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We discuss the physics of a restricted Weyl symmetry in a curved space-time where a gauge parameter
ΩðxÞ of Weyl transformation satisfies a constraint □Ω ¼ 0. First, we present a model of QED where we
have a restricted gauge symmetry in the sense that a Uð1Þ gauge parameter θðxÞ obeys a similar constraint
□θ ¼ 0 in a flat Minkowski space-time. Next, it is precisely shown that a global scale symmetry must be
spontaneously broken at the quantum level. Finally, we discuss the origin of the restricted Weyl symmetry
and show that its symmetry can be derived from a full Weyl symmetry by taking a gauge condition R ¼ 0 in
the BRST formalism.
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I. INTRODUCTION

Both local and global scale symmetries are very mysteri-
ous symmetries in that they are ubiquitous in nature from
particle physics to cosmology, but in the real world they
usually emerge as approximate symmetrieswhich are broken
either explicitly by anomalies or badly by the presence of a
built-in scale in theories.1 If the scale symmetries are exact
ones which are only spontaneously broken as in the gauge
symmetries in the standard model (SM) of particle physics,
they might shed some light on various important unsolved
problems such as cosmological constant problem and the
gauge hierarchy problem etc.
In this short article, we explore an idea that there

might be an intermediate scale symmetry between local
and global scale symmetries, which is dubbed a restricted
Weyl symmetry in a curved space-time [4–6]. In the
restricted Weyl symmetry, a gauge parameter, which is
nothing but a conformal factor ΩðxÞ, is constrained by a
condition □Ω ¼ 0 whereas in a conventional or full Weyl
transformation the conformal factor is an unconstrained and
free parameter. In the restricted Weyl symmetry, we are
allowed to work with a generic dimensionless action as in a
scale symmetry, which should be contrasted to the situation
in the full Weyl symmetry where only the conformal tensor

squared is an invariant action if we neglect the other fields
except for the metric gμν.
The structure of this article is the following: In Sec. II,

we review a restricted gauge symmetry in QED which
appears after we fix the gauge invariance by the Lorenz
condition, i.e., the Lorenz gauge. The restricted gauge
symmetry resembles the restricted Weyl symmetry in the
sense that both the symmetries are constrained by an
equation □Θ ¼ 0 where □ denotes the d’Alembertian
operator and Θ stands for a generic gauge parameter. Of
course, an obvious difference between the restricted gauge
symmetry and the restricted Weyl one lies in the fact that
the former is defined in a flat Minkowski space-time while
the latter is so in a curved Riemannian space-time. Their
similarity, however, gives us some hints about the sponta-
neous symmetry breakdown and the origin of the restricted
Weyl symmetry, which are dealt with in Secs. III and IV,
respectively. The final section is devoted to conclusion.

II. RESTRICTED GAUGE SYMMETRY

Let us start with QED which is gauge-fixed by the
Lorenz gauge:

L ¼ −
1

4
F2
μν þ ψ̄ðiγμ∂μ −mÞψ þ eAμψ̄γ

μψ

þ B∂μAμ þ α

2
B2; ð1Þ

where Aμ;ψ and B are respectively the electromagnetic
field, spinor field, and Nakanishi-Lautrup field, the field
strength is defined as Fμν ≡ ∂μAν − ∂νAμ, and α is a real
number which can be chosen for our convenience. This
Lagrangian density has a restricted Uð1Þ gauge invariance
given by
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1We sometimes call a local and global scale symmetry a Weyl
symmetry and scale symmetry, respectively [1–3].
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δAμ ¼ ∂μθ; δψ ¼ ieθψ ;

δψ̄ ¼ −ieθψ̄ ; δB ¼ 0; ð2Þ

where □θ ¼ 0 where □ ¼ ημν∂μ∂ν is the d’Alembertian
operator in a flat Minkowski space-time.
Then, let us ask ourselves what solution to the constraint

□θðxÞ ¼ 0 is. Since □θ ¼ 0 is nothing but the Klein-
Gordon equation for a massless real scalar field, a general
solution is given by

θðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32k0

p ½aðkÞe−ikx þ a†ðkÞeikx�; ð3Þ

where k0 ¼ jk⃗j. In the absence of the spinor field ψ ¼ 0 and
with the α ¼ 1 gauge, the gauge field also obeys the same
field equation □Aμ ¼ 0 as in □θ ¼ 0, so we can then
gauge away one component in Aμ by means of the residual
symmetry (2). Incidentally, if we are interested in only
respecting the restricted gauge invariance, and we do not
inquire its origin and ignore an issue of nonrenormaliz-
ability, we could add any invariant terms such as ð∂μAμÞn
with integers n ≥ 2 to the Lagrangian density (1).
Now we are interested in only zero-mode solutions. The

constraint □θ ¼ 0 is then easily solved to be [7]

