldstone mode.
For simplicity, we will assume a flat, static, background

spacetime with Minkowski metric ημν¼diagð1;−1;−1;−1Þ.
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1. Standard approach: Linear parametrization

The complex field ϕ contains 2 real degrees of freedom,
which we can parametrize in terms of its real and imaginary
parts as

ϕ ¼ ϕ1 þ iϕ2ffiffiffi
2

p : ðA3Þ

In this parametrization, the action (A1) is

S ¼
Z

d4x

�
1

2
∂μϕ1∂μϕ1 þ

1

2
∂μϕ2∂μϕ2

−
1

2
m2ðϕ2

1 þ ϕ2
2Þ −

λ

4
ðϕ2

1 þ ϕ2
2Þ2

�

and the vacuum (A2) is

hϕ1i ¼ ρ0; hϕ2i ¼ 0: ðA4Þ

As stated before, the perturbations consist of a massive
Higgs mode, corresponding to perturbations of ϕ1, and a
massless Goldstone mode corresponding to perturbations
of ϕ2.

a. Effective potential

Let us start by calculating the one-loop correction to the
effective action via (3.5). The inverse propagator for this
theory is

δ2S
δϕAðxÞδϕBðyÞ ¼

�−∂2 −m2 − 3λϕ2
1 − λϕ2

2 −2λϕ1ϕ2

−2λϕ1ϕ2 −∂2 −m2 − 3λϕ2
2 − λϕ2

1

�
δð4Þðx − yÞ: ðA5Þ

Without loss of generality, we can use theUð1Þ symmetry to set ϕ2 ¼ 0. Thus, the one-loop effective action evaluated for
a static configuration (the effective potential) in the MS renormalization scheme is

VeffðφÞ≡ −
1

V4

Γ½ϕ1 ¼ φ;ϕ2 ¼ 0�

¼ VðφÞ − i
2
ln detGAB þ i

2
ln det½∂2 þm2 þ 3λφ2� þ i

2
ln det½∂2 þm2 þ λφ2�

¼ 1

2
m2φ2 þ 1

4
λφ4 þ 1

64π2

�
ðm2 þ 3λφ2Þ2

�
ln

�
m2 þ 3λφ2

μ2

�
−
3

2

�
þ ðm2 þ λφ2Þ2

�
ln

�
m2 þ λφ2

μ2

�
−
3

2

��
; ðA6Þ

where V4 is the total four-volume of spacetime. Notice that,
for a static configuration, ln detGAB ¼ 0 in dimensional
regularization.

b. Feynman rules and renormalization

The standard calculation (5.11) leads to the following
Feynman rules:

ðA7Þ

where

m2
1 ≡m2 þ 3λρ20 ¼ −2m2 ðA8Þ

is the mass of the Higgs mode. Here we represent the Higgs
mode ϕ1 by a solid line and the Goldstone mode ϕ2 by a
dashed line.
Let us use these Feynman rules to calculate the renorm-

alization of the Higgs mass. At one-loop order, we have

ðA9Þ
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Here we have defined the following two integrals:

Aðm2Þ≡
Z

d4k
iπ2

1

k2 −m2
; ðA10Þ

B0ðp2; m1; m2Þ≡
Z

d4k
iπ2

1

k2 −m2
1

1

ðpþ kÞ2 −m2
2

; ðA11Þ

which we can perform using dimensional regularization
scheme to give

Aðm2Þ ¼ m2

�
CUV þ 1 − ln

�
m2

μ2

��
; ðA12Þ

B0ðp2; m1; m2Þ

¼ CUV −
Z

1

0

dx ln

�
m2

1ð1 − xÞ þm2
2x − xð1 − xÞp2

μ2

�
;

ðA13Þ

where μ is the renormalization scale and

CUV ¼ 2

4 −D
− γE þ lnð4πÞ ðA14Þ

is the UV divergence that is cancelled by counterterms in
the MS renormalization scheme. Here D ¼ 4 − 2ϵ, and
γE ¼ 0.577… is the Euler-Mascheroni constant. We there-
fore have

