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We study the self-consistency of the first-order formulation of quantum gravity, which may be attained
by introducing, apart from the graviton field, another auxiliary quantum field. By comparing the forms of
the generating functional Z before and after integrating out the additional field, we derive a set of structural
identities, which must be satisfied by the Green’s functions at all orders. These are distinct from the usual
Ward identities, being necessary for the self-consistency of the first-order formalism. They relate the
Green’s functions involving the additional quantum field to those containing a certain composite graviton
field, which corresponds to its classical value. Thereby, the structural identities lead to a simple
interpretation of the auxiliary field.
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I. INTRODUCTION

The first-order formulation of gauge theories has a
simple form involving only cubic interactions, which are
momentum independent. This simplifies the computations
of the quantum corrections in the usual second-order gauge
theories that involve momentum dependent three-point as
well as higher-point vertices [1–12]. In quantum gravity,
for example, the first-order formulation allows to replace an
infinite number of complicated multiple graviton couplings
present in the second-order Einstein–Hilbert (EH) action
with a small number of simple cubic vertices [7,8]. The EH
action has the form

S ¼ −
1

16πGN

Z
ddx

ffiffiffiffiffiffi
−g

p
gμνRμνðΓÞ; ð1:1Þ

where GN is Newton’s constant, and the affine connection
Γλ
μν may be written in terms of the metric gμν as

Γλ
μν ¼

1

2
gλσðgμσ;ν þ gνσ;μ − gμν;σÞ: ð1:2Þ

The Ricci tensor RμνðΓÞ is given by

RμνðΓÞ ¼ Γρ
μρ;ν − Γρ

μν;ρ − Γσ
μνΓ

ρ
σρ þ Γρ

μσΓσ
νρ: ð1:3Þ

As noted by Einstein and Palatini [13] at the classical level,
it is possible to treat both gμν and Γλ

μν as being independent
quantities. In this first-order action, the equation of motion
for Γλ

μν yields Eq. (1.2). At the quantum level, it has been
shown [7,8] that the radiative corrections computed using
the first-order and second-order EH actions are the same.
In a previous paper [14], we examined a set of structural

identities, which are necessary for the consistency of the
first-order formulation of the Yang–Mills theory. The
purpose of the present work is to extend this analysis
to quantum gravity, where the corresponding structural
identities ensure the self-consistency of the first-order
formulation.
To this end, we introduce a source jμν for the graviton

field and also a source Jλμν for the other auxiliary field,
which is treated as an independent field, and consider the
generating functional Z½J; j� of Green’s functions. We then
compare the functional dependence of Z½J; j� on the
sources in the original first-order formalism with that
obtained after making a suitable shift, which enables
integrating out the auxiliary field. The equality of these
functional forms leads to a set of structural identities among
the Green’s functions, which must be satisfied to all orders.
Such identities are complementary but distinct from the
usual Ward identities, being necessary for the internal
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consistency of the first-order formulation of quantum
gravity.
These identities show that in the first-order formalism the

Green’s functions containing only external graviton fields
are the same as the corresponding ones, which occur in the
second-order formulation. Furthermore, these identities
relate the Green’s functions involving external auxiliary
fields to those involving a certain composite graviton field.
This combination, which corresponds to the classical value
of the auxiliary field, contains graviton fields which are
pinched at the same spacetime point. It is well known
[15–17] that composite fields can lead to short-distance
singularities. In the present case, such singularities are
important for the cancellations of ultraviolet (UV) diver-
gences arising from loop diagrams, which are necessary for
the implementation of the structural identities.
Since calculations in quantum gravity have a great

algebraic complexity, in Sec. II we recast the analysis
done in [14] into an alternative form, which is based on a
simpler diagonal representation of the first-order formu-
lation of the Yang–Mills theory [18]. Such a representation
exhibits similar features to those in quantum gravity, yet it
is easier to handle algebraically. With this insight, we
consider in Sec. III the Lagrangian and the generating
functional of Green’s functions in a corresponding diagonal
representation of the first-order formulation of quantum
gravity [8]. In Sec. IV, we derive a transparent structural
identity, which has been explicitly verified to one-loop
order that clarifies the meaning of the auxiliary field in
this formulation. In Sec. V, we study another structural
identity satisfied by the Green’s functions and examine the
cancellations between the loop UV divergences and the
short-distance singularities arising from the tree diagrams
involving composite fields. A brief discussion of the results
is given in Sec. VI. Several details of one-loop calculations
are outlined in the Appendix.

II. STRUCTURAL IDENTITIES IN
YANG–MILLS THEORY

The first-order formulation of the Yang–Mills theory
involves the gluon Aa

μ and the auxiliary fields Fa
μν whose

dynamics are described by the Lagrangian:

L̃ð1Þ
YM ¼ 1

4
Fa
μνFa μν −

1

2
Fa μνð∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
νÞ:
ð2:1Þ

This form has a single vertex hFAAi but leads to a rather
involved nondiagonal matrix propagator containing the
ðAAÞ, ðFFÞ and the mixed ðFAÞ, ðAFÞ propagators. On
the other hand, if we make in Eq. (2.1) the change of
variable

Fa
μν ¼ H̃a

μν þ ∂μAa
ν − ∂νAa

μ; ð2:2Þ

one obtains the Lagrangian

L̃I
YM ¼ 1

4
H̃a

μνH̃aμν −
1

4
ð∂μAa

ν − ∂νAa
μÞ2

−
g
2
fabcðH̃a

μν þ ∂μAa
ν − ∂νAa

μÞAb μAc ν; ð2:3Þ

which involves two cubic vertices hAAAi, hH̃AAi as well as
two simple propagators ðAAÞ, ðH̃ H̃Þ. The Becchi-Rouet-
Stora-Tyutin renormalization of this diagonal formulation
of the Yang–Mills theory has been implemented to all
orders in Ref. [18] (see also [19–21]). The complete
Lagrangian density for this formulation in covariant
gauges is

LI
YM ¼ L̃I

YM −
1

2ξ
ð∂μAμaÞ2 þ ∂μη̄aðδab∂μ − gfabcAc

μÞηb;

ð2:4Þ

where ξ is a gauge-fixing parameter and η̄a, ηb are ghost
fields. In addition, we will also introduce the external
sources J̃aμν and j̃aμ as follows:

Lsource ¼ J̃aμνH̃a μν þ j̃aμAaμ: ð2:5Þ

The generating functional for Green’s functions is given by
the path integral

Z½J; j� ¼ N
Z

DηDη̄DH̃DA

× exp i

�
Sþ

Z
ddxJ̃aμνH̃a μν þ j̃aμAaμ

�
; ð2:6Þ

where N is a normalization factor and S ¼ R
ddxLI

YM. This
equation has a form which is suitable for functional
differentiation with respect to J̃ and j̃ and, therefore, for
obtaining the Green’s functions.
If we were to set J̃aμν ¼ 0 at the outset (so that we would

consider Green’s functions with only external fields Aa
μ)

and make the change of variable in the functional integral

H̃a
μν → H̃a

μν þ gfabcAb
μAc

ν; ð2:7Þ

then one can integrate out the H̃a
μν field and find that

Z½J̃ ¼ 0; j̃� ¼ Z2½j̃�; ð2:8Þ

where Z2½j̃� is the generating functional for the second-
order theory, characterized by the Lagrangian density

LII
YM ¼ −

1

4
ð∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
νÞ2

−
1

2ξ
ð∂μAμaÞ2 þ ∂μη̄aðδab∂μ − gfabcAc

μÞηb; ð2:9Þ
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together with the source term j̃aμAaμ. This establishes the
important property that the Green’s functions with only
external gluon fields are the same in both approaches.
We now consider using Z½J̃; j̃� with J̃ ≠ 0 and examine

what changes occur in the first-order formalism when there
are external fields H̃a

