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We determine, for the first time, the scaling dimensions of a family of fixed-charge operators stemming
from the critical O(N) model in 4 — e dimensions to the leading and next to leading order terms in the
charge expansion but to all orders in the coupling. We test our results to the maximum known order in
perturbation theory while determining higher order terms.
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I. INTRODUCTION

The discovery of the Higgs heralds a new era in our
understanding of fundamental interactions. It crowns the
Standard Model of particle physics as one of the most
successful theories of nature while simultaneously opening
new avenues tailored at gaining a deeper understanding of
the ultimate laws of nature.

One of the most striking features of the Standard Model
1s its near scale invariant nature. In fact, at the classical
level, the only two operators that explicitly violate scale
invariance are the Higgs mass and the cosmological
constant. It is therefore natural to start investigating the
dynamics of theories of fundamental interactions around
their scale invariant limit. Scale invariance is highly
intertwined with conformal symmetry which leads to
powerful constraints on the dynamics of the theory at
hand. It is therefore useful to organize quantum field
theories around their conformal limit. Therefore, in our
analysis we shall use it as a tool to access important
information about the theory.

In Ref. [1] the authors employed a semiclassical
approach to determine the scaling dimensions of the
fixed-charge ¢" operator, A, in the U(1) scalar ¢* model
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at the Wilson-Fisher (WF) fixed point. The Standard Model
Higgs is, however, described by a non-Abelian O(4)
model, up to gauge and Yukawa interactions. This calls
for generalizing the approach to non-Abelian theories
which, as we shall see, is quite involved.

We will, therefore, consider O(N) theories and
determine the scaling dimensions of a family of fixed-
charge operators to the leading and next to leading order
terms in the charge expansion but to all orders in the
coupling. Our work builds upon the pioneering idea of
using the large-charge limit [2,3] to gain relevant infor-
mation about conformal dynamics [4]. We test our results
to the maximum known order in perturbation theory
while determining higher order terms. We plan to gen-
eralize our results to generic gauge-Yukawa theories that
are the backbones of any known theory of fundamental
interactions.

IL. O(N) AT FIXED CHARGE

As mentioned in the Introduction, in Ref. [1] (see also
[5]) the U(1) model was investigated using a semiclassical
method in order to compute the scaling dimensions of the
fixed-charge ¢" composite operator, A, in the ﬁqﬁ“ model,
with A the self-coupling. This was performed by analyzing
the conformal theory at the WF fixed point obtained by
going away from four dimensions via d =4 — e with €
positive and tiny. Using the operator-state correspondence
[6,7] one can use the conformal map of the theory at the
WEF fixed point on a cylindrical gravitational background to
determine A . via the expectation value of the evolution
operator e~#7 on an arbitrary state |y,) carrying charge n
with H the Hamiltonian of the system and 7 the time
coordinate.

Published by the American Physical Society
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To make this explicit, consider the path integral formula
for (y, e~ |y,),

1
(Wale " y,) ZZ/D)(iD)(an(Zi)W:;(Zf)

p=fx=xs
X / ! DpDye™S (1)
p=fx=xi

where Z normalizes the vacuum-to-vacuum transition
amplitude while the wave functional

vl =0 (i — [ @00r) @

fixes the charge of the initial and final states to n. Here p
and y are the modulus and phase of the complex scalar
field, while f is a constant value. For small values of the
quartic coupling, 4, this path integral can be computed via
the saddle-point method. The remarkable upshot of [1] is
that, similarly to the large-N ’t Hooft expansion in gauge
theories, the result can be organized as a double expansion
in A and An with An fixed. In other words, the anomalous
dimension of ¢" can be written as

3¢ 9(3N + 14)¢? €’

&= Nt BNy

(8+N)° |8

In the O(N) vector model with even (odd) N, we can fix
up to n =& (*51) charges, which is the rank of the O(N)
group. We fix k < n of these charges and write the path
integral expression to determine the ground state energy of
this charge configuration on a cylinder. From now on, we
focus on the even-N case, since the odd case is similar, and
rewrite the action in terms of n complex field variables

P = %(4’1 + i) = \%518%, (6)
P = %(453 +igs) = \%026"“, (7)
p3 =", (8)

At the WF fixed point g* we map the action onto the
cylinder, R? - R x $47!, which now reads

Scyl = /ddx\/§

_ _ 4r)’qy  _
X(guya”rﬂi3”¢i+m2rpi(pi+( ; 0(471'(/71‘)2)-

©)

Ay = f: A<A(An), (3)

k=-—1

where each of the functions A (An) is computed semiclassi-
cally to all orders in the fixed ’t Hooft An coupling. A similar
analysis, entirely in four dimensions because of the existence
of an ultraviolet interacting perturbative fixed point,
appeared earlier in [8] for non-Abelian gauge-Yukawa
theories but concentrating on the large-charge limit.

