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We study Uð1Þ gauged gravitating compact Q-ball, Q-shell solutions in a nonlinear sigma model with
the target space CPN . The models with odd integer N and a special potential can be parameterized by Nth
complex scalar fields and they support compact solutions. By implementing the Uð1Þ gauge field in the
model, the behavior of the solutions becomes complicated than the global model. Especially, they have
branches, i.e., two independent solutions with the same shooting parameter. The energy of the solutions in
the first branch behaves as E ∼Q5=6 for smallQ, whereQ stands for theUð1ÞNoether charge. For the large
Q, it gradually deviates from the scaling E ∼Q5=6 and, for the Q-shells it is E ∼Q7=6, which forms the
second branch. A coupling with gravity allows for harboring of the Schwarzschild black holes for the
Q-shell solutions, forming the charged boson shells. The space-time then consists of a charged black hole
in the interior of the shell, surrounded by a Q-shell, and the outside becomes a Reissner-Nordström space-
time. These solutions inherit the scaling behavior of the flat space-time.

DOI: 10.1103/PhysRevD.102.045007

I. INTRODUCTION

A complex scalar field theory with some self-interactions
has stationary soliton solutions called Q-balls [1–4].
Q-balls have attracted much attention in the studies of
evolution of the early Universe [5,6]. In supersymmetric
extensions of the standard model, Q-balls appear as the
scalar superpartners of baryons or leptons forming coherent
states with baryon or lepton number. They may survive as a
major ingredient of dark matter [7–9]. The Uð1Þ invariance
of the scalar field leads to the conserved charge Qwhich, if
the theory is coupled with the electromagnetism it identifies
as the electric charge of the constituents.
Our analysis is based on the model defined in 3þ 1

dimensions and it has the Lagrangian density

L ¼ −
M2

2
TrðX−1∂μXÞ2 − μ2VðXÞ; ð1Þ

where the “V-shaped” potential

VðXÞ ¼ 1

2
½TrðI − XÞ�1=2 ð2Þ

is employed for constructing the compact solutions. The
behavior of fields at the outer border of compacton implies
X → I. The coupling constants M, μ have dimensions of
ðlengthÞ−1 and ðlengthÞ−2, respectively. The principal
variable X successfully parametrizes the coset space
SUðN þ 1Þ=UðNÞ ∼ CPN . The principal variable parame-
trized by complex fields ui takes the form

XðgÞ ¼
�
IN×N 0

0 −1

�
þ 2

ϑ2

�
−u ⊗ u† iu

iu† 1

�
; ð3Þ

where ϑ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u† · u

p
. Thus, the CPN Lagrangian of the

model (6) takes the form

LCPN ¼ −M2gμντ̃νμ − μ2V; ð4Þ

where

τ̃νμ ¼ −
4

ϑ4
∂μu† · Δ2 · ∂νu; Δ2

ij ≔ ϑ2δij − uiu�j : ð5Þ

The model possesses the compactons [10] and also the
compact boson stars [11]. Compactons are field configu-
rations that exist on finite size supports. Outside this
support, the field is identically zero. For example, the
signum-Gordon model; i.e., the scalar field model with
standard kinetic terms and V-shaped potential gives rise to
such solutions [12,13]. Interestingly, when the scalar field
is coupled with electromagnetism, the structure changes
drastically.
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Maxwell gauged solitons of nonlinear sigma model have
been studied in many years. The gauged O(3) model [14],
the baby-skyrmions [15,16], and the magnetic skyrmions
[17], CP1 model [18] are well-known examples. For CPN,
N > 1, there is a work for a CP2 of Maxwell gauged
model [19].
Q-balls resulting from localUð1Þ symmetry are studied in

the literature [20–28]. Such Q-balls may be unstable for
large values of their charge because of the repulsion
mediated by the gauge force and the fermions or the scalar
fields with opposite chargemay reduce such repulsions [21].
In the case of the compactons, when the scalar field is

coupled with electromagnetism, then the inner radius
emerges, i.e., the scalar field vanishes also in the central
region r < Rin. Thus, the matter field exists in the region
Rin ≦ r≦ Rout. Such configurations of fields are called
Q-shells. Such shell solutions have no restrictions on upper
bound for jQj. The authors claim that the energy of compact
Q-balls scales as ∼Q5=6 and of Q-shells for large Q as
∼Q7=6. It clearly indicates that theQ-balls are stable against
the decay while the Q-shells may be unstable.
Boson stars are the gravitating objects of such Q-balls.