Γϕ1ϕ1
ðpÞ ¼ ðp2 −m2

1Þ þ
λm2

1

4π2
ln

�
p2

μ2

�

−
λm2

1

ð4πÞ2
�
−4CUV þ 4

þ 9

Z
1

0

dx ln

�
xðx − 1Þp2 þm2

1

μ2

��
: ðA15Þ

Note that Að0Þ ¼ 0 and thus the third and final diagrams in
(A9) give no contribution.
From (A15), we see that there is no wave function

renormalization, as expected, and the beta function of the
Higgs mass is

βm2
1
¼ −μ

∂Γ̂2

∂μ ¼ λm2
1

2π2
: ðA16Þ

We can also calculate the Goldstone self-energy. At one
loop, we have

ðA17Þ

Since (A17) has no dependence on μ, the Goldstone mass is
not renormalized and remains zero in accordance with
Goldstone’s theorem.
Finally, let us compute the coupling renormalization

using the Callan-Symanzic equation [79,80]

�
μ
∂
∂μþ βλ

∂
∂λþ βm2

∂
∂m2

�
Ṽeff ¼ 0; ðA18Þ

where

ṼeffðφÞ ¼ VeffðφÞ − Veffð0Þ ðA19Þ

is the modified effective potential. From the expression for
Veff in (A6), we have, at leading order,

1

4
βλφ

4 −
1

4
βm2

1
φ2

−
ðm2 þ 3λφ2Þ2 þ ðm2 þ λφ2Þ2 − 2m4

32π2
¼ 0; ðA20Þ

where we have used the identity βm2
1
¼ −2βm2, which

derives from (A8).
Rearranging and using the expression for βm2

1
from

(A16), we see that the beta function for the coupling
renormalization, evaluated at the vacuum φ ¼ ρ0, is

βλ ¼
5

4π2
λ2: ðA21Þ

2. Standard approach: Nonlinear parametrization

Alternatively, we could have used a nonlinear para-
metrization of the complex field
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ϕ ¼ 1ffiffiffi
2

p ρei
σ
ρ0 : ðA22Þ

In this parametrization, the action (A1) is

S ¼
Z

d4x
�
1

2
∂μρ∂μρþ 1

2

�
ρ

ρ0

�
2∂μσ∂μσ −

1

2
m2ρ2 −

λ

4
ρ4
�

ðA23Þ

and the vacuum (A2) is

hρi ¼ ρ0; hσi ¼ 0: ðA24Þ

In this parametrization, the Higgs mode is in the direction
of ρ and the Goldstone mode is in the direction of σ.

a. Effective potential

Let us calculate the one-loop effective action in this
parametrization using (3.5). The inverse propagator in this
parametrization is

δ2S
δϕaðxÞδϕbðyÞ ¼

� −∂2 þ ∂μσ∂μσ −m2 − 3λρ2 −2∂μρ∂μσ − 2ρ∂2σ − 2ρ∂μσ∂μ

−2∂μρ∂μσ − 2ρ∂2σ − 2ρ∂μσ∂μ −2ρ∂μρ∂μ − ρ2∂2

�
δð4Þðx − yÞ: ðA25Þ

As before we can, without loss of generality, use the Uð1Þ symmetry to set σ ¼ 0. Again, we will consider a static
configuration in order to calculate the effective action. In the MS scheme, this is given by

VeffðφÞ≡ −
1

V4

Γ½ρ ¼ φ; σ ¼ 0�

¼ 1

2
m2φ2 þ λ

4
φ4 − ln det ½∂2 þm2 þ 3λφ2� − ln det ½φ2∂2�

¼ 1

2
m2φ2 þ λ

4
φ4 þ 1

64π2

�
ðm2 þ 3λφ2Þ2

�
ln

�
m2 þ 3λφ2

μ2

�
−
3

2

��
: ðA26Þ

Notice that (A6) and (A26) differ off shell, highlighting
the parametrization dependence of the standard effective
action. However, on shell when φ ¼ ρ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2=λ