θ ¼ aμxμ þ b; ð4Þ

where aμ; b are infinitesimal constants. With this solution,
the restricted gauge transformation can be rewritten as

δAμ ¼ aμ; δψ ¼ ieðaμxμ þ bÞψ ;
δψ̄ ¼ −ieðaμxμ þ bÞψ̄ ; δB ¼ 0: ð5Þ

Since the transformation (5) is a global symmetry,
following the Noether theorem [8] we can derive the
Noether currents jμρ; jρ corresponding to the parameters
aμ; b, respectively:

jμρ ¼ Fμ
ρ þ δρμB − xμeψ̄γρψ ; jρ ¼ −eψ̄γρψ : ð6Þ

The Noether charges Qμ; Q are respectively defined as

Qμ ¼
Z

d3x jμ0; Q ¼
Z

d3x j0: ð7Þ

Next, let us show that a vectorial chargeQμ is necessarily
broken spontaneously [7]. Actually, we find that

δAν ¼ ½iðaμQμ þ bQÞ; Aν� ¼ ∂νθ ¼ aν; ð8Þ

which implies that

½iQμ; Aν� ¼ ημν; ½iQ; Aν� ¼ 0: ð9Þ

Taking the vacuum expectation value of the former relation
leads to

h0j½iQμ; Aν�j0i ¼ ημν: ð10Þ

Equation (10) means that a global symmetry generated by
Qμ is spontaneously broken. As a result, Aμ includes a
massless Nambu-Goldstone (NG) boson, but it may be
either a scalar or a vector particle. It has been already
proved that each possibility exactly corresponds to either a
symmetry generated by Q is spontaneously broken or the
symmetry remains unbroken [7]. In particular, in the latter
case we can regard the photon as a NG boson coming from
the SSB of Qμ [9].

III. RESTRICTED WEYL SYMMETRY

In this section, we consider a gravitational theory
coupled to a Uð1Þ gauge theory with a complex scalar
field where there is a restricted Weyl invariance in the sense
that a gauge parameter of Weyl transformation, ΩðxÞ,
satisfies a constraint, □ΩðxÞ ¼ 0

2:

L ¼ ffiffiffiffiffiffi
−g

p �
αR2 − ξRjΦj2 − jDμΦj2 − λjΦj4 − 1

4
FμνFμν

�
;

ð11Þ

where the covariant derivative is defined as DμΦ≡
ð∂μ − ieAμÞΦ. Without loss of generality, in this article
we drop the gauge field Aμ and we work with the following
Lagrangian density [5]:

L ¼ ffiffiffiffiffiffi
−g

p ðαR2 − ξRjΦj2 − j∂μΦj2 − λjΦj4Þ: ð12Þ

Indeed, this Lagrangian density is invariant under the
restricted Weyl transformation

gμν → g0μν ¼ Ω2ðxÞgμν; Φ → Φ0 ¼ Ω−1ðxÞΦ; ð13Þ

where the gauge parameter obeys a constraint □Ω ¼ 0. In
order to prove the invariance, we need to use the following
transformation of the scalar curvature under (13):

R → R0 ¼ Ω−2ðR − 6Ω−1
□ΩÞ: ð14Þ

We are at present interested in zero-mode solution to the
equation□Ω ¼ 0. It is obvious thatΩðxÞ ¼ const: is a zero
mode solution corresponding to a global scale invariance.
Then, let us pay our attention to the scale invariance. In an
infinitesimal form Ω ¼ eΛ with jΛj ≪ 1, the infinitesimal
gauge parameter Λ must obey a constraint□Λ ¼ 0 as well,
so the zero-mode solution is given by

2We follow the conventions and notation of the MTW
textbook [10].
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ΛðxÞ ¼ b; ð15Þ

where b is a constant.
Since there is a global invariance associated with the

parameter b, we can construct a conserved Noether charge
Q. To derive a conserved current according to the Noether
theorem [8], let us first recall that the Lagrangian density is
assumed to contain only up to the first derivatives of fields.
For this aim, we will first rewrite a αR2 term into the form
φR − 1

4α φ
2 where φ is a scalar field with the dimension of

mass squared:

L¼ ffiffiffiffiffiffi
−g

p �
φR−

1

4α
φ2−ξRjΦj2− j∂μΦj2−λjΦj4

�
: ð16Þ

Then, we will perform the integration by parts to make
the second derivative in R change the first derivative.
Following the calculation [3,11], it turns out that the
conserved current for dilatation reads