There are a large number of articles concerning the boson
stars [5,29–33]. The compact boson stars and shells are
extensively studied in [11,31,32,34] for the global models
and in [35–37] for the Uð1Þ gauged model. For the boson
shell configurations, one possibility is the case that the
gravitating boson shells surround a flat Minkowski-like
interior region r < Rin while the exterior region r > Rout is
the exterior of a Reissner-Nordström solution. Another and
even more interesting possibility is the existence of the
charged black hole in the interior region. The gravitating
boson shells can harbor a black hole. Since the black hole is
surrounded by a shell of scalar fields, such fields outside of
the event horizon may be interpreted as a scalar hair. Such
possibility has been considered as contradiction of the no-
hair conjecture [31,32]. The higher dimensional general-
izations have been considered in [38,39].
The excited boson stars are very important not only of

the theoretical interest and also for astrophysical observa-
tions [40–44]. The multistate boson stars which are a
superposition of ground and excited states boson star
solutions are considered for obtaining realistic rotation
curves of spiral galaxies [41]. The authors of [43,44]
proposed boson star solutions for a collection of an
arbitrary odd number N of complex scalar fields with an
internal symmetry UðNÞ. They are new excited solutions
with angular momentum l so is dubbed as l-boson stars.
Our CPN boson stars share many common features
with them.
In this paper, we explore the Uð1Þ gauged the gravitating

boson shells. Properties of the harbor type solutions are
also discussed. Especially we examine detailed energy
scaling property about the ∼Q5=6 behavior for the gravi-
tating, or the harbor type solutions.

The paper is organized as follows. In Sec. II, we shall
describe the model, coupled to the gravitation. Ansatz for
the parametrization of the CPN field is given in this section.
Section III is analysis of in the flat space-time, i.e., Q-balls
and Q-shells. We give the gravitation solutions in Sec. IV.
Scaling relation between the energy and the charge in the
boson stars and shells is discussed in Sec. V. Conclusions
and remarks are presented in the last section.

II. THE MODEL

A. The action, the equations of motion

We start with the action of self-gravitating complex
fields ui coupled to Einstein gravity,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

4
gμλgνσFμνFλσ

−M2gμντνμ − μ2V

�
; ð6Þ

τνμ ¼ −
4

ϑ4
Dμu† · Δ2 ·Dνu; Δ2

ij ≔ ϑ2δij − uiu�j ; ð7Þ

where G is Newton’s gravitational constant. Fμν is the
standard electromagnetic field tensor and the complex
fields ui also are minimally coupled to the Abelian gauge
fields Aμ through Dμ ¼ ∂μ − ieAμ.
The variation of the action with respect to the metric

leads to Einstein’s equations,

Gμν ¼ 8πGTμν; where Gμν ≡ Rμν −
1

2
gμνR; ð8Þ

where the stress-energy tensor reads

Tμν ¼ gμν

�
M2gλστσλ þ

1

4
gλσgηδFληFσδ þ μ2V

�

− 2M2τνμ − gλσFμλFνσ: ð9Þ

The field equations of the complex fields are obtained by
variation of the Lagrangian with respect to u�i ,

1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
DμuiÞ −

2

ϑ2
ðu† ·DμuÞDμui

þ μ2

4M2
ϑ2

XN
k¼1

�
ðδik þ uiu�kÞ

∂V
∂u�k

�
¼ 0: ð10Þ

The Maxwell’s equations read

1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
FνμÞ ¼ 4ie

ϑ4
M2ðu† ·Dμu −Dμu† · uÞ: ð11Þ

It is convenient to introduce the dimensionless coordi-
nates
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xμ →
μ

M
xμ ð12Þ

and also Aμ → μ=MAμ. We also restrict N to be odd, i.e.,
N ≔ 2nþ 1. For solutions with vanishing magnetic field,
the ansatz has the form

umðt; r; θ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2nþ 1

r
fðrÞYnmðθ;φÞeiωt; ð13Þ

Aμðt; r; θ;φÞdxμ ¼ AtðrÞdt ð14Þ

that allows for reduction of the partial differential equations
to the system of radial ordinary differential equations.
Ynm;−n ≤ m ≤ n are the standard spherical harmonics and
fðrÞ is the profile function. Each 2nþ 1 field u ¼ ðumÞ ¼
ðu−n; u−nþ1;…; un−1; unÞ is associated with one of
2nþ 1 spherical harmonics for given n. The relationP

n
m¼−n Y

�
nmðθ;φÞYnmðθ;φÞ ¼ 2nþ1

4π is very useful for
obtaining an explicit form of many inner products. We
introduce a new gauge field concerning the gauge field for
convenience,

bðrÞ ≔ ω − eAtðrÞ: ð15Þ

Using the ansatz, we find the dimensionless Lagrangian
of the CPN model in the form

