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Structural identities in the first-order formulation of quantum gravity
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We study the self-consistency of the first-order formulation of quantum gravity, which may be attained
by introducing, apart from the graviton field, another auxiliary quantum field. By comparing the forms of
the generating functional Z before and after integrating out the additional field, we derive a set of structural
identities, which must be satisfied by the Green’s functions at all orders. These are distinct from the usual
Ward identities, being necessary for the self-consistency of the first-order formalism. They relate the
Green’s functions involving the additional quantum field to those containing a certain composite graviton
field, which corresponds to its classical value. Thereby, the structural identities lead to a simple

interpretation of the auxiliary field.
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I. INTRODUCTION

The first-order formulation of gauge theories has a
simple form involving only cubic interactions, which are
momentum independent. This simplifies the computations
of the quantum corrections in the usual second-order gauge
theories that involve momentum dependent three-point as
well as higher-point vertices [1-12]. In quantum gravity,
for example, the first-order formulation allows to replace an
infinite number of complicated multiple graviton couplings
present in the second-order Einstein—Hilbert (EH) action
with a small number of simple cubic vertices [7,8]. The EH
action has the form

1

== dx/=99"R,, (T 1.1
S=—tag- | VT RAD. (L)

where G is Newton’s constant, and the affine connection
Fﬁ,, may be written in terms of the metric g, as

1
F//}v = §¢6(gﬂ0,y + vou — g/w,zf)‘ (12)
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The Ricci tensor R, (I) is given by

R/w(r) = Iilli/),l/ - Iﬁl/;l/-/) - F/zvrﬁ;ﬂ + Fl/;GFZp' (13)
As noted by Einstein and Palatini [13] at the classical level,
it is possible to treat both g, and Fﬁb as being independent
quantities. In this first-order action, the equation of motion
for Fﬁb yields Eq. (1.2). At the quantum level, it has been
shown [7,8] that the radiative corrections computed using
the first-order and second-order EH actions are the same.

In a previous paper [14], we examined a set of structural
identities, which are necessary for the consistency of the
first-order formulation of the Yang—Mills theory. The
purpose of the present work is to extend this analysis
to quantum gravity, where the corresponding structural
identities ensure the self-consistency of the first-order
formulation.

To this end, we introduce a source j,, for the graviton
field and also a source wa for the other auxiliary field,
which is treated as an independent field, and consider the
generating functional Z[J, j] of Green’s functions. We then
compare the functional dependence of Z[J, ;] on the
sources in the original first-order formalism with that
obtained after making a suitable shift, which enables
integrating out the auxiliary field. The equality of these
functional forms leads to a set of structural identities among
the Green'’s functions, which must be satisfied to all orders.
Such identities are complementary but distinct from the
usual Ward identities, being necessary for the internal
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consistency of the first-order formulation of quantum
gravity.

These identities show that in the first-order formalism the
Green’s functions containing only external graviton fields
are the same as the corresponding ones, which occur in the
second-order formulation. Furthermore, these identities
relate the Green’s functions involving external auxiliary
fields to those involving a certain composite graviton field.
This combination, which corresponds to the classical value
of the auxiliary field, contains graviton fields which are
pinched at the same spacetime point. It is well known
[15-17] that composite fields can lead to short-distance
singularities. In the present case, such singularities are
important for the cancellations of ultraviolet (UV) diver-
gences arising from loop diagrams, which are necessary for
the implementation of the structural identities.

Since calculations in quantum gravity have a great
algebraic complexity, in Sec. II we recast the analysis
done in [14] into an alternative form, which is based on a
simpler diagonal representation of the first-order formu-
lation of the Yang—Mills theory [18]. Such a representation
exhibits similar features to those in quantum gravity, yet it
is easier to handle algebraically. With this insight, we
consider in Sec. III the Lagrangian and the generating
functional of Green’s functions in a corresponding diagonal
representation of the first-order formulation of quantum
gravity [8]. In Sec. IV, we derive a transparent structural
identity, which has been explicitly verified to one-loop
order that clarifies the meaning of the auxiliary field in
this formulation. In Sec. V, we study another structural
identity satisfied by the Green’s functions and examine the
cancellations between the loop UV divergences and the
short-distance singularities arising from the tree diagrams
involving composite fields. A brief discussion of the results
is given in Sec. VL. Several details of one-loop calculations
are outlined in the Appendix.

II. STRUCTURAL IDENTITIES IN
YANG-MILLS THEORY

The first-order formulation of the Yang—Mills theory
involves the gluon Ay and the auxiliary fields F}, whose
dynamics are described by the Lagrangian:

P 1 1 a a 1 a a a apc C
20 = § FiFm =S F(9,A1 — 0,45 + gf beALAY).

(2.1)

This form has a single vertex (FAA) but leads to a rather
involved nondiagonal matrix propagator containing the
(AA), (FF) and the mixed (FA), (AF) propagators. On
the other hand, if we make in Eq. (2.1) the change of
variable

Fé, = HS +0,A¢ — 0,AL, (2.2)

one obtains the Lagrangian

o 1~ = 1
1 _ a auy a a
Lyv = ZHWH Y 1 (0,A¢L — 0,A%)*

- g Fe(HY, + 0,A8 — D,AD)APHACY,  (2.3)

which involves two cubic vertices (AAA), (HAA) as well as
two simple propagators (AA), (H H). The Becchi-Rouet-
Stora-Tyutin renormalization of this diagonal formulation
of the Yang—Mills theory has been implemented to all
orders in Ref. [18] (see also [19-21]). The complete
Lagrangian density for this formulation in covariant
gauges is

~ 1 _ e
Lo =Lym - 2 (8,AM)? + 97 (80D, — gf P A",
(2.4)

where £ is a gauge-fixing parameter and 7%, ” are ghost
fields. In addition, we will also introduce the external
sources f/‘j,, and ]Z as follows:

['source = jﬁyﬁam/ + jZAaﬂ' (25)

The generating functional for Green’s functions is given by
the path integral

Z[J,j]=N / DyDiyDHDA
xexpi{S—l—/ddxj,‘jDFI“””—Fj;A“” . (2.6)

where N is a normalization factor and S = [ d?xL%,. This
equation has a form which is suitable for functional
differentiation with respect to J and j and, therefore, for
obtaining the Green’s functions.