p
, the

two expressions agree.
Note that if we had instead taken m2 > 0, the vacuum

would lie at φ ¼ 0. Surprisingly, in this case, (A6) and
(A26) do not agree even on shell. This is due to a
peculiarity with the particular coordinate chart (A22).
The point ϕ ¼ 0 is multiply covered by this chart and
therefore represents a coordinate singularity—a point
where the chart cannot be trusted.
To rectify this problem, we can define an offset para-

metrization ϕ ¼ 1ffiffi
2

p ðρ̃eiσ̃ − δÞ so that the vacuum ϕ ¼ 0 is

no longer at the singular point. In the offset parametriza-
tion, the effective potential is

Veffðρ̃¼ φ̃; σ̃ ¼ 0Þ

¼ 1

2
m2ðφ̃− δÞ2 þ λ

4
ðφ̃− δÞ4

þ ðm2 þ 3λðφ̃− δÞ2Þ2
64π2

�
ln

�
m2 þ 3λðφ̃− δÞ2

μ2

�
−
3

2

�

þ δ2

φ̃2

ðm2 þ λðφ̃− δÞ2Þ2
64π2

�
ln

�
δ

φ̃

m2 þ λðφ̃− δÞ2
μ2

�
−
3

2

�
;

ðA27Þ
which we can see does agree with (A6) at φ̃ ¼ δ. Thus, in
order to calculate the effective action (A26) at φ ¼ 0, we
should take the limit φ̃ → δ → 0 in (A27), which gives us

Veffð0Þ ¼
2m2

64π2

�
ln

�
m2

μ2

�
−
3

2

�
ðA28Þ

in agreement with (A6). This expression will be needed for
the Callan-Symanzic equation.

b. Feynman rules and renormalization

The standard Feynman rules from (5.11) in this para-
metrization are

ðA29Þ

As before, the solid line represents the Higgs mode and the
dashed line represents the Goldstone mode. As expected,
these Feynman rules are different from (A7), showing
explicitly the parametrization noninvariance of this approach.
If we calculate the Higgs mass renormalization with this

parametrization, we will find
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ðA30Þ

We see that, as expected, this differs from (A15) off shell.
In fact, due to the presence of the p4 divergence, this theory
is naively nonrenormalizable. However, if we only consider
on-shell momentum, so that p2 ¼ m2

1 the two expressions,
(A15) and (A30), are equal. As a result, the beta function
will be given by (A16).
We can also calculate theGoldstonemass renormalization,

ðA31Þ

As before, this expression differs from the expression
obtained using the linear parametrization (A17) and also
contains nonrenormalizable terms. However, on shell, when
p2 ¼ 0, we have

Γσσðp2 ¼ 0Þ ¼ 0 ðA32Þ

in agreement with (A17) and the Goldstone mass is not
renormalized as expected by Goldstone’s theorem.
Finally, we look at the coupling renormalization,

which we shall calculate through the Callan-Symanzic
equation (A18) as before. Using the expression (A26)
for the effective action gives us

−
ðm2 þ 3λφ2Þ2 − 2m4

32π2
þ 1

4
βλφ

4 −
1

4
βm2

1
φ2 ¼ 0: ðA33Þ

On shell when φ ¼ ρ0, this becomes identical to (A20),
which means that the beta function for the coupling
renormalization is

βλ ¼
5

4π2
λ2 ðA34Þ

as before.5

Although the two approaches led to several differences
in the intermediate, off-shell results, as the above calcu-
lation demonstrates, all physical observables are the same
regardless of the parametrization.