μν. To this end, we consider in place of
Eq. (2.7), the shift

H̃a
μν → H̃a

μν þ gfabcAb
μAc

ν − 2J̃aμν: ð2:10Þ

This leads, after integrating out the H̃a
μν field, to the

alternative form of the generating functional

Z0½J; j� ¼ N
Z

DηDη̄DA exp i

�Z
ddxðLII

YM

þ gfabcJ̃aμνAbμAcν − J̃aμνJ̃a μν þ j̃aμAaμÞ
�
: ð2:11Þ

This equals to Z2½j̃� in Eq. (2.8) if we set J̃aμν ¼ 0. It is
interesting to note the unusual dependence of Z0½J̃; j̃� on J̃
in Eq. (2.11).
Comparing the forms of Eqs. (2.6) and (2.11) of the

generating functionals and differentiating these with
respect to J̃ and j̃, leads to a set of structural identities
among the Green’s functions, which must be satisfied to
all orders. Such structural identities lead to relations
between the Green’s functions involving H̃-fields and

the Green’s functions that contain the composite fields
gfabcAb

μðxÞAc
νðxÞ. These identities hold both for the finite

as well as for the UV divergent parts of the Green’s
functions. We have verified them explicitly for the diver-
gent contributions to one-loop order using dimensional
regularization in 4 − 2ϵ dimensions.
Taking the functional derivatives of Eqs. (2.6) and (2.11)

with respect to J̃aμνðxÞ and j̃bαðyÞ at J̃ ¼ j̃ ¼ 0 and
equating the results, we obtain the relation

h0jTH̃a
μνðxÞAb

αðyÞj0i ¼ gfadeh0jTAd
μðxÞAe

νðxÞAb
αðyÞj0i:

ð2:12Þ

Equation (2.12) represents a quantum mechanical exten-
sion of the relation H̃a

μν ¼ gfabcAb
μAc

ν, which holds at the
classical level. This structural identity is clearly satisfied in
the tree approximation since the mixed ðH̃AÞ propagator
vanishes in our theory. The right-hand side of Eq. (2.12)
also vanishes at the tree level. To order g2, we find that the
divergent parts on both sides of Eq. (2.12) are, in momen-
tum space, equal to

−
g2CYM

16π2ϵ

5þ ξ

4

δab

k2
ðkμηνα − kνημαÞ: ð2:13Þ

Applying δ2=δJ̃aμνðxÞδJ̃bαβðyÞ to Eqs. (2.6) and (2.11) and
equating the results, leads to

h0jTH̃a
μνðxÞH̃b

αβðyÞj0i ¼ 2iIμν;αβδdðx − yÞ þ g2fab
0c0fbd

0e0 h0jTAb0
μ ðxÞAc0

ν ðxÞAd0
α ðyÞAe0

β ðyÞj0i; ð2:14Þ

where

Iμν;αβ ¼
1

2
ðημαηνβ − ηναημβÞ: ð2:15Þ

This identity is also manifestly satisfied at tree level, where
the first term on the right-hand side of Eq. (2.14) is just
equal to the tree propagator ðH̃ H̃Þ. To order g2, one can
verify, in momentum space, that the divergent part on both
sides of Eq. (2.14) are equal to

−i
g2CYM

16π2ϵ
ð1þ ξÞδabIμν;αβ: ð2:16Þ

It is worth pointing out that in the identities Eqs. (2.12)
and (2.14), the origin of the divergent contributions is
different. On the left-hand side of these equations, UV
divergences come from one-loop graphs, whereas on their
right-hand side short-distance singularities arise from the
pinched tree graphs.
Further differentiations of Eqs. (2.6) and (2.11) with

respect to J̃ and j̃ yield a set of structural identities, which

are complementary to the usual Ward identities. One can
compare the above identities with the ones found in
Ref. [14] in the usual first-order formulation of the
Yang–Mills theory (see, for example, Eqs. (3.1)–(3.2)
and (4.1)–(4.2) in [14]). One can see that the structural
identities obtained in the diagonal representation have a
much simpler form. This feature will be especially useful
for the derivation of the corresponding identities in quan-
tum gravity.

III. DIAGONAL FORMULATION OF
FIRST-ORDER PALATINI ACTION

Instead of using gμν and Γλ
μν as independent fields in the

action of Eq. (1.1), it turns out to be more useful to employ
the independent combinations [7]

hμν ¼ ffiffiffiffiffiffi
−g

p
gμν ð3:1Þ

and
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Gλ
μν ¼ Γλ

μν −
1

2
ðδλμΓσ

νσ þ δλνΓσ
μσÞ: ð3:2Þ

Thus, we arrive at the following Lagrangian density in d
spacetime dimensions

L̃ð1Þ
EH ¼ hμν

κ2

�
Gλ

μν;λ þ
1

d − 1
Gλ

μλG
σ
νσ − Gλ

μσGσ
νλ

�
: ð3:3Þ

In order to proceed, hμν is expanded about a flat metric ημν

(κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGN

p
),

hμνðxÞ ¼ ημν þ κϕμνðxÞ: ð3:4Þ

Equation (3.3) yields a basic vertex hϕGGi (see Eqs. (3.4)
and (3.12) below). However, it leads to an involved non-
diagonal matrix propagator containing ðϕϕÞ, ðGGÞ and the
mixed propagator ðϕGÞ. As in the Yang–Mills theory, it
proves convenient to use a diagonal formulation of the first-
order EH action [8]. This may be achieved by making the
change of variable [compare with Eq. (2.2)]

Gλ
μν ¼ Hλ

μν þ ðM−1Þλμν ρ
πτðh ¼ ηÞhπτ;ρ ; ð3:5Þ

where

ðM−1Þλμν ρ
πτðhÞ ¼ −

1

2ðd − 2Þ h
λρhμνhπτ þ

1

4
hλρðhπμhτν þ hπνhτμÞ −

1

4
ðhτμδρνδλπ þ hπμδ

ρ
νδλτ þ hτνδ

ρ
μδλπ þ hπνδ

ρ
μδλτÞ: ð3:6Þ

In this way, the Lagrangian density Eq. (3.3) may be written in the form

L̃I
EH ¼ 1

2
Hλ

μνM
μν
λ

πτ
ρ ðηÞHρ

πτ −
1

2
ϕμν
;λ ðM−1Þλμν ρ

πτðηÞϕπτ
;ρ

þ κ

2
½Hλ

μν þ ϕαβ
;ρ ðM−1Þραβ λ

μνðηÞ�Mμν
λ

πτ
σ ðϕÞ½Hσ

πτ þ ðM−1Þσπτ υγδðηÞϕγδ
;υ �; ð3:7Þ

where Mμν
λ

πτ
σ ðϕÞ is given by

Mμν
λ

πτ
σ ðϕÞ ¼ 1

2

�
1

d − 1
ðδνλδτσϕμπ þ δμλδ

τ
σϕ

νπ þ δνλδ
π
σϕ

μτ þ δμλδ
π
σϕ

ντÞ

− ðδτλδνσϕμπ þ δτλδ
μ
σϕνπ þ δπλδ

ν
σϕ

μτ þ δπλδ
μ
σϕντÞ

�
: ð3:8Þ

Thus, we see that the Lagrangian Eq. (3.7) involves three
cubic vertices hHϕHi, hϕHϕi, and hϕϕϕi. On the other
hand, it leads only to two uncoupled propagators ðϕϕÞ and
ðHHÞ.
Using the Lagrangian in Eq. (3.7) in the Euler–Lagrange

equation for the field Hλ
μν, we obtain the classical solution

Hλ
μν ¼ −½ðMðηÞ þ κMðϕÞÞ−1κMðϕÞM−1ðηÞ� λμν ρ

πτϕπτ
;ρ :

ð3:9Þ
Since MðηÞ þ κMðϕÞ ¼ Mðηþ κϕÞ, this can be written as

Hλ
μν ¼ ½M−1ðηþ κϕÞ −M−1ðηÞ�λμν ρ

πτϕπτ
;ρ : ð3:10Þ

Substituting (3.10) back into (3.7), we obtain (using
ϕμν
;λ ¼ hμν;λ )

−
1

2
hμν;λ ðM−1Þλμν ρ

πτðhÞhπτ;ρ ; ð3:11Þ

which is just the classical second-order Einstein–Hilbert
Lagrangian. This demonstrates the classical equivalence of
the two formalisms [8].