A. O(N) model setup and ground state

Here, inspired by the fact that the Standard Model Higgs
is described by an O(4) non-Abelian model, we move to
analyze the non-Abelian massless O(N) vector model
described below:

S— / ddx<(8g§,-)2 +(4;Z)!290 &, W)_ )

In d = 4 — ¢ this theory features an infrared WF fixed
point for the renormalized coupling g, and its value at the
3-loop level in the MS scheme reads [9]

§(4544 + 1760N + 110N? — 33N3) — 36¢(3)(N + 8)(5N + 22)] + O(e*).

(5)

[

A mass term appears, m> = (%2)%, stemming from R, the

radius of the sphere. Notice that the procedure above is
merely employed to ease the computation.

The charges are fixed using k constraints Q; = Q;, where
{Q;} is a set of fixed constants. Clearly, ¢; (¢;) has charge
Q; = 1(=1). The solution of the EOM with minimal
energy is spatially homogeneous, and it is given by

i=1,..k,

Gi:Ai’ i:_i t
pm (10)
j=1,...,n—k.

P =0

As pointed out in [10], a striking consequence of such a
homogeneous solution is the presence of a single chemical
potential u, even if the charges Q; are all different. The
parameters A; and u are fixed by the EOM and by the
expression for the Noether charge as

4 2
:( ) Gor>

2 2
m
6

% =uv? vol. =22%R3, (11)

where we have defined
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k k
’025214,2 QEZQi (12)
i=1 =1

with O the sum of the charges.

The presence of a single chemical potential leaves the
O(2n — 2k) x U(k) symmetry of the original O(2n) sym-
metry unbroken [10]. Then, the vacuum of the theory
spontaneously breaks U(k) to U(k—1). In fact it is
possible to rotate the ground state to

1
(A

AL 0, ..
\/i k

v
.0 0,....0,—=,0,...,0).
)= (0207500

k—1 n—

(13)

Stemming from the considerations above, the saddle-point
computation is organized as single coupling 't Hooft
expansion in ¢g*Q similar to the Abelian case. The sum
of the charges act as a single charge, which is a welcome
simplification leading to

1
_|,—HT|,, _
<’I/Q|e |’l/Q> = Zl

N/2=U

ONj2=V

D'eD"ye S (14)

where

T/2 1 1
Seit :/ dt/dgd—l 5 00,00, + 5 67 (Ox:i0x:)
) 2 2

2 2
m* ,  (4r)
Y

2 Y
0 — . 15
v (o + ooy Oia)- (19

The sums over i go from 1 ton = N/2;i.e., we have fixed the
maximum number of charges to k = n. In conclusion, the
scaling dimension at the fixed point of the smallest dimension
operator carrying a total charge O assumes the form

(16)

Here E 0, is the ground state energy and R the radius of the

sphere.
|

B. Fixed-charge operators

In CFT with internal global symmetries, operators
organize themselves into multiplets transforming according
to irreducible representations of the symmetry group.
Within any one such multiplet, component operators are
further distinguished by their charge configurations,
namely, the value of their charges associated with the
Cartan generators. Component operators of different
charge configurations do not mix under renormalization.
Nevertheless, by virtue of the Wigner-Eckart theorem, they
necessarily have the same scaling dimension.

We would like to compute scaling dimensions of the
lowest-lying operators corresponding to some fixed-charge
configuration via a semiclassical expansion and compare the
results to ordinary perturbation theory whenever possible. In
a massless theory, operators with different engineering
dimensions do not mix. We therefore consider the minimal
classical scaling dimension (MCSD) for a given charge
configuration. Let us start by assuming the generic charge
configuration to be [m] = (m;,m,, ..., my,), with the m;’s
representing the charge associated with the ith Cartan
generator. Without loss of generality, we suppose all m;’s
are positive. Then the fixed-charge operator with the MCSD
is Oy = Hill\//z((p,»)m" with ¢ complex. If some m; are
negative, they would correspond to replacing ¢; with ¢;.
Here, O,) must be a tensor operator living in the traceless
fully symmetric subspace of O(N) transformations, which
corresponds to an irreducible representation and therefore
has a definite scaling dimension. Note that O, is fully
symmetric simply because it is a product of a commuting
scalar field. Furthermore, it is traceless and it turns out to be
the MCSD operator with this charge configuration.

