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We compute the discharging rate of a uniform electric field due to Schwinger pair production in (1þ 1)-
dimensional scalar electrodynamics with a compact dimension of radius R. Our calculation is performed in
real time, using the in-in formalism. For large compactification radii, R → ∞, we recover the standard
noncompact space result. However, other ranges of values of R and of the massm of the charged scalar give
rise to a richer set of behaviors. For R≳Oð1=mÞ with m large enough, the electric field oscillates in time,
whereas for R → 0 it decreases in steps. We discuss the origin of these results.
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I. INTRODUCTION

The possibility of creating matter in the presence of a
strong external field is a remarkable feature of relativistic
quantum fields. The earliest and possibly most studied
example of such phenomenon is the Schwinger effect [1,2].
In this process, an external electric field accelerates charged
virtual particles, extracting them from the vacuum and
turning them into real pairs. The pair of produced particles
generates an electric field that opposes the field responsible
for their creation, reducing its intensity. The energy in the
electric field lost this way is thus converted into the energy
in the particles.
The rate of pair production can be computed using

different techniques, such as the early tunneling calculation
of Sauter [1], Schwinger’s proper time method [2], instan-
tons [3] and real time techniques [4–9]. The Schwinger
effect in compact spaces has received significant attention
only in more recent years. In Ref. [10] the system was
studied using the instanton formalism, and it was argued
that for small compactification radii the expression of the
rate of pair production changes significantly from the one
found in the noncompact case. The work [11] discussed
the effect from the point of view of the effective lower-
dimensional theory. The paper [12] studied numerically the
unwinding of the electric flux as the produced pair circles
multiple times the compact space. References [13,14]
discuss Schwinger pair production on compact spaces with
two compact dimensions. The Schwinger effect at finite

temperature has received more attention [10,11,15–19] and
is related to the spatially compact case as finite temperature
effects can be captured by compactifying Euclidean time.
In the present paper we study the Schwinger effect in

compact space by directly computing, for the first time, the
number of produced pairs as a function of time. More
specifically, we compute the change, to leading order, in the
intensity of the electric field induced by the current of
produced pairs. We perform our calculation using the in-in
formalism [20,21], that at leading order corresponds to the
calculation of Bogolyubov coefficients. As a consequence,
our calculation parallels the one performed, for the non-
compact case, in [4–9]. The system considered throughout
the paper is scalar electrodynamics in 1þ 1 spacetime
dimensions, where the scalars have mass m and charge e,
and we denote by E the magnitude of the background field.
Compactification of the spatial dimension implies that

we can write the correction to the electric field as a series of
contributions from the Kaluza-Klein modes of the charged
field. The series is divergent, a consequence of the
assumption that the background field is constant, so it
had an infinite time to produce pairs. We isolate the
divergent part, leaving the physical effect in the form of
a convergent series, that can be in general evaluated
numerically. Besides the renormalization associated to
the infinite duration of the process, evaluation of the rate
of pair production requires a different, more subtle kind of
subtraction. Already in the noncompact case, a direct
computation of the rate of pair production in the in-in
formalism gives a nonvanishing result even in the decou-
pling limit where the mass m of the produced particles
diverges. This unphysical behavior is taken care of by using
the formalism of the Bogolyubov coefficients, where two-
point functions are computed in terms of the normal-
ordered ladder operators defined in the far future. Such
an operation is equivalent to subtracting, from the two-
point functions computed in terms of the exact mode
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functions, the same two-point functions written in terms of
the mode functions evaluated in the adiabatic approxima-
tion [22,23].
While in the noncompact case the electric field dis-

charges at a uniform rate, the evolution of the electric field
has a less trivial behavior in the small radius regime R → 0.
As one can see in Fig. 2, the field is discharged by the effect
of pair production in a stepwise fashion. While this is
inconsistent with the assumption of a time-translation
invariant background that would call for a uniform rate,
we will argue in Sec. VA that this behavior is not unusual
for a process of particle creation.
Another interesting behavior is that found in the regime

eER2 ¼ Oð1Þ, mR≳Oð1Þ. For this choice of parameters,
the electric field performs oscillations that, even if their
amplitude is exponentially small, are parametrically larger
than its decrease due to pair production—see Fig. 3. As we
discuss in Sec. V B, this behavior confirms the analysis of
[11]. In particular, the oscillations are a direct consequence
of the shape of the effective potential of the electric field
obtained in the dimensionally reduced theory, after inte-
grating out the modes of the charged field. In other words,
in this regime the effect on the evolution of the electric field
is dominated by the effects of virtual pairs of scalar quanta,
and not by the creation of actual pairs of particles. Our
results thus confirm the interpretation [11] of the statement
of [10] that, for small radii, the electric field evolves at a
rate whose expression is different from the one found in the
noncompact theory. More specifically, while the expression
of the net rate of pair production is unchanged, the
amplitude of the oscillations of the electric field is larger
and matches the amplitude of the effect discussed in [10].
The plan of the paper is as follows. In Sec. II we set up

our formalism and reobtain, using the in-in formalism,
well-known results on the rate of Schwinger pair produc-
tion in noncompact space. In Sec. III we present new
formulas for the rate of pair production in real time in
compact space. Details of the calculation are presented in
two Appendixes. In Sec. IV we analyze, in some repre-
sentative regimes, the behavior of the formulas found in the
previous section. We discuss our results in Sec. V.

II. NONCOMPACT CASE

Before investigating case of a compact spatial dimen-
sion, here we review the real-time analysis of the
Schwinger effect in 1þ 1 noncompact dimensions. Our
Lagrangian for scalar electrodynamics reads

L ¼ −
1

4
FμνFμν − ð∂μ − ieAμÞϕð∂μ þ ieAμÞϕ� −m2jϕj2

¼ 1

2
_A2 þ j _ϕj2 − jϕ0j2 −m2jϕj2

þ ieAðϕϕ0� − ϕ0ϕ�Þ − e2A2jϕj2; ð1Þ

where we have chosen the gauge Aμ ¼ ð0; AÞ [12] and
where a overdot and a prime denote, respectively, a time
and a space derivative. We then decompose the gauge field
A into a background yielding a constant electric field E and
a perturbation,

Aðx; tÞ ¼ −Etþ δAðx; tÞ; ð2Þ

so that the Lagrangian (1) takes the form,

L≡ LF þ LI ¼
1

2
δ _A2 þ j _ϕj2 − jϕ0j2 −m2jϕj2

− ieEtðϕϕ0� − ϕ0ϕ�Þ − e2E2t2jϕj2
þ ieδAðϕϕ0� − ϕ0ϕ�Þ − e2δA2jϕj2 þ 2e2δAEtjϕj2;

ð3Þ

where LF is the free part of the Lagrangian, given in the
first line of Eq. (3), whereas LI denotes the interaction
terms, given in the second line.