In order to obtain the propagator of the ϕμν field, we use
the gauge fixing Lagrangian

Lgf ¼ −
1

2ξ
ðϕμν

;ν Þ2: ð3:12Þ

With this gauge fixing, the contributions coming from the
vector ghost fields dν, d̄μ are [22]

Lghost ¼ d̄μ½∂2ημν þ ðϕρσ
;ρ Þ∂ση

μν − ðϕρμ
;ρ Þ∂ν þ ϕρσ∂ρ∂ση

μν

− ð∂ρ∂νϕρμÞ�dν: ð3:13Þ

Thus, the complete diagonal first-order Lagrangian density
becomes

LI
EH ¼ L̃I

EH þ Lgf þ Lghost: ð3:14Þ

Next, we will also introduce the external sources Jμνλ and
jμν as follows:

Lsource ¼ Jμνλ Hλ
μν þ jμνϕμν: ð3:15Þ
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Using the above results, the generating functional for Green’s functions will be given by the Feynman path integral

Z½J; j� ¼ N
Z

DdDd̄DHDϕ exp i

�
Sþ

Z
ddxðJμνλ Hλ

μν þ jμνϕμνÞ
�
; ð3:16Þ

where N is a normalization factor and S ¼ R
ddxLI

EH. This equation has a form which is appropriate for generating the
Green’s functions through the application of functional differentiations with respect to Jμνλ and jμν.
Performing the following shift in the functional integral (3.16)

Hλ
μν → Hλ

μν þ ½M−1ðηþ κϕÞ −M−1ðηÞ�λμν ρ
πτϕπτ

;ρ − ðM−1Þλμν ρ
πτðηþ κϕÞJπτρ ; ð3:17Þ

we obtain

Z0½J; j� ¼ N
Z

DdDd̄DϕDH exp i
Z

ddx

�
1

2
Hλ

μν½MðηÞ þ κMðϕÞ�μνλ πτ
σ Hσ

πτ þ LII
EH

þ Jμνλ ½M−1ðηþ κϕÞ −M−1ðηÞ�λμν ρ
πτϕπτ

;ρ −
1

2
Jμνλ ðM−1Þλμν ρ

πτðηþ κϕÞJπτρ þ jμνϕμν

�
: ð3:18Þ

This enables one to integrate out the auxiliary field Hλ
μν and leads to the alternative form of the generating functional1

Z0½J; j� ¼ N
Z

DdDd̄Dϕ exp i
Z

ddx

�
LII
EH þ Jμνλ ½M−1ðηþ κϕÞ −M−1ðηÞ�λμν ρ

πτϕπτ
;ρ

−
1

2
Jμνλ ðM−1Þλμν ρ

πτðηþ κϕÞJπτρ þ jμνϕμν

�
; ð3:19Þ

where LII
EH is the second-order EH Lagrangian with ghosts and gauge fixing, which may be written as

LII
EH ¼ −

1

2
ϕμν
;λ ðM−1Þλμν ρ

πτðηþ κϕÞϕπτ
;ρ −

1

2ξ
ðϕμν

;ν Þ2 þ Lghost: ð3:20Þ

We remark that the alternative generating functional (3.19)
has a certain similarity to the corresponding functional in
the Yang–Mills theory given by (2.11). The analogy is even
more pronounced if we note that the coefficient of the
source J is just the result found at the classical level given
in Eq. (3.10) for the auxiliary field. We also note though
that unlike Eq. (2.11), the term quadratic in the source J for
the auxiliary field contains field dependency. Using a
similar procedure to that employed in the Yang–Mills
theory [see Eqs. (2.7)–(2.9)], one can show that the Green’s
function with only external gravitons are the same in the
first and second-order formulations.

IV. CONSISTENCY CONDITION FOR THE
AUXILIARY FIELD

Taking the functional derivatives of Eqs. (3.16) and
(3.19) with respect to Jμνλ and jπτ at Jμνλ ¼ jπτ ¼ 0 and
equating the results, we obtain the structural identity

h0jTHλ
μνðxÞϕπτðyÞj0i

¼ h0jT½M−1ðηþ κϕÞ −M−1ðηÞ�λμν ρ
αβϕ

αβ
;ρ ðxÞϕπτðyÞj0i;

ð4:1Þ

where ðM−1Þλμν ρ
αβ is defined in Eq. (3.6). Equation (4.1) is

manifestly satisfied at tree level because its left-hand side
vanishes since there is no mixed Hϕ propagator in the
theory. Similarly, the right-hand side of (4.1) vanishes in
the tree approximation (order zero in κ).
To one-loop order, the contribution to the left-hand

side of Eq. (4.1) arises from the Feynman diagrams
shown in Fig. 1. Using dimensional regularization, the
contribution from the graph in Fig. 1(a) actually vanishes
while the divergent contribution coming from the graph
in Fig. 1(b) is given in momentum space in the gauge
ξ ¼ 1 by

−κ2

16π2ϵ

�
31

96
kλðδπμδτν þ δπνδ

τ
μÞ þ…

�
; ð4:2Þ

where … stands for terms with other tensor structures,
which are given in a general gauge in the Appendix.

1The Green’s functions which involves the field Hλ
μν neces-

sarily will have Hλ
μν appearing in a closed loop. But the

propagator for the field Hλ
μν is momentum independent and

hence the associated loop momentum integrals vanish if we use
dimensional regularization [8].
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In order to obtain the contribution coming from the right-
hand side of Eq. (4.1), one must expand the expression in
the square bracket in a power series of κϕ. Using for
simplicity a schematic notation, we obtain

M−1ðηþ κϕÞ −M−1ðηÞ
¼ −κM−1ðηÞMðϕÞM−1ðηÞ
þ κ2M−1ðηÞMðϕÞM−1ðηÞMðϕÞM−1ðηÞ þ � � � ; ð4:3Þ

where MðϕÞ is a linear function of ϕ, which is given by
Eq. (3.8). Substituting this result in the right-hand side of
Eq. (4.1), one gets up to order κ2 two terms that involve,
respectively, a product of three and four ϕ fields. Using
Wick’s theorem, we can verify that the contribution from
the cubic term comes from the Feynman graph shown in
Fig. 2(a). This diagram corresponds to a three-point tree
Green’s function, which has, however, two coordinates
pinched at the same spacetime point x.
As we have mentioned earlier, such a composite field

leads to an ultra-violet (short distance) contribution. Using
the appropriate expression for the three-point graviton
vertex [8], one can evaluate in momentum space the
contribution from Fig. 2(a). The result turns out to be in
agreement with the one given in Eq. (4.2). One must also
consider the contribution involving four ϕ fields in (4.1),
which arises due to the last term in Eq. (4.3). This is
represented by the Feynman diagram shown in Fig. 2(b).
However, such a pinched contribution vanishes upon using
dimensional regularization.
Thus, we see that the features, which appear in the

structural identity (4.1), are similar to those which occur in
the Yang–Mills theory via the identity (2.12). It is

straightforward to generalize Eq. (4.1) to an arbitrary
number of graviton fields, namely

h0jTHλ
μνðxÞϕπ1τ1ðy1Þ � � �ϕπnτnðynÞj0i

¼ h0jT½M−1ðηþ κϕÞ −M−1ðηÞ�λμν ρ
αβϕ

αβ
;ρ ðxÞ

× ϕπ1τ1ðy1Þ � � �ϕπnτnðynÞj0i: ð4:4Þ

This relation may be interpreted as being, in quantum
gravity, a quantum-mechanical extension of the relation
(3.10), which holds at the classical level.

V. A SECOND STRUCTURAL IDENTITY

Applying δ2=δJμνλ ðxÞδJπτρ ðyÞ to Eqs. (3.16) and (3.19)
and equating the results, yields

h0jTHλ
μνðxÞHρ

πτðyÞj0i
¼ ih0jTðM−1Þλμν ρ

πτðηþ κϕÞðxÞj0iδdðx − yÞ
þ h0jTΔλ

μν½ϕðxÞ�Δρ
πτ½ϕðyÞ�j0i; ð5:1Þ

where we have introduced the shorthand notation

Δλ
μν½ϕðxÞ� ¼ ½M−1ðηþ κϕÞ −M−1ðηÞ�λμν ρ

πτϕπτ
;ρ ðxÞ: ð5:2Þ

The structural identity (5.1) is clearly satisfied at tree
level, where the (HH) propagator is precisely equal to
ðM−1Þλμν ρ

πτðηÞδdðx − yÞ. We will now examine the pertur-
bative expansion of each side of Eq. (5.1). To one-loop
order, the contributions to the left-hand side of this equation
arise from the Feynman diagrams shown in Fig. 3.
Using dimensional regularization, the contribution from

the graph in Fig. 3(a) vanishes while the divergent part of
the contribution from the graph in Fig. 3(b) is given in
momentum space in the gauge ξ ¼ 1 by

iκ2k2

16π2ϵ

�
1

24
δλνδ

ρ
τ

�
ηπμ þ 6

kπkμ
k2

�
þ…

�
; ð5:3Þ

where … denotes terms with other tensorial structures,
which are explicitly given in the Appendix.