If we were to set J 4w = 0 at the outset (so that we would
consider Green’s functions with only external fields Ay)
and make the change of variable in the functional integral

HY, — HY, + gf**cALAC, (2.7)

then one can integrate out the I:I,‘j,, field and find that

zlJ =0.j] = 2,|j]. (2.8)

where Z,[j| is the generating functional for the second-
order theory, characterized by the Lagrangian density

1
Ll = =5 (AL = DA + gf " ALAS)

1
= 5 (DA + D570, =~ gf A (29)
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together with the source term fZA“". This establishes the
important property that the Green’s functions with only
external gluon fields are the same in both approaches.

We now consider using Z[J, j] with J # 0 and examine
what changes occur in the first-order formalism when there
are external fields A 4w~ To this end, we consider in place of
Eq. (2.7), the shift

He, — HY, + gf**cALAS — 24, (2.10)

This leads, after integrating out the FI;U field, to the
alternative form of the generating functional

Z.j) =N / DyDiDAexpi [ / d'x(Ly
+ gfabeg, AbrAe — Ja,Jem + J‘ﬁA“”)] - (211

This equals to Z,[j] in Eq. (2.8) if we set J%, = 0. It is

interesting to note the unusual dependence of Z’ [ .jlonJ
in Eq. (2.11).

Comparing the forms of Egs. (2.6) and (2.11) of the
generating functionals and differentiating these with
respect to J and j, leads to a set of structural identities
among the Green’s functions, which must be satisfied to
all orders. Such structural identities lead to relations
between the Green’s functions involving H-fields and

|

(OITH;, (x)Hgy

where

1
I;w,aﬂ = E (nmxrlyﬁ - nvanuﬁ)'

(2.15)
This identity is also manifestly satisfied at tree level, where
the first term on the right-hand side of Eq. (2.14) is just
equal to the tree propagator (H H). To order ¢?, one can
verify, in momentum space, that the divergent part on both
sides of Eq. (2.14) are equal to

g CYM
16 2¢

(1+ f)éablﬂy!aﬂ. (2.16)

It is worth pointing out that in the identities Egs. (2.12)
and (2.14), the origin of the divergent contributions is
different. On the left-hand side of these equations, UV
divergences come from one-loop graphs, whereas on their
right-hand side short-distance singularities arise from the
pinched tree graphs.

Further differentiations of Egs. (2.6) and (2.11) with
respect to J and J yield a set of structural identities, which

(D)[0) = 2l 4y (x = y) + FF P4 (0ITA] (x)AS (x) AL (y)A

the Green’s functions that contain the composite fields
gf**cAb(x)Ag(x). These identities hold both for the finite
as well as for the UV divergent parts of the Green’s
functions. We have verified them explicitly for the diver-
gent contributions to one-loop order using dimensional
regularization in 4 — 2e¢ dimensions.

Taking the functional derivatives of Egs. (2.6)
with respect to J%(x) and j**(y) at J=
equating the results, we obtain the relatlon

~and 2.11)
j=0 and

(01T Hj, (x)AG(y)]0) = gf“**(0|T Al (x) A7 (x) A% ()|0).

(2.12)

Equation (2.12) represents a quantum mechanical exten-
sion of the relation A4, = gf***AbA¢, which holds at the
classical level. This structural identity is clearly satisfied in
the tree approximation since the mixed (HA) propagator
vanishes in our theory. The right-hand side of Eq. (2.12)
also vanishes at the tree level. To order ¢%, we find that the
divergent parts on both sides of Eq. (2.12) are, in momen-
tum space, equal to

_FCymS +E67”
l6z%¢ 4 k*

(kynlxa - kl/r]ﬂ(l)‘ (213)
Applying 8% /8J% (x)5J% (y) to Egs. (2.6) and (2.11) and
equating the results, leads to

¢ (1)]0), (2.14)

|

are complementary to the usual Ward identities. One can
compare the above identities with the ones found in
Ref. [14] in the usual first-order formulation of the
Yang-Mills theory (see, for example, Eqs. (3.1)—(3.2)
and (4.1)-(4.2) in [14]). One can see that the structural
identities obtained in the diagonal representation have a
much simpler form. This feature will be especially useful
for the derivation of the corresponding identities in quan-
tum gravity.

III. DIAGONAL FORMULATION OF
FIRST-ORDER PALATINI ACTION

Instead of using g,, and Fﬁy as independent fields in the
action of Eq. (1.1), it turns out to be more useful to employ
the independent combinations [7]

= V=g 3.

and
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1
A _ T4 AT0 VARY
G, =T - 3 (S”FW + 5,,Flm). (3.2)

Thus, we arrive at the following Lagrangian density in d
spacetime dimensions

Yz

W (x) = " + k¢ (x). (3.4)

Equation (3.3) yields a basic vertex (¢GG) (see Egs. (3.4)
and (3.12) below). However, it leads to an involved non-
diagonal matrix propagator containing (¢¢), (GG) and the
mixed propagator (¢G). As in the Yang-Mills theory, it
proves convenient to use a diagonal formulation of the first-
order EH action [8]. This may be achieved by making the

A1) o 4
[' EH — "2 (Gim + d— lGiAGw Gﬁvaz) (3.3) change of variable [compare with Eq. (2.2)]
Gl = Hjyy + (M), (k=i (3.5)
In order to proceed, h** is expanded about a flat metric #**
(x = /167Gy), where
1 1
(M_l);/lv f”(h> == Z(d — 2) hlphﬂvhﬂf + Zhip(hﬂth + hm/hw) - Z (hrﬂ(%&/{ ;'m(s‘g‘s/1 + hwélfiéfz + hrmg)ﬂél) (36)
In this way, the Lagrangian density Eq. (3.3) may be written in the form
1 Y | -
By = 5 HE M 5 O) He =S /5 (M), e )5
S [+ (M ()M () [He + (M52 (0) ). (37)
where M%" 7% (¢) is given by
Y 1| 1
M55 (¢) = 5 | g (G050 + 31654 + S50500 + 5,05
— (850" + 8506p*™ + S, + 6706¢"7) |- (3.8)

Thus, we see that the Lagrangian Eq. (3.7) involves three
cubic vertices (HpH), (pH@), and (¢p¢p¢). On the other
hand, it leads only to two uncoupled propagators (¢¢) and
(HH).