A. The correction to the electric field
in the in-in formalism

We now quantize the fields ϕ and δA and compute the
correction to the electric field to leading order in the in-in
formalism. As we will show in Sec. II D below, the
resulting correction to the electric field accounts for the
creation of pairs of charged scalars through the Schwinger
mechanism.
The free equation for δA is just δÄ ¼ 0, that has the

general solution δAðx; tÞ ¼ ĉðxÞ þ d̂ðxÞt, where ĉðxÞ and
d̂ðxÞ are operators. Canonical quantization requires

½ĉðxÞ þ d̂ðxÞt; d̂ðyÞ� ¼ iδðx − yÞ;
½ĉðxÞ þ d̂ðxÞt; ĉðyÞ þ d̂ðyÞt� ¼ ½d̂ðxÞ; d̂ðyÞ� ¼ 0; ð4Þ

that is satisfied by imposing the commutation relations,

½ĉðxÞ; d̂ðyÞ� ¼ iδðx − yÞ; ½ĉðxÞ; ĉðyÞ� ¼ ½d̂ðxÞ; d̂ðyÞ� ¼ 0:

ð5Þ

Next, we decompose the field ϕ as

ϕðx; tÞ≡
Z

dkffiffiffiffiffiffi
2π

p eikxϕ̂ðk; tÞ

¼
Z

dkffiffiffiffiffiffi
2π

p eikxðϕðk; tÞâk þ ϕð−k; tÞ�b̂†−kÞ; ð6Þ

where the mode function ϕðk; tÞ solves the equation of
motion, derived from the free Lagrangian LF,

ϕ̈ðk; tÞ þ ½ðkþ eEtÞ2 þm2�ϕðk; tÞ ¼ 0: ð7Þ
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The general solution of this equation can be written in terms
of parabolic cylinder functions,

ϕðk; tÞ ¼ C1Dim
2

2eE−
1
2

�
ðkþ eEtÞ

ffiffiffiffiffiffi
2

eE

r
e−iπ=4

�

þ C2Dim
2

2eE−
1
2

�
−ðkþ eEtÞ

ffiffiffiffiffiffi
2

eE

r
e−iπ=4

�
; ð8Þ

where the integration constants C1;2 can be fixed, after
imposing the commutation relations ½âk; â†k0 � ¼ ½b̂k; b̂†k0 � ¼
δðk − k0Þ, by requiring positive frequency modes at early
times, when the WKB approximation can be applied

ϕðk; t → −∞Þ → ϕadðk; tÞ; where

ϕadðk; tÞ≡ 1ffiffiffiffiffiffi
2ω

p e−i
R

ωdt

≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jeEtjp ei
1

2eEðkþeEtÞ2 jkþ eEtjim2

2eE ð9Þ

is the solution of the mode equations in the WKB
approximation. This gives

ϕðk; tÞ ¼ e−
πm2

8eE

ð2eEÞ1=4Dim
2

2eE−
1
2

�
−ðkþ eEtÞ

ffiffiffiffiffiffi
2

eE

r
e−iπ=4

�
:

ð10Þ

We compute the correction to electric field using the
in-in formalism [20,21], in which the expectation value of
an operator OðtÞ is given by

hOðtÞi ¼
X
N

ð−iÞN
Z

t
dt1…

×
Z

tN−1
dtNh½½…½OfreeðtÞ;Hintðt1Þ�;…�;HintðtNÞ�i;

ð11Þ
where HintðtÞ denotes the interaction Hamiltonian, and
Ofree represents the operator O computed in terms of the
free mode functions.
In our case, the operator we are interested in is the

correction to the electric field, δEðx; tÞ≡ −δ _Aðx; tÞ. To
lowest order in the in-in expansion, we only need to
consider the cubic part of the interaction Hamiltonian,

Hð3Þ
int ¼ −e

Z
dy

Z
dpdq
ð2πÞ eiðp−qÞy

× ½ðpþ qÞ þ 2eEt�δAðyÞϕ̂ðpÞϕ̂†ðqÞ: ð12Þ
Hence the first order correction to the electric field reads

hδEðx; tÞið1Þ ¼ −ie
Z

t
dt1

Z
dy

Z
dpdq
ð2πÞ eiðp−qÞyh½δ _Aðx; tÞ; δAðy; t1Þϕ̂ðp; t1Þϕ̂†ðq; t1Þ�iððpþ qÞ þ 2eEt1Þ

¼ −e
Z

t
dt1

Z
dpdq
ð2πÞ eiðp−qÞxhϕ̂ðp; t1Þϕ̂†ðq; t1Þi½ðpþ qÞ þ 2eEt1�; ð13Þ

that could have also been obtained by integrating Gauss’
law.

B. The two-point function of the scalar.
Vacuum subtraction

We must now compute the two point function
hϕ̂ðp; tÞϕ̂†ðq; tÞi. Since this quantity does not vanish even
when the system is in its vacuum, we need to subtract its
vacuum component. We perform this subtraction by using
the standard method of the Bogolyubov coefficients (see
[5] for a nice discussion in this context).
The idea beyond the use of the Bogolyubov coefficients

is that the concept of particles is well defined only when ω
is evolving adiabatically. An especially heuristic argument
for this invokes Heisenberg’s uncertainty principle. The
number of nonrelativistic particles in a box can be deter-
mined by measuring their total mass (with an uncertainly

smaller than the massm of one particle) and dividing by the
mass of one particle. The uncertainty principle tells us that
the time ΔT needed to perform this measurement must be
larger than ℏ=ðmc2Þ. Now, if the effective mass of the
particles is time-dependent, then ΔT must be smaller than
the time scale over which m evolves, ΔT ≲m= _m. We thus
obtain the condition _m=m2 ≲ c2=ℏ, or, generalizing to the
relativistic regime and going back to natural units, _ω≲ ω2.
In the adiabatic regime the general solution of the equations
of motion for the mode functions is given by the linear
combination αðkÞϕadðk; tÞ þ βð−kÞϕadð−k; tÞ�, where
ϕadðk; tÞ is defined in Eq. (9) and where αðkÞ and βðkÞ,
known as Bogolyubov coefficients, are arbitrary constants.
This motivates the following decomposition:

ϕðk; tÞ ¼ αðk; tÞϕadðk; tÞ þ βð−k; tÞϕadð−k; tÞ�; ð14Þ
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where jαðk; tÞj2 − jβðk; tÞj2 ¼ 1 to maintain the correct nor-
malization of the creation/annihilation operators ½âk; â†q� ¼
δðk − qÞ etc. Note that in (14) the quantities αðk; tÞ and
βðk; tÞ are assumed to depend also on time, so that this
expression of ϕðk; tÞ can be valid also when j _ωj≳ ω2. It is
worth stressing here that we are assuming that ϕadðk; tÞ is
evaluated to leading order in the adiabatic approximation,
but that in general higher order expressions might be more
appropriate [24–28].
As long as the evolution of the mode functions is

adiabatic, the choice of the parameters αðkÞ and βðkÞ is
arbitrary and irrelevant—provided, of course, also the
Hilbert space of the system is defined accordingly (in
particular, it is important that the system is evolving
adiabatically at early times, t → −∞, so that we can define
an initial vacuum state). The usual choice is αðkÞ ¼ 1 and
βðkÞ ¼ 0 as t → −∞, so that the vacuum is annihilated
by âk. Now, if the system goes through a stage of
nonadiabatic evolution, _ω≳ ω2, followed by a second
and final period of adiabatic evolution, then in this second
period t → þ∞ the mode functions will have the form (14)
with αðk; tÞ and βðk; tÞ constant. Since we have already
fixed αðk; t → −∞Þ → 1 and βðk; t→ −∞Þ→ 0, however,
we do not have the freedom to redefine αðk; t → þ∞Þ
and βðk; t → þ∞Þ.
Let us now consider a set of observers born after the

period of nonadiabaticity, during the t → þ∞ epoch. These
observers will see the mode functions of the form ϕadðk; tÞ
and will decompose the field as ϕ̂ðk; tÞ ¼ ϕadðk; tÞâk þ
ϕadð−k; tÞ�b̂†−k, where âk and b̂k are the annihilation
operators for those observers, who will not even know
that at early times, before they were born, the annihilation
operators were âk and b̂k. To make the definition of âk and

b̂k valid even at intermediate times, we define more in
general,

ϕ̂ðk; tÞ ¼ ϕadðk; tÞâkðtÞ þ ϕadð−k; tÞ�b̂−kðtÞ†: ð15Þ

This is equivalent to redefining

âkðtÞ ¼ αðk; tÞâk þ βðk; tÞ�b̂†−k
b̂kðtÞ ¼ βðk; tÞ�â†−k þ αðk; tÞb̂k: ð16Þ

In particular, observers born at t → þ∞ will normal
order the operators âk and b̂k, and not âk and b̂k.
These considerations motivate us to compute the quantity
hϕ̂ðp; t1Þϕ̂†ðq; t1Þi as the expectation value on the initial
state vacuum (vacuum that is constant throughout the
evolution of the system and is annihilated by âk and b̂k)
after normal ordering the âkðtÞ and b̂kðtÞ operators. This
prescription generalizes the one for the occupation
number Nk ¼ hb̂†kb̂ki ¼ jβðk; tÞj2 to a generic bilinear
in the field.
Using this prescription we obtain

hϕ̂ðp; tÞϕ̂†ðq; tÞi ¼ δðp − qÞ½jϕðq; tÞj2 − jϕadðq; tÞj2�:
ð17Þ

This method therefore leads to results that are equivalent
to those obtained through adiabatic regularization [22,23]
and provides a physical motivation for such a procedure.
Using the expression (9) of ϕadðk; tÞ obtained to leading
order in the adiabatic approximation, the renormalized
result is

hϕ̂ðp; t1Þϕ̂†ðq; t1Þi ¼ δðp − qÞ
�
jϕðp; t1Þj2 −

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ eEt1Þ2 þm2

p
�
; ð18Þ

that, substituted into (13), gives the final expression,

hδEðx; tÞið1Þ ¼ −2e
Z

t
dt1

Z
dp
2π

jϕðp; t1Þj2ðpþ eEt1Þ þ e
Z

t
dt1

Z
dp
2π

pþ eEt1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ eEt1Þ2 þm2

p : ð19Þ

C. Result

The integral in Eq. (19) can be computed exactly, but we do not need to perform this calculation. It is easier to extract the
physically relevant result by observing that p and t appear in the integrands in Eq. (19) always in the combination
ðpþ eEtÞ, so that derivatives with respect to t can be easily traded for derivatives with respect to p: ∂=∂t ¼ eE∂=∂p. The
second derivative of Eq. (19) then reads
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hδËðx; tÞið1Þ ¼ lim
Λ�→þ∞

�
−
e
π

Z
Λþ

−Λ−

dp
d
dt

fjϕðpþ eEtÞj2ðpþ eEtÞg þ e
2π

Z
Λþ

−Λ−

dp
d
dt

�
pþ eEtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðpþ eEtÞ2 þm2
p

��

¼ −
e2E
π

e−
πm2

4eE

ð2eEÞ1=2 lim
Λ�→þ∞

�				Diπm
2

2eE−
1
2

�
ðpþ eEtÞ

ffiffiffiffiffiffi
2

eE

r
e3iπ=4

�				
2

ðpþ eEtÞ
�
p¼Λþ

p¼−Λ−

þ e2E
π

; ð20Þ

where we have regularized the dp integrals by setting the integration range on ð−Λ−;ΛþÞ, and where we have used the
fundamental theorem of integral calculus in the second line.
Using the asymptotic behavior of the parabolic cylinder function, see e.g., Eq. 9.246 of [29], we thus obtain

hδËðx; tÞið1Þ ¼ −
e2E
π

��
e−

πm2

eE þ 1

2

�
−
�
−
1

2

��
þ e2E

π
¼ −

e2E
π

e−π
m2

eE : ð21Þ

Two comments are in order. First, if we did not subtract
the adiabatic part of hϕ̂ðp; t1Þϕ̂†ðq; t1Þi [which results in
the last term in the second line of Eq. (20)], the resulting
rate (21) would not vanish in the decoupling limit m → ∞.
This shows the need for the subtraction of the adiabatic part
of the two point function of ϕ.
Second, the equation above gives the second time

derivative of hδEðx; tÞið1Þ. This means that hδEðx; tÞið1Þ
contains two integration constants that are however unrelated
to rate of pair production and thus are uninteresting for us.
The first of these constants is related to the initial value of the
background electric field; the second one is related to the
initial value of the number of charged particles that are
subsequently accelerated and decrease the background field
at a rate that is linear in time. Neither of these integration
constants is related to the rate of pair production that is fully
captured by Eq. (21), as we now discuss.