We, therefore, arrive at the conclusion that operators that
have the same total charge and MCSD all belong to the
same irreducible representation of O(N) and thus have the
same scaling dimension.

We therefore identify such an operator to be the Q-index
(9

traceless symmetric tensor 7' =T~

ip The latter can be

represented as Q-box Young tableaux with one row.
The scaling dimension of T at the fixed point has been
computed to O(e?) in [11,12],

[ 0. 00-1)\ [I84+N(14-3N) . (N-22)(N+6) ., 2 -3} , { 8 .,
ATQ_Q+( 28N )6 [ 48+ N) as+ny 2 el T [Baap?
N ———
L 456 = 64N £ N2 28 £ N) (14 + NEG)
(8 + N)*
_ —31136 — 827N — 276N? + S6N° + N* + 24(N + 6)(N + )N + 26)¢(3)
4(N + 8)°
— - 2 3 4 _ NS
4 05664 = 8064N + 4912N" + LL16N® + 43" — N+ 64(N + B)(178+ NGT+ N)L3) ] 2 | ),
16(N +8)
(17)
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Terms highlighted with underbrace will be used to test
our results stemming from the semiclassical computa-
tion below.

I1II. SEMICLASSICAL APPROACH
TO THE O(N) MODEL

We now have all the instruments to proceed with the
computation of ATQ semiclassically.

A. Classical contribution

Here we focus on the leading term A_;, which is given
by the effective action (15) evaluated on the classical
trajectory (10) at the fixed point

1A ,(g0) 0 m’
————==(3u+—. 18
s R 2 (3t (18)
By inserting the second equation in (11) into the first one

and setting d = 4, we obtain

Ry — Ru = Qg (19)

W &~

with the solution

34690 + /=3 +36(g'0)%)

+ (65" S @)
33(69* 0 + /=3 + 36(4°0)?)}
Thus, the leading contribution is
4M., (x4 V3 A
90 34 (x+V=3+ 22
+3%(3% +(x+ V=3 + 2)) o)
(x + V=3 F £2)
where x = 6g*Q. The expansion for small ¢g*Q reads
A - 1 - 2 - 8 -
— 1 e s N 2 (¥ 3
7 Q[ +39°0-50Q)’ +55(9°0)
+0lg 0 @)

The leading term A_; matches exactly the U(1) result [1].
This is a direct consequence of having a single chemical
potential, and it is consistent with the fact that the leading
power of the charge at a given loop order in the perturbative
expression for ATQ does not depend on N. This can be
easily seen by rewriting Eq. (17) as a coupling expansion
by means of Eq. (5). Our result suggests that this behavior
continues at higher loop orders.

B. Quantum corrections

The time is ripe to determine the leading quantum cor-
rections A to be added to the classical result (21). To this
end, we expand around the saddle-point configuration (10)

considering the ground state in (13). We parametrize the
fluctuations as

Xi= —iﬂf+%l7i(x)
= —jut +1xz(x

XN/2 H v ( ) (23)

o; = 5;(x)

onp = v+ r(x).

Expanding the Lagrangian (15) to the quadratic order in the
fluctuations, we arrive at

1
Ly == (0r)> + 3 (0r)? + (4> — m*)r* = 2iurr

1

2
1 1 ..

+ Eas,-as,- + Eapiapi —2ius;p;. (24)

The spectrum for the non-Abelian case contains states that
are also seen in the Abelian case, corresponding to one
relativistic (type I) Goldstone boson (the conformal mode)

x> and one massive state oy, with mass /6u* — 2m?.
Their dispersion relations read

w4 (l) = \/@ +3u —m? £+ \/4J§u2 + (3u* — m?)?,
(25)

with the negative sign applying to the Goldstone boson.
Additionally, the non-Abelian case also features n — 1 =
%—1 nonrelativistic (type II) Goldstone bosons y; and
n — 1 massive states ¢; with mass 2y,

wsi(l) =\t i p (26)

with J2=7¢(¢+d—-2)/R*> the eigenvalues of the
Laplacian on the sphere.