3. Covariant approach

We have shown in the main text how to alleviate the
parametrization dependence of quantum calculations by
using an explicitly covariant formalism. Let us now repeat
the above calculations using this formalism to show how
parametrization invariance is maintained.
For the linear parametrization (A3), the field space is

trivial, and so there is no difference between the covariant
approach and the standard (ordinary) approach. Thus, the
VDW effective potential will be (A6), the covariant
Feynman rules will give (A7), and the renormalization
group calculations will be identical to those in Sec. A 1.
We will therefore focus on the nonlinear parametrization

(A22). In this parametrization, the configuration-space
metric (2.7) is

Gab ¼
�
1 0

0 ðρ=ρ0Þ2
�
δð4Þðxa − xbÞ; ðA35Þ

and the nonzero configuration-space Christoffel symbols
can be calculated as

5Note that we had to use (A27) to calculate Veffðφ ¼ 0Þ. Had
we used (A26) instead, the two results would not have agreed. As
stated earlier, this is because the parametrization (A22) features a
coordinate singularity at ρ ¼ 0 and so cannot be trusted there.
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ΓρðzÞ
σðxÞσðyÞ ¼ −

ρðzÞ
ρ20

δð4Þðz − xÞδð4Þðz − yÞ; ðA36Þ

ΓσðzÞ
ρðxÞσðyÞ ¼

1

ρðzÞ δ
ð4Þðz − xÞδð4Þðz − yÞ: ðA37Þ

a. Vilkovisky-DeWitt effective potential

Let us first calculate the Vilkovisky-DeWitt effective
action for this theory using (4.9). The covariant 2 × 2
inverse propagator is

∇a∇bS ¼
�−∂2 þ ∂μσ∂μσ −m2 − 3λρ2 ρ∂μσ∂μ

ρ∂μσ∂μ −ρ∂μρ∂μ − ρ2∂2 þ ρ2∂μσ∂μσ −m2ρ2 − λρ4

�
δðxI − xJÞ; ðA38Þ

where ϕa ¼ ðρ; σÞ. As before, we can use theUð1Þ symmetry to set σ ¼ 0without loss of generality. Wewill also consider a
static configuration as before. Therefore, the one-loop VDW effective potential in the MS scheme reads

VeffðφÞ≡ −
1

V4

Γ½ρ ¼ φ; σ ¼ 0�

¼ 1

2
m2φ2 þ λ

4
φ4 − ln det ½∂2 þm2 þ 3λφ2� − ln det ½∂2 þm2 þ λφ2� − lnðφ2Þ þ ln det½Gab�

¼ 1

2
m2φ2 þ 1

4
λφ4 þ 1

64π2

�
ðm2 þ 3λφ2Þ2

�
ln

�
m2 þ 3λφ2

μ2

�
−
3

2

�
þðm2 þ λφ2Þ2

�
ln

�
m2 þ λφ2

μ2

�
−
3

2

��
; ðA39Þ

where V4 is the four-volume. Observe that the expression
(A39) is identical to (A6). As expected, the Vilkovisky-
DeWitt effective action is independent of parametrization.

b. Covariant Feynman rules and renormalization

With the help of (5.19), we can calculate the covariant
Feynman rules for this theory. We find them to be

ðA40Þ

By construction, these Feynman rules are identical to (A7)
and thus all RG calculation are identical both on and
off shell.

APPENDIX B: CURVED
FIELD-SPACE EXAMPLE

We wish to consider a simple toy model with genuine
field-space curvature in order to study the effect this has on
the quantum observables. Since it is impossible to have
curvature in one dimension, we consider a theory with two
fields ρ and σ, and take σ to be an angular variable with a
shift symmetry. In order to avoid ghosts, the metric of the

field space must be positive definite. Consequently, we take
our field-space metric to be

GAB ¼
�
1 0

0 ðρ=ρ0Þ2n
�
: ðB1Þ

The nonzero Christoffel symbols of this metric are easily
calculated,

Γρ
σσ ¼ −n

ρ2n−1

ρ2n0
; Γσ

ρσ ¼
n
ρ
: ðB2Þ

From these, we obtain the nonzero components of the field-
space Riemann tensor,

Rρ
σρσ ¼ −

nðn − 1Þ
ρ2

ρ2n

ρ2n0
; Rρ

σσρ ¼ nðn − 1Þ
ρ2

ρ2n

ρ2n0
;