Using the Lagrangian in Eq. (3.7) in the Euler—Lagrange

equation for the field H? 4> We obtain the classical solution

~[(M(n) + kM ()" kM ()M~ ()] 1 2y -
(3.9)

7
H,, =

Since M (n) + kM (¢p) = M(n + k¢p), this can be written as

H}, =M™ (n + k) — (3.10)

Tl ety

Substituting (3.10) back into (3.7), we obtain (using
¢f4[{y _ hlf/{/)

1
— (M-

2 A );u/ ”T(h)hm—

(3.11)
which is just the classical second-order Einstein—Hilbert
Lagrangian. This demonstrates the classical equivalence of
the two formalisms [8].

In order to obtain the propagator of the ¢** field, we use
the gauge fixing Lagrangian

1
Ly = —2—5(%”)2- (3.12)

With this gauge fixing, the contributions coming from the
vector ghost fields d,, c_lﬂ are [22]

'Cghost = ‘_1# [82’71“/ + (¢p )
- (apaqu)] v

(W) + 0,0,
(3.13)

oM =

Thus, the complete diagonal first-order Lagrangian density
becomes
‘C}EH - ‘Z%EH + ng + ‘Cghost' (314)
Next, we will also introduce the external sources J’f’ and
Juv s follows:
= J’f’Hﬁy + Jud". (3.15)

£SOUI‘CC
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Using the above results, the generating functional for Green’s functions will be given by the Feynman path integral

ZlJ.jl=N / DdDZIDHD¢expi[S+ / dx(HL, + ™),

(3.16)

where N is a normalization factor and S = [ d“xL};;. This equation has a form which is appropriate for generating the
Green’s functions through the application of functional differentiations with respect to J5* and j,.
Performing the following shift in the functional integral (3.16)

Hj, — Hyy + M7 (n + k) —

we obtain

1
Z'lJ,j]=N / DdDdD¢DH exp i / dx {

+ J5 M-

This enables one to integrate out the auxiliary field H,’Ey

i+ k) = M~ ()], e,

)] ey = (M) 5 + k)5, (3.17)
2 y17% [M(’Y) + KM(¢)]T/ g‘ngT + EEH
1w
Jf{ (M~ )W e (n + k) J2" + ]M,,qﬁ””} (3.18)

and leads to the alternative form of the generating functional’

Z'[J,j]=N / DdDdD¢exp i / ddx{ﬁgH + M (i + k) — M—l(q)]fw ™t

2

1w
__JI; (M )ﬂy’”(rl"i_’cqs)‘]ﬂf_'—]uvgbﬂu}

where £, is the second-order EH Lagrangian with ghosts and gauge fixing, which may be written as

EH:__%(

We remark that the alternative generating functional (3.19)
has a certain similarity to the corresponding functional in
the Yang—Mills theory given by (2.11). The analogy is even
more pronounced if we note that the coefficient of the
source J is just the result found at the classical level given
in Eq. (3.10) for the auxiliary field. We also note though
that unlike Eq. (2.11), the term quadratic in the source J for
the auxiliary field contains field dependency. Using a
similar procedure to that employed in the Yang-Mills
theory [see Egs. (2.7)—(2.9)], one can show that the Green’s
function with only external gravitons are the same in the
first and second-order formulations.

IV. CONSISTENCY CONDITION FOR THE
AUXILIARY FIELD

Taking the functional derivatives of Egs. (3.16) and
(3.19) with respect to J4 and j,, at J4* = j,. =0 and
equating the results, we obtain the structural identity

'"The Green’s functions which involves the field wa neces-
sarily will have H’1 appearing in a closed loop. But the
propagator for the ﬁeld Hﬁy is momentum independent and
hence the associated loop momentum integrals vanish if we use
dimensional regularization [8].

);,tl/ /7;7(” + K¢)¢7 -

(3.19)
5 ((ﬁ”y) + 'Cghost- (320)
[
(0TH}, (x)¢™ (¥)|0)
= (O[T[M~" (n+ xp) = M~ ()], 25 (x)9™ (3)[0),
(4.1)
where (M~1)% 7 i op 18 defined in Eq. (3.6). Equation (4.1) is

manifestly satisfied at tree level because its left-hand side
vanishes since there is no mixed H¢ propagator in the
theory. Similarly, the right-hand side of (4.1) vanishes in
the tree approximation (order zero in ).

To one-loop order, the contribution to the left-hand
side of Eq. (4.1) arises from the Feynman diagrams
shown in Fig. 1. Using dimensional regularization, the
contribution from the graph in Fig. 1(a) actually vanishes
while the divergent contribution coming from the graph

in Fig. 1(b) is given in momentum space in the gauge
E=1by
— k oror + 0%, el 4.2
167%€¢ 96 (56, + 070) + (42)
where ... stands for terms with other tensor structures,

which are given in a general gauge in the Appendix.
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q
A
v i
k k
p
(a)
FIG. 1. One-loop contributions to the propagator (Hﬁ
momentum.

In order to obtain the contribution coming from the right-
hand side of Eq. (4.1), one must expand the expression in
the square bracket in a power series of x¢. Using for
simplicity a schematic notation, we obtain

M~ (n+ xgp) = M~ (i)
= —kM~! ()M ()M~ (n)

+ M (M (M (M (@)M ™ () + -+, (4.3)
where M(¢) is a linear function of ¢, which is given by
Eq. (3.8). Substituting this result in the right-hand side of
Eq. (4.1), one gets up to order k> two terms that involve,
respectively, a product of three and four ¢ fields. Using
Wick’s theorem, we can verify that the contribution from
the cubic term comes from the Feynman graph shown in
Fig. 2(a). This diagram corresponds to a three-point tree
Green’s function, which has, however, two coordinates
pinched at the same spacetime point x.

As we have mentioned earlier, such a composite field
leads to an ultra-violet (short distance) contribution. Using
the appropriate expression for the three-point graviton
vertex [8], one can evaluate in momentum space the
contribution from Fig. 2(a). The result turns out to be in
agreement with the one given in Eq. (4.2). One must also
consider the contribution involving four ¢ fields in (4.1),
which arises due to the last term in Eq. (4.3). This is
represented by the Feynman diagram shown in Fig. 2(b).
However, such a pinched contribution vanishes upon using
dimensional regularization.