L̃CPN ¼ −
κ

4
gμλgνσFμνFλσ − gνμτνμ − V

¼ κb02

2A2e2
þ 4b2f2

A2Cð1þ f2Þ2 −
4Cf02

ð1þ f2Þ2

−
4nðnþ 1Þf2
r2ð1þ f2Þ − V; ð16Þ

where we have introduced a dimensionless constant κ ≔
μ2=M4 for convenience.
There is a symmetry b → −b, i.e., ω → −ω, eAt → −eAt

in (16), so one can simply assume that ω≧ 0 [20]. In this
paper, we shall not adopt the above symmetry and examine
the case with both signs of ω. We shall see that our obtained
solutions always satisfy b > 0, and the Noether charge is
positive definite.
For the ansatz (13)–(15), a suitable form of line element

is the standard spherically symmetric Schwarzschild-like
coordinates defined by

ds2¼gμνdxμdxν

¼A2ðrÞCðrÞdt2− 1

CðrÞdr
2−r2ðdθ2þsin2θdφ2Þ: ð17Þ

Substituting (17) and (13)–(15) into the Einstein field
equations (8), we get their components,

ðttÞ∶ ½rð1 − CÞ�0
r2

¼ α

�
4b2f2

A2Cð1þ f2Þ2 þ
4Cf02

ð1þ f2Þ2

þ 4nðnþ 1Þf2
r2ð1þ f2Þ þ κb02

2e2A2
þ fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p

�
; ð18Þ

ðrrÞ∶ 2rCA0 − A½rð1 − CÞ�0
r2A

¼ α

�
4b2f2

A2Cð1þ f2Þ2

þ 4Cf02

ð1þ f2Þ2 −
4nðnþ 1Þf2
r2ð1þ f2Þ −

κb02

2A2e2
−

fffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p
�
;

ð19Þ

ðθθÞ∶ 3rA0C0 þ 2CðA0 þ rA00Þ þAð2C0 þ rC00Þ
2rA

¼ α

�
4b2f2

A2Cð1þ f2Þ2 −
4Cf02

ð1þ f2Þ2 þ
κb02

2A2e2
−

fffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p
�
;

ð20Þ

where α is a dimensionless coupling constant concerning to
the gravity

α ≔ 8πGμ2: ð21Þ

From (18) and (19), one can construct the equations of
motion of AðrÞ, CðrÞ,

A0 ¼ 4αr

�
b2f2

A2C2ð1þ f2Þ2 þ
f02

ð1þ f2Þ2
�
; ð22Þ

C0 ¼ 1 − C
r

− αr

�
4b2f2

A2Cð1þ f2Þ2 þ
4Cf02

ð1þ f2Þ2 þ
4nðnþ 1Þf2
ð1þ f2Þr2

þ κb02

2A2e2
þ fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p

�
: ð23Þ

Plugging the ansatz (13)–(15) into the matter field equa-
tion (10) and the Maxwell’s equations (11), we have

Cf00 þ C0f0 þ A0Cf0

A
þ 2C

r
f0 −

nðnþ 1Þf
r2

þ ð1 − f2Þb2f
A2Cð1þ f2Þ −

2Cff02

ð1þ f2Þ −
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
¼ 0; ð24Þ

κb00 þ 2r0A − A0r
Ar

κb0 −
8e2

C
bf2

ð1þ f2Þ2 ¼ 0: ð25Þ

Thus, we solve a four coupled equations (22)–(25) varying
the parameters α with fixed κ, e (in this paper, we simply
set κ ¼ e ¼ 1).
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The dimensionless Hamiltonian of the model is easily
obtained,

HCPN ¼ ∂L̃CPN

∂ð∂0u�i Þ
∂0u�i þ

∂L̃CPN

∂ð∂0uiÞ
∂0ui − L̃CPN

¼ 8ωbf2

A2Cð1þ f2Þ2 −
κb02

2A2e2
−

4b2f2

A2Cð1þ f2Þ2

þ 4Cf02

ð1þ f2Þ2 þ
4nðnþ 1Þf2
r2ð1þ f2Þ þ V: ð26Þ

The total energy is thus given by

E ¼ 4π

Z
r2dr

�
κb02

2Ae2
þ 4b2f2

ACð1þ f2Þ2

þ 4ACf02

ð1þ f2Þ2 þ
4Anðnþ 1Þf2
r2ð1þ f2Þ þ AV

�
: ð27Þ

B. The Noether charge

The symmetry of the matter field is SUðNÞ ⊗ Uð1Þ.
Since it contains the Uð1ÞN symmetry subgroup, then
following Ref. [19], we consider a covariant derivative
for the CPN field,