Rσ
ρρσ ¼

nðn − 1Þ
ρ2

; Rσ
ρσρ ¼ −

nðn − 1Þ
ρ2

: ðB3Þ

We see that provided n ≠ 0, 1, the Riemann tensor is
nonzero and thus the field space is curved. Notice that
n ¼ 0 and n ¼ 1 correspond to the two flat field-space
examples we have looked at already in Appendix A 1 and
A 2, respectively.
The simplest model with curvature is therefore the case

n ¼ 2, which has the Lagrangian

L ¼ 1

2
∂μρ∂μρþ 1

2

�
ρ

ρ0

�
4∂μσ∂μσ −

1

2
m2ρ2 −

λ

4
ρ4: ðB4Þ
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We will consider the symmetry-broken vacuum,

hρi ¼ ρ0 ≡
ffiffiffiffiffiffiffiffiffi
−m2

λ

r
; ðB5Þ

as we have done before.

1. Standard approach

We start by calculating the renormalization group flow in
the standard way by looking at the standard Feynman rules
(5.11). For the Lagrangian (B4), these are given by

ðB6Þ

wherem2
1 ≡m2 þ 3λρ20 as before. Higher order interactions

also exist; however, they will not be necessary for the one-
loop calculations we will perform.
First, we will calculate the self-energy of the ρ field. This

is given schematically by

ðB7Þ

and calculated to be

iΓρρðpÞ ¼ iðp2 −m2
1Þ þ

3iλ
ð4πÞ2 Aðm

2
1Þ − 18i

λ2ρ20
ð4πÞ2m2

1

Aðm2
1Þ þ 12

λ

m2
1

Z
d4k
ð2πÞ4 þ 18i

λ2ρ20
ð4πÞ2 B0ðp2; m1; m1Þ

− 6
1

ρ20

Z
d4k
ð2πÞ4 þ

2ip4

ð4πÞ2ρ20
B0ðp2; 0; 0Þ

¼ iðp2 −m2
1Þ þ

iλm2
1

ð4πÞ2
��

3þ 4
p4

m4
1

�
CUV þ 6 ln

�
m2

1

μ2

�
− 4

p4

m4
1

ln
�
p2

μ2

�

− 9

Z
1

0

dx ln

�
m2

1 − xð1 − xÞp2

μ2

�
− 6þ 8

p4

m4
1

�
: ðB8Þ

As expected, the nonrenormalizability of the theory leads to
a UV-divergent term proportional to p4, which cannot be
absorbed into a counterterm. In order to compare to the
covariant approach, we calculate the on-shell self-energy as
follows:

Γρρðp2 ¼m2
1Þ¼

λm2
1

ð4πÞ2
�
−7CUV−7 ln

�
m2

1

μ2

�
þ20−3

ffiffiffi
3

p
π

�
:

ðB9Þ
We now compare to the Goldstone self-energy, which is

given schematically by

ðB10Þ

and calculated to be

iΓσσðpÞ ¼ ip2þ 6ip2

ð4πÞ2ρ20
Aðm2

1Þ−12i
p2λ

ð4πÞ2m2
1

Aðm2
1Þ−16

p2

ρ20m
2
1

Z
d4k
ð2πÞ4þ4i

�
3p2−m2

1

ð4πÞ2ρ20
Aðm2

1Þþ
ðp2−m2

1Þ2
ð4πÞ2ρ20

B0ðp4;m1;0Þ
�

¼ ip2þ4i
3p2−m2

1

ð4πÞ2ρ20
m2

1

�
CUVþ1− ln

�
m2

1

μ2

��
þ4i

ðp2−m2
1Þ2

ð4πÞ2ρ20

�
CUVþ1−

Z
1

0

dx ln

�
xp2−m2

1

μ2

��
: ðB11Þ
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As before, due to the nonrenormalizability of the theory,
this expression contains divergences that cannot be ab-
sorbed by a counterterm. However, on shell, we have
p2 ¼ 0 and the expression reduces to

Γσσðp2 ¼ 0Þ ¼ 0; ðB12Þ

implying that the Goldstone boson receives no correction to
its mass as expected.
Finally, it is instructive to calculate the tree-level

S-matrix element for ρρ → σσ. Taking into account the
contributing diagrams, we find

ðB13Þ

where s ¼ ðk1 þ k2Þ2, t ¼ ðk1 − k3Þ2, u ¼ ðk1 − k4Þ2 are
the standard Mandelstam variables. Note that in the high
energy limit, Mðρρ → σσÞ ∝ −2s=ρ20.