(a) (b)

FIG. 1. One-loop contributions to the propagator (Hλ
μνϕ

πτ). We are free to choose either p ¼ q − k or q as the loop integration
momentum.

(a) (b)

FIG. 2. Pinched contributions to the right-hand side of
Eq. (4.1).
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Next, let us examine the contributions of order κ2, which
come from the terms on the right-hand side of Eq. (5.1).
Such a contribution could arise from the first term, but this
vanishes upon using dimensional regularization. Thus, we
must evaluate only the κ2 contribution coming from the last
term. This part arises by considering the terms of order κ,
which occur in each of the factors appearing in the last
expression on the right-hand side of Eq. (5.1). Using the
expansion indicated in Eq. (4.3), one gets from the last term
in Eq. (5.1) the Eq. (A16) in the Appendix.
We note here that these composite field contribu-

tions are pinched at the spacetime points x and y. The
Feynman diagrams associated with such Green’s func-
tions are shown in Fig. 4. The divergent contributions
coming from Fig. 4(a) [there is an additional graph with
x ↔ y on the left side] turn out to add up to a result
which agrees with that given in Fig. 3(b). We have also
verified this identity at one-loop order for any dimension
d in a general gauge (see the Appendix). On the other
hand, the contributions coming from Fig. 4(b) vanish
upon using dimensional regularization in momentum
space. Verifying this result beyond order κ2 becomes
exceedingly difficult as it would involve going beyond
one-loop order.
We remark that the structural identity (5.1) resembles the

identity (2.14), which holds in the Yang–Mills theory.
Therefore, as we have seen in the previous examples, the
structural identities in the diagonal representation of the
first-order Yang–Mills and gravity theories exhibit many
similar features, though they are not identical.

VI. DISCUSSION

We have examined the structural identities which ensure
the self-consistency of the first-order formulation of

quantum gravity. Since calculations in this theory are quite
involved even at one-loop order, we have studied first the
structural identities in the diagonal representation of Yang–
Mills theory, which are simpler. It turns out that these
identities in the Yang–Mills theory have many features
similar to the ones which occur in the diagonal represen-
tation of the first-order quantum gravity. With this insight,
we have compared the forms of the generating functionals
Z½J; j� of Green’s functions in quantum gravity before and
after integrating out the auxiliary fieldHλ

μν. Differentiations
of these two forms with respect to Jλμν and jμν yield a set
structural identities given in Eqs. (4.1) and (5.1), which are
complementary but distinct from the usual Ward identities.
These identities show that the Green’s functions containing
only external graviton (gluon) fields are the same in the first
and second-order formulations.
These identities also lead to connections between the

Green’s functions involving the field Hλ
μν and the Green’s

functions in second-order formulation containing a
composite graviton field that corresponds to the classical
value of the auxiliary field. Equation (4.4) provides a
simple interpretation of the auxiliary field Hλ

μν. An inter-
esting feature is that the implementation of the structural
identities requires cancellations between UV divergences,
which appear in one-loop diagrams and the short-distance
singularities that occur in the tree graphs, which are
pinched at the same spacetime points. This shows that
the singularities arising at the tree level from the composite
graviton field are necessary for the first-order formulation
of quantum gravity to be consistent. These identities have
also a practical utility as they allow us to compute more
efficiently, in the second-order formulation, some involved
composite field expectation values in terms of those
containing the local auxiliary field.
Recently [23,24], we have introduced a Lagrange multi-

plier field, which restricts the path integral in quantum
gravity to the field configurations that satisfy the classical
equations of motion. It was shown that such a method has
the effect of eliminating all multiloop corrections beyond
one-loop order and doubling of the usual one-loop con-
tributions. This makes it possible to renormalize the EH
action while retaining unitarity. Such a treatment was
employed both in the second-order as well as in the
first-order formulations of quantum gravity. In the later

(a) (b)

FIG. 3. One-loop contributions to the propagator (Hλ
μνH

ρ
πτ).

(b)(a)

FIG. 4. Pinched contributions associated with the last term in
Eq. (5.1).
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case, one may also expect to have a corresponding set of
structural identities, which are necessary for the consis-
tency of the theory. This is an interesting issue, which
requires further study.
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APPENDIX: ONE-LOOP RESULTS

We employ the same Feynman rules, procedures, and
conventions as in Sec. 3 of [8] with the replacements
ϕμν → κϕμν, Gλ

μν → κHλ
μν and S → S=κ2 (S is the action) so

that the coupling constant κ is shown explicitly in the
vertices and in the resulting Green’s functions.

1. The general approach for the calculation
of massless one-loop self-energies

Let us consider some generic field theory for fields ϕa,
where a represents a collection of Lorentz indices, or
indices for internal degrees of freedom such as in the case
of Yang–Mills theories. The most general form of the
momentum space massless self-energy is

ΠabðkÞ ¼
Z

ddp
ð2πÞd Iabðp; qÞ ¼

Xn
i¼1

CiTi
abðkÞ;

ðq≡ kþ pÞ; ðA1Þ

where n is the number of independent tensors, which can be
obtained from the general symmetry properties of ΠabðkÞ
(for instance, in the case of the photon self-energy there are
the two independent tensors ημν and kμkν). Upon con-
tracting Eq. (A1) with each of the n tensors, we obtain n
linear equations for the coefficients Ci containing several
scalar integrals of the following type (using Einstein
summation convention for the labels a and b)

Z
ddp
ð2πÞd Iabðp; qÞT

i
abðkÞ: ðA2Þ

Next, we simplify the n scalars Iabðp; qÞTi
abðkÞ using the

relations

p · k ¼ 1

2
ðq2 − p2 − k2Þ;

q · k ¼ 1

2
ðq2 − p2 þ k2Þ and p · q ¼ 1

2
ðp2 þ q2 − k2Þ

ðA3Þ

so that all the scalar integrals acquire the form

Irs ¼ μ4−d
Z

ddp
ð2πÞd

1

ðp2Þrðq2Þs ; ðA4Þ

where μ is an arbitrary mass parameter. In the simplest
cases r ¼ s ¼ 1. When considering gauge theories with a
general gauge fixing parameter, we can have r ¼ 1, 2 and
s ¼ 1, 2. Since we are using a dimensional regularization
procedure, the only nonvanishing integrals are the follow-
ing:

I11 ¼ i
ðk2=μ2Þd=2−2

2dπd=2
Γð2 − d

2
ÞΓðd

2
− 1Þ2

Γðd − 2Þ ≡ I; ðA5aÞ

I12 ¼ I21 ¼ 3 − d
k2

I; ðA5bÞ

I22 ¼ ð3 − dÞð6 − dÞ
k4

I ðA5cÞ

(we have a factor of i relative to Eq. (3.31a) of [8], which
takes into account that we are Wick rotating back to
Minkowski space).
Once we have all the relevant scalar integrals in Eq. (A5),

we may solve the linear system of algebraic equations for
constants Ci in (A1). In general, this procedure would be of
no practical use unless we make use of computer algebra
algorithms, as we have done in the present work (for
example, the tensor basis for the self-energy of the H-field
has 22 rank 6 tensors). Using this procedure, we have
previously obtained the expression for the graviton self-
energy in the diagonalized first-order formalism [8].
For d ¼ 4 − 2ϵ, Eq. (A5) yields the following UV pole

part

IUV ≡ i
16π2ϵ

: ðA6Þ

It is worth mentioning that the present approach is as an
example of the Passarino–Veltman reduction method [25].