D. Connecting Ë to the rate of pair production

We will now connect the rate (21) of change of the
electric field to the rate of production of pairs of ϕ
particles.
If a particle of massm and charge e is subject to a uniform

field E, then its velocity is given by vðtÞ ¼ eEðt−t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þðeEðt−t0ÞÞ2

p ,

where t0 is the time at which the particle is at rest.
Let now dn�ðt0Þ be the number density of particles with

charge�e created at rest between the times t0 and t0 þ dt0.
Then the element of current associated to those particles
and evaluated at time t reads

dJðt; t0Þ ¼ ednþðt0Þ
eEðt − t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ðeEðt − t0ÞÞ2
p

− edn−ðt0Þ
ð−eÞEðt − t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ðeEðt − t0ÞÞ2
p : ð22Þ

Using the fact that the production rates are the same for
both particles and antiparticles and that they are constant in
time, so that dn�ðt0Þ ¼ _ndt0 with _n ¼ constant, we get

dJðt; t0Þ ¼ 2_n
e2Eðt − t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ðeEðt − t0ÞÞ2
p dt0; ð23Þ

and finally the current at time t is

JðtÞ ¼
Z

t

tin

dJðt; t0Þ
dt0

dt0

¼ 2
_n
E


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ e2E2ðt − tinÞ2

q
−m

�
→ 2_neðt − tinÞ;

ð24Þ

where we assumed that the process started long ago,
eEðt − tinÞ ≫ m.
Then, from the Maxwell equations ∂μFμν ¼ Jν we

obtain _E ¼ −J ⇒ Ë ¼ − _J ¼ −2_ne. This finally gives

_n ¼ −
Ë
2e

¼ −
δË
2e

¼ eE
2π

e−π
m2

eE ; ð25Þ

in agreement with the standard result.

III. COMPACT CASE

Let us now consider a system where space is compacti-
fied, with the identification x ≈ xþ 2πR. The procedure for
the compact case is similar to that presented above in the
noncompact regime. As we will see, however, additional
complications come from the fact we will not be able to use
the fundamental theorem of integral calculus that allowed
to simplify Eq. (20).

A. Kaluza-Klein decomposition

We decompose the gauge field as in the noncompact
case: δAðx; tÞ ¼ ĉðxÞ þ d̂ðxÞt, with ĉðxÞ and d̂ðxÞ periodic
functions satisfying the commutation relations of Eq. (5).
For what concern the field ϕ, we decompose it into Kaluza-
Klein modes,
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ϕðt; xÞ≡ X∞
n¼−∞

1ffiffiffiffiffiffiffiffiffi
2πR

p einx=Rϕ̂nðtÞ

¼
X∞
n¼−∞

1ffiffiffiffiffiffiffiffiffi
2πR

p einx=R½ϕnðtÞân þ ϕ�
−nðtÞb̂†−n�; ð26Þ

where, analogously to Eq. (10), ϕnðtÞ is given by

ϕnðtÞ¼
e−

πm2

8eE

ð2eEÞ1=4Dim
2

2eE−
1
2

�
−
�
n
R
þeEt

� ffiffiffiffiffiffi
2

eE

r
e−iπ=4

�
: ð27Þ

Then, substituting into Eq. (13), one obtains

hδEðx; tÞið1Þ ¼−
e
πR

Z
t
dt0

X
n

jϕnðt0Þj2
�
n
R
þ eEt0

�

þ e
2πR

Z
t
dt0

X
n

n
Rþ eEt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnRþ eEt0Þ2þm2
q : ð28Þ

B. Result

Since the transition to the compact case converts the
integral in dp in Eq. (19) into a series, we cannot use the
trick—based on the fundamental theorem of calculus—
used in Eq. (20) to compute hδËi. Instead, we have to
compute the series directly. An additional complication is
that the series in Eq. (28) are divergent. So we will use
a different strategy. First, we take the time derivative
hδ _Eðx; tÞið1Þ that eliminates the time integral from Eq. (28).

Then we cut off the summation at some large N� > 0,
−N− < n < Nþ. We use a Mellin-Barnes representation
(see Eq. 9.242.3 of [29]) of the parabolic cylinder function.
This allows us to express the n-dependence of the first term
on the right-hand side of Eq. (28) in the simple form of
Hurwitz ζ-like series, and the divergent part asN� → ∞ can
be isolated. The remaining part of series can be resummed
to a finite result and reverse-engineered using again the
Mellin-Barnes representation of the parabolic cylinder func-
tions. The details are presented in Appendix A.
As for the vacuum part, given by the second summation

on the right-hand side of Eq. (28), the analysis is simpler.
Here we just state that, also in this case, we have to cut
the sum off at −N− < n < Nþ. Then we can rewrite
(Appendix B gives the details)

XNþ

n¼−N−

n
R þ eEtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnR þ eEtÞ2 þm2
q

¼ 2eERtþ 4mR
X∞
n¼1

sinð2πneERtÞK1ð2πnmRÞ

þ constant; ð29Þ

where K1 is the modified Bessel function of second kind,
and where the constant part is generally divergent as
N� → þ∞, but does not depend on t.
Our final expression for the time derivative of the electric

field, at first order in the perturbative expansion, reads

hδ _EðtÞið1Þ ¼ −
e

2πR

�
ð1þ 2e−πm

2Þ
X∞
n¼0

� ffiffiffi
2

p ðnþ Rt − ½Rt�Þ
R

e−πm
2=4

				D−1=2þim2=2

� ffiffiffi
2

p ðnþ Rt − ½Rt�Þ
R

e−iπ=4
�				

2

− 1

�

−
X∞
n¼0

� ffiffiffi
2

p ðnþ 1 − Rtþ ½Rt�Þ
R

e−πm
2=4

				D−1=2þim2=2

� ffiffiffi
2

p ðnþ 1 − Rtþ ½Rt�Þ
R

e−iπ=4
�				

2

− 1

�

þ 2ð½Rt� − RtÞ − 4mR
X∞
n¼1

sinð2πnRtÞK1ð2πnmRÞ
�
−

e
πR

e−πm
2 ½Rt� þ constant; ð30Þ

where, in order to keep the a lighter notation, we have set
eE ¼ 1 (and we will do this in the remainder of this section
and in Sec. IV), where [x] denotes the integer part of x, and
where the constant term depends on the regulators N� and
is generally divergent as N� → ∞.
Equation (30) is our main result. It gives the rate of

change of electric field due to Schwinger pair production in
compact spaces for arbitrary values of the parameters, at
first order in the in-in expansion. In the next section we will
study the behavior of this function. Here, let us note a
couple of general properties. First, all the parts that are
divergent as N� → þ∞ are independent on t. As discussed

above, these divergences correspond to a possible non-
vanishing initial charge distribution in the system and are
uninteresting for us. All the parts that are not explicitly
dependent on N� are finite [in particular, this means that
the summations appearing in Eq. (30) are convergent].
Second, the nontrivial part of Eq. (30) depends on
Rt − ½Rt�, so that, as a function of t, is periodic with a
period 1=R. The nonperiodic component of hδ _EðtÞið1Þ is
given by the term outside the curly brackets in Eq. (30),
− e