Thus, we see that the features, which appear in the
structural identity (4.1), are similar to those which occur in
the Yang-Mills theory via the identity (2.12). It is

FIG. 2. Pinched contributions to the right-hand side of
Eq. (4.1).

q
A T
0%
k k
p
(b)

™). We are free to choose either p = ¢ — k or ¢ as the loop integration

straightforward to generalize Eq. (4.1) to an arbitrary
number of graviton fields, namely

(OITHy, (x)p™7 (y1) - -+ ™ (1,,)[0)
= (OIT[M~" (n + k¢p) = M~" (n))5, 057 (%)
X @M (y1) - @ (y)]0). (4.4)

This relation may be interpreted as being, in quantum
gravity, a quantum-mechanical extension of the relation
(3.10), which holds at the classical level.

V. A SECOND STRUCTURAL IDENTITY
Applying &%/5J%" (x)8J5(y) to Eqgs. (3.16) and (3.19)
and equating the results, yields
(O|TH, (x)H:(y)|0)
= (0|7 (M), 7e(n + Kp) (x)]0)8 (x — y)

+ (0T A7, [p(x)] A% #()]]0), (5.1)
where we have introduced the shorthand notation
ALlD(x)] = M7 (n +xp) = M~ ()]}, 207 (). (5.2)

The structural identity (5.1) is clearly satisfied at tree
level, where the (HH) propagator is precisely equal to
(M~')?, %(n)5%(x — y). We will now examine the pertur-
bative expansion of each side of Eq. (5.1). To one-loop
order, the contributions to the left-hand side of this equation
arise from the Feynman diagrams shown in Fig. 3.

Using dimensional regularization, the contribution from
the graph in Fig. 3(a) vanishes while the divergent part of
the contribution from the graph in Fig. 3(b) is given in
momentum space in the gauge £ =1 by

iK’ k>

16”{1 515/’(%: k>+...], (5.3)

where ... denotes terms with other tensorial structures,
which are explicitly given in the Appendix.
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q
A p
v T
k k
p
(@)

q
A p
v T
k k

p

(b)

FIG. 3. One-loop contributions to the propagator (waHf,,).

Next, let us examine the contributions of order x2, which
come from the terms on the right-hand side of Eq. (5.1).
Such a contribution could arise from the first term, but this
vanishes upon using dimensional regularization. Thus, we
must evaluate only the k> contribution coming from the last
term. This part arises by considering the terms of order «,
which occur in each of the factors appearing in the last
expression on the right-hand side of Eq. (5.1). Using the
expansion indicated in Eq. (4.3), one gets from the last term
in Eq. (5.1) the Eq. (A16) in the Appendix.

We note here that these composite field contribu-
tions are pinched at the spacetime points x and y. The
Feynman diagrams associated with such Green’s func-
tions are shown in Fig. 4. The divergent contributions
coming from Fig. 4(a) [there is an additional graph with
x <>y on the left side] turn out to add up to a result
which agrees with that given in Fig. 3(b). We have also
verified this identity at one-loop order for any dimension
d in a general gauge (see the Appendix). On the other
hand, the contributions coming from Fig. 4(b) vanish
upon using dimensional regularization in momentum
space. Verifying this result beyond order x*> becomes
exceedingly difficult as it would involve going beyond
one-loop order.

We remark that the structural identity (5.1) resembles the
identity (2.14), which holds in the Yang-Mills theory.
Therefore, as we have seen in the previous examples, the
structural identities in the diagonal representation of the
first-order Yang—Mills and gravity theories exhibit many
similar features, though they are not identical.

VI. DISCUSSION

We have examined the structural identities which ensure
the self-consistency of the first-order formulation of

o

(a) (b)

e

T
T

FIG. 4. Pinched contributions associated with the last term in
Eq. (5.1).

quantum gravity. Since calculations in this theory are quite
involved even at one-loop order, we have studied first the
structural identities in the diagonal representation of Yang—
Mills theory, which are simpler. It turns out that these
identities in the Yang-Mills theory have many features
similar to the ones which occur in the diagonal represen-
tation of the first-order quantum gravity. With this insight,
we have compared the forms of the generating functionals
Z|J, j] of Green’s functions in quantum gravity before and
after integrating out the auxiliary field H7,. Differentiations
of these two forms with respect to wa and j,, yield a set
structural identities given in Egs. (4.1) and (5.1), which are
complementary but distinct from the usual Ward identities.
These identities show that the Green’s functions containing
only external graviton (gluon) fields are the same in the first
and second-order formulations.

These identities also lead to connections between the
Green’s functions involving the field wa and the Green’s
functions in second-order formulation containing a
composite graviton field that corresponds to the classical
value of the auxiliary field. Equation (4.4) provides a
simple interpretation of the auxiliary field H,’ED. An inter-
esting feature is that the implementation of the structural
identities requires cancellations between UV divergences,
which appear in one-loop diagrams and the short-distance
singularities that occur in the tree graphs, which are
pinched at the same spacetime points. This shows that
the singularities arising at the tree level from the composite
graviton field are necessary for the first-order formulation
of quantum gravity to be consistent. These identities have
also a practical utility as they allow us to compute more
efficiently, in the second-order formulation, some involved
composite field expectation values in terms of those
containing the local auxiliary field.

Recently [23,24], we have introduced a Lagrange multi-
plier field, which restricts the path integral in quantum
gravity to the field configurations that satisfy the classical
equations of motion. It was shown that such a method has
the effect of eliminating all multiloop corrections beyond
one-loop order and doubling of the usual one-loop con-
tributions. This makes it possible to renormalize the EH
action while retaining unitarity. Such a treatment was
employed both in the second-order as well as in the
first-order formulations of quantum gravity. In the later
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case, one may also expect to have a corresponding set of
structural identities, which are necessary for the consis-
tency of the theory. This is an interesting issue, which
requires further study.
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APPENDIX: ONE-LOOP RESULTS

We employ the same Feynman rules, procedures, and
conventions as in Sec. 3 of [8] with the replacements
P — k", G}, — kH}, and S — S/xk* (§ is the action) so
that the coupling constant x is shown explicitly in the
vertices and in the resulting Green’s functions.