2. The Hϕ self-energy

Figures 1(a) and 1(b), without the external free propa-
gators, are the two contributions for the mixed Hϕ-
fields self-energy. Since the internal H-field propagator
in Fig. 1(a) has no momentum dependence, the loop
momentum integration vanishes when using dimensional
regularization. The self-energy contribution from Fig. 1(b)
can be expressed as
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ðΠHϕÞλμν πτ ¼
X12
i¼1

CHϕ
ðiÞ ðTHϕ

i Þλμν πτ; ðA7Þ

where the tensors ðTHϕ
i Þλμν πτ, i ¼ 1…12 are given by

ðTHϕ
1 Þλμν πτ ¼ 1

4
ðkπδλνδτμ þ kπδλμδτν þ δπνkτδλμ þ δπμkτδλνÞ;

ðA8aÞ

ðTHϕ
2 Þλμν πτ ¼ 1

2
kλðδπνδτμ þ δπμδ

τ
νÞ; ðA8bÞ

ðTHϕ
3 Þλμν πτ ¼ kληπτημν; ðA8cÞ

ðTHϕ
4 Þλμν πτ ¼ 1

2
ημνðkπηλτ þ ηλπkτÞ; ðA8dÞ

ðTHϕ
5 Þλμν πτ ¼ 1

4
ðδπνkμηλτ þ ηλπkμδτν þ δπμkνηλτ þ ηλπkνδτμÞ;

ðA8eÞ

ðTHϕ
6 Þλμν πτ ¼ 1

2
ηπτðkμδλν þ kνδλμÞ; ðA8fÞ

ðTHϕ
7 Þλμν πτ ¼ 1

2k2
kπkτðkμδλν þ kνδλμÞ; ðA8gÞ

ðTHϕ
8 Þλμν πτ ¼ 1

4k2
kλðkπkμδτν þ kπkνδτμ þ δπνkμkτ þ δπμkνkτÞ;

ðA8hÞ

ðTHϕ
9 Þλμν πτ ¼ 1

2k2
kμkνðkπηλτ þ ηλπkτÞ; ðA8iÞ

ðTHϕ
10 Þλμν πτ ¼ 1

k4
kλkμkνkπkτ; ðA8jÞ

ðTHϕ
11 Þλμν πτ ¼ 1

k2
kλημνkπkτ; ðA8kÞ

ðTHϕ
12 Þλμν πτ ¼ 1

k2
kλkμkνηπτ: ðA8lÞ

Using the Feynman rules given in Ref. [8], we obtain
the equivalent of Iabðp; qÞ in Eq. (A1). Next, using the
general approach described in Appendix A 1, we obtain the
coefficients for the Hϕ self-energy shown in Table I. These
expressions have an UV part, which arises when d ¼
4 − 2ϵ and ϵ → 0, given by the numbers in Table II.

3. The H-field self-energy

Figures 3(a) and 3(b), without the external free propa-
gators, are the two contributions for theH-field self-energy.
Since the internal H-field propagator in Fig. 3(a) has no
momentum dependence, the loop momentum integration
vanishes when using dimensional regularization. The self-
energy contribution from Fig. 3(b) can be expressed as

ðΠHHÞλμν ρ
πτ ¼

X22
i¼1

CHH
ðiÞ ðTHH

i Þλμν ρ
πτ; ðA9Þ

where the tensors ðTHH
i Þλμν ρ

πτ, i ¼ 1…22 are given by

ðTHH
1 Þλμν ρ

πτ ¼ 1

4
ðδρπδλνημτ þ δρπδλμηντ þ ηπνδ

λ
μδ

ρ
τ þ ηπμδ

λ
νδ

ρ
τÞ;

ðA10aÞ

TABLE I. Coefficients for the mixed Hϕ self-energy [see
Eq. (A7)] in units of iκ2k2I, where I is given by Eq. (A5a).

1 (ξ − 1) ðξ − 1Þ2

CHϕ
ð1Þ − 1

16ðd−1Þ − 1
16ðd−1Þ 0

CHϕ
ð2Þ − ðd−2Þðdþ2Þ

16ðd−1Þ
3d2−18dþ16
16ðd−1Þ − d3−8d2þ22d−14

16ðd−1Þ
CHϕ
ð3Þ

d2þ2dþ2
32ðd−2Þðd−1Þ − 7d2−41dþ32

32ðd−2Þðd−1Þ
5d3−37d2þ96d−60

64ðd−2Þðd−1Þ
CHϕ
ð4Þ 0 − 1

32ðd−1Þ 0

CHϕ
ð5Þ

d2þd−1
16ðd−1Þ

5−d
8

d−2
8ðd−1Þ

CHϕ
ð6Þ − d2þ6d−4

32ðd−2Þðd−1Þ
d−5

8ðd−2Þ
d−6

32ðd−1Þ
CHϕ
ð7Þ

ðd−2Þ2
32ðd−1Þ − d−2

16ðd−1Þ ðd−2Þ2
32ðd−1Þ

CHϕ
ð8Þ

ðd−2Þðdþ2Þ
16ðd−1Þ − 4d2−23dþ18

16ðd−1Þ
d3−8d2þ21d−12

8ðd−1Þ
CHϕ
ð9Þ − 1

16
ðdþ 2Þ 4d2−23dþ22

32ðd−1Þ − d−2
8ðd−1Þ

CHϕ
ð10Þ 0 ðd−4Þd

16ðd−1Þ − ðd−4Þ2d
32ðd−1Þ

CHϕ
ð11Þ − d2−10dþ4

32ðd−1Þ − 3ðd2−6dþ4Þ
32ðd−1Þ

1
64
ðd − 2Þ2

CHϕ
ð12Þ

d
8ðd−2Þðd−1Þ

d−2
32ðd−1Þ − ðd−4Þ2d

32ðd−2Þðd−1Þ

TABLE II. The UV parts of the coefficients for the mixed Hϕ
self-energy [see Eq. (A7)] in units of iκ2k2IUV, where IUV is
given by Eq. (A5a).

1 (ξ − 1) ðξ − 1Þ2

CHϕ
ð1Þ − 1

48
− 1

48
0

CHϕ
ð2Þ − 1

4
− 1

6
− 5

24

CHϕ
ð3Þ

13
96

5
48

13
96

CHϕ
ð4Þ 0 − 1

96
0

CHϕ
ð5Þ

19
48

1
8

1
12

CHϕ
ð6Þ − 3

16
− 1

16
− 1

48

CHϕ
ð7Þ

1
24

− 1
24

1
24

CHϕ
ð8Þ

1
4

5
24

1
3

CHϕ
ð9Þ − 3

8
− 1

16
− 1

12

CHϕ
ð10Þ 0 0 0

CHϕ
ð11Þ

5
24

1
8

1
16

CHϕ
ð12Þ

1
12

1
48

0
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ðTHH
2 Þλμν ρ

πτ ¼ 1

2
ηλρðηπνημτ þ ηπμηντÞ; ðA10bÞ

ðTHH
3 Þλμν ρ

πτ ¼ ηπτη
λρημν; ðA10cÞ

ðTHH
4 Þλμν ρ

πτ ¼ 1

4
ðηπνδλτδρμ þ δλπδ

ρ
μηντ þ ηπμδ

λ
τδ

ρ
ν þ δλπημτδ

ρ
νÞ;

ðA10dÞ

ðTHH
5 Þλμν ρ

πτ ¼ 1

4
ðδρπδλτημν þ δλπημνδ

ρ
τ þ ηπτδ

λ
νδ

ρ
μ þ ηπτδ

λ
μδ

ρ
νÞ;