Dμui ¼ ∂μui − ieAμQijuj; ð28Þ

where Qij is some real diagonal matrix Qij ¼
diagðq1;…; qNÞ. The action (6) with the covariant deriva-
tive is invariant under following local Uð1ÞN symmetry:

AμðxÞ → AμðxÞ þ e−1∂μΛðxÞ
ui → exp½iqiΛðxÞ�ui; i ¼ 1;…; N: ð29Þ

The following Noether current is associated with the
invariance of the action (6) under transformations (29):

JðiÞμ ¼ −
4M2i
ϑ4

XN
j¼1

½u�iΔ2
ijDμuj −Dμu�jΔ2

jiui�: ð30Þ

Using the ansatz (13), (14), we find the following form of
the Noether currents:

JðmÞ
t ¼ ðn −mÞ!

ðnþmÞ!
8bf2

ð1þ f2Þ2 ðP
m
n ðcos θÞÞ2; ð31Þ

JðmÞ
φ ¼ ðn −mÞ!

ðnþmÞ!
8mf2

ð1þ f2Þ2 ðP
m
n ðcos θÞÞ2; ð32Þ

and JðmÞ
r ¼ JðmÞ

θ ¼ 0 form ¼ −n;−nþ 1;…; n − 1; n. The
conservation of currents is explicit after writing the con-
tinuity equation in the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμνJðmÞ

ν Þ ¼ 1

A2C
∂tJ

ðmÞ
t þ 1

r2sin2θ
∂φJ

ðmÞ
φ ¼ 0:

ð33Þ

Therefore, the corresponding Noether charge is

QðmÞ ¼ 1

2

Z
R3

d3x
ffiffiffiffiffiffi
−g

p 1

A2C
JðmÞ
t ðxÞ

¼ 16π

2nþ 1

Z
r2dr

bf2

ACð1þ f2Þ2 : ð34Þ

Owing to our ansatz, the charge does not depend on
index m, which means the symmetry of the solutions is
reduced to the Uð1Þ. However, we shall keep the index for
completeness.
The spatial components of the Noether currents do not

contribute to the charges; however, they can be used to
introduce some auxiliary integrals [11],

qðmÞ ¼ 3

2

Z
d3x

ffiffiffiffiffiffi
−g

p JðmÞ
φ ðxÞ
r2

¼ 48πm
2nþ 1

Z
∞

0

dr
Af2

1þ f2
: ð35Þ

As in the case of the gauged Q-balls [20], and also in the
compactons [13], the total energy of our gauged model can
be expressed using these Noether charges. For theQ-shells,
the function fðrÞ vanishes for r < Rin and r > Rout, so the
Noether charge QðmÞ is

QðmÞ ¼ 16π

2nþ 1

Z
Rout

Rin

r2dr
bf2

ACð1þ f2Þ2 : ð36Þ

Equation (25) is written in the compact form

κ

�
r2
b0

A

�0
¼ 8e2r2

AC
bf2

ð1þ f2Þ2 : ð37Þ

A single integration gives the expression

b0ðrÞ¼ 1

r2
8e2AðrÞ

κ

Z
r

0

r02dr0
bðr0Þfðr0Þ2

Aðr0ÞCðr0Þð1þfðr0Þ2Þ2 ; ð38Þ

which implies that the function bðrÞ is a monotonically
increasing function. Therefore, for sufficiently large
rð>RoutÞ, b0ðrÞ ¼ Q̄=r2ðQ̄ > 0Þ, where

Q̄≡8e2A
κ

Z
Rout

Rin

r2dr
bf2

ACð1þf2Þ2¼
e2Að2nþ1Þ

2πκ
QðmÞ; ð39Þ

where we have used the boundary condition Að∞Þ≡ 1.
Thus, we obtain bðrÞ for large r,
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bðrÞ ¼ ω −
Q̄
r
: ð40Þ

At behaves as At ¼ Q̄=er for large r, and therefore it can be
interpreted as the Coulomb potential of the spherically
symmetric charge distribution in the compact region. The
second term of the right-hand side of (27) can be evaluated
by the partial integration

1

2

Z
r2dr

κb02

Ae2
¼ κ

2

�
r2

b0b
Ae2

�
∞

0

−
κ

2

Z
drb

�
r2

b0

Ae2

�0

¼ κ

2

�
r2

b0b
Ae2

�����
r→∞

−
1

2

Z
dr

8r2

AC
b2f2

ð1þ f2Þ2 ; ð41Þ

where we have used (37). The first term of the right-hand
side can be evaluated with (39) and with the asymptotic
behavior of b (40),

r2
b0b
Ae2

����
r→∞

¼ r2
1

A2e2
ω

�
Q̄
r2

�
¼ ω

ð2nþ 1Þ
2πκ

QðmÞ: ð42Þ

As a result, we obtain the total energy for large r of the form

E ¼
Xn
m¼−n

ðωQðmÞ þmqðmÞÞ

þ 4π

Z
r2drA

�
4Cf02

ð1þ f2Þ2 þ V

�
: ð43Þ

This form is similar of the nongauged case [11].
For the full understanding of the gauged Q-ball boson

stars, we need to know E as function of Q. Only limited
cases such like a thin-wall approximation of the model in a
flat space-time might be possible, but for the gravitating
case, we have to rely on the numerical analysis.