1. The general approach for the calculation
of massless one-loop self-energies

Let us consider some generic field theory for fields ¢,,
where a represents a collection of Lorentz indices, or
indices for internal degrees of freedom such as in the case
of Yang-Mills theories. The most general form of the
momentum space massless self-energy is

I, (k) _/(Zd

(g=k+p),

Z CiTi, (k

dabpq

(A1)

where 7 is the number of independent tensors, which can be
obtained from the general symmetry properties of I1,, (k)
(for instance, in the case of the photon self-energy there are
the two independent tensors 7,, and k,k,). Upon con-
tracting Eq. (A1) with each of the n tensors, we obtain n
linear equations for the coefficients C' containing several
scalar integrals of the following type (using Einstein
summation convention for the labels a and b)

[

Next, we simplify the n scalars 1,,(p. q)T!, (k) using the
relations

Lay(p. q)Th, (k). (A2)

1
pk=5(a=p* - k)
! 2 Loy 2 2
q-k=5(g"=p*+ &) and p-q=5(p’+¢ k)
(A3)
so that all the scalar integrals acquire the form
dip 1
IS = ﬂ4_d/ -, (A4)
@) (p*) (4*)*

where p is an arbitrary mass parameter. In the simplest
cases r = s = 1. When considering gauge theories with a
general gauge fixing parameter, we can have r = 1, 2 and
s =1, 2. Since we are using a dimensional regularization
procedure, the only nonvanishing integrals are the follow-
ing:

(/)2 T2 9= 12

Ill =1 2d a2 (d 2) =], (ASa)
3-d
2 =r"= L (A5b)
3-d)(6-d
= Bzd6-d) ]){ 5 iy (A5c)

(we have a factor of i relative to Eq. (3.31a) of [8], which
takes into account that we are Wick rotating back to
Minkowski space).

Once we have all the relevant scalar integrals in Eq. (AS),
we may solve the linear system of algebraic equations for
constants C* in (A1). In general, this procedure would be of
no practical use unless we make use of computer algebra
algorithms, as we have done in the present work (for
example, the tensor basis for the self-energy of the H-field
has 22 rank 6 tensors). Using this procedure, we have
previously obtained the expression for the graviton self-
energy in the diagonalized first-order formalism [8].

For d = 4 — 2¢, Eq. (AS5) yields the following UV pole
part

i

IUV —
167%€”

(A6)

It is worth mentioning that the present approach is as an
example of the Passarino—Veltman reduction method [25].

2. The H¢ self-energy

Figures 1(a) and 1(b), without the external free propa-
gators, are the two contributions for the mixed H¢-
fields self-energy. Since the internal H-field propagator
in Fig. 1(a) has no momentum dependence, the loop
momentum integration vanishes when using dimensional
regularization. The self-energy contribution from Fig. 1(b)
can be expressed as
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TABLE 1. Coefficients for the mixed H¢ self-energy [see
Eq. (A7)] in units of ik*k*I, where I is given by Eq. (A5a).

1 ¢-D (E-1)?
1 1
Cﬁ‘f 61 ~ 6= 0
CH¢ _(d-2)(d+2) 3d>—18d4-16 _ d-8d*422d-14

2) 16(d—1) 16(d—T1) 16(d—1)
CH(/’ d?1+2d+2 _ 1d*-41d+32 5d3—=37d*+96d—60

S) 32(d=2)(d-1) 32(4—21)(4—1) 64(d=2)(d—T)
C (4? 0  32(d-1) 0
ctie d+d-1 5—d _d=2

(5) 16(d—1) B 8(d—1)
CH¢ d*>+6d—4 _d=5_ _d=6

(6) T 32(d-2)(d-1) 8(d-2) 32(d-1)

H¢ d-2)? __d=2 d-2)?
C(7) 3<2(d—)1) 16(d-1) 3<2(d—)1)
CHzlJ (d=2)(d+2) _ 4d?-23d+18 dB—8d*+21d—12

(8) 16(d—1) 16(d—1) 8(d—1)

He _1 223 _ d=2_
C(9> i6(d+2) 4d32(2;—d 322 8(d—-1)
cto 0 (d—4)d (d—4)2d

(10) 16(d-1) T 32(d-1)

He d®—10d+4 3(d*—6d+4 1(g—-2)2
C(ll) - 32(d—1+) - (32(11—; ) o (d=2)
CH¢ _d d-2 (d-4)72d

(]2) 8(d-2)(d-1) 32(d-1) _32(d—2)(d—1)

HHdJ l T o__ Z CH(/ Hf/’ A m" (A7)

where the tensors (T7?)% = i=1...

w 12 are given by

1
(Tf”’)fw T — 1 (k*8L5% + k8487 + SLk*6, + 57k°57),
(A8a)
1
(15", = 5/&((5’;5; + 555), (A8D)
(Tgl‘p)fw "= kl’?’”ﬂyw (A8C)
4 T 1 TT W AT T[T
(1), ™ = > (K '+ k), (A8d)
Hp\) nz 1 /3 AT A T v/3 AT A T
(TS );w = Z(‘sb ull +n kﬂéy +5ykyr[ +n kuéu)7
(A8e)
1
(Tg](ﬁ)ﬁy o E,]ﬂf(kﬂéﬁ + k,ﬁﬁ), (AS8f)
1
(T?‘ﬁ)fw m— Wk”kf(kﬂéi +k,5%), (A8g)
1
(1", ™ = 1 K (RS, + Kk, + Gk K+ Sk 7).
(A8h)
(T9")h ™ = 5z ks (KA + 177k), (A81)

2/{2 H

TABLE II. The UV parts of the coefficients for the mixed H¢
self-energy [see Eq. (A7)] in units of ix>k*IVV, where 1YV is
given by Eq. (AS5a).

1 E-1 (& 1)
0
col -3 ~% -3
il 5 i %
it 0 ~ 0
ce ® 3 v
Cley e i %
orid 2 —% 3
Cs) 3 5 3
clo -3 ~ 16 ~15
cﬁg 0 0 0
cal) 3 3 %
) @ & 0

(T35, ™ = %kﬁkﬂkykﬂkf, (AS8j)

(T ™ = i kn kk, (ASK)

(T, ™ = %kﬂkﬂkmm. (A8

Using the Feynman rules given in Ref. [8], we obtain
the equivalent of 7,,(p,q) in Eq. (Al). Next, using the
general approach described in Appendix A 1, we obtain the
coefficients for the H¢ self-energy shown in Table I. These
expressions have an UV part, which arises when d =
4 —2¢ and ¢ — 0, given by the numbers in Table II.