Jμ ¼ ffiffiffiffiffiffi
−g

p
gμν∂ν½6φþ ð1 − 6ξÞjΦj2�: ð17Þ

We can also verify that this current is conserved, ∂μJμ ¼ 0,
by using the field equations as desired. One might wonder
why no derivatives of the metric appear in the expression of
Jμ. This is because the derivatives of φ and Φ are mixed
with the metric, thus making J0 serve as a generator of the
metric transformation. Moreover, in case of a conformal
coupling ξ ¼ 1

6
and the absence of a R2 term, the conserved

current is identically vanishing [12,13]. In other words,
the nonvanishing current requires us to treat with a R2 term
and/or a scalar matter field Φ with a nonconformal
coupling ξ ≠ 1

6
.

Using the corresponding Noether charge defined as
Q ¼ R

d3xJ0, we find that

δgμν ¼ ½ibQ; gμν� ¼ 2bgμν; ð18Þ

from which we have

½iQ; gμν� ¼ 2gμν; ð19Þ

Assuming h0jgμνj0i ¼ ημν
3 and taking the vacuum expect-

ation value of Eq. (19) leads to

h0j½iQ; gμν�j0i ¼ 2ημν: ð20Þ

Equation (20) clearly implies that the global scale invari-
ance must be broken spontaneously at the quantum

level [15]. Note that this finding is obtained by using
the zero-mode solution to the constraint □Ω ¼ 0.
Next, let us verify explicitly that this is the case by

moving from the Jordan frame to the Einstein frame [16].
To do so, we will move to the Einstein frame by
implementing a local conformal transformation

gμν → g�μν ¼ Ω2ðxÞgμν; Φ → Φ� ¼ Ω−1ðxÞΦ: ð21Þ

Under this conformal transformation we have [3]

ffiffiffiffiffiffi
−g

p ¼ Ω−4 ffiffiffiffiffiffiffiffi
−g�

p
;

R ¼ Ω2ðR� þ 6□�f − 6gμν� fμfνÞ; ð22Þ

where we have defined

f ≡ logΩ; □�f ≡ 1ffiffiffiffiffiffiffiffi−g�
p ∂μð

ffiffiffiffiffiffiffiffi
−g�

p
gμν� ∂νfÞ;

fμ ≡ ∂μf ¼ ∂μΩ
Ω

: ð23Þ

Then, the Lagrangian density (16) is cast to the form

L ¼ ffiffiffiffiffiffiffiffi
−g�

p �
ðφΩ−2 − ξjΦ�j2ÞðR� þ 6□�f − 6gμν� fμfνÞ

−
1

4α
φ2Ω−4 −Ω−2gμν� ∂μðΩΦ†�Þ∂νðΩΦ�Þ − λjΦ�j4

�
:

ð24Þ

To reach the Einstein frame, we have to choose a conformal
factor ΩðxÞ to satisfy a relation

φΩ−2 ¼ ξjΦ�j2 þ
M2

Pl

2
; ð25Þ

where MPl is the reduced Planck mass. As a result, with a
redefinition ωðxÞ≡ ffiffiffi

6
p

MPlfðxÞ, we obtain a Lagrangian
density in the Einstein frame:

L ¼ ffiffiffiffiffiffiffiffi
−g�

p �
M2

Pl

2
R� −

1

2
gμν� ∂μω∂νω −

1

16α
M4

Pl − j∂μΦ�j2

−
ξ

4α
M2

PljΦ�j2 −
�
λþ ξ2

4α

�
jΦ�j4

þ
�

1ffiffiffi
6

p
MPl

□�ω −
1

6M2
Pl

gμν� ∂μω∂νω

�
jΦ�j2

�
: ð26Þ

It is worthwhile to notice that spontaneous symmetry
breakdown for a scale invariance has occurred and con-
sequently we have a massless Nambu-Goldstone boson
ωðxÞ, which is often called “dilaton.” As a bonus, a gauge
symmetry is also spontaneously broken if we choose the
parameters to be

3Of course, we can consider a more general fixed background
ḡμν which satisfies h0jgμνj0i ¼ ḡμν, but a flat Minkowski back-
ground assures that a GLð4Þ symmetry is spontaneously broken
to an SOð1; 3Þ and consequently the graviton is a Nambu-
Goldstone tensor boson in quantum gravity [14].
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ξ

4α
< 0; λþ ξ2

4α
> 0: ð27Þ

Also note that the last two nonrenormalizable terms in
Eq. (26) are suppressed by the Planck mass so that they
would make only a small contribution at low energies
E ≪ MPl.