π e
−πm2 ½Rt�

R . This means that the net rate of particle
production, averaged on time scales that are long with
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respect to the time scale R−1, coincides with the non-
compact result.

IV. RESULTS FOR COMPACT CASE

We are now in position to analyze the behavior of our
main observable, hδ _Eðx; tÞið1Þ, in various regimes.

A. The decompactified limit, R → ∞ with fixed m

Let us first make sure that our result (30) converges to the
noncompact one, Eq. (21), in the limit R → ∞. In this limit
we note that the sums in the first two lines of Eq. (30) can
be approximated by integrals, where we introduce an
integration variable p ¼ n=R, so that

hδ _EðtÞið1Þ ¼ −
e
2π

�
ð1þ 2e−πm

2Þ
Z

∞

0

dp½
ffiffiffi
2

p
ðpþ τ=RÞe−πm2=4jD−1=2þim2=2ð

ffiffiffi
2

p
ðpþ τ=RÞe−iπ=4Þj2 − 1�

−
Z

∞

0

dp½
ffiffiffi
2

p
ðpþ ð1 − τÞ=RÞe−πm2=4jD−1=2þim2=2ð

ffiffiffi
2

p
ðpþ ð1 − τÞ=RÞe−iπ=4Þj2 − 1�

− 2
τ

R
− 4m

X∞
n¼1

sinð2πnRtÞK1ð2πnmRÞ
�
−

e
πR

e−πm
2 ½Rt� þ constant; ð31Þ

where we have defined the quantity,

τ≡ Rt − ½Rt�; 0 ≤ τ < 1: ð32Þ
Next we note that τ=R → 0 in this limit, which implies
that the first two lines in Eq. (31) converge to a time-
independent and irrelevant constant. Moreover, for what
concerns the term involving the Bessel functionK1, one can
use the asymptotic behavior K1ðxÞ ≈

ffiffiffiffi
π
2x

p
e−x to show that

term vanish exponentially fast as mR → ∞. As a conse-
quence, using ½Rt�

R → t asR → ∞, and reinstating, just for this
result, the factors of eE, we reobtain the noncompact result,

hδ _EðtÞið1Þ ⟶R→∞
−
e2E
π

e−π
m2

eE tþ constant: ð33Þ

The result of thenumerical calculationof hδ _Eð1Þið1Þ is shown
for representativevalues ofR andm in Fig. 1, and agreeswith
the result (33).

B. The Kaluza-Klein decoupling limit,
R → 0 with fixed m

For R → 0, the Kaluza-Klein modes become infinitely
heavy, so that we expect each Kaluza-Klein mode of the
charged fields to be separately excited. To study this regime

analytically we assume τ
R ≫ 1 and 1−τ

R ≫ 1, so that we are
far enough from the instances of particle production that
occur when Rt crosses a integer value. We can then use the
asymptotic expansion of the parabolic cylinder function for
large arguments, which gives

xe−πm
2=4jD−1=2þim2=2ðxe−iπ=4Þj2 − 1 ¼ −

m2

x2
þOðx−4Þ:

ð34Þ

So we get, for R → 0,

hδ _EðtÞið1Þ ≃
m2eR
4π

ð1þ 2e−πm
2Þψ 0ðRt − ½Rt�Þ

−
m2eR
4π

ψ 0ð1 − Rtþ ½Rt�Þ

−
e
πR

e−πm
2 ½Rt� þ constant; ð35Þ

where ψ 0 denotes the derivative of the digamma function,
ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ, ψ 0ðxÞ ¼ P∞

n¼0ðnþ xÞ−2, and where
we have used Eq. (B7). As R → 0, the terms proportional to
the ψ 0 functions vanish, and we are left with the result,

hδ _EðtÞið1Þ ≃ −
e
π
e−πm

2 ½Rt�
R

; with
Rt − ½Rt�

R
≫ 1;

1 − Rtþ ½Rt�
R

≫ 1; R → 0: ð36Þ

As stated above, this result requires Rt to be far from an
integer value. To cover also the case where Rt is close to
integer we have to compute hδ _EðtÞið1Þ numerically. We
show the results (in units of e) obtained for two choices
of parameters in Fig. 2. As one can see, Eq. (36) provides
an excellent approximation of the exact result for

j Rt−½Rt�R j ≫ 1, while when Rt is close to an integer the

FIG. 1. The quantity h _EðtÞið1Þ, in units of e and for eE ¼ 1, as a
function of Rt evaluated numerically for m ¼ 1, R ¼ 10. The
result agrees with the analytical approximation (33).
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amplitude of the correction to the electric field shows a
nontrivial behavior.

C. R=Oð1Þ with mR≳Oð1Þ
We conclude this section analyzing the case in which

mR≳Oð1Þ, which includes the case mR ≫ 1. We also
assume m≳ 1, which implies that the net rate of pair
production, as given by the nonperiodic component of
Eq. (30) is negligible. For this choice of parameters the
distance in time ∼1=R between the events of production of
different Kaluza-Klein modes of the matter field is com-
parable to or much smaller than the duration ∼m of the
individual events of particle production themselves
(remember that we are setting eE ¼ 1 in this section).
To see that particle production lasts a time ∼m, let us
remember that this process occurs when the frequency of
the mode functions is evolving nonadiabatically. In our
case, considering without loss of generality the zero mode
of the field ϕ, the frequency reads ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þm2

p
.

Nonadiabaticity is maximal when the quantity j _ωj=ω2 is
maximized, which turns out to be the case when t ¼ m=

ffiffiffi
2

p
.