3. The H-field self-energy

Figures 3(a) and 3(b), without the external free propa-
gators, are the two contributions for the H-field self-energy.
Since the internal H-field propagator in Fig. 3(a) has no
momentum dependence, the loop momentum integration
vanishes when using dimensional regularization. The self-
energy contribution from Fig. 3(b) can be expressed as

22
(HHH P ZCHH THH)W -

”,, T

(A9)

where the tensors (THH) 7 A% 1 =1...22 are given by

(T 5 (826,10 + 828iM,e + NGRSt + 1, 6057,

uv 7T

-b\»—‘

(A10a)
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1
(T3 5 = 51 (e + Nl (A10b)
(TgiH)ﬁ,, ft‘t‘ = ’77[1’1/1/)77;41/» (AIOC)
1
(TfH)/iu f” = Z (’77!1/5%6}0/4 + 6;1!5/6771/1 + 77;:”5455 + 53:’7;416’;)’

(A10d)

I
(TY )i e = 5 (o8, + 8232 + 1128L8) + 1800).

(A10e)
1
(THHY, e = i (kP k, &7 + Sk ek + Kok KK,
+ kok, KK, 5). (A10f)
1
(TgIH)l/EV f" = mkﬁkp(knku’?w + kﬂkurl/n' + nnukﬂkr
+ nﬂﬂkuk‘r)’ (Alog)
1
(THHY, e = 7 (kok ko, kP &% + Sk, K kP ke, + Kk, K, S
+ k Kk, k.5)), (A10h)
1 .
(T§H):, e = 2—k4kikﬂ(n,,,k,,kb + kpke), (A10i)
1 .
1
(TR 5e = a1 kit + Kekitye + ki ke
+ Mgk, k), (A10k)
1
(T e = pye (k8% + S%k.) (k00 + k,6). (A101)
1
( %H)ﬁv ZT = W ((%;kuku(si =+ 5;1rk;4ky5/7} =+ k”kféﬁaﬁ
+ ko k,5.8)). (A10m)
1
(TﬁH)i” e = Wnﬂp(nmkﬂky + ko). (A10n)
1
(T e = gz Ok kit + kak i+ ek
+ Nk, 82 (A100)
+nﬂukﬂkv5¢ + knk/)@%’?m + ﬂnpkﬂkﬁft + nﬂukﬂk‘r&ﬁ)i
(A10p)
1
(THHYL b = T KK (M e Maalle) (A10q)

(T57)

(71"

ﬁr = 5
Hv 4k2
+ 8Lk kecty,),
uy T

+ 11k, kP 5

1
(nm'kiky&; + nnrkﬂkuéﬁ + klrk/)éﬁ”m/
(A10r)

1
= w (kﬂklnﬂréﬁ + nzﬂk/lk‘r&’li + kﬂkléﬁnvr
(A10s)

+5;11'k/4kp77w + nﬂukukpéi + 5;1,](”/(/)77/” + nﬂukik‘r&ﬁ)’

(A101)

1
0 0
(T%H)I};V g” = 4_](2 (kﬂk/lrlm/&-' + ﬂnrkﬂkp5ﬁ + ﬂnrkbkp@};
+ k). (A10u)
1
(T%H)/UJ f” = ﬁ kﬂkﬁkﬂkykpk‘:? (AlOV)
TABLE III. Coefficients for the H-field self-energy [see
Eq. (A9)] in units of x2k*I, where I is given by Eq. (A5a).
1 -1 (£-1)°
CHH 1 3(d-3)d _ 1

(1) 2(d-2) 16(d—2)(d—T1) 4(d-1)(d+1)
CHH __d*-2d-2 _ 4d3—17d>+31d-32 ___d+2

) 4(d-2)(d-1) 16(d—2)(d—1) 8(d-1)(d+1)
CHH 1 d(3d-5) d

3) 2(d-1) 16(d—2)(d—1) 16(d—1)(d+1)
CcHH d>=2 _ 4d>-23d*>433d-16 ___ 1

) #(d-2)(d-1) 16(d—2)(d—1) 4(d-1)(d+1)
CcHH -1 d>-3d—8 __d

(5) (d-2)(d-1) 8(d=2)(d-1) (d=1)(d+1)

HH _ _d-4 d—4)(d—2)d
Cio) 0 a1 e
CHH 0 (d—4)(d*~31d+24) (d—4)(4d® =164 —3d+14)

(7 - 16(d—1) - A(d=1)(d+1)
cHH 0 (d—4)(d-3) _ (d-4)(d-2)(d+2)

(8) 3(d-1) A(d=1)(d+1)
CcHH 0 4 — (d—4)(4d*=17d>—4d+20)

©) 8(d-1)(d+1)
CHH  _-4d12 3d-12d+8 (d=2)d

(10) 2(d-2)(d-1) 4(d-2)(d-1) 4(d-1)(d+1)
ch d(d*—d—4) &415d°=50d+16 (d=2)(2d+1)

(11) Hd=2)(d=1) 16(d—2)(d—1) 4d-1)(d+1)
CcHH dP=2d*—4d+4 (d—4)(d*—4d+2) (d-2)d

(12) 4(d-2)(d-1) T Ad=2)(d-1) 4(d-1)(d+1)
CHH  _  (d-4)d 3d3—23d*+50d—16 _ (d=2)(d+2)

(13) 2(d=2)(d-1) 8(d-2)(d-1) 4(d-1)(d+1)
chn — P=11d+12 _ (d-2)(d+2)

(14) 2(d-1) 8(d-1) 8(d—1)(d+1)
CHH d* _ 3d>—15d*+18d-16 _ d-2

(15) 2(d=2)(d—T1) 8(d—2)(d-1) 2(d-1)(d+1)
CHH 2d>—d—2 _ 11d*>-89d+72 4d* 28> +55d*+32d—52

(16) 4(d-1) 16(d—1) 8(d—1)(d+1)
CcHH _d _(d-T)d (d-2)d

(17) 2(d-1) 8(d=1) A(d-1)(d+1)
CcHH _2d*+d-2 Hd>=73d+72 _ (d-2)(2d+3)

(18) 2(d—1) 8(d—1) 2(d—1)(d+1)
CHH -1 -1 _ (d=2)(d+2)

(19) 3(d-1)(d+1)

HH d—6)(d—4)(d-2)d
C(ZO) 0 0 : 162,51—1)();“))