IV. ORIGIN OF RESTRICTED
WEYL SYMMETRY

We wish to understand the origin of a restricted Weyl
symmetry. We will see that the restricted Weyl symmetry
emerges as a residual symmetry of Weyl symmetry in a
similar way that a restricted gauge symmetry appears as a
residual symmetry of the conventional gauge symmetry
after we take a Lorenz gauge in QED.
For generality, let us work with a general theory which is

invariant under a full Weyl transformation:

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕþ 1

12
Rϕ2 þ c1CμνρσCμνρσ −

λ

4!
ϕ4

�
;

ð28Þ

where ϕ denotes a (ghostlike) scalar field, Cμνρσ is a
conformal tensor and c1 is a constant. It is well known
that this Lagrangian density is invariant under a Weyl
transformation without an additional constraint on ΩðxÞ:

gμν → g0μν ¼ Ω2ðxÞgμν; ϕ → ϕ0 ¼ Ω−1ðxÞϕ: ð29Þ

In order to derive the restricted Weyl invariance from the
full Weyl invariance, one has to fix the Weyl symmetry in
such a way that the gauge fixing condition breaks the full
Weyl invariance but leaves the restricted Weyl invariance
unbroken. A suitable gauge condition is R ¼ 0.4 This
gauge choice can be achieved as follows: Let us expand
gμν around a flat metric ημν as gμν ¼ ημν þ hμν with hμν
being a small fluctuation (jhμνj ≪ 0). In order to show that
we can take a gauge condition R ¼ 0 for the full Weyl
symmetry, we start with R ≠ 0, and then show that we can
arrive at R0 ¼ 0 by means of a Weyl transformation as seen
in the relation (14). With the expansion gμν ¼ ημν þ hμν, the
scalar curvature reads R ¼ −□h (h≡ ημνhμν) to the linear
order in hμν. Using an infinitesimal Weyl transformation
Ω ¼ eΛ, the right-hand side (rhs) of Eq. (14) can be
rewritten to the linear order in hμν and Λ as

Ω−2ðR − 6Ω−1
□ΩÞ ¼ −□ðhþ 6ΛÞ: ð30Þ

Thus, if we choose the infinitesimal gauge parameter as
Λ ¼ − 1

6
h, we can certainly achieve R0 ¼ 0.

We therefore attempt to fix the Weyl invariance in terms
of a gauge condition R ¼ 0 in the BRST formalism. First of
all, the BRST transformation for the Weyl symmetry reads

δBgμν¼ 2cgμν; δB
ffiffiffiffiffiffi
−g

p ¼ 4c
ffiffiffiffiffiffi
−g

p
; δBR¼−2cR−6□c;

δBϕ¼−cϕ; δBc̄¼ iB; δBc¼ δBB¼ 0: ð31Þ

Note that this BRST transformation comes from the local
scale symmetry (29) in four dimensions, so it is never
broken spontaneously or explicitly.
Next, a Lagrangian density for the gauge condition and

the Faddeev-Popov (FP) ghost is of form

LGFþFP ¼ −iδB
� ffiffiffiffiffiffi

−g
p

c̄

�
Rþ α

2
B

��

¼ ffiffiffiffiffiffi
−g

p �
B̂Rþ α

2
B̂2 − 6ic̄□c

�

¼ ffiffiffiffiffiffi
−g

p �
−

1

2α
R2 þ 6igμν∂μc̄∂νc

�
; ð32Þ

where we have defined as B̂≡ Bþ 2ic̄c and in the last step
we performed the path integral over the auxiliary field B̂
and integration by parts [17].
Thus, we arrive at a gauge-fixed and BRST-invariant

Lagrangian density given by5

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
∂μϕ∂μϕþ 1

12
Rϕ2 þ c1CμνρσCμνρσ −

λ

4!
ϕ4

−
1

2α
R2 þ 6igμν∂μc̄∂νc

�
: ð33Þ

It is worthwhile to note that this BRST-invariant
Lagrangian density is also invariant under the restricted
Weyl transformation. Actually, the first three terms are
manifestly invariant under the restricted Weyl transforma-
tion since they are so under the full Weyl transformation.
The last two terms turn out to be invariant under not the full
Weyl transformation but the restricted Weyl transformation.
For instance, the invariance of the ghost term can be shown
as follows: First, let us assume that both FP-ghost and
FP-antighost have the Weyl weight −1, that is, under the
Weyl transformation they transform as

c → c0 ¼ Ω−1ðxÞc; c̄ → c̄0 ¼ Ω−1ðxÞc̄: ð34Þ

Then, we find that under the Weyl transformation the ghost
term transforms as4We could take a more general gauge condition Rþ kϕ2 ¼ 0

(k is a constant) if necessary [15,17]. In this case, the only change
of the final result is to replace 1

2αR
2 with 1

2α ðRþ kϕ2Þ2 in (33) and
consequently the coefficients in front of Rϕ2 and ϕ4 are modified.