C. The boundary behavior of solutions

We examine behavior of solutions at the boundary,
which means that we mainly look at the origin r ¼ 0
and the border(s) of the compacton. First, we consider
expansion at the origin and so the solution is represented by
series

fðrÞ ¼
X∞
k¼0

fkrk; bðrÞ ¼
X∞
k¼0

bkrk;

AðrÞ ¼
X∞
k¼0

Akrk; CðrÞ ¼
X∞
k¼−2

Ckrk: ð44Þ

After substituting these expressions into Eqs. (22)–(25),
one requires vanishing of equations in all orders of
expansion. It allows us to determinate the coefficients of

expansion. The form is given for each value of parameter n.
For n ¼ 0, it reads

fðrÞ ¼ f0 þ
1

48

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f20

q
−
8f0ð1 − f20Þb20
A2
0ð1þ f20Þ

�
r2 þOðr4Þ;

bðrÞ ¼ b0 þ
4e2b20f

2
0

3ð1þ f20Þ2
r2 þOðr4Þ; ð45Þ

AðrÞ¼A0þ
2αf20b

2
0

A0ð1þf20Þ2
r2þOðr4Þ;

CðrÞ¼1−
α

3

�
f0ffiffiffiffiffiffiffiffiffiffiffiffi
1þf0

p þ 4f20b
2
0

A2
0ð1þf20Þ2

�
r2þOðr4Þ; ð46Þ

where f0, b0, and A0 are free parameters. For n ¼ 1, we
obtain

fðrÞ ¼ f1rþ
1

32
r2 þ 1

10

�
2f31ð1þ 6αÞ − f1b20

A2
0

�
r3

þOðr4Þ;

bðrÞ ¼ b0 þ
2

5
e2f21b0r

4 þOðr5Þ; ð47Þ

AðrÞ ¼ A0 þ αA0f21r
2 þ 1

6
αA0f1r3 þOðr4Þ;

CðrÞ ¼ 1 − 4αf21r
2 −

αf1
2

r3 þOðr4Þ; ð48Þ

with free parameters f1, b0, and A0.
For n≧ 2, we have no nontrivial solutions at the vicinity

of the origin r ¼ 0, then the solution has to be identically
zero. In order to get nontrivial solution, we consider a
possibility that the solution does not vanish only inside the
shell having radial support r ∈ ðRin; RoutÞ. Solutions of this
kind are called Q-shells. We study expansion at the sphere
with an inner or an outer radius. Expansions at both
borders of the compacton are very similar. We impose
the following boundary conditions at the compacton radius
r ¼ Rð≡Rin; RoutÞ:

fðRÞ ¼ 0; f0ðRÞ ¼ 0; AðRÞ ¼ 1: ð49Þ

The functions fðrÞ, bðrÞ, AðrÞ, and CðrÞ are represented by
series

fðrÞ¼
X∞
k¼2

FkðR−rÞk; bðrÞ¼
X∞
k¼0

BkðR−rÞk;

AðrÞ¼
X∞
k¼0

AkðR−kÞk; CðrÞ¼
X∞
k¼−2

CkðR−rÞk: ð50Þ
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First few terms have the form

fðrÞ ¼ R
16C0

ðR − rÞ2 þ R
24C2

0

ðR − rÞ3 þOððR − rÞ4Þ;

bðrÞ ¼ B0 þ B1ðR − rÞ − B1

R
ðR − rÞ2 þ B1

3R2
ðR − rÞ3

þOððR − rÞ4Þ;

AðrÞ ¼ A0 −
αR
48C2

0

ðR − rÞ3 þOððR − rÞ4Þ;

CðrÞ ¼ C0 þ
1 − C0

R
ðR − rÞ

þ
�
ðC0 − 1Þ 1

R2
0

−
5αB2

1

4A2
0e

2

	
ðR − rÞ2

þOððR − rÞ3Þ: ð51Þ

For electrically charged black hole solutions in the
interior of the shell, we impose the boundary conditions
for the functions bðrÞ, CðrÞ at the inner radius r ¼ Rin,

CðRinÞ ¼ 1 −
2MH

Rin
þQ2

H

R2
in

;

bðRinÞ ¼ b0 −
Bc

Rin
; b0ðRinÞ ¼

Bc

R2
in

; ð52Þ

where

MH ¼ 1

2

�
rH þQ2

H

rH

�
; Bc ¼

QHA0e
ffiffiffi
2

p
ffiffiffi
α

p ; ð53Þ

and QH is the horizon charge.