HH d—4)(d-3)d d—4)(d—-2)d
C(Zl) 0 - 16(><(1—l)) 1(6(d—)1()(d+)1)
CcHH 1 3d—4_ 8d°—23d*~10d+24

(22) 4(d-1) 16(d—1)(d+1)
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TABLE IV. Coefficients for the UV part of the H-field self- wa oL in
energy [see Eq. (A9)] in units of k>k>IVY, where IV is given by (721" i e = = Kkl k'™ (A10w)
Eq. (A6).
) 1
1 E—1 (E—17 (T5H ), e = pnmk*k”ﬂw- (A10x)

CHH _1 1 _ L
CSL _i _E a T Using the Feynman rules given in Ref. [8], we obtain the

@) A 2 2 equivalent of 1,,,(p, ¢) in Eq. (A1). Next, using the general
Cg;[ 6 24 60 approach described in subsection A 1, we obtain the
Ci v —% —% coefficients for the HH self-energy shown in Table IIL
Cg’ -1 -5 = These expressions have an UV part, which arises when
ngi 0 0 0 d =4 —2¢ and € — 0, given by the numbers in Table IV.
ci 0 0 0

(7)
ci 0 0 0 4. Propagators
ot 0 0 0 a. Mixed H¢ propagator
chy L I z The mixed H¢ propagator (M~'TI#?D)% ** can also be
C(ﬁ’) 1 2 3 expressed in terms of the tensor basis in Eq. (A8) as
CHH 5 0 2

212'} 8 1 15] 12
(& z -z —1yTH¢D\A 77 — Hep (mHYN\ ) 2o
Cg:} 2 _62 _i (M I D);w - Z P(;) (Tz );w : (Al 1)

(14) 3 3 10 i=1
CHH 4 _1 _L

(15) 3 6 15 .. Hep . .
CZ!;I) L 2 g The coefficients P(l.) are obtained by solving the system of
CZ% 2 1 Z 12 algebraic equations, which results from the contractions
cr - -1 -1 of Eq. (A11) with (T;I’ﬁ)ﬁy 7 j = 1...12. A straightforward
Cg{;) -1 -1 -1 computer algebra calculation generates relations between
ng) 0 0 0 PZ)‘j’ and CZ)‘b . Then, using the results for Cg)"ﬁ given in
i 0 0 0 Table I, we obtain the entries of Table V for the mixed H¢p
CHH 1 2 8 propagator. Table VI shows the UV part of the mixed H¢

(22) 3 15

propagator, which arises when d =4 —2¢ and € — 0,
obtained from Table V making d = 4.

TABLE V. Coefficients for the mixed H¢ propagator [see Eq. (A11)] in units of x*I, where I is given by

Eq. (A5a).
1 E-1 (E—1)
pﬁ‘f 0 ~ T6(d=T) ~ 6T
pHe i(2d°+d-5) _ i(5(d—6)d+26) i(d((d—8)d+24)—18)
(2) 16(d—1) 16(d—1) 16(d—1)
pHo __i(d((d—5)d+19)-6) i(23d*—147d+122) __i(d(d(10d-73)+193)-134)
3) 32(d=2)(d—1) T 64(d-3d+2) 64(d—2)(d-1)
pii¢ R __3i i
() 16(d—1) 32(d-1) 32(d-1)
plie i(d*—4) i(3(d—6)d+16) __i(d((d—8)d+22)—14)
5 T 8(d-1) 8(d-1) T 8(d-1n
He i((d-6)d-3) 1 — i(d((d=7)d+21)-17)
P(6) l 16(d—1) 32l(4d 27) = 32(d-1)
pie _i((d—10)d+4) __i(d(3d—26)+26) i(d((d=9)d+34)-28)
7 16(d—1) 16(d—1) 32(d-1)
Hep 1y i(d(4d—23)+24) i(3d—10)
P<8> 3i(d+2) a6 T 6(d-1)
pHo i(d+2)(2d-3) _i(d(12d=71)+54) i(d(4(d—8)d+85)=50)
9) 16(d—1) 32(d-1) 32(d-1)
piie 0 i(d—6)d _i((d-5)(d—4)d+4)
(10) 16(d—1) 32(d-1)
phe i(d((d—5)d+28)—20) i(Td>—48d+44) i(d(d(5d—39)+110)-80)
(11) 32(d-2)(d-1) T 16(P-3d+2) 32(d-2)(d-1)
pHo _i(d-2) i((d=9)d+2) __i(d(d(2d—15)+43)-34)
(12) 32(d-1) 64(d—1) 64(d—1)
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TABLE VI. UV part of the coefficients for the mixed H¢
propagator [see Eq. (A11)] in units of «*/YV, where IV is given
by Eq. (A6).

1 &E-1 (E-1)?
o - -
Pg(f 3(1)' _74'ﬁ _7ﬁ
P s i ki
pHo 9 _ 490 _ssi
3) 2 192 192
I s s
Pt = = ~%
Hep _i _i 5i
P —_—
) 2 3 12
H. 11i 1i 19i
Pt - % -5
H 5i 5i 7i
Pt E ¥ &
b . ) .
P -3 ~ 4
H. 5 19 17
Pt ¥ & %
It .
P(lg}) 0 ~5 —
H. 19 3 7i
il ® ¥ %
H. 3i 13i
Pl _4[8 _ﬁ _97)1

(12)

b. H-field propagator

The HH propagator (M~'TI"#M~")! 7. can also be
expressed in terms of the tensor basis in Eq. (A10) as

22
(MM e = S PHI(TI, e (AT2)
i=1

The coefficients P%H are obtained by solving the system

of 22 algebraic equations, which results from the con-
tractions of Eq. (A12) with (T#")! 4., j=1..22. A
straightforward computer algebra calculation generates

the relations between PZ{I and Cf{)H . Then, using the
results for Cg)H given in Table III, we obtain the entries
of Table VII for the H-field propagator. Table VIII shows
the UV part of the H-field propagator, which arises

when d =4 —2¢ and € — 0, obtained from Table VII
making d = 4.