ðA10eÞ

ðTHH
6 Þλμν ρ

πτ ¼ 1

4k4
ðkπkλkμkνδρτ þ δρπkλkμkνkτ þ kπkμkρkτδλν

þ kπkνkρkτδλμÞ; ðA10fÞ

ðTHH
7 Þλμν ρ

πτ ¼ 1

4k4
kλkρðkπkμηντ þ kπkνημτ þ ηπνkμkτ

þ ηπμkνkτÞ; ðA10gÞ

ðTHH
8 Þλμν ρ

πτ ¼ 1

4k4
ðkπkμkνkρδλτ þ δλπkμkνkρkτ þ kπkλkμkτδ

ρ
ν

þ kπkλkνkτδ
ρ
μÞ; ðA10hÞ

ðTHH
9 Þλμν ρ

πτ ¼ 1

2k4
kλkρðηπτkμkν þ kπkτημνÞ; ðA10iÞ

ðTHH
10 Þλμν ρ

πτ ¼ 1

4k2
ðkπδρτ þ δρπkτÞðkμδλν þ kνδλμÞ; ðA10jÞ

ðTHH
11 Þλμν ρ

πτ ¼ 1

4k2
ηλρðkπkμηντ þ kπkνημτ þ ηπνkμkτ

þ ηπμkνkτÞ; ðA10kÞ

ðTHH
12 Þλμν ρ

πτ ¼ 1

4k2
ðkπδλτ þ δλπkτÞðkμδρν þ kνδ

ρ
μÞ; ðA10lÞ

ðTHH
13 Þλμν ρ

πτ ¼ 1

4k2
ðδρπkμkνδλτ þ δλπkμkνδ

ρ
τ þ kπkτδλνδ

ρ
μ

þ kπkτδλμδ
ρ
νÞ; ðA10mÞ

ðTHH
14 Þλμν ρ

πτ ¼ 1

2k2
ηλρðηπτkμkν þ kπkτημνÞ; ðA10nÞ

ðTHH
15 Þλμν ρ

πτ ¼ 1

8k2
ðδρπkλkμηντ þ kπkρδλμηντ þ δρπkλkνημτ

þ ηπνkλkμδ
ρ
τ ðA10oÞ

þηπμkλkνδ
ρ
τ þ kπkρδλνημτ þ ηπνkρkτδλμ þ ηπμkρkτδλνÞ;

ðA10pÞ

ðTHH
16 Þλμν ρ

πτ ¼ 1

2k2
kλkρðηπνημτ þ ηπμηντÞ; ðA10qÞ

ðTHH
17 Þλμν ρ

πτ ¼ 1

4k2
ðηπτkλkμδρν þ ηπτkλkνδ

ρ
μ þ kπkρδλτημν

þ δλπkρkτημνÞ; ðA10rÞ

ðTHH
18 Þλμν ρ

πτ ¼ 1

8k2
ðkπkλημτδρν þ ηπμkλkτδ

ρ
ν þ kπkλδ

ρ
μηντ

þ ηπνkμkρδλτ ðA10sÞ

þδλπkμkρηντ þ ηπμkνkρδλτ þ δλπkνkρημτ þ ηπνkλkτδ
ρ
μÞ;

ðA10tÞ

ðTHH
19 Þλμν ρ

πτ ¼ 1

4k2
ðkπkλημνδρτ þ ηπτkμkρδλν þ ηπτkνkρδλμ

þ δρπkλkτημνÞ; ðA10uÞ

ðTHH
20 Þλμν ρ

πτ ¼ 1

k6
kπkλkμkνkρkτ; ðA10vÞ

TABLE III. Coefficients for the H-field self-energy [see
Eq. (A9)] in units of κ2k2I, where I is given by Eq. (A5a).

1 (ξ − 1) ðξ − 1Þ2
CHH
ð1Þ − 1

2ðd−2Þ
3ðd−3Þd

16ðd−2Þðd−1Þ − 1
4ðd−1Þðdþ1Þ

CHH
ð2Þ − d2−2d−2

4ðd−2Þðd−1Þ − 4d3−17d2þ31d−32
16ðd−2Þðd−1Þ − dþ2

8ðd−1Þðdþ1Þ
CHH
ð3Þ

1
2ðd−1Þ

dð3d−5Þ
16ðd−2Þðd−1Þ

d
16ðd−1Þðdþ1Þ

CHH
ð4Þ d2−2

4ðd−2Þðd−1Þ − 4d3−23d2þ33d−16
16ðd−2Þðd−1Þ − 1

4ðd−1Þðdþ1Þ
CHH
ð5Þ − 1

ðd−2Þðd−1Þ d2−3d−8
8ðd−2Þðd−1Þ

d
4ðd−1Þðdþ1Þ

CHH
ð6Þ 0 − d−4

2ðd−1Þ
ðd−4Þðd−2Þd
4ðd−1Þðdþ1Þ

CHH
ð7Þ 0 − ðd−4Þðd2−31dþ24Þ

16ðd−1Þ − ðd−4Þð4d3−16d2−3dþ14Þ
4ðd−1Þðdþ1Þ

CHH
ð8Þ 0 ðd−4Þ2ðd−3Þ

8ðd−1Þ − ðd−4Þðd−2Þðdþ2Þ
4ðd−1Þðdþ1Þ

CHH
ð9Þ 0 4 − d ðd−4Þð4d3−17d2−4dþ20Þ

8ðd−1Þðdþ1Þ
CHH
ð10Þ d2−4dþ2

2ðd−2Þðd−1Þ
3d2−12dþ8
4ðd−2Þðd−1Þ

ðd−2Þd
4ðd−1Þðdþ1Þ

CHH
ð11Þ dðd2−d−4Þ

4ðd−2Þðd−1Þ
d3þ15d2−50dþ16
16ðd−2Þðd−1Þ

ðd−2Þð2dþ1Þ
4ðd−1Þðdþ1Þ

CHH
ð12Þ d3−2d2−4dþ4

4ðd−2Þðd−1Þ − ðd−4Þðd2−4dþ2Þ
4ðd−2Þðd−1Þ

ðd−2Þd
4ðd−1Þðdþ1Þ

CHH
ð13Þ − ðd−4Þd

2ðd−2Þðd−1Þ
3d3−23d2þ50d−16

8ðd−2Þðd−1Þ − ðd−2Þðdþ2Þ
4ðd−1Þðdþ1Þ

CHH
ð14Þ − d

2ðd−1Þ d2−11dþ12
8ðd−1Þ − ðd−2Þðdþ2Þ

8ðd−1Þðdþ1Þ
CHH
ð15Þ d2

2ðd−2Þðd−1Þ − 3d3−15d2þ18d−16
8ðd−2Þðd−1Þ − d−2

2ðd−1Þðdþ1Þ
CHH
ð16Þ 2d2−d−2

4ðd−1Þ − 11d2−89dþ72
16ðd−1Þ

4d4−28d3þ55d2þ32d−52
8ðd−1Þðdþ1Þ

CHH
ð17Þ

d
2ðd−1Þ − ðd−7Þd

8ðd−1Þ
ðd−2Þd

4ðd−1Þðdþ1Þ
CHH
ð18Þ − 2d2þd−2

2ðd−1Þ
11d2−73dþ72

8ðd−1Þ − ðd−2Þð2dþ3Þ
2ðd−1Þðdþ1Þ

CHH
ð19Þ −1 −1 − ðd−2Þðdþ2Þ

4ðd−1Þðdþ1Þ
CHH
ð20Þ 0 0 ðd−6Þðd−4Þðd−2Þd

16ðd−1Þðdþ1Þ
CHH
ð21Þ 0 − ðd−4Þðd−3Þd

16ðd−1Þ
ðd−4Þðd−2Þd
16ðd−1Þðdþ1Þ

CHH
ð22Þ 1 3d−4

4ðd−1Þ 8d3−23d2−10dþ24
16ðd−1Þðdþ1Þ
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ðTHH
21 Þλμν ρ

πτ ¼ 1

k4
kπkμkνkτηλρ; ðA10wÞ

ðTHH
22 Þλμν ρ

πτ ¼ 1

k2
ηπτkλkρημν: ðA10xÞ

Using the Feynman rules given in Ref. [8], we obtain the
equivalent of Iabðp; qÞ in Eq. (A1). Next, using the general
approach described in subsection A 1, we obtain the
coefficients for the HH self-energy shown in Table III.
These expressions have an UV part, which arises when
d ¼ 4 − 2ϵ and ϵ → 0, given by the numbers in Table IV.