III. THE SOLUTIONS IN THE FLAT SPACE-TIME

We begin with the numerical analysis of Q-balls and
Q-shells in flat space-time. We solve the coupled differ-
ential Eqs. (24) and (25) by a shooting method. According
to (46) and (48), the solutions with n ¼ 0, 1 are regular at
the origin and then they are Q-ball type solutions. The
solution of n ¼ 0 is plotted in Fig. 1. The profile functions
fðrÞ are nonzero at the origin and monotonically approach

FIG. 1. The gaugedQ-ball solution for the CP1 case. Top left: the matter profile function fðrÞ of the first branch. Top right: The gauge
function bðrÞ of the first branch. Bottom left: The matter profile function fðrÞ of the second branch. Bottom right: the gauge function
bðrÞ of the second branch. Solutions of the first branch are plotted with the bold line and those of the second branch are plotted with the
dot-dashed line. Solutions of the vacuum equations are depicted with the dashed line. Distinct curves correspond with different values of
the shooting parameter b0.
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zero of the compaction radius, which is similar behavior
with the nongauged solution discussed in [11]. We have
two independent shooting parameters f0, b0, and for the
moment we fix b0 and varies f0 for finding solutions. The
value of the ω is depicted via the asymptotic behavior of
the numerical solution of bðrÞ, which obeys (40). A notable
feature of our solutions is that there are branches, i.e., two
types of the solutions with equal values of shooting
parameter, which exhibit a notable difference for varying
ω. In Fig. 1, we present the typical behavior. The first type
of solutions (the bold lines) exhibit the lumplike shape, i.e.,
peaked at the origin. For smaller the shooting parameters
b0, the solutions fðrÞ grow. On the other hand, the second
type of solutions (the dot-dashed lines) have a dip, i.e., the
peaks are located outside, not at the origin. The bifurcation
point is on b0 ¼ 0.7627, where the two solutions join.
Interestingly, some of the solutions of the first type
(b0 ¼ 0.7627 and 0.80) look interpolating between the
branches. The first and the second type solutions smoothly
connect via these intermediate solutions.
As we posed in the previous section, the solutions are not

regular at the origin for n≧ 2, which then leads to the

FIG. 2. The gauged Q-shell solution for the CP11 case. Top left: the matter profile function fðrÞ of the first branch. Top right: the
gauge function bðrÞ of the first branch. Bottom left: the matter profile function fðrÞ of the second branch. Bottom right: the gauge
function bðrÞ of the second branch. Solutions of the first branch are plotted with the bold line and those of the second branch are plotted
with the dot-dashed line. Solutions of the vacuum equations are depicted with the dashed line. Distinct curves correspond with different
values of the shooting parameter b0.

FIG. 3. A relation between shooting parameter b0 and fre-
quency ω for CP1 (blue) and CP11 (green). The dots correspond
to solutions with different ω of the first branch and the triangles to
the second branch.
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Q-shells, i.e., the matter field is localized in the radial
segment r ∈ ðRin; RoutÞ and the gauge field bðrÞ is of a
constant at the interior region r < Rin and of the asymptotic
solution (40) at the exterior r > Rout. Some typical sol-
utions are shown in Fig. 2. Similar with the cases of the
Q-balls, we obtain two types of the solutions which join at
b0 ¼ 1.657. The peak of the solutions moves outside as ω
grows. Especially the second type of solutions rapidly
expand as ω increases. In Fig. 3, we plot the relation
between the shooting parameter b0 and the corresponding
frequency ω for CP1 and CP11.
For the stability of the Q-balls, we examine the energy-

Noether charge scaling relation. In the studies for the global
model, it was shown that the relation E ∼Q5=6 strictly
holds for the solutions in flat space-time [10] and for
several gravitating solutions [11]. Thus, it is natural to
investigate the relation between E−1=5 and Q−1=6 in the
present model. In Fig. 4, we plot the relation for n ¼ 0, 1, 2,