TABLE VII. Coefficients for the H-field propagator [see Eq. (A12)] in units of x?k>I, where I is given by

Eq. (ASa).
1 E-1 (E-1)

phH 1 d(3d-5) d

(1 2(d-1) 16(d—2)(d—1) 16(d—1)(d+1)
pHH _ 2d*-3d-4 _ 2d3-T7d*+15d-20 _ 3d+4

2 8(d—2)(d—1) 16(d=2)(d—1) 32(d-1)(d+1)
pHH 1 d*—2d+4 _ 3d+4

3) 8(d-2)(d-1) 16(d—2)(d—1) 64(d—1)(d+1)
pHH d+l 3d*—d—8 —_d____

) 4(d-1) 16(d—2)(d-1) T6(d=1)(d+1)
PHH __1 _ _d*-d+4 d

(5) 2(d-2) 8(d=2)(d-1) 16(d=1)(d+1)
phiH 0 4=d (d—4) (4P —17d>—4d+20)

() 2 16(d=1)(d+1)
PHH 0 (d—4)(d=3)d (d—4)(d-2)d

(7 T 16(d=1) 16(d—1)(d+1)
PHH 0 (d—4)(d-3)(d-2) (d—4)(d—2)(3d+4)

®) 8(d=1) T UI6(d=T)(d+1)
pHH 0 (d—4)(d+2) (d—4)(5d3—14d>—20d+8)

9) 8(d—2)(d-1) 32(d=2)(d—1)(d+1)
PHH 1 3d—4 8d*—23d>—10d+24

(10) 4(d-1) 16(d—1)(d+1)
PHH & _3d’>-41d+32 4d*—284%+57d*+30d—56

(11) 4(d-1) 16(d—1) 16(d—1)(d+1)
pha (d=2)(d+1) 5-d 4d*—28dP+53d>+34d—48

(12) 4(d-1) 2 16(d—1)(d+1)

e 4 _ $=9d+6 (d-2)(3d+2)
P(13> 2(d—1) 8(d-1) 16(d=1)(d+1)

HH 1-d (d=2)(d+2)
PG 0 g T RE@-N@

HH —_d d—11d+12 (d-2)(d+2)
P(IS) 2(d-T1) 8(d—1) T 8(d-1)(d+1)
PHH 4d? —7d*—8d+8 _ 9d*-87d*>+202d—120 4d*~28d>+69d>+18d—80

(16) 8(d—2)(d-1) 16(d—2)(d—1) 32(d—1)(d+1)
pHH d =54 8d+4 _ _(d-2)(d+2)

(17) 2(d-2)(d-1) 8(d-2)(d-1) 16(d=1)(d+1)
phf —d-1 11d2-81d+72 _ 4d*-28d3459d>+30d—64

(18) 8(d—1) 8(d—1)(d+1)
PHH 3 _ 7d>—44d+36 3(4d* =254 +44d>+28d—48)

(19) d-2 4(d=2)(d—1) 16(d—2)(d—1)(d+1)
pHH 0 0 (d—6)(d—4)(d-2)d

(20) 64(d—1)(d+1)
PHH 0 (d—4)(d*>—12d+12) (d—4)(164>—69d>—10d+72)

(21) I T - 64(d—1)(d+1)
p(FZl) d(2d?+d-24)+20 d(d(5d—49)+130)—88 d(d(d((97-8d)d—390)+468)+360)—576

8(d—2)%(d-1)

8(d—2)%(d—1)

64(d—2)2(d*—1)
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TABLE

VIIL

The UV pole part of the coefficients for the
H-field propagator (see Eq. (A12) in units of k>k>IYY, where

is given by Eq. (A6).

IUV

1 E-1 (E-1)
Py ; % %
Py - -5
Py 5 % 5
Pl 5 % 5
P X -4 i
{ I
PZL 0 0 0
PSL 0 0 0
)
P(io) 1 3 s
Pl % ; 8
Pl : ; i
Pl 3 1% &
Pl 0 -3 a0
Pis) - - 1
P 3 3 &
P 5 & -3
P - % s
Piis) 3 ; g
Pg’& 0 0 0
Pg’f) 0 0 0
pHH _17 _ % 1

N3
=

[353
(=]

The right side of Eq. (4.1), at order k2, can be written as

5.

kM

Explicit verification of the

structural identities

AP

405 s (01T ()% (x)¢™ (v)|0).

where M is defined in such a way that

—k(M~ ()M ()M (1)), g = KPP MG b s

with M(¢) given by (3.8).
In momentum space, Eq. (A13) can be written as

— kM

AP
W ap o

=

Daﬂa,é‘l (p)Dy50292 (q)

X V¢71910‘2920‘393 (_pv q, _k):| D730 m’(k).

(A13)

(A14)

(A15)

We are using the same notation employed for the self-
energies (p is the integration momentum, k is an external
momentum, and ¢ = p + k); note that D**°(p) is the
graviton propagator, and V,,.4s(p.q.7) is the cubic
graviton vertex given, respectively, by Eqs. (3.25a) and
(3.25e) of [8].2 Since M is just a combination of
products of xs and Js, each of the several terms in
Eq. (A15) can be cast in the same form as (A11) in terms
of the tensor basis given by Eqs. (AS8). After a straight-
forward calculation, we have obtained a result which
coincides with one-loop contribution to the mixed H¢
propagator (the same structure constants shown in
Table V), which confirms the identity (4.1) for any
dimension and gauge parameter.

Similarly, the second term on the right side of Eq. (5.1),
at order x2, can be written as

KM 71, 6, (O1TGN % ()" ()% () d75,° (1)10)
X Mbe e 126, (A16)

In momentum space, Eq. (A16), can be written as

dip
_ K-ZMﬁyilﬂl /16, {/ (27-[)01 [Dﬂ1717252 (p)D7151”272(q)pp1

— qp1D71517252 (p)’DﬂlTl”zfz (q)]qm }M/;;f %rz 726,°

(A17)

Equation (A17) can also be cast in the same form as (A12)
in terms of the tensor basis given by Eqs. (A10). After a
straightforward calculation, we have obtained a result
which coincides with one-loop contribution to the H-field
propagator (the same structure constants shown in
Table VII), which confirms the identity (5.1) for any
dimension and gauge parameter.

We point out that these structural identities relate
elements of the basic Feynman rules, in each formalism,
in a nontrivial way. There is also a practical implication
since these identities allow one to compute some rather
involved composite field expectation values in a much more
efficient way by using the auxiliary field instead.

“Both the three graviton interaction vertex and the propagator
are the same as in the second-order formalism from the expansion
of Eq. (4.3).
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