5Note that the physical content between (28) and (33) is
exactly the same since Eq. (32) is BRST-exact.
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ffiffiffiffiffiffi
−g

p
gμν∂μc̄∂νc

→
ffiffiffiffiffiffi
−g

p
gμν½∂μc̄∂νcþΩ−1∇μ∇νΩ · c̄c−∇μðΩ−1∇νΩ · c̄cÞ�:

ð35Þ

Hence, the ghost kinetic term is invariant under the
restricted Weyl transformation up to a surface term. In
this way, we have succeeded in deriving the restricted Weyl
invariance by beginning with a full Weyl invariance by
taking a gauge condition R ¼ 0. Of course, if we do not pay
an attention to the origin of the restricted Weyl invariance,
we can add any terms which are invariant under the
restricted Weyl symmetry to (33), and remove the ghost
term from (33). However, the fact that the restricted Weyl
symmetry can be derived from the full Weyl symmetry not
only sheds some light on its geometrical structure but also
clarifies that the restricted Weyl symmetry is not an ad hoc
but natural symmetry.

V. CONCLUSION

In this article, we have investigated a restricted Weyl
symmetry. In particular, we have clarified two points: First,
on the basis of the BRST formalism we have shown that a
global scale invariance, which is included in the restricted
Weyl invariance, must be broken spontaneously at the
quantum level. Second, we have derived a gauge-fixed and
BRST-invariant action, which is also invariant under the
restricted Weyl symmetry as well as diffeomorphisms, by
starting with a Weyl-invariant gravitational theory by fixing
the Weyl symmetry by a gauge condition R ¼ 0. Our
derivation clarifies theoriginof the restrictedWeyl symmetry.
In addition to them, our article presents new interesting

phenomena. First, there is a mismatch of the magnitude of
the Higgs mass between (26) and Eq. (6) in [5]. This is
because we cannot read off the correct value of the Higgs
mass if we move to the exact Einstein frame. In fact, Eq. (6)
in [5] is not completely in the Einstein frame owing to the
existence of an RjΦj2 term.6 Second, to our knowledge,
the gauge condition R ¼ 0 for a local scale invariance has
been adopted for the first time in this article. This gauge
condition, together with the Einstein equation, implies

that the cosmological constant is vanishing so this gauge
choice might play an important role in the resolution of the
cosmological constant problem in future. Finally, as can be
seen in (26), if λjΦ�j4 were zero, the Higgs potential would
have an expression of a perfect square. This fact means that
the cosmological constant is vanishing at the minimum of
the Higgs potential, which has been recently analyzed in
detail in Ref. [18].
Nevertheless, there seem to remain many unsolved

problems relevant to the restricted Weyl symmetry. In what
follows, we will comment on only two important problems
to be understood in future. One of them is related to trace
anomaly. It has been recently established that a scale
symmetry is a quantum symmetry which is broken only
spontaneously and is free from trace anomaly [19–21]. This
is done by using a subtraction function μðωÞ (ω is a dilaton
in Sec. III) instead of a dimensionful subtraction scale μ in
the dimensional regularization method.
However, as a price we have to pay, an infinite number of

counterterms like ðjΦj
ω Þn with n being integers would be

needed, thereby breaking the property of renormalizability.
This issue of nonrenormalizability is not so serious in the
context at hand since the Einstein-Hilbert term in (26) is a
nonrenormalizable term as well. The model made in Sec. III
could be a candidate of physics beyond the standard model
(BSM) so one should construct such a BSM in an explicit
manner in terms of the manifestly scale invariant regulari-
zation scheme to attack the gauge hierarchy problem and
the cosmological constant problem etc.
The other problem is related to a constraint□Ω ¼ 0 in a

restricted Weyl symmetry. As reviewed in Sec. I, a
constraint □θ ¼ 0 in QED removes one dynamical degree
of freedom in Aμ. It is unclear what dynamical degree of
freedom can be removed by the constraint □Ω ¼ 0 in the
case of the restricted Weyl symmetry. It is known that the
constraint □Ω ¼ 0 has an infinite number of classical
solutions, so it should remove one dynamical degree of
freedom. To put differently, we do not understand the
physical meaning of the constraint□Ω ¼ 0 yet. We wish to
return these problems in future.
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