4. Propagators

a. Mixed Hϕ propagator

The mixed Hϕ propagator ðM−1ΠHϕDÞλμν πτ can also be
expressed in terms of the tensor basis in Eq. (A8) as

ðM−1ΠHϕDÞλμν πτ ¼
X12
i¼1

PHϕ
ðiÞ ðTHϕ

i Þλμν πτ: ðA11Þ

The coefficients PHϕ
ðiÞ are obtained by solving the system of

12 algebraic equations, which results from the contractions
of Eq. (A11) with ðTHϕ

j Þλμν πτ, j ¼ 1…12. A straightforward
computer algebra calculation generates relations between
PHϕ
ðiÞ and CHϕ

ðiÞ . Then, using the results for CHϕ
ðiÞ given in

Table I, we obtain the entries of Table V for the mixed Hϕ
propagator. Table VI shows the UV part of the mixed Hϕ
propagator, which arises when d ¼ 4 − 2ϵ and ϵ → 0,
obtained from Table V making d ¼ 4.

TABLE IV. Coefficients for the UV part of the H-field self-
energy [see Eq. (A9)] in units of κ2k2IUV, where IUV is given by
Eq. (A6).

1 (ξ − 1) ðξ − 1Þ2
CHH
ð1Þ − 1

4
1
8

− 1
60

CHH
ð2Þ − 1

4
− 19

24
− 1

20

CHH
ð3Þ

1
6

7
24

1
60

CHH
ð4Þ

7
12

− 1
24

− 1
60

CHH
ð5Þ − 1

6
− 1

12
1
15

CHH
ð6Þ 0 0 0

CHH
ð7Þ 0 0 0

CHH
ð8Þ 0 0 0

CHH
ð9Þ 0 0 0

CHH
ð10Þ

1
6

1
3

2
15

CHH
ð11Þ

4
3

5
4

3
10

CHH
ð12Þ

5
6

0 2
15

CHH
ð13Þ 0 1

6
− 1

5

CHH
ð14Þ − 2

3
− 2

3
− 1

10

CHH
ð15Þ

4
3

− 1
6

− 1
15

CHH
ð16Þ

13
6

9
4

47
30

CHH
ð17Þ

2
3

1
2

2
15

CHH
ð18Þ − 17

3
− 11

6
− 11

15

CHH
ð19Þ −1 −1 − 1

5

CHH
ð20Þ 0 0 0

CHH
ð21Þ 0 0 0

CHH
ð22Þ 1 2

3
8
15

TABLE V. Coefficients for the mixed Hϕ propagator [see Eq. (A11)] in units of κ2I, where I is given by
Eq. (A5a).

1 (ξ − 1) ðξ − 1Þ2

PHϕ
ð1Þ 0 − i

16ðd−1Þ − i
16ðd−1Þ

PHϕ
ð2Þ

ið2d2þd−5Þ
16ðd−1Þ − ið5ðd−6Þdþ26Þ

16ðd−1Þ
iðdððd−8Þdþ24Þ−18Þ

16ðd−1Þ
PHϕ
ð3Þ − iðdððd−5Þdþ19Þ−6Þ

32ðd−2Þðd−1Þ
ið23d2−147dþ122Þ

64ðd2−3dþ2Þ − iðdðdð10d−73Þþ193Þ−134Þ
64ðd−2Þðd−1Þ

PHϕ
ð4Þ − i

16ðd−1Þ − 3i
32ðd−1Þ − i

32ðd−1Þ
PHϕ
ð5Þ − iðd2−4Þ

8ðd−1Þ
ið3ðd−6Þdþ16Þ

8ðd−1Þ − iðdððd−8Þdþ22Þ−14Þ
8ðd−1Þ

PHϕ
ð6Þ

iððd−6Þd−3Þ
16ðd−1Þ

1
32
ið4d − 27Þ − iðdððd−7Þdþ21Þ−17Þ

32ðd−1Þ
PHϕ
ð7Þ − iððd−10Þdþ4Þ

16ðd−1Þ − iðdð3d−26Þþ26Þ
16ðd−1Þ

iðdððd−9Þdþ34Þ−28Þ
32ðd−1Þ

PHϕ
ð8Þ − 1

8
iðdþ 2Þ iðdð4d−23Þþ24Þ

16ðd−1Þ − ið3d−10Þ
16ðd−1Þ

PHϕ
ð9Þ

iðdþ2Þð2d−3Þ
16ðd−1Þ − iðdð12d−71Þþ54Þ

32ðd−1Þ
iðdð4ðd−8Þdþ85Þ−50Þ

32ðd−1Þ
PHϕ
ð10Þ 0 iðd−6Þd

16ðd−1Þ − iððd−5Þðd−4Þdþ4Þ
32ðd−1Þ

PHϕ
ð11Þ

iðdððd−5Þdþ28Þ−20Þ
32ðd−2Þðd−1Þ − ið7d2−48dþ44Þ

16ðd2−3dþ2Þ
iðdðdð5d−39Þþ110Þ−80Þ

32ðd−2Þðd−1Þ
PHϕ
ð12Þ − iðd−2Þ

32ðd−1Þ
iððd−9Þdþ2Þ
64ðd−1Þ − iðdðdð2d−15Þþ43Þ−34Þ

64ðd−1Þ
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b. H-field propagator

The HH propagator ðM−1ΠHHM−1Þλμν ρ
πτ can also be

expressed in terms of the tensor basis in Eq. (A10) as

ðM−1ΠHHM−1Þλμν ρ
πτ ¼

X22
i¼1

PHH
ðiÞ ðTHH

i Þλμν ρ
πτ: ðA12Þ

The coefficients PHH
ðiÞ are obtained by solving the system

of 22 algebraic equations, which results from the con-
tractions of Eq. (A12) with ðTHH

j Þλμν ρ
πτ, j ¼ 1…22. A

straightforward computer algebra calculation generates
the relations between PHH

ðiÞ and CHH
ðiÞ . Then, using the

results for CHH
ðiÞ given in Table III, we obtain the entries

of Table VII for the H-field propagator. Table VIII shows
the UV part of the H-field propagator, which arises
when d ¼ 4 − 2ϵ and ϵ → 0, obtained from Table VII
making d ¼ 4.

TABLE VI. UV part of the coefficients for the mixed Hϕ
propagator [see Eq. (A11)] in units of κ2IUV, where IUV is given
by Eq. (A6).

1 (ξ − 1) ðξ − 1Þ2

PHϕ
ð1Þ 0 − i

48
− i

48

PHϕ
ð2Þ

31i
48

7i
24

7i
24

PHϕ
ð3Þ − 9i

32
− 49i

192
− 55i

192

PHϕ
ð4Þ − i

48
− i

32
− i

96

PHϕ
ð5Þ − i

2
− i

3 − 5i
12

PHϕ
ð6Þ − 11i

48
− 11i

32
− 19i

96

PHϕ
ð7Þ

5i
12

5i
8

7i
24

PHϕ
ð8Þ − 3i

4
− i

12
− i

24

PHϕ
ð9Þ

5i
8

19i
48

17i
48

PHϕ
ð10Þ 0 − i

6
− i

24

PHϕ
ð11Þ

19i
48

3i
8

7i
24

PHϕ
ð12Þ − i

48
− 3i

32
− 13i

96

TABLE VII. Coefficients for the H-field propagator [see Eq. (A12)] in units of κ2k2I, where I is given by
Eq. (A5a).