Since for R≳Oð1=mÞ there is always at least one
Kaluza-Klein mode of the scalar field whose proper
frequency is not evolving adiabatically, we find that the
system is never in a fully adiabatic regime. Numerical
analysis, indeed, shows a rather unusual behavior: the
electric field performs sinusoidal oscillations. The

amplitude of such oscillations, in the regime of large
mR ≫ 1, that can be seen to go as e−2πmR. This behavior
is apparent in the plots in Fig. 3. For smaller values of m
and fixed mR ¼ Oð1Þ (not shown) the behavior is similar,
but the oscillations are superimposed to a decay due to the
term proportional to ½Rt� at the end of Eq. (30).
In Sec. V B below we discuss the origin of this behavior.

V. DISCUSSION AND CONCLUSIONS

In the previous section we have analyzed the function
hδ _EðtÞið1Þ in various regimes. We have seen that in the
decompactification limit R → ∞ we recover the standard
result (31). In the opposite R → 0 limit we have obtained a
stepwise behavior, which seems inconsistent with the
stationary nature of the background that would require a
uniform rate of particle creation. Finally, in the case
R ¼ Oð1Þ, mR ≫ 1, the function hδ _EðtÞið1Þ also features
an unexpected time dependence, showing oscillations
whose amplitude is parametrically larger than the decrease
of the electric field due to particle production.
Let us discuss the latter two results separately.

A. On the steplike behavior for R → 0

The steplike behavior observed in Fig. 2 is surprising if
one considers that the background system displays invari-
ance under continuous time translations. Why is this

FIG. 2. The quantity h _EðtÞið1Þ, in units of e and for eE ¼ 1, as a function of Rt evaluated numerically for m ¼ 1, R ¼ :05 (left) and
m ¼ 1, R ¼ :1 (right). For Rt far from integer values the result agrees with the analytical approximation (36), shown in the red,
dashed lines.

FIG. 3. Left panel: the quantity h _EðtÞið1Þ, in units of e and for eE ¼ 1, as a function of Rt evaluated numerically for mR ¼ 1. The
curves, from larger to smaller amplitude, correspond to m ¼ 2, 3, 4. Right panel: the amplitude of the oscillations of the quantity
h _EðtÞið1Þ, multiplied by e2πmR, as a function of m and for R ¼ 1.
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continuous symmetry broken down to the discrete invari-
ance under t ↦ tþ 1=ðeERÞ, and what does determine the
exact time when particle production occurs?
The fact that vacuum decay might break some of the

background spacetime symmetries has been already dis-
cussed, for instance in [7,30,31]. Analogously to what was
shown in [7], which focused on the Lorentz invariance of
the Schwinger phenomenon in noncompact space, the
vacuum of our system is invariant under time translation,
as a time translation t ↦ tþ δt is canceled by a gauge
transformation A ↦ A − Eδt. Conversely, the addition of a
constant to the gauge potential would determine a shift in
the times of particle production. In compact space, a
physical observable can have gauge dependence, as in
the Aharonov-Bohm effect, which implies that gauge
transformations can also be observable unless they meet
certain conditions. In our case, gauge invariance is pre-
served if the particle picks up a phase equal to a multiple of
2π, which corresponds to a time translation δt is equal to a
multiple of 1

eER, and which in its turn corresponds to a shift
of the Kaluza-Klein modes by an integer. Choosing a
gauge, as we did, is equivalent to choosing an initial time
for a particular observer who measures the particle pro-
ductions, analogously to the choice of an observer’s frame
for bubble nucleation, as discussed in [7]. Finally, it is
worth noting that an exactly time-translational invariant
electric field is an idealization—if this state is decaying
then it cannot have been around forever, otherwise it would
have already completely decayed. An electric field must be
turned on at some initial time, which will break the time
translation symmetry manifestly.

B. On the oscillations for eER2 =Oð1Þ, m2 ≫ eE

The sinusoidal time dependence observed in the regime
eER2 ¼ Oð1Þ, m2 ≫ eE can be explained by invoking the
(0þ 1)-dimensional effective description of the model, as
done in [11]. In fact, in this regime particle production is
negligible, and one can just study the theory that results by
integrating out the heavy Kaluza-Klein modes of the bulk
charged matter. Such an operation leads to a (0þ 1)-
dimensional Lagrangian that in the limit mR ≫ 1 reads

L0þ1;eff ≃πR _A0ðtÞ2þ
m1=2

πR1=2e
−2πmRcosð2πReA0ðtÞÞ; ð37Þ

where A0ðtÞ≡ R
2πR
0

dx
2πR Aðt; xÞ. For a derivation of Eq. (37)

see e.g., [11], that works with a (4þ 1)-dimensional theory.
To obtain the effective potential derived from our (1þ 1)-
dimensional theory one should multiply the effective poten-
tial in that paper by ð2πL=mÞ3=2 with L ¼ 2πR to match
our notation. Then, by solving the classical equations of
motion derived from the Lagrangian (37) to first order in
the small quantity e−2πmR and identifying EðtÞ ¼ − _A0 we
obtain

EðtÞ ¼ Eþ e
m1=2

2π2R3=2eE
e−2πRm cosð2πReEtÞ

þOðe−4πRmÞ; ð38Þ

which displays oscillations that, remarkably, have the same
periodicity and whose amplitude has the same overall pro-
portionality to e−2πmR as the result found in Sec. IV C.
Actually, the oscillations in Eq. (38) match exactly, including
Oð1Þ factors, the result from the adiabatic component of
hδ _EðtÞið1Þ, presented in Eq. (B8). This is not too surprising,
as the effective potential in Eq. (37) has been obtained using
the semiclassical approximation. Going beyond the overall
proportionality to e−2πmR, however, the behavior found in
the analysis of Sec. IVC above shows a different depend-
ence on m and R than that of Eq. (B8). This can be seen,
for instance, from the fact the amplitude shown in the right
panel of Fig. 3 is a decreasing function of m, whereas the
result (B8) increases as m1=2, once the overall proportion-
ality to e−2πmR is factored out. This means that both the
adiabatic contribution evaluated in Appendix B and the full
one, obtained in Appendix A, have the same overall
sinusoidal behavior ∝ cosð2πeERtÞ, but a different ampli-
tude. Inspection of those two terms in the R ¼ Oð1Þ,m ≫ 1
regime shows that the they partially cancel, with the full
component larger than the adiabatic one. It is possible that
this difference is an artifact of the finiteness of the massm in
our numerical calculations and that the result will match
exactly Eq. (38) in the limit m → ∞.
Our analysis thus confirms, via a real time calculation