The counting of Goldstone modes can be understood by
recalling that the symmetry breaking pattern is U (%) -
U(5 —1). Naively, one would have expected dim (U (%)/
U(5—1))=N-1 relativistic Goldstone modes. However,
the explicit Lorentz symmetry breaking due to the fixed
charge modifies some of the type I Goldstone bosons into
fewer type II Goldstones. Each type II counts as two type |
Goldstones in the counting of the degrees of freedom with
respect to the number of broken generators [13]. Thus we
have

o (Bo1) et am (u(2) 0 (3-))
(27)

Here, A, is determined by the fluctuation functional
determinant, and it is given by
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Ao = §i [aw) Fw(2)

(31 )en@ o) oo

where n, = (1 + £)? is the Laplacian multiplicity on the
3-sphere.

The difference with respect to the Abelian case is that
now we have to include the contributions of all the
2x (§—1) new modes. As a result, the rank of the
O(N) group n enters in the computation and leads to a
nontrivial dependence of the leading quantum corrections
on the number of scalars N.
|

N

o) =R(1 + ) |\w, (¢)+w_(¢) + <——1)(w++(f)+a)__(f)) +%(N+8)(R2,u2—1)2

2

(2=N—(N+2)Rp?) +

l\)l'—‘
l\)l'—‘

(2-5N -

Following the procedure of [1], we obtain

- 154*R* + 64*R* - 5

Dolg'Q) = - %
1 \/3M2R2—1

(=1
1
T16\2

The last term and sum o(#) distinguish the non-Abelian
case from the Abelian one with

| 2

) [7 + Ru(—16 + 6Ru + 3R°1?)).

(29)

N =

(2 + N)R¥2)¢ = 3N£? — N£&°, (30)

where all the quantities are evaluated in d = 4 dimensions. The above constitutes our main achievement.
As a nontrivial test of our result, we now compare it with the perturbative results [the red contributions in (17)] to the
maximum known order in perturbation theory. To do this we expand the result for small gQ, where the sum above can be

computed analytically,

Ao(g9°0) = —G N) g0+ G——) (g°0)* +

+ 5N =364 280(3) + INEB) (6" 0P + O(g"0)).  (31)

The sum of the classical contribution (22) and the leading quantum correction (31) is

gg

————+8(9°0) = 0~ (10 +N -20) +

4 O(g*4Q5)

*SQ_S

5 [N —36+80 +2(14 + N)¢(3)]

(32)

To better visualize our results, now rewrite the above at the WF fixed point (5) so that we can directly compare with the
leading and next leading order terms in the charge expansion of (17) (underbraced terms) as follows:

N —22)(N +6)

QZ

LO+NLO Q Q(Q ) (
4 Q+<_5+ 8+ N >€_{

8 ~

28+ N) 8+ N)2 Qﬂ

* [(8 v

—456 — 64N + N2 + 2(8 + N)(14 + N)Z(3) 5

B+ N } (33)

The above remarkably shows the power of the approach given that we can now predict the classical and quantum correction
for the higher perturbative loops of the anomalous dimension. To help future checks we give the explicit result up to

order g*%.

4-loops: <—;—j 0+ 8i1 [4(73 — N) —2¢£(3)(65 + 6N) — 5¢£(5)(30 + N)]> (g°0)*, (34)

256 - 1
5-loops: <M3 0+ 43 [

3(—800 + 7N) + 28L(3)(28 4 3N) + 40£(5)(22 + N) + 14£(7)(62 + N)]> (g°0)°,  (35)
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572 2

6-loops: ( Z2 0+ 2110191 — 64N — 2¢(3)(1327 + 160N) — 2£(5)(1441 + 80N)

T 243 279

—70¢(7)(46 + N) —21C(9)(126+N)])(Q*Q)6. (36)

Since the result is valid for any N, one can now directly
apply it to the Higgs sector of the Standard Model for which
N =4 and up to Yukawa and gauge interactions.

In this paper we focused on the limit ¢g*Q that is fixed
and small. This allowed us to determine the all-order
perturbative contributions to the quantum scaling dimen-
sion related to the fixed charge. Another interesting and
complementary limit, already much explored in the liter-
ature [10], is the one in which ¢*Q is large, which can be
straightforwardly obtained from (21) and (29).

In conclusion, we used the semiclassical approach to
determine, for the first time, the scaling dimensions for the
critical O(N) model in 4 — ¢ dimensions. We determined
the scaling dimension to the leading order and next to
leading order terms in the charge expansion but to all orders
in the coupling. This work constitutes the stepping stone

towards generalizing the approach to gauge-Yukawa
theories.
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Note added.—Recently, a related study in d = 6 — ¢ was
investigated in [14].
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