1 (ξ − 1) ðξ − 1Þ2
PHH
ð1Þ

1
2ðd−1Þ

dð3d−5Þ
16ðd−2Þðd−1Þ

d
16ðd−1Þðdþ1Þ

PHH
ð2Þ − 2d2−3d−4

8ðd−2Þðd−1Þ − 2d3−7d2þ15d−20
16ðd−2Þðd−1Þ − 3dþ4

32ðd−1Þðdþ1Þ
PHH
ð3Þ

1
8ðd−2Þðd−1Þ d2−2dþ4

16ðd−2Þðd−1Þ − 3dþ4
64ðd−1Þðdþ1Þ

PHH
ð4Þ

dþ1
4ðd−1Þ 3d2−d−8

16ðd−2Þðd−1Þ
d

16ðd−1Þðdþ1Þ
PHH
ð5Þ − 1

2ðd−2Þ − d2−dþ4
8ðd−2Þðd−1Þ

d
16ðd−1Þðdþ1Þ

PHH
ð6Þ 0 4−d

2
ðd−4Þð4d3−17d2−4dþ20Þ

16ðd−1Þðdþ1Þ
PHH
ð7Þ 0 − ðd−4Þðd−3Þd

16ðd−1Þ
ðd−4Þðd−2Þd
16ðd−1Þðdþ1Þ

PHH
ð8Þ 0 ðd−4Þðd−3Þðd−2Þ

8ðd−1Þ − ðd−4Þðd−2Þð3dþ4Þ
16ðd−1Þðdþ1Þ

PHH
ð9Þ 0 ðd−4Þðdþ2Þ

8ðd−2Þðd−1Þ − ðd−4Þð5d3−14d2−20dþ8Þ
32ðd−2Þðd−1Þðdþ1Þ

PHH
ð10Þ 1 3d−4

4ðd−1Þ 8d3−23d2−10dþ24
16ðd−1Þðdþ1Þ

PHH
ð11Þ d2

4ðd−1Þ − 3d2−41dþ32
16ðd−1Þ

4d4−28d3þ57d2þ30d−56
16ðd−1Þðdþ1Þ

PHH
ð12Þ

ðd−2Þðdþ1Þ
4ðd−1Þ

5−d
2

4d4−28d3þ53d2þ34d−48
16ðd−1Þðdþ1Þ

PHH
ð13Þ

d
2ðd−1Þ − d2−9dþ6

8ðd−1Þ
ðd−2Þð3dþ2Þ
16ðd−1Þðdþ1Þ

PHH
ð14Þ 0 1−d

8 − ðd−2Þðdþ2Þ
32ðd−1Þðdþ1Þ

PHH
ð15Þ − d

2ðd−1Þ d2−11dþ12
8ðd−1Þ − ðd−2Þðdþ2Þ

8ðd−1Þðdþ1Þ
PHH
ð16Þ 4d3−7d2−8dþ8

8ðd−2Þðd−1Þ − 9d3−87d2þ202d−120
16ðd−2Þðd−1Þ

4d4−28d3þ69d2þ18d−80
32ðd−1Þðdþ1Þ

PHH
ð17Þ

d
2ðd−2Þðd−1Þ d3−5d2þ8dþ4

8ðd−2Þðd−1Þ − ðd−2Þðdþ2Þ
16ðd−1Þðdþ1Þ

PHH
ð18Þ −d − 1 11d2−81dþ72

8ðd−1Þ − 4d4−28d3þ59d2þ30d−64
8ðd−1Þðdþ1Þ

PHH
ð19Þ

3
d−2 − 7d2−44dþ36

4ðd−2Þðd−1Þ
3ð4d4−25d3þ44d2þ28d−48Þ

16ðd−2Þðd−1Þðdþ1Þ
PHH
ð20Þ 0 0 ðd−6Þðd−4Þðd−2Þd

64ðd−1Þðdþ1Þ
PHH
ð21Þ 0 − ðd−4Þðd2−12dþ12Þ

16ðd−1Þ − ðd−4Þð16d3−69d2−10dþ72Þ
64ðd−1Þðdþ1Þ

PHH
ð22Þ − dð2d2þd−24Þþ20

8ðd−2Þ2ðd−1Þ
dðdð5d−49Þþ130Þ−88

8ðd−2Þ2ðd−1Þ
dðdðdðð97−8dÞd−390Þþ468Þþ360Þ−576

64ðd−2Þ2ðd2−1Þ

BRANDT, FRENKEL, MARTINS-FILHO, and MCKEON PHYS. REV. D 102, 045013 (2020)

045013-12



5. Explicit verification of the
structural identities

The right side of Eq. (4.1), at order κ2, can be written as

κMλ
μν

ρ
αβ γδh0jTϕγδðxÞϕαβ

;ρ ðxÞϕπτðyÞj0i; ðA13Þ

where M is defined in such a way that

−κðM−1ðηÞMðϕÞM−1ðηÞÞλμν ρ
αβ ≡ κϕγδMλ

μν
ρ
αβγδ ðA14Þ

with MðϕÞ given by (3.8).
In momentum space, Eq. (A13) can be written as

− iκMλ
μν

ρ
αβ γδ

�Z
ddp
ð2πÞd pρDαβσ1θ1ðpÞDγδσ2θ2ðqÞ

× Vσ1θ1σ2θ2σ3θ3ð−p; q;−kÞ
�
Dσ3θ3πτðkÞ: ðA15Þ

We are using the same notation employed for the self-
energies (p is the integration momentum, k is an external
momentum, and q ¼ pþ k); note that DμνρσðpÞ is the
graviton propagator, and Vμναβγδðp; q; rÞ is the cubic
graviton vertex given, respectively, by Eqs. (3.25a) and
(3.25e) of [8].2 Since M is just a combination of
products of ηs and δs, each of the several terms in
Eq. (A15) can be cast in the same form as (A11) in terms
of the tensor basis given by Eqs. (A8). After a straight-
forward calculation, we have obtained a result which
coincides with one-loop contribution to the mixed Hϕ
propagator (the same structure constants shown in
Table V), which confirms the identity (4.1) for any
dimension and gauge parameter.
Similarly, the second term on the right side of Eq. (5.1),

at order κ2, can be written as

κ2Mλ
μν

ρ1
π1τ1 γ1δ1h0jTϕγ1δ1ðxÞϕπ1τ1

;ρ1 ðxÞϕγ2δ2ðyÞϕπ2τ2
;ρ2 ðyÞj0i

×Mρ
πτ

ρ2
π2τ2 γ2δ2 : ðA16Þ

In momentum space, Eq. (A16), can be written as

− κ2Mλ
μν

ρ1
π1τ1 γ1δ1

�Z
ddp
ð2πÞd ½D

π1τ1γ2δ2ðpÞDγ1δ1π2τ2ðqÞpρ1

− qρ1D
γ1δ1γ2δ2ðpÞDπ1τ1π2τ2ðqÞ�qρ2

�
Mρ

πτ
ρ2
π2τ2 γ2δ2 :

ðA17Þ

Equation (A17) can also be cast in the same form as (A12)
in terms of the tensor basis given by Eqs. (A10). After a
straightforward calculation, we have obtained a result
which coincides with one-loop contribution to the H-field
propagator (the same structure constants shown in
Table VII), which confirms the identity (5.1) for any
dimension and gauge parameter.
We point out that these structural identities relate

elements of the basic Feynman rules, in each formalism,
in a nontrivial way. There is also a practical implication
since these identities allow one to compute some rather
involved composite field expectation values in a much more
efficient way by using the auxiliary field instead.

2Both the three graviton interaction vertex and the propagator
are the same as in the second-order formalism from the expansion
of Eq. (4.3).

TABLE VIII. The UV pole part of the coefficients for the
H-field propagator (see Eq. (A12) in units of κ2k2IUV, where IUV

is given by Eq. (A6).

1 (ξ − 1) ðξ − 1Þ2
PHH
ð1Þ

1
6

7
24

1
60

PHH
ð2Þ − 1

3
− 7

12
− 1

30

PHH
ð3Þ

1
48

1
8

− 1
60

PHH
ð4Þ

5
12

3
8

1
60

PHH
ð5Þ − 1

4
− 1

3
1
60

PHH
ð6Þ 0 0 0

PHH
ð7Þ 0 0 0

PHH
ð8Þ 0 0 0

PHH
ð9Þ 0 0 0

PHH
ð10Þ 1 2

3
8
15

PHH
ð11Þ

4
3

7
4

13
15

PHH
ð12Þ

5
6

1
2

7
10

PHH
ð13Þ

2
3

7
12

7
60

PHH
ð14Þ 0 − 3

8
− 1

40

PHH
ð15Þ − 2

3
− 2

3
− 1

10

PHH
ð16Þ

5
2

4
3

41
60

PHH
ð17Þ

1
3

5
12

− 1
20

PHH
ð18Þ −5 − 19

6
− 29

15

PHH
ð19Þ

3
2

7
6

6
5

PHH
ð20Þ 0 0 0

PHH
ð21Þ 0 0 0

PHH
ð22Þ − 17

24
− 1

3
1

120
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