performed in the full (1þ 1)-dimensional theory, the result
presented in [11], which in its turn explains, in terms of the
compactified theory, the observation of [10] that, for small
compactification radii, a new instanton with magnitude
∼e−2πmR would dominate the Schwinger effect. In particu-
lar, our analysis shows that the net rate of pair production is

proportional to e−π
m2

eE also for small compactification1 radii,
but for short time scales the effect associated to particle
creation is subdominant with respect to the oscillations,
with amplitude proportional to e−2πmR and frequency
R=eE, induced by the virtual charged matter.
To conclude, we have found real time formulas that

allow us to compute the change in the electric field due to

1It is worth stressing that our analysis has been performed
to leading order in the in-in expansion, leading to a result
hδEðtÞið1Þ ¼ efð1ÞðeE;m; R; tÞ. According to [10], the new in-
stanton should be associated to a final state with a lower electric
field, but no matter particles. In our in-in language, this would
correspond to a higher order term hδEðtÞið3Þ ¼e3fð3ÞðeE;m;R;tÞ
in the expansion (11) that accounts for ϕ annihilation. It is thus
not excluded that a net contribution to the rate of pair production
proportional to e−2πmR might appear at that order in perturbation
theory. See [19] for the discussion of an analogous phenomenon
in the thermal case, and [8,9] for a higher order real-time
calculation for the zero-temperature, noncompact case.
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Schwinger effect in a compact space. The net rate of
production of charged pairs, when evaluated on long times,
is always proportional to e−π

m2

eE , as in the non compact case.
However, while in the limit of large compactification radii
we recover the expected noncompact result; in the regime
of intermediate and small values of the dimensionless
quantity mR the quantity hδEðtÞið1Þ shows a richer behav-
ior. In particular, the steplike time dependence found in the
regime of mR → 0 breaks continuous time translations in a
fashion that is analogous to the way bubble nucleation
breaks Lorentz symmetry, and the oscillations found for
m2 ≫ eE, R2 ¼ OððeEÞ−1Þ can be explained as an effect of
the virtual pairs of charged particles on the effective
potential for the gauge field.
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APPENDIX A: CALCULATION FOR
COMPACT CASE

In this Appendix we work out the steps that allow us to
go from the first term on the right-hand side of Eq. (28) to
the right-hand side of Eq. (30) (except for the part propor-
tional to the Bessel function K1, that will be discussed in
Appendix B below).

We set eE ¼ 1, and focus on the sum,

S ¼ 1

R

X∞
n¼−∞

e−πm
2=4ffiffiffi
2

p
			Dim

2

2
−1
2

ð−ðn=Rþ tÞ
ffiffiffi
2

p
e−iπ=4Þ

			2

× ðn=Rþ tÞ; ðA1Þ

so that

hδ _EðtÞið1Þ ¼ −
e
π
S þ e

2πR

X∞
n¼−∞

n=Rþ eEtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=Rþ eEtÞ2 þm2

p :

ðA2Þ

We want to use the Mellin-Barnes representation,
Eq. 9.242.3 of [29], of the parabolic cylinder function,

DνðzÞ ¼
e−

1
4
z2zν

2πiΓð−νÞ
Z

i∞

−i∞
ΓðtÞΓð−ν − 2tÞ2tz2tdt; ðA3Þ

that is valid for jArgðzÞj < 3π=4. Given this restriction on
ArgðzÞ, we have to treat the cases ðn=Rþ tÞ > 0 and
ðn=Rþ tÞ < 0 separately, so that we write S ≡ S− þ Sþ
where n in S− goes from −N− to ½−Rt� − 1 (we define here
the integer part in such a way that ½−x� ¼ −½x�), and in Sþ
goes from ½−Rt� to Nþ. Here, N� > 0 are regulators that
we will eventually send to infinity.
Let us first consider S−, where −ðn=Rþ tÞ ffiffiffi

2
p ≡

jzj > 0. In this case we can use Eq. (A3) right away. It
is convenient to write the integral (A3) as an asymptotic
series on the poles at t ¼ −j, j ¼ 0; 1; 2;…

Dia−1=2ðjzje−iπ=4Þ ¼
e

i
4
jzj2 jzjia−1

2eπa=4þiπ=8

Γð1
2
− iaÞ

X∞
j¼0

ð−1Þj
j!

Γ
�
1

2
− iaþ 2j

�
2−jjzj−2jeiπj=2; ðA4Þ

that allows us to write, after relabeling n → −n,

S− ¼ −
coshðπm2=2Þ

2πR

XN−

n0¼½Rt�þ1

X∞
j;k¼0

ð−1Þj
j!

ð−1Þk
k!

Γ
�
1

2
− i

m2

2
þ 2j

�
Γ
�
1

2
þ i

m2

2
þ 2k

��
R
2

�
2jþ2k eiπðj−kÞ=2

ðn0 − RtÞ2jþ2k : ðA5Þ

Then, we separate the sum into the components with j ¼ k ¼ 0, j ¼ 0 and k ≥ 1, j ≥ 1 and k ¼ 0, and j, k ≥ 1,

S− ¼ −
�

1

2R

XN−

n0¼½Rt�þ1

1

�
− 2ℜ

�
1

2R

XN−

n0¼½Rt�þ1

X∞
k¼1

ð−1Þk
k!

Γð1
2
þ i m

2

2
þ 2kÞ

Γð1
2
þ i m

2

2
Þ

�
R
2

�
2k 1

ðn0 − RtÞ2k e
iπð−kÞ=2

�

−
1

2R

XN−

n0¼½Rt�þ1

X∞
j;k¼1

ð−1Þj
j!

ð−1Þk
k!

Γð1
2
þ i m

2

2
þ 2kÞ

Γð1
2
þ i m

2

2
Þ

Γð1
2
− i m

2

2
þ 2jÞ

Γð1
2
þ i m

2

2
Þ

�
R
2

�
2jþ2k eiπðj−kÞ=2

ðn0 − RtÞ2jþ2k : ðA6Þ

This allows us to isolate the divergence in the limit N− → ∞, that appears only in the first term of the equation above. We
can now send N− → ∞ in the remaining terms, shift the summation variable n by ½Rt� þ 1, and write

S− ¼ −
N− − ½Rt� − 1

2R
−

1

2R

X∞
n¼0

½jGþ 1j2 − 1�; ðA7Þ
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where

G ¼
X∞
j¼1

ð−1Þj
j!