5, 10, 25, 50. The dots indicate the solutions with different
frequency ω. In each n, most of the points lie on the straight
line with certain good accuracy. However, the data deviate
from the linearity especially for larger Q or E and indicate
for largeQ the energy scales different from ∼Q5=6. Figure 5
is an analysis of the relation between Q and E for CP1 and
CP11, where the data are depicted from result of Fig. 4,
which are compared to the dotted lines E ¼ β−1=5Q. The
coefficient β is extracted from the slope in Fig. 4, i.e.,
E−1=5 ¼ βQ−1=6. For the Q-ball, the energy is lower than
the linear behavior. The Q-shell solutions have the energy
enhanced than the linearity. We study a power law of the
scaling with numerically fitting the data for the second type
of solutions. For the Q-shell, it is 1.176711 ∼ 7=6. This
scaling is in good agreement with the result of Q-shell in
the signum-Gordon model [13]. TheQ-ball solution has the
power ∼1.2739, higher than 7=6, which is a consequence of
the boundary behavior at the origin. For growing the

FIG. 4. Left: the relation between E−1=5 andQ−1=6 for several gauged solutions. Right: the same as the left one but the plot is enlarged
in the region of high Q, E. The dots correspond to solutions of the first branch. The triangles correspond to solutions of the second
branch.

FIG. 5. The relation between E and Q. Left: CP1. Right: CP11. The gray dashed lines indicate E ¼ β−5Q, where β is the gradient of
E−1=5 −Q−1=6 in Fig. 4. We numerically fit the data of the solutions in the second branch with E ¼ ηQα þ ξ. The resultant functions are
shown as the red line. For CP1, η ¼ 1.12327, ξ ¼ 24.7417, α ¼ 1.27389. For CP11, η ¼ 30.0064, ξ ¼ 68.5474, α ¼ 1.16711 ∼ 7=6.
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shooting parameter, the second type of solutions look
closer to the shell shape, but not to become exact because
we do not impose the compact support in the interior.
Therefore, the compactness condition (49) is essential for
the scaling Q7=6.

IV. THE GRAVITATING SOLUTIONS

The gravitating Q-balls and Q-shells are obtained by
solving the differential Eqs. (22)–(25) with different n, We
look at dependence of these solutions on the parameter
b0; α. Here we present the numerical results for employing
the value b0 of the vicinity of the bifurcation point, i.e., the
point where the two branches merge. In Fig. 6, we plot
the solution for the CP1. In similarity to the flat case, the
profile function fðrÞ has nonzero value at the origin and
reaches zero at the compacton radius. We also present the
gauge function bðrÞ and the metric functions AðrÞ, CðrÞ.
A notable feature of the solution is emergence of the
branches when varying the coupling constant α. As α
increases, the first type of solution tends to shrink while the

second one grows. Figure 7 is the similar plot but for CP11.
The relation between E−1=5 and Q−1=6 of the gravitation
solutions is presented in Fig. 8.
We are able to consider theQ-shells with a massive body

immersed in their center, which is referred as a harbor. In
particular, there is a possibility of having this body as a
Schwarzschild or a Reissner-Nordström type black hole
[11,31,32,34]. We set the event horizon in the interior part
of the shell and then solve the equations from the event
horizon to the outer region. In order to find the harbor
solutions, we follow a few steps. We assume the solution of
the vacuum Einstein equation in the region between the
event horizon and the inner boundary of the shell r ∈
½rh; Rin� because matter function vanishes in this region. A
similar approach is applied outside the shell r ∈ ½Rout;∞Þ.
Next, we solve the equations in the region r ∈ ðRin; RoutÞ
and then smoothly connect the metric functions with such
vacuum solutions at both boundaries. We present typical
results in Fig. 9 for QH ¼ 0.0001.
In Fig. 10, we plot E−1=5–Q−1=6 relation for the harbor

solutions of CP11 with several values of b0.

FIG. 6. The gauged gravitating Q-ball solution for the CP1. The parameter b0 is fixed as b0 ¼ 0.7627. Top left: the matter profile
function fðrÞ. Top right: the gauge function bðrÞ. Bottom left: the metric function AðrÞ. Bottom right: the metric function CðrÞ.
Solutions of the first branch are plotted with the bold line and those of the second branch are plotted with the dot-dashed line. Solutions
of the vacuum equations are depicted with the dashed line. Distinct curves correspond with different values of the coupling constant α.
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FIG. 7. The gauged gravitating Q-shell solution for the CP11. The parameter b0 is fixed as b0 ¼ 1.657. Top left: the matter profile
function fðrÞ. Top right: the gauge function bðrÞ. Bottom left: the metric function AðrÞ. Bottom right: the metric function CðrÞ.
Solutions of the first branch are plotted with the bold line and those of the second branch are plotted with the dot-dashed line.
Solutions of the vacuum equations are depicted with the dashed line. Distinct curves correspond with different values of the coupling
constant α.

FIG. 8. Left: the relation between E−1=5 andQ−1=6 for several gauged solutions. Right: the same as the left one but the plot is enlarged
in region of highQ, E. The parameter α ¼ 0.001. The dots correspond to solutions with ω of the first branch. The triangles correspond to
solutions of the second branch.
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FIG. 9. The harbor solution for CP11 for a charged black hole. The parameters b0 ¼ 1.657 and α ¼ 0.001. Top left: the matter profile
function fðrÞ. Top right: the gauge function bðrÞ. Bottom left: the metric function AðrÞ. Bottom right: the metric function CðrÞ.
Solutions of the first branch are plotted with the bold line and those of the second branch are plotted with the dot-dashed line. Solutions
of the vacuum equations are depicted with the dotted line. The radius of the event horizon is chosen as rH ¼ 1.420.

FIG. 10. Left: the relation between E−1=5 and Q−1=6 for harbor solutions of CP11. The dots with the same color indicate the solutions
which differ only by the value of a horizon radius rH. The dots correspond to the first branch. Right: same as the left but the plots for
b0 ¼ 1.657, 2.0 are enlarged. The dots correspond to the first branch and the triangles to the second branch. The parameters α ¼ 0.001.
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V. FURTHER DISCUSSION

A salient feature of ourUð1Þ gauged model is a deviation
from the energy-charge scaling E ∼Q5=6 for large Q.
Physically, we promptly guess that it is caused by the fact
that the gauge field realizes the repulsive force between the
constituents. The situation can be observed from the
behavior of the solutions in Fig. 1. At the low density,
the solution behaves as a lump. It begins to deform at the
intermediate region and the solutions of the second type
exhibit more delocalized, look like the shell structure,
which apparently is effect of the repulsive electric force. In
order to see the mechanism more qualitatively, we derive
the charge density of our solutions. For simplicity, we
employ the solutions of the flat space-time, but behavior of
the gravitating solutions is quite similar. Thanks to the
compactness of the solutions, we directly compute the
volume of the Q-balls or Q-shells with the compacton
radius r ¼ Rin; Rout. In Fig. 11, we present the charge
density as a function of the shooting parameters b0, the
frequency ω, and the charge Q. For the parameter b0 or ω,
the density increases with the decrease in the parameters
from the large values. Approaching the maximum of the

density, the solutions begin to deform and the density is
relaxed. The solution moves on the second branch and the
density turns to decreasing behavior. For the Q-shells,
the energy scales as Q7=6. For increasing the charge Q, the
density also increases. The repulsive force by the electric
interaction is effectively strong and then the solution
deviates from Q5=6 behavior. After reaching the maximum,
the solution relaxes for decreasing the density.

VI. SUMMARY

In this paper, we have considered Uð1Þ gauged CPN

nonlinear sigma model with a compact support in flat
space-time and also coupled with gravity. We have obtained
the compact Q-ball and Q-shell solutions in the standard
shooting method. The resulting self-gravitating regular
solutions form boson stars and boson shells. For the
compact Q-shell solutions, we put the Schwarzschild-like
black holes in the interior and the exterior of the shell that
became the Reissner-Nordström space-time which may be
a contradiction of the no hair conjecture.
In the Uð1Þ gauged model, the energy-charge

scaling deviates from the corresponding global model,

Frequency

FIG. 11. The charge density: (the Noether chargeQ)/(the volume of theQ-shell V) for the several quantities of the model. Left top: for
the shooting parameter b0. Right top: for the frequency ω. Bottom: the chargeQ. The dots correspond to the first branch and the triangles
to the second branch.
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i.e., E ∼Q5=6 for large Q. We discussed why the energy is
enhanced for large Q region in terms of the simple analysis
of the charge density. For largeQ, the charge density grows
and then the repulsive force that originates in the electric
interaction dominates and then the solution tends to be
unstable.
In [35–37], the authors have shown several beautiful

phase diagrams concerning many bifurcation points and
branches. Since our model shares some features with their
model, we expect that we may observe the similar behav-
iors with our solutions. At present, we could see no explicit
signal of the extra branches. Apparently, we need the
numerical study with special care and it will be our
subsequent study.
This paper is the first step for the construction of

gravitating Q-balls (-shells) with non-Abelian symmetry
SUð2Þ ⊗ Uð1Þ. Q-ball solutions with the symmetry
SUð2Þ ⊗ Uð1Þ will certainly be possible to exist. It is
interesting because two different types of Noether charges

corresponding to the symmetry have a crucial role in the
stabilization of nontopological solitons. We shall report the
results in our forthcoming paper.
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