2. Covariant approach

We now perform analogous calculations in the covariant
formalism using (5.19). Here we show a limited set of the
covariant Feynman rules for this theory,

ðB14Þ

There are also an infinite set of higher order vertices, which
we do not calculate since they do not affect the one-loop
calculations we make in this section.
Finally, there is the ρρσσ vertex. Due to the curvature of

the field space, there is an ambiguity in the order in which
the covariant derivatives are taken when calculating this
vertex. In Sec. V, we argued that the correct approach was
to symmetrize over all possible orderings. Nevertheless, we
calculate each ordering explicitly. We have

ðB15Þ

where the ordering is denoted under the diagram. In the
above, we did not display the other orderings of the two
individual ρ and σ particles when calculating these rules,
which may be obtained by exchanging k1 ↔ k2 and/
or k3 ↔ k4.
It is interesting to calculate the form of the vertices when

taking all external particles to be on shell. We set

k21 ¼ k22 ¼ m2
1 ¼ 2λρ20; k23 ¼ k24 ¼ 0: ðB16Þ

Conservation of momentum then implies that

0 ¼ k1 þ k2 þ k3 þ k4; k1 · k2 ¼ k3 · k4 −m2
1;

k1 · k3 ¼ k2 · k4; k1 · k4 ¼ k2 · k3: ðB17Þ

Employing these relations, we see that on shell, all six
orderings are equal,

ðB18Þ

Notice that the expression on (B18) is invariant under
k1 ↔ k2 and k3 ↔ k4.
We have found that ordering does not matter when the

particles are on shell. However, any quantum calculation
will involve off-shell particles and for these, the ordering
will make a difference. It is therefore important to use the
fully symmetrized rule,
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ðB19Þ

as discussed in Sec. V.
Let us now calculate the ρρ and σσ self-energy as we did

above. For the σσ self-energy, we obtain

ðB20Þ

Notice that in the covariant approach, there is no nonrenor-
malizable divergence. If we set the particle on- hell, we get

Γρρðp2 ¼m2
1Þ ¼

λm2
1

ð4πÞ2
�
7CUV − 7 ln

�
m2

1

μ2

�
þ 20− 3

ffiffiffi
3

p
π

�
:

ðB21Þ
This is in agreement with (B9).
In the previous calculation, only the final diagram of

(B20) depends on the ordering of the Feynman rule and it
vanishes regardless of the ordering. As such, the ordering

was not really tested in this calculation. Let us instead
calculate the self-energy of the σ field, which will test the
ordering. This is given by

Before completing this calculation, let us focus on the
last diagram, which is the only one in which the ordering
makes a difference. Although we will eventually symme-
trize over all possible orderings, let us first consider them
all individually,

ðB22Þ

Note that the different orderings of the above diagrams lead
to different results. However, these results converge to a
single expression when the external particles are taken to be
on shell, i.e p2 ¼ 0, despite the fact that the particle in the
loop is off shell. For the diagram with off-shell external
particles, we will use the symmetrized Feynman rule,
which gives

ðB23Þ

In this way, we find

Γσσ ¼ p2 þ 12λ

ð4πÞ2 Að0Þ − 12
λ2ρ20

ð4πÞ2m2
1

Aðm2
1Þ − 8

λ2ρ20
ð4πÞ2m2

1

Að0Þ þ 16
λ2ρ20
ð4πÞ2 B0ðp2; m2

1; 0Þ −
2λ

ð4πÞ2
�
1þ 1

6

p2

m2
1

�
Aðm2

1Þ

¼ p2

�
1 −

λ

3
CUV

�
þ 8λm2

1

ð4πÞ2
�
ln

�
m2

1

μ2

�
−
Z

1

0

dx ln

�
m2

1 − xp2

μ2

�
þ 1

24

p2

m2
1

�
ln

�
m2

1

μ2

�
− 1

��
: ðB24Þ
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For on-shell Goldstone particles, we have