Γð1
2
− i m

2

2
þ 2jÞ

Γð1
2
− i m

2

2
Þ

�
1

2

�
j 1

½ ffiffiffi
2

p ðnþ ½Rt� þ 1 − RtÞ=R�2j e
iπj=2; ðA8Þ

that, using again Eq. (A4), gives

jGþ 1j2 ¼
ffiffiffi
2

p nþ ½Rt� þ 1 − Rt
R

e−πm
2=4

				Dim2=2−1=2

� ffiffiffi
2

p nþ ½Rt� þ 1 − Rt
R

e−iπ=4
�				

2

: ðA9Þ

Next, we have to take care of Sþ, where the phase of the argument of the parabolic cylinder function is precisely 3π=4,
so that the expression (A3) is not directly applicable. In order to use Eq. (A3) we have to first apply the third of Eqs. 9.248.1
of [29],

DpðzÞ ¼ eiπpDpð−zÞ þ
ffiffiffiffiffiffi
2π

p

Γð−pÞ e
iðpþ1Þπ=2D−p−1ð−izÞ; ðA10Þ

so that Sþ reads

Sþ ¼ 1

2R

XNþ

n¼½−Rt�

�
e−5πm

2=4
			Dim

2

2
−1
2

ðjn=Rþ tj
ffiffiffi
2

p
e−iπ=4Þ

			2 ffiffiffi
2

p
ðn=Rþ tÞ

þ e−3πm
2=4

				
ffiffiffiffiffiffi
2π

p

Γð−i m2

2
þ 1

2
ÞD−im2

2
−1
2

ðjn=Rþ tj
ffiffiffi
2

p
eiπ=4Þ

				
2 ffiffiffi

2
p

ðn=Rþ tÞ

þ 2
ffiffiffi
2

p
e−πm

2

R
�
−iD

im
2

2
−1
2

ðjn=Rþ tj
ffiffiffi
2

p
e−iπ=4Þ

ffiffiffiffiffiffi
2π

p
e−iπ=4

Γði m2

2
þ 1

2
ÞDim

2

2
−1
2

ðjn=Rþ tj
ffiffiffi
2

p
e−iπ=4Þðn=Rþ tÞ

��
: ðA11Þ

The summand in the third line of this expression is quickly oscillating, and we neglect it. The terms in the first two lines can
be treated in a way that is analogous to the one that led to Eqs. (A7) and (A9).
We thus obtain the desired result,

S ¼ 1

2R

�
ð1þ 2e−πm

2Þ
X∞
n¼0

� ffiffiffi
2

p ðnþ Rt − ½Rt�Þ
R

e−πm
2=4

				D−1=2þim2=2

� ffiffiffi
2

p ðnþ Rt − ½Rt�Þ
R

e−iπ=4
�				

2

− 1

�

−
X∞
n¼0

� ffiffiffi
2

p ðnþ 1 − Rtþ ½Rt�Þ
R

e−πm
2=4

				D−1=2þim2=2

� ffiffiffi
2

p ðnþ 1 − Rtþ ½Rt�Þ
R

e−iπ=4
�				

2

− 1

�

þ ð2þ 2e−πm
2Þ½Rt� þ ð1þ 2e−πm

2Þð1þ NþÞ − N−

�
; ðA12Þ

where the sums over n are finite, and the divergences in the terms containing N� have been isolated.

APPENDIX B: THE VACUUM CONTRIBUTION

The contribution to hδ _Eðx; tÞið1Þ from the vacuum can be read from Eq. (28) and takes the form,

e
2πR

XNþ

n¼−N−

n
R þ eEtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnR þ eEtÞ2 þm2
q : ðB1Þ

This sum is divergent as N� → þ∞, but its derivative with respect to Rt is convergent, so that we can take the limit
N� → þ∞ after differentiation and obtain (after setting eE ¼ 1)

SCHWINGER EFFECT IN COMPACT SPACE: A REAL TIME … PHYS. REV. D 102, 045010 (2020)

045010-11



e
2πR

∂
∂ðRtÞ

� XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p
�

¼ e
2πR

X∞
n¼−∞

ðmRÞ2
½ðnþ RtÞ2 þ ðmRÞ2�3=2

¼ e
2πR

ðmRÞ2
Γð3=2Þ

Z
∞

0

dww1=2
X∞
n¼−∞

e−w½ðnþRtÞ2þðmRÞ2� ¼ e
πR

ðmRÞ2
Z

∞

0

dwe−wðmRÞ2θ3ðπRt; e−π2=wÞ; ðB2Þ

where θ3 denotes the third Jacobi θ function. Using the representation θ3ðu; qÞ ¼ 1þ 2
P∞

n¼1 q
n2 cosð2nuÞ, we can write

e
2πR

∂
∂ðRtÞ

� XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p
�

¼ e
2πR

�
2þ 4ðmRÞ2

X∞
n¼1

cosð2πnRtÞ 2πn
mR

K1ð2πnmRÞ
�
; ðB3Þ

that is a more transparent sum. Integrating back in dðRtÞ, we obtain

e
2πR

XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p ¼ e
πR

�
Rtþ 2mR

X∞
n¼1

sinð2πntRÞK1ð2πnmRÞ þ constant

�
; ðB4Þ

where the constant is generally divergent, as it depends on the cutoffs N�.
In the limit mR → 0 we can use the small argument approximation of the Bessel function, K1ðxÞ ≃ 1=x, to write

e
2πR

XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p
				
mR≪1

≃
e
πR

�
Rtþ

X∞
n¼1

sinð2πntRÞ
nπ

þ constant

�

¼ e
πR

�
Rtþ 1 − 2tR

2
þ constant

�
¼ constant; ðB5Þ

where the approximation is valid for tR ≫ mR. Of course, for tR ¼ 0 and tR ¼ 1, sinð2πntRÞ ¼ 0, so

e
2πR

XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p
				
tR¼1

−
e

2πR

XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p
				
tR¼0

¼ e
πR

; ðB6Þ

which implies

e
2πR

XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p
				
mR≪1

≃
e
πR

½tR� þ constant: ðB7Þ

On the other hand, in the large 2πmR limit, we use the asymptotics K1ðxÞ ≃
ffiffiffiffi
π
2x

p
e−x to keep only the first term in the

series, obtaining

e
2πR

XNþ

n¼−N−

nþ Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ RtÞ2 þ ðRmÞ2

p
				
mR≫1

¼ e
πR

½Rtþ
ffiffiffiffiffiffiffi
mR

p
sinð2πtRÞe−2πmR þ constant�: ðB8Þ
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