Γσσðp2 ¼ 0Þ ¼ 0 ðB25Þ

in agreement with (B12).
As in Appendix B 1, we calculate the tree-level S-matrix

element for ρρ → σσ in the covariant approach. The
contributing diagrams are

ðB26Þ

As discussed earlier, the ordering in the first diagram does
not matter when all particles are on shell. Therefore, we
have

Mðρρ→ σσÞ

¼ 2

�
2λ−

s
ρ20

�
− 24λ2ρ20

1

s−m2
1

− 16λ2ρ20
1

t
− 16λ2ρ20

1

u

¼ −
2

ρ20

�
3

s2

s−m2
1

þ 2
ðm2

1 − tÞ2
t

þ 2
ðm2

1 − uÞ2
u

�
: ðB27Þ

This result coincides with (B13).

APPENDIX C: EXAMPLE WITH
LINEAR POTENTIAL

We now consider an example with Lagrangian given by

L ¼ 1

2
∂μρ∂μρþ 1

2

�
ρ

ρ0

�
2∂μσ∂μσ − tρρ −

1

2
m2ρ2: ðC1Þ

This has a flat field space—the kinetic part on its own is just
a reparametrization of two canonical kinetic terms.
Additionally, the potential has no interaction terms between
the ρ and σ fields. However, as we shall see, the theory
described by (C1) is nonetheless interacting.
The theory has a symmetry-broken vacuum, which we

parametrize as

hρi ¼ ρ0 ≡ −tρ=m2; hσi ¼ 0: ðC2Þ

We can then calculate the covariant Feynman rules for this
theory using (5.19).
The propagators are

ðC3Þ

where a solid line represents the Higgs mode ρ and a
dashed line represents the Goldstone mode σ.
The three- and four-point interactions are

ðC4Þ

while the five- and six-point interactions are

ðC5Þ

Notice that there is an infinite series of higher-point
vertices, which are proportional to tρ. Moreover, these
infinite series include interactions that are absent in the
standard approach.
To better understand why this theory has an infinite

tower of interactions, we switch to a canonical paramet-
rization and define

ϕ1 ¼ ρ cos

�
σ

ρ0

�
; ϕ2 ¼ ρ sin

�
σ

ρ0

�
: ðC6Þ

Then, (C1) takes the form

L ¼ 1

2
∂μϕ1∂μϕ1 þ

1

2
∂μϕ2∂μϕ2 −

1

2
m2ðϕ2

1 þ ϕ2
2Þ

− tρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
1 þ ϕ2

2

q
: ðC7Þ

With this parametrization, the field-space metric becomes
manifestly Euclidean and thus ordinary and covariant
Feynman rules will be identical. The final term in (C7)
is nonpolynomial and thus has an infinite Taylor series
expansion. This term therefore leads to an infinite tower of
Feynman rules as presented.
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APPENDIX D: FIELD-SPACE RIEMANN TENSOR FOR GENERAL RELATIVITY

In Sec. VI, we have only presented the field-space Ricci tensor and Ricci scalar, but not the full expression for the
Riemann tensorRðμνÞðαβÞðρσÞðγδÞ due to its length. In this Appendix, we explicitly displayRðμνÞðαβÞðρσÞðγδÞ. With the aid of the
symbolic computer algebra system CADABRA2 [70,71], we find that the field-space Riemann tensor for general relativity
reads

RðμνÞðαβÞðρσÞðγδÞ ¼ −
1

32
δμρδνβgσγgαδ −

1

32
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1
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We note that this tensor vanishes for D ¼ 1. This is to be expected since the field space of gravity in one dimension cannot
be anything other than trivial.
Note that these results differ from those reported in [81], where the DeWitt metric was